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E.T.S. Ingenieŕıa Informática, University of Seville

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{Mario.Perez,Alvaro.Romero,Fernando.Sancho}@cs.us.es

Summary. In this chapter we present a general framework to provide efficient
solutions to decision problems through families of cell-like membrane systems con-
structed in a semi-uniform way (associating with each instance of the problem one P
system solving it) or a uniform way (all instances of a decision problem having the
same size are processed by the same system). We also show a brief compendium of
efficient semi-uniform and uniform solutions to hard problems in these systems, and
we explicitly describe some of these solutions.

1 Introduction

Many interesting problems of the real world are presumably intractable (unless 
P = NP) and hence it is not possible to obtain algorithmic solutions when 
we address large instances of those problems on an electronic computer.

From this point of view, membrane systems have two attractive features: 
they are inherently parallel and nondeterministic. Can the parallelism and 
nondeterminism of P systems be used to solve hard problems in feasible time?
The answer is yes, but we must point out two facts. On the one hand, we have 
to deal with the nondeterminism in such a way that the solutions obtained 
by using these devices are algorithmic solutions in the classical sense, that 
is, the answers of the computations of the system must be reliable. On the 
other hand, the drastic decrease of the execution time from exponential to 
polynomial is not achieved for free, but with the use of an exponential amount 
of space, although this space is created in polynomial time.

In this chapter we present the theoretical requirements for a P system to 
provide an algorithmic solution to an abstract decision problem (a precise 
definition of the latter is given in Section 2). First, all computations of the 
system must halt, providing a positive or negative answer to the problem



(i.e., for a particular instance of it). Second, we impose that the systems be
confluent. This is a generalization of the notion of determinism for which we
require all possible computations to provide the same answer. This way we do
not obtain a contradictory result. In Section 3, P systems verifying these two
properties are called recognizer systems.

It is important to note that all the feasible solutions to hard problems
obtained by means of these biologically inspired devices so far presented do not
use a single P system, but a family of systems. However, there are significative
differences between those solutions, dividing them in two groups: the semi-
uniform solutions, which associate with each instance of the problem one
P system solving it, and the uniform solutions, which associate with each
possible size of the instances of the problem one P system that can solve all
instances of that size. A formal definition of these two concepts can be found
in Sections 4 and 5.

Another possible classification can be considered with respect to the exis-
tence or not in the system of a membrane where the input data is introduced
before the computation starts. Usually, the semi-uniform solutions are per-
formed by P systems without input, whereas the uniform solutions are per-
formed by P systems with input. In Section 4 we present a compendium of
known semi-uniform solutions to hard problems by P systems without input,
and a detailed description of two of these solutions: one to the Satisfiability
Problem and the other to the Hamiltonian Path Problem. Finally, in Section
5 we do the same for known uniform solutions to hard problems by P sys-
tems with input, detailing the ones corresponding to the Decision Knapsack
Problem (0/1) and to the Common Algorithmic Decision Problem.

2 Abstract Problems

Membrane systems provide devices with the ability to solve problems. But
these machines are equipped only with tools able to handle inputs and outputs
that are multisets of symbol objects. Hence, we are forced to treat these
problems as collections of multisets.

In general we define an abstract problem X to be a pair X = (IX , SX)
where IX is a language over a finite alphabet, whose elements are called in-
stances of the problem, SX is a function whose domain is IX , and for any
instance i ∈ IX , the set SX(i) is finite (the elements of this set are called
candidate solutions). Observe that the set of instances of an abstract problem
is a finite or enumerable set.

As an example, consider the problem MAX-CLIQUE of finding a largest
clique in a given unidirected graph. Recall that a clique in a graph is a set
of vertices such that their each pair is connected by an edge. An instance
of MAX-CLIQUE is an undirected graph, and a candidate solution is a set
of vertices. An exact solution will be a set of vertices which is a clique with
the maximal number of vertices. The problem MAX-CLIQUE itself is the



relation that associates each undirected graph with each largest cliques in the
graph (an exact solution). Since largest cliques in an uniderected graph are
not necessarily unique, a given problem instance may have more than one
exact solution; that is, the binary relation associated with the problem is not
necessarily univocal.

In this chapter we will work only with decision problems, that is, abstracts
problems that require either a yes or a no answer. Formally, a decision problem
X is an abstract problem (IX , SX) such that SX is a total boolean function
(that is, a predicate) over IX .

