
On the Power of Dissolution in
P Systems with Active Membranes

Miguel A. Gutiérrez–Naranjo, Mario J. Pérez–Jiménez, Agust́ın Riscos–Núñez,
and Francisco J. Romero–Campero

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{magutier, marper, ariscosn, fran}@us.es

Abstract. In this paper we study membrane dissolution rules in the
framework of P systems with active membranes but without using elec-
trical charges. More precisely, we prove that the polynomial computa-
tional complexity class associated with the class of recognizer P systems
with active membranes, without polarizations and without dissolution
coincides with the standard complexity class P. Furthermore, we demon-
strate that if we consider dissolution rules, then the resulting complexity
class contains the class NP.

1 Introduction

Membrane Computing is inspired by the structure and functioning of living cells,
and it provides a new non–deterministic model of computation which starts from
the assumption that the processes taking place in the compartmental structure
of a living cell can be interpreted as computations. The devices of this model
are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non–deterministic maximally parallel manner.

In this paper we work with P systems with active membranes. This model was
introduced in [7], abstracting the way of obtaining new membranes through the
process of mitosis (membrane division) and providing a tool able to construct an
exponential workspace in linear time. In these devices membranes are considered
to have polarizations, one of the “electrical charges” 0, −, +, and several times
the problem was formulated whether or not these polarizations are necessary in
order to obtain polynomial time solutions to NP–complete problems. The last
result is that from [1], where it is proved that two polarizations suffice.

In the literature, P systems with active membranes have been successfully
used to design (uniform) solutions to well-known NP–complete problems, such
as SAT [12], Subset Sum [9], Knapsack [10], Bin Packing [11], Partition [3], and
the Common Algorithmic Problem [13].

The present paper can be considered as a contribution to the interesting
problem of characterizing the tractability in terms of descriptional resources
required in membrane systems.

Specifically, in the framework of recognizer P systems with membrane division
but not using polarizations, we prove the following: (a) the class of problems
which can be solved in a polynomial time by a family of such P systems without
dissolution is equal to class P, and (b) the class of problems which can be solved
in a polynomial time by a family of such P systems with dissolution contains
the class NP. Hence, we show a surprising role of the –apparently “innocent”–
operation of membrane dissolution, as it makes the difference between efficiency
and non–efficiency for polarizationless P systems with membrane division.

The paper is organized as follows. In the next section some preliminary ideas
about recognizer membrane systems and polynomial complexity classes are in-
troduced. In Section 3 we present a characterization of the class P through the
polynomial complexity class associated with recognizer P systems with active
membranes, without polarization and without dissolution. In Section 4 we show
that every NP–complete problem can be solved in a semi–uniform way by fam-
ilies of recognizer P systems using membrane dissolution rules and division for
elementary and non–elementary membranes. Conclusions and some final remarks
are given in Section 5.

2 Preliminaries

2.1 Recognizer P Systems

In the structure and functioning of a cell, biological membranes play an essential
role. The cell is separated from its environment by means of a skin membrane,
and it is internally compartmentalized by means of internal membranes.

The main syntactic ingredients of a cell–like membrane system (P system) are
the membrane structure, the multisets, and the evolution rules.

– A membrane structure consists of several membranes arranged hierarchically
inside a main membrane (the skin), and delimiting regions (the space in–
between a membrane and the immediately inner membranes, if any). When
a membrane has no membrane inside, it is called elementary. A membrane
structure can be considered as a rooted tree, where the nodes are called
membranes, the root is called skin, and the leaves are called elementary
membranes.

– Regions defined by a membrane structure can contain objects, corresponding
to chemical substances present in the compartments of a cell. These objects
can be described by symbols or by strings of symbols, in such a way that
multisets of objects are placed in the regions of the membrane structure.

– The objects can evolve according to given evolution rules, associated with
the regions (hence, with the membranes).

The semantics of the cell–like membrane systems is defined through a non–
deterministic and synchronous model (a global clock is assumed) as follows:

– A configuration of a cell–like membrane system consists of a membrane struc-
ture and a family of multisets of objects associated with each region of the

structure. At the beginning, there is a configuration called the initial config-
uration of the system.

– In each time unit a given configuration is transformed in another configura-
tion by applying the evolution rules to the objects placed inside the regions
of the configurations, in a non–deterministic, maximally parallel manner (the
rules are chosen in a non–deterministic way, and in each region all objects
that can evolve must do it). In this way, we get transitions from one config-
uration of the system to the next one.

– A computation of the system is a (finite or infinite) sequence of configurations
such that each configuration –except the initial one– is obtained from the
previous one by a transition.

– A computation which reaches a configuration where no more rules can be ap-
plied to the existing objects and membranes, is called a halting computation.

– The result of a halting computation is usually defined through the multiset
associated with a specific output membrane (or the environment) in the final
configuration.

In this paper we use membrane computing as a framework to address the reso-
lution of decision problems. In order to solve this kind of problems and having
in mind that solving them is equivalent to recognizing the language associated
with them, we consider P systems as language recognizer devices.

Definition 1. A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is a
P system with working alphabet Γ , with p membranes labelled with 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ and the initial multisets are over Γ − Σ; (c) iΠ is the
label of a distinguished (input) membrane.

The computations of a P system with input in the form of a multiset over Σ are
defined in a natural way, but the initial configuration of (Π, Σ, iΠ) must be the
initial configuration of the system Π to which we add the input multiset. More
formally,

Definition 2. Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, µ the membrane structure, and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with
input m is (µ, M1, . . . ,MiΠ ∪ m, . . . , Mp).

Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working alphabet of Π ,
µ the membrane structure, and M1, . . . , Mp the initial multisets of Π . Let m
be a multiset over Σ. Then we denote M∗

j = {(a, j) : a ∈ Mj}, for 1 ≤ j ≤ p,
and m∗ = {(a, iΠ) : a ∈ m}.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a
language over a finite alphabet (its elements are called instances) and θX is a
predicate (a total boolean function) over IX .

Definition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N

be a family of P systems with input. A polynomial encoding from X to Π is a
pair (cod, s) of polynomial time computable functions over IX such that for each

instance w ∈ IX , s(w) is a natural number and cod(w) is an input multiset for
the system Π(s(w)).

Polynomial encodings are stable under polynomial time reductions [12]. More
precisely, the following proposition holds.

Proposition 1. Let X1, X2 be decision problems. Let r be a polynomial time
reduction from X1 to X2. Let (cod, s) be a polynomial encoding from X2 to Π.
Then (cod ◦ r, s ◦ r) is a polynomial encoding from X1 to Π.

Definition 4. A recognizer P system is a P system with input and external
output such that:

1. The working alphabet contains two distinguished elements yes and no.
2. All computations halt.
3. If C is a computation of the system, then either the object yes or the object

no (but not both) must have been released into the environment, and only in
the last step of the computation.

In recognizer P systems, we say that a computation is an accepting computation
(respectively, rejecting computation) if the object yes (respectively, no) appears
in the environment associated with the corresponding halting configuration.

2.2 Recognizer P Systems with Active Membranes and Without
Polarizations

A particularly interesting class of membrane systems are the systems with active
membranes, where the membrane division can be used in order to solve com-
putationally hard problems in polynomial or even linear time, by a space–time
trade-off.

In this paper we work with a variant of P systems with active membranes
that does not use polarizations.

Definition 5. A P system with active membranes and without polarizations is
a P system with Γ as working alphabet, with H as the finite set of labels for
membranes, and where the rules are of the following forms:

(a) [a → u]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule,
associated with a membrane labelled with h: an object a ∈ Γ belonging to
that membrane evolves to a string u ∈ Γ ∗.

(b) a []h → [b]h for h ∈ H, a, b ∈ Γ . An object from the region immediately
outside a membrane labelled with h is introduced in this membrane, possibly
transformed into another object.

(c) [a]h → b []h for h ∈ H, a, b ∈ Γ . An object is sent out from membrane
labelled with h to the region immediately outside, possibly transformed into
another object.

(d) [a]h → b for h ∈ H, a, b ∈ Γ : A membrane labelled with h is dissolved in
reaction with an object. The skin is never dissolved.

(e) [a]h → [b]h [c]h for h ∈ H, a, b, c ∈ Γ . An elementary membrane can be
divided into two membranes with the same label, possibly transforming some
objects.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If at the same time a membrane labelled with h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

– The rules associated with membranes labelled with h are used for all copies
of this membrane. At one step, a membrane can be the subject of only one
rule of types (b)-(e).

Let us note that in this framework we shall work without cooperation, with-
out priorities, with cell division rules for elementary membranes, and without
changing the labels of membranes. But we shall explicitly mention in each case
whether we use dissolution or not.