For example, the following is a decision version of the problem CLIQUE:
given an undirected graph G and a natural number k, determine whether or
not G has a clique of size at least k. An instance for CLIQUE is a pair (G, k)
where G is an undirected graph and k is a natural number, and a candidate
solution is 1 (yes) or 0 (no). If i = (G, k) is an instance of this problem, then
SCLIQUE(i) = 1 (yes) if there exists a clique in G of size at least k, and
SCLIQUE(i) = 0 (no) otherwise.

There exists a natural correspondence between languages and decision
problems in the following way: each language L over an alphabet Σ has a
decision problem, XL = (IXL , SXL), associated with it, where IXL = Σ and
SXL = {(x, 1) | x ∈ L}∪{(x, 0) | x /∈ L}; reciprocally, given a decision problem
X = (IX , SX), the language LX over IX corresponding to it is defined as
LX = {a ∈ IX | SX(a) = 1}.

Let M be a Turing machine such that the result of any halting computation
is yes or no. Let L be a language over an alphabet Σ. If M is a deterministic
device then we say that M recognizes or decides L whenever, for any string a
over Σ, if a ∈ L then the answer of M on input a is yes, and no otherwise.
If M is a nondeterministic Turing machine, then we say that M recognizes or
decides L if the following is true: for any string a over Σ, a ∈ L if and only
if there exists a computation of M with input a such that the answer is yes.
That is, an input string a is accepted if there is some accepting computation
of M on input a.

Notice the difference in the definition of acceptance by deterministic and
nondeterministic Turing machines. An input string a is accepted by a deter-
ministic Turing machine M if the computation of M on input a halts and
answers yes. A nondeterministic Turing machine M accepts a string a if there
exists some computation of M on input a answering yes; that is, there exists
a sequence of nondeterministic choices that results in yes. In this case, it is
possible that we accept a string but that there exists another computation
with the same input that either halts and answers no, or does not halt.

In some sense, we can state that nondeterministic devices do not properly
capture the intuitive idea underlying the concept of algorithm, because the
result of such a machine on an input is not reliable, since the answer of the
device is not always the same.

In the context of computability theory, we consider a problem X to be
solved when we have a general method (described in a model of computation)



that works for any instance of the problem. From a practical point of view,
such methods run only over a finite set of instances whose cardinality depends
on the available resources.

We say that a Turing machine M solves a decision problem X if M rec-
ognizes the language associated with X ; that is, for any instance a of the
problem: (a) in the deterministic case, the machine (with input a) outputs
yes if the answer of the problem is yes, and outputs no otherwise, and (b) in
the nondeterministic case, some computation of the machine (with input a)
outputs yes if the answer of the problem is yes.

As for when the instances of abstract problems are strings, we can consider
their size in a natural manner: the size of an instance is the length of the string.
Then, how do the resources required to execute a method increase according
to the size of the instance? This is a fundamental question in computational
complexity theory.

Let M be a deterministic Turing machine. Let R be a resource used by
the device (for example, the number of steps executed before the machine
halts, the time of execution). We consider a function fR mapping nonnegative
integers to nonnegative integers defined as follows: fR(n) is the maximum,
over all instances a of size n, of the amount of resource R used when the
device M is executed with input a. For example, if R is the time of execution,
then we say that M operates in time fR(n); if fR turns to be a polynomial
function, then we say that M works in polynomial time.

3 Recognizer P Systems

In this chapter we use membrane computing as a framework to address the
resolution of decision problems; that is why we consider P systems as recog-
nizer devices. Since P systems work in a nondeterministic manner, we need to
adapt the usual definition of the processes of acceptance in nondeterministic
Turing machines.

In order to accept or reject an input string/multiset it should be enough
to read the answer of any computation of the system. Hence it is necessary
to require a condition of confluence in the following sense: every computation
of the system is a halting computation, and (on the same input, if any) all
computations have the same output.

Definition 1. A recognizer P system is a P system with external output such
that:

1. The working alphabet contains two distinguished elements yes and no.
2. All computations halt.
3. If C is a computation of the system, then either some object yes or some

object no (but not both) must have been released into the environment, and
only in the last step of the computation.



For recognizer P systems, we say that a computation C is an accepting com-
putation (or rejecting computation) if the object yes (or no) appears in the
external environment associated with the corresponding halting configuration
of C. Hence, these devices send to the environment an accepting or rejecting
answer at the end of their computations. Therefore, if we want these kinds of
systems to properly solve decision problems, we have to require all responses
to be consistent, in the sense that the system must always give the same
answer.

4 Recognizer P Systems Without Input

The first results about solvability of NP-complete problems in polynomial
(even linear) time by membrane systems were given by Gh. Păun [24], C.
Zandron et al. [40], S.N. Krishna et al. [10], and A. Obtulowicz [15] in the
framework of P systems that lack an input membrane. Thus, the constructive
proofs of such results need to design one system for each instance of the
problem.