We denote by AM0
−d (respectively, AM0

+d) the class of all recognizer P sys-
tems with active membranes without polarizations and without using dissolution
(respectively, using dissolution).

2.3 Polynomial Complexity Classes in Recognizer P Systems

Definition 6. Let X = (IX , θX) be a decision problem. Let Π = (Π(w))w∈IX

be a family of recognizer membrane systems without input.

– Π is sound with regard to X if for each instance of the problem w ∈ IX , if
there exists an accepting computation of Π(w), then θX(w) = 1.

– Π is complete with regard to X if for each instance of the problem w ∈ IX ,
if θX(w) = 1, then every computation of Π(w) is an accepting computation.

These concepts can be extended to families of recognizer P systems with input
membrane.

Definition 7. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer P systems with input. Let (cod, s) be a polynomial encoding
from X to Π.

– We say that the family Π is sound with regard to (X, cod, s) if the following
holds: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(s(w)) with input cod(w), then θX(w) = 1.

– We say that the family Π is complete with regard to (X, cod, s) if the following
holds: for each instance of the problem w ∈ IX , if θX(w) = 1, then every
computation of Π(s(w)) with input cod(w) is an accepting computation.

The first results about solvability of NP–complete problems in polynomial
time (even linear) by membrane systems were given by Gh. Păun [6], C. Zandron,
C. Ferretti and G. Mauri [14], S.N. Krishna and R. Rama [4], and A. Obtulowicz
[5] in the framework of P systems that lack an input membrane. Thus, the
constructive proofs of such results need to design one system for each instance
of the problem.

This method for solving problems provides a specific purpose algorithmic so-
lution in the following sense: if we wanted to follow this approach for solving
some decision problem in a laboratory, then the system constructed to solve a
concrete instance would be useless when trying to solve another instance.

Now, we formalize these ideas in the following definition.

Definition 8. Let R be a class of recognizer P systems without input membrane.
A decision problem X = (IX , θX) is solvable in polynomial time by a family,
Π = (Π(w))w∈IX , of P systems from R, and we denote this by X ∈ PMC∗

R, if:

– Π is polynomially uniform by Turing machines, that is, there exists a deter-
ministic Turing machine working in polynomial time which constructs the
system Π(w) from the instance w ∈ IX .

– Π is polynomially bounded, that is, there exists a polynomial function p(n)
such that for each w ∈ IX , all computations of Π(w) halt in at most p(|w|)
steps.

– Π is sound and complete with regard to X.

Next, we propose to solve a decision problem through a family of P systems
constructed in polynomial time by a Turing machine, and verifying that each
element of the family processes, in a specified sense, all the instances of equivalent
size. We say that these solutions are uniform solutions.

Definition 9. Let R be a class of recognizer P systems with input membrane.
A decision problem X = (IX , θX) is solvable in polynomial time by a family
Π = (Π(n))n∈N, of P systems from R, and we denote this by X ∈ PMCR, if
the following holds:

– The family Π is polynomially uniform by Turing machines.
– There exists a polynomial encoding (cod, s) from IX to Π such that

• The family Π is polynomially bounded with regard to (X, cod, s); that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps.

• The family Π is sound and complete with regard to (X, cod, s).

It is easy to see that the classes PMC∗
R and PMCR are closed under polynomial–

time reduction and complement (see [8] for details).

3 Characterizing the Tractability by Recognizer
P Systems with Active Membranes

Let Π be a recognizer P system with active membranes without polarizations
and without dissolution. Let R be the set of rules associated with Π .

Each rule can be considered, in a certain sense, as a dependency between the
object triggering the rule and the object or objects produced by its application.

We can consider a general pattern (a, h) → (a1, h
′)(a2, h

′) . . . (as, h
′), for rules

of types (a), (b), (c), (e), where:

– The rules of type (a) correspond to the case h = h′ and s ≥ 1.
– The rules of type (b) correspond to the case h = f(h′) and s = 1.
– The rules of type (c) correspond to the case h′ = f(h) and s = 1.
– The rules of type (e) correspond to the case h = h′ and s = 2.

If h is the label of a membrane, then f(h) denotes the label of the father of
the membrane labelled with h. We adopt the convention that the father of the
skin membrane is the environment (and we denote by environment the label
associated with the environment of the system).

For example, let us consider a general rule (a, h) → (a1, h
′) . . . (as, h

′). Then
we can interpret that from the object a in membrane labelled with h we can
reach the objects a1, . . . , as in membrane labelled with h′.

Next, we formalize these ideas in the following definition.

Definition 10. Let Π be a recognizer P system with active membranes without
polarizations and without dissolution. Let R be the set of rules associated with Π.
The dependency graph associated with Π is the directed graph GΠ = (VΠ , EΠ)
defined as follows:

VΠ = V LΠ ∪ V RΠ ,

V LΠ = {(a, h) ∈ Γ × H : ∃u ∈ Γ ∗ ([a → u]h ∈ R) ∨

∃b ∈ Γ ([a]h → []hb ∈ R) ∨

∃b ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ a[]h′ → [b]h′ ∈ R) ∨

∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

V RΠ = {(b, h) ∈ Γ × H : ∃a ∈ Γ ∃u ∈ Γ ∗ ([a → u]h ∈ R ∧ b ∈ alph(u)) ∨

∃a ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ [a]h′ → []h′b ∈ R) ∨

∃a ∈ Γ (a[]h → [b]h ∈ R) ∨

∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

EΠ = {((a, h), (b, h′)) : ∃u ∈ Γ ∗ ([a → u]h ∈ R ∧ b ∈ alph(u) ∧ h = h′) ∨

([a]h → []hb ∈ R ∧ h′ = f(h)) ∨

(a[]h′ → [b]h′ ∈ R ∧ h = f(h′)) ∨

∃c ∈ Γ ([a]h → [b]h[c]h ∈ R ∧ h = h′)}.

Proposition 2. Let Π be a recognizer P system with active membranes without
polarizations and without dissolution. Let R be the set of rules associated with Π.
There exists a Turing machine that constructs the dependency graph associated
with Π, GΠ , in polynomial time (that is, in a time bounded by a polynomial
function depending on the total number of rules and the maximum length of the
rules).

Proof. A deterministic algorithm that, given a P system Π with the set R of
rules, constructs the corresponding dependency graph, is the following:

Input: Π (with R as its set of rules)

VΠ ← ∅; EΠ ← ∅
for each rule r ∈ R of Π do

if r = [a → u]h ∧ alph(u) = {a1, . . . , as} then

VΠ ← VΠ ∪
s⋃

j=1

{(a, h), (aj , h)}; EΠ ← EΠ ∪
s⋃

j=1

{((a, h), (aj , h))}

if r = [a]h → []hb then

VΠ ← VΠ ∪ {(a, h), (b, f(h))};
EΠ ← EΠ ∪ {((a, h), (b, f(h)))}

if r = a[]h → [b]h then

VΠ ← VΠ ∪ {(a, f(h)), (b, h)};
EΠ ← EΠ ∪ {((a, f(h)), (b, h))}

if r = [a]h → [b]h[c]h then

VΠ ← VΠ ∪ {(a, h), (b, h), (c, h)};
EΠ ← EΠ ∪ {((a, h), (b, h)), ((a, h), (c, h))}

The running time of this algorithm is bounded by O(|R| ·q), where q is the value
max{length(r) : r ∈ R}.

Proposition 3. Let Π = (Γ, Σ, H, M1, . . . ,Mp, R1, . . . , Rp, iΠ) be a recognizer
P system with active membranes without polarizations and without dissolution.
Let ∆Π be defined as follows:

∆Π = {(a, h) ∈ Γ × H : there exists a path (within the dependency graph)
from (a, h) to (yes, environment)}.

Then, there exists a Turing machine that constructs the set ∆Π in polynomial
time (that is, in a time bounded by a polynomial function depending on the total
number of rules and the maximum length of the rules).

Proof. We can construct the set ∆Π from Π as follows:

– We construct the dependency graph GΠ associated with Π .
– Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
∆Π ← ∅
for each (a, h) ∈ VΠ do

if reachability (GΠ , (a, h), (yes, environment)) = yes then

∆Π ← ∆Π ∪ {(a, h)}

The running time of this algorithm is of the order O(|VΠ | · |VΠ |2), hence1 it is
of the order O(|Γ |3 · |H |3).

Next, given a family of recognizer P systems solving a decision problem, we
will characterize the acceptance of an instance of the problem, w, using the set
∆Π(s(w)) associated with the system Π(s(w)), that processes the given instance
w. More precisely, the instance is accepted by the system if and only if there is
an object in the initial configuration of the system Π(s(w)) with input cod(w)
such that there exists a path in the associated dependency graph starting from
that object and reaching the object yes in the environment.