This method for solving problems provides a specific algorithmic solution,
in the following sense: if we wanted to apply such a method to some decision
problem then a system should be constructed for every instance of the prob-
lem. However, the construction is done in polynomial time, which prevents
the solving of the problem during the “programming” phase.

Now, we formalize these ideas in the following definition.

Definition 2. Let X = (IX , θX) be a decision problem. We say that X is solv-
able in polynomial time by a family of recognizer membrane systems without
input Π = (Π(w))w∈IX if the following are true:

• The family Π is “Turing polynomially uniform”; that is, there exists a
deterministic Turing machine which, in polynomial time, constructs the
system Π(w) starting from the instance w ∈ IX .

• The family Π is polynomially bounded; that is, there exists a polynomial
function p(n) such that for each w ∈ IX , every computation of Π(w) halts
in at most p(|w|) steps.

• The family Π is sound; that is, for each instance of the problem w ∈ IX ,
if there exists an accepting computation of Π(w), then θX(w) = 1 (the
corresponding answer of the problem is yes).

• The family Π is complete; that is, for each instance of the problem w ∈ IX ,
if θX(w) = 1 (the answer to the problem is yes), then every computation
of Π(w) is an accepting computation (the system also responds yes).

The soundness property means that if we obtain an acceptance response of
the system (associated with an instance) through some computation, then
the answer to the problem (for that instance) has to be yes. The completeness
property means that if we obtain an affirmative response to the problem, then
any computation of the system must be an accepting one.



Notice that in the above definition we consider two different tasks. The first
one is the construction of the family solving the problem, which we require
to be done in polynomial time; that is, there exists a deterministic Turing
machine M , and a polynomial function q(n) such that for each w ∈ IX , M(w)
provides a complete description of the system Π(w) in at most q(|w|) steps.
This is precomputation time, expressed in the number of sequential steps.

The second task is the execution of the systems Π(w) of the family, and
for this task we impose that the total number of steps performed by the
computations of system Π(w) is bounded by the polynomial function p(n).
This is the real computation time, and it is described by the number of parallel
steps.

In this section we use recognizer membrane systems without input mem-
brane in order to solve decision problems. In this context, we need to associate
with each instance of the problem such a system, accepting or rejecting it.
Bearing in mind the nondeterminism of the system, we require the confluence
condition; that is, all branches of a computation associated with the instance
eventually reach a unique configuration.

Unless P=NP, to solve an NP-complete problem in an efficient way using
P systems we have to create an exponential workspace in polynomial time.
This is possible in various types of membrane systems, for example, through
membrane division [24] (we can repeatedly divide membranes in order to ob-
tain 2n membranes in n steps), membrane creation [9], [13] (new membranes
are produced under the influence of the existing objects in a membrane), string
replication [4] (in a rewriting membrane system using string objects we can
generate exponentially many strings in linear time), or by using precomputed
resources [25], [6] (we start from an arbitrarily large initial membrane struc-
ture, without objects placed in its regions, and we trigger a computation by
introducing both objects and rules related to a given problem in a specified
membrane).

In [23] Gh. Păun explains the convenience of solving many NP-complete
problems in a uniform manner, that is, with P systems which are very similar
to each other. This idea about the uniformity of the P systems able to solve
a decision problem was formulated for the first time by A. Obtulowicz [17] in
relation to a proposed solution to SAT: the family of P systems (without input
membrane) described in [24] is generated in a logarithmic space by a multitape
deterministic Turing machine. We say that this construction is semi-uniform:
the systems of the family solving the decision problem are constructed starting
not from the size of an instance, but from an instance only; that is, in a
recursive manner, for each instance of the problem a P system associated
with it is constructed.

In contrast, in Section 5 we will define the concept of uniform construction
of families of P systems solving a decision problem.

Now, we briefly comment the different efficient solutions of NP-complete
problems in the framework of P systems without input, described in a semi-
uniform way, proposed until now.



The first efficient solution to SAT is given by Gh. Păun in [24], using division
for non-elementary membranes. This result was improved by Gh. Păun, Y.
Suzuki, H. Tanaka, and T. Yokomori in [29] using only division for elementary
membranes (in that paper a solution to HPP using membrane creation is also
presented).

In [2], A. Alhazov and T.O. Ishdorj present a linear time solution to SAT
through P systems with active membranes without polarizations but using
some membrane rules (merging, separation, and release).