Proposition 4. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N

be a family of recognizer P systems with input membrane solving X, according
to Definition 9. Let (cod, s) be the polynomial encoding associated with that so-
lution. Then, for each instance w of the problem X the following assertions are
equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(s(w)) ∩ ((cod(w))∗ ∪
p⋃

j=1

M∗
j) = ∅, where M1, . . . ,Mp are the initial

multisets of the system Π(s(w)).

1 The Reachability Problem is the following: given a (directed or undirected) graph,
G, and two nodes a, b, determine whether or not the node b is reachable from a, that
is, whether or not there exists a path in the graph from a to b. It is easy to design
an algorithm running in polynomial time solving this problem. For example, given
a (directed or undirected) graph, G, and two nodes a, b, we consider a depth–first–
search with source a, and we check if b is in the tree of the computation forest whose
root is a. The total running time of this algorithm is O(|V | + |E|), that is, in the
worst case is quadratic in the number of nodes. Morover, this algorithm needs to
store a linear number of items (it can be proved that there exists another polynomial
time algorithm which uses O(log2(|V |)) space).

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) with input multiset cod(w). But this condi-
tion is equivalent to the following: in the initial configuration of Π(s(w)) with
input multiset cod(w) there exists at least one object a ∈ Γ in a membrane
labelled with h such that in the dependency graph the node (yes, environment)
is reachable from (a, h).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩ M∗
j = ∅ for some j ∈ {1, . . . , p},

or ∆Π(s(w)) ∩ (cod(w))∗ = ∅.

Theorem 1. P = PMCAM0
−d

.

Proof. We have P ⊆ PMCAM0
−d

because the class PMCAM0
−d

is closed un-
der polynomial time reduction. Next, we show that PMCAM0

−d
⊆ P. Let

X ∈ PMCAM0
−d

and let Π = (Π(n))n∈N be a family of recognizer P sys-
tems with input membrane solving X , according to Definition 9. Let (cod, s) be
the polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).
- Construct the set ∆Π(s(w)) as indicated in Proposition 3

answer ← no; j ← 1
while j ≤ p ∧ answer = no do

if ∆Π(s(w)) ∩ M∗
j = ∅ then

answer ← yes

j ← j + 1
endwhile

if ∆Π(s(w)) ∩ (cod(w))∗ = ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there ex-
ists a pair (a, h) belonging to ∆Π(s(w)) such that the symbol a appears in the
membrane labelled with h in the initial configuration (with input the multiset
cod(w)).

On the other hand, a pair (a, h) belongs to ∆Π(s(w)) if and only if there exists
a path from (a, h) to (yes, environment), that is, if and only if we can obtain
an accepting computation of Π(s(w)) with input cod(w). Hence, the algorithm
above described solves the problem X .

The cost to determine whether or not ∆Π(s(w)) ∩ M∗
j = ∅ (or ∆Π(s(w)) ∩

(cod(w))∗ = ∅) is of the order O(|Γ |2 · |H |2).
Hence, the running time of this algorithm can be bounded by f(|w|)+O(|R| ·

q) + O(p · |Γ |2 · |H |2), where f is the (total) cost of a polynomial encoding from
X to Π, R is the set of rules of Π(s(w)), H is the set of labels for membranes

of Π(s(w)), p is the number of (initial) membranes of Π(s(w)), and q = max
{length(r) : r ∈ R}. But from Definition 9 we have that all involved parameters
are polynomials in |w|. That is, the algorithm is polynomial in the size |w| of
the input.

Now, we consider division rules for non–elementary membranes, that is, rules of
the following form [[]h1 []h2]h0 → [[]h1]h0 [[]h2]h0 , where h0, h1, h2 are labels:
if the membrane with label h0 contains other membranes than those with labels
h1, h2, then such membranes and their contents are duplicated and placed in
both new copies of the membrane h0; all membranes and objects placed inside
membranes h1, h2, as well as the objects from membrane h0 placed outside
membranes h1 and h2, are reproduced in the new copies of membrane h0. We
denote by AM0

−d,+ne the class of all recognizer P systems with active membranes
without polarization, without membrane dissolution rules, and using division
rules for elementary and non–elementary membranes.

If Π ∈ AM0
−d,+ne, then we define the dependency graph associated with

Π as the directed graph GΠ from Definition 10, that is, the division rules for
non–elementary membranes do not add any node or edge to the dependency
graph.

Then, the proof of Theorem 1 provides the following result:

Theorem 2. P = PMCAM0
−d,+ne

.

Now, we study similar characterizations of P dealing with semi–uniform solu-
tions in the framework of recognizer P systems with active membranes without
polarizations and without dissolution.

Proposition 5. Let X = (IX , θX) be a decision problem. Let Π = (Π(w))w∈IX

be a family of recognizer P systems without input membrane solving X, accord-
ing to Definition 8. Then, for each instance w of the problem X the following
assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(w) ∩ (
p⋃

j=1

M∗
j) = ∅, where M1, . . . ,Mp are the initial multisets of the

system Π(w).

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting com-
putation of the system Π(w). But this condition is equivalent to the following:
in the initial configuration of Π(w) there exists an object a ∈ Γ in a membrane
labelled with h such that in the dependency graph the node (yes, environment)
is reachable from (a, h).

Hence, θX(w) = 1 if and only if ∆Π(w) ∩ M∗
j = ∅ for some j ∈ {1, . . . , p}.

Theorem 3. P = PMC∗
AM0

−d
.

Proof. The proof of this result is analogous to the proof of Theorem 1, taking
into account that in this case we are dealing with a semi-uniform solution. That
is, in the previous theorem an instance w ∈ IX was processed by the P system
Π(s(w)) with input cod(w), and now such instance is processed by Π(w).

Bearing in mind that division rules for non–elementary membranes do not influ-
ence the construction of the dependency graph, we have:

Theorem 4. P = PMC∗
AM0

−d,+ne
.

We can consider a three dimensional representation of the above theorems,
where +u (respectively, −u) stands for uniform (respectively, semi–uniform)
solutions.

(−d,−ne,+u)(−d,−ne,−u)

(−d,+ne,−u) (−d,+ne,+u)

(+d,−ne,−u) (+d,−ne,+u)

(+d,+ne,−u) (+d,+ne,+u)

P P

PP

(without dissolution)

Tractable

(with dissolution)
??

Fig. 1. Characterizations of P by P systems

What happens if we consider dissolution rules in the framework of recognizer
P systems with active membranes and without polarizations? Will it be possible
to solve NP–complete problems in that framework? In the next section we will
affirmatively answer to this question.

4 Computational Efficiency Using Dissolution Rules

In this section we show that the class of decision problems solvable in poly-
nomial time in a semi–uniform way by families of recognizer P systems with
active membranes, without polarization, and using membrane dissolution rules
and division rules for elementary and non–elementary membranes, contains the
standard complexity class NP.

For that, we describe a family of such recognizer membrane systems which
solves the Subset Sum problem in linear time and in a semi–uniform way.

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there
exists a subset B ⊆ A such that w(B) = k.

Proposition 6. The Subset Sum problem belongs to the class PMC∗
AM0

+d,+ne
.

Sketch of the Proof. We will use a tuple u = (n, (w1, . . . , wn), k) to represent
an instance of the problem, where n stands for the size of A = {a1, . . . , an},
wi = w(ai), and k is the constant given as input for the problem.

We propose here a solution to this problem based on a brute force algo-
rithm implemented in the framework of P systems with active membranes, with-
out polarizations, with dissolution, and using division for elementary and non–
elementary membranes.

The idea of the design is better understood if we divide the solution to the
problem into several stages:

– Generation stage: for every subset of A, a membrane is generated via mem-
brane division.

– Weight calculation stage: in each membrane the weight of the associated
subset is calculated. This stage will take place in parallel with the previous
one.

– Checking stage: for each membrane it is checked whether or not the weight of
its associated subset is exactly k. This stage cannot start before the previous
ones are over.

– Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer to the environment.

For each instance u = (n, (w1, . . . , wn), k) of the Subset Sum problem we con-
sider the P system with active membranes, without polarization, without input
membrane

Π(u) = (Γ (u), H(u), µ, M0, M1, . . . ,Mk+3, R(u))
defined as follows:
• Working alphabet:

Γ (u)={d0, . . . , d2n+1, a1, . . . , an, e1, . . . , en}∪{b, s, c, c, z0, . . . , z2n+k+5, yes, no}.

• H(u) = {0, 1, 2, 3, . . . , k + 3}.
• Initial membrane structure: µ = [[[[. . . [[]0]1 . . .]k]k+1]k+2]k+3.
• Initial multisets:

M0 = d0, Mk+2 = z0 and Mi = ∅, for every i ∈ {1, . . . , k, k + 1, k + 3}.
• The set of evolution rules, R(u), consists of the following rules:

(a) [d2i → ai+1d2i+1]0 for i ∈ {0, . . . , n},
[d2i+1 → d2i+2]0 for i ∈ {0, . . . , n − 1}.

The goal of the counter di is to control the apparition of an object aj only
in the odd steps. The importance of these objects will be explained in the
next set of rules.

(b) [ai]0 → [ei]0 [b]0
[ei → swi]0

}
for i ∈ {1, . . . , n}.

The object ai triggers the rule for division of elementary membranes. After
the division, in one membrane is placed an object ei and in the other one
an object b. The object b remains inactive whereas the object ei evolves in
the next step to as many copies of object s as the weight wi.

(c) [[]i []i]i+1 → [[]i]i+1 [[]i]i+1 for i ∈ {1, . . . , k}.

This is the set of rules for the division of non-elementary membranes. These
three first set of rules produce a membrane structure with 2n branches. On
each of the leaves of the tree we have a membrane with as many objects s
as the weight of a possible subset, S, of A.

(d) [d2n+1]0 → b,
[s]i → c for i ∈ {1, . . . , k + 1}.

When the generation stage has finished, the object d2n+1 dissolves the
membrane with label 0. At this point, the elements s start to dissolve mem-
branes. If there are enough objects s, all the membranes of the branch with
labels 1, . . . , k + 1 are dissolved. Otherwise, the branch remains inactive.

(e) [c → c]k+1.

This is a waiting step and the key of the computation. If in a branch the en-
coded weight of the subset, wS , is less than k, the branch becomes inactive.
Otherwise all the membranes of the branch are dissolved until reaching the
membrane with label k + 1. If wS = k then in this membrane there are no
objects s that dissolve it and the object c remains in the membrane. On the
contrary, if wS > k, then the membrane is dissolved in the same step in which
c is produced and c goes to the membrane with label k + 2.

(f) [zi → zi+1]k+2 for i ∈ {0, . . . , 2n + k + 4},
[c]k+1 → yes,

[yes]k+2 → yes,

[z2n+k+5]k+2 → no.

If one of the subsets of Ahas weightk, then an object c appears in a membrane
with label k+1. This object dissolves the membrane and sends an object yes
to the membrane with label k + 2. In this membrane we keep a counter zi

along the computation. If at some step an object c has sent an object yes
to this membrane, this object will dissolve the membrane in the next step
preventing that the object z2n+k+5 appears in the membrane. Otherwise, if
the object c is never produced, then we eventually get an object z2n+k+5 in the
membrane with label k + 2. In the following step this membrane is dissolved
and an element no is sent to the membrane with label k + 3.

(g) [no]k+3 → no []k+3,
[yes]k+3 → yes []k+3.

From above, we know that the membrane with label k + 3 (recall that this
is the skin membrane) is reached by one and only one of the objects yes or
no. The rules in group (g) send that object to the environment in the last
step of the computation. �

Theorem 5. NP ∪ co-NP ⊆ PMC∗
AM0

+d,+ne
.

Proof. It suffices to remark that the Subset Sum problem is NP–complete, be-
longing to the class PMC∗

AM0
+d,+ne

, and this class is stable under polynomial-
time reduction and closed under complement.

Remark 1. A. Alhazov et al. in [2] showed that SAT ∈ PMC∗
AM0

+d,+ne
. Hence

the result in Theorem 5 can also be deduced from this remark.

The following picture illustrates the results obtained in this paper.

(−d,−ne,+u)(−d,−ne,−u)

(−d,+ne,−u)
(−d,+ne,+u)

(+d,−ne,−u) (+d,−ne,+u)

(+d,+ne,−u) (+d,+ne,+u)

P P

PP

(without dissolution)

Tractable

Presumably intractable

(with dissolution)

NP

Fig. 2. A borderline between the tractability and the (presumable) intractability

5 Conclusions

A conjecture known in the membrane computing area under the name of the P–
conjecture asserts that the polynomial–time solvability by deterministic Turing

machines is equivalent to the polynomial–time solvability by recognizer P sys-
tems with active membranes and without polarizations, that is, that conjecture
can be expressed by the equality P = PMCAM0 , where AM0 is the class of all
recognizer P systems with active membranes and without polarization.

In this paper we provide a partial affirmative answer to the P–conjecture in the
case that the P systems from AM0 do not use dissolution rules. Besides, a partial
negative answer to the P–conjecture is given when we use semi–uniform solutions
and membrane division rules for elementary and non–elementary membranes
(and suppossing that P = NP).

We have used the concept of dependency graph that initially was defined to
help to design strategies that allow to choose short computations of recognizer
membrane systems. In this paper we work with dependency graphs associated
with a variant of recognizer P systems with active membranes. In this way we
are able to characterize accepting computations of these systems through the
reachability of a distinguished node of the graph from other nodes associated
with the initial configuration.

We have shown that it is possible to solve in polynomial time and in a uniform
way through recognizer P systems with active membranes without polarizations
and without dissolution only problems which are tractable in the standard sense.
Morover, if in this framework we consider membrane dissolution rules, then we
can solve NP–complete problems in polynomial time, in a semi–uniform way
and using division for elementary and non–elementary membranes.

Acknowledgement

The authors wish to acknowledge the support of the project TIC2002-04220-
C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds.

References

1. A. Alhazov, R. Freund, Gh. Păun: P systems with active membranes and two polar-
izations. Proceedings of the Second Brainstorming Week on Membrane Computing
(Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.), Re-
port RGNC 01/04, 2004, 20–35.

2. A. Alhazov, L. Pan, Gh. Păun: Trading polarizations for labels in P systems with
active membranes. Acta Informaticae, 41, 2-3 (2004), 111-144.

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A fast P system
for finding a balanced 2-partition. Soft Computing, 9, 9(2005), 673–678.

4. S.N. Krishna, R. Rama: A variant of P systems with active membranes: Solving
NP–complete problems. Romanian Journal of Information Science and Technology,
2, 4 (1999), 357–367.

5. A. Obtulowicz: Deterministic P systems for solving SAT problem. Romanian Jour-
nal of Information Science and Technology, 4, 1–2 (2001), 551–558.

6. Gh. Păun: P systems with active membranes: Attacking NP–complete problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

7. Gh. Păun: Computing with membranes: Attacking NP–complete problems. In Un-
conventional Models of Computation, UMC’2K (I. Antoniou, C. Calude, M.J. Din-
neen, eds.), Springer–Verlag, 2000, 94–115.

8. M.J. Pérez–Jiménez: An approach to computational complexity in Membrane Com-
puting. In Membrane Computing, 5th International Workshop, WMC5, Revised
Selected and Invited Papers (G. Mauri, Gh. Păun, M. J. Pérez-Jiménez, Gr. Rozen-
berg, A. Salomaa, eds.), LNCS 3365 (2005), 85-109.

9. M.J. Pérez-Jiménez, A. Riscos-Núñez: Solving the Subset-Sum problem by active
membranes. New Generation Computing, 23, 4(2005), 367–384.

10. M.J. Pérez-Jiménez, A. Riscos-Núñez: A linear–time solution to the Knapsack
problem using P systems with active membranes. In Membrane Computing (C.
Mart́ın-Vide, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2933 (2004),
250–268.

11. M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving the Bin Packing problem by
recognizer P systems with active membranes. Proceedings of the Second Brain-
storming Week on Membrane Computing (Gh. Păun, A. Riscos-Núñez, A. Romero-
Jiménez, F. Sancho-Caparrini, eds.), Report RGNC 01/04, University of Seville,
2004, 414–430.

12. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. Proceedings of the 5th Work-
shop on Descriptional Complexity of Formal Systems, DCFS 2003 (E. Csuhaj-
Varjú, C. Kintala, D. Wotschke, G. Vaszil, eds.), 2003, 284-294.

13. M.J. Pérez-Jiménez, F.J. Romero–Campero: Attacking the Common Algorithmic
Problem by recognizer P systems. In Machines, Computations and Universality,
MCU’2004, Saint Petesburg, Russia, September 2004, Revised Selected Papers (M.
Margenstern, ed.), LNCS 3354 (2005), 304-315.

14. C. Zandron, C. Ferreti, G. Mauri: Solving NP-complete problems using P systems
with active membranes. In Unconventional Models of Computation, UMC’2K (I.
Antoniou, C. Calude, M.J. Dinneen, eds.), Springer–Verlag, 2000, 289–301.

	Introduction
	Preliminaries
	Recognizer P Systems
	Recognizer P Systems with Active Membranes and Without Polarizations
	Polynomial Complexity Classes in Recognizer P Systems

	Characterizing the Tractability by Recognizer P Systems with Active Membranes
	Computational Efficiency Using Dissolution Rules
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