The first efficient solution to HPP by P systems is due to S.N. Krishna and
R. Rama [10], but using rules for d-division, with an arbitrary d (a solution to
Vertex Cover is also provided in this paper). The result of S.N. Krishna and
R. Rama about HPP was improved by A. Păun in [21] by using only rules for
2-division.

Different efficient solutions to several variants of SAT (3-SAT, Not-all-equal
3 SAT, One-in-three 3SAT, and Minimum 2-satisfiability) are decribed by Gh.
Păun, Y. Suzuki, H. Tanaka, and T. Yokomori in [29]. Also, in that paper
solutions to several problems of graph theory (Vertex Cover, k-closure, Inde-
pendent set, Graph 3-colourability, and Monochromatic triangle) are given by
P systems with active membranes using cooperative rules.

Other efficient solutions to SAT and HPP are given by J. Castellanos et al.
[4], through P systems using string replications (similar solutions are given by
S.N. Krishna and R. Rama in [11]), and by E. Czeizler [6], through P systems
using precomputed resources.

A polynomial solution to Integer Factorization Problem is presented by A.
Obtulowicz in [16] through deterministic P systems with active membranes
but using cooperative rules.

P. Sosik in [39] provides a semi-uniform efficient solution to QBF (satisfia-
bility of quantified propositional formulas), a well known PSPACE-complete
problem in the framework of P systems with active membranes but using
2-division for nonelementary membranes.

S.N. Krishna and R. Rama [12] show how P systems with membrane divi-
sion can theoretically break the most widely used cryptosystem, DES. That
is, given an arbitrary (plain text, cipher text) pair, one can recover the DES
key in linear time with respect to the length of the key.

In this section we present a semi-uniform solution to SAT problem due to
C. Zandron, G. Mauri, and C. Ferretti [41] (with slight modifications the above
solution can be adapted to a linear time solution by recognizer P systems, as
we point out at the end of subsection 4.1). We also describe a quadratic time
semi-uniform solution to the Hamiltonian Path Problem, a variant of a solu-
tion presented by M.J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-
Caparrini in [35].



4.1 A Linear Time Solution to SAT

The Satisfiability Problem (SAT) is the following decision problem:

Given a propositional formula in conjunctive normal form,
determine if there exists a truth assignment of its variables
which makes the formula true.

In what follows we present a family of P systems with active membranes
using 2-division that solves SAT in linear time.

Given an instance φ of SAT we construct a P system Π(φ) whose function-
ing can be divided into the following stages:

(a) Generate all the possible truth assignments for the variables of φ. (This
will be done in a nondeterministic way.)

(b) Apply the assignments generated in the previous stage to the formula.
(c) Check if all the clauses have value true.
(d) Answer yes or no depending on the results from (c).

Let us suppose that φ is a formula with m clauses and n variables. That
is, φ = C1 ∧ · · · ∧ Cm for some m ≥ 1, with Ci = yi,1 ∨ · · · ∨ yi,pi for some
pi ≥ 1 and yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi.

The P system Π(φ) is defined as follows.

• The working alphabet is

Γ (φ) = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 0 ≤ i ≤ m}
∪ {ci | 1 ≤ i ≤ m − 1} ∪ {di | 0 ≤ i ≤ n} ∪ {yes}.

• The set of labels is {1, 2}.
• The initial membrane structure is [1 [2 ]0

2
]0
1

(each membrane with label 2 is
said to be an internal membrane).

• The initial multisets associated with the membranes are M1 = λ and
M2 = a1a2 . . . and0.

• The rules are:
(a.1) [2ai]02 → [2ti]02 [2fi]02 , for 1 ≤ i ≤ n,
(a.2) [2dk → dk+1]02 , for 0 ≤ k ≤ n − 2,
(a.3) [2dn−1 → dnc]0

2
,

(a.4) [2dn]0
2
→ [2 ]

+
2
dn,

(b.1) [2ti → rhi,1 . . . rhi,ji
]+
2
, for 1 ≤ i ≤ n, and the clauses Chi,1 , . . . , Chi,ji

contain the literal xi,
(b.2) [2fi → rhi,1 . . . rhi,ji

]+
2

, for 1 ≤ i ≤ n, and the clauses Chi,1 , . . . , Chi,ji

contain the literal ¬xi,

(c.1) [2r1]+2 → [2 ]
−
2

r1,



(c.2) [2ci → ci+1]−2 , for 1 ≤ i ≤ m,
(c.3) [2rk → rk−1]−2 , for 2 ≤ k ≤ m,
(c.4) r1[2 ]

−
2
→ [2r0]+2 ,

(c.5) [2cm+1]+2 → [2 ]
+
2
yes,

(d.1) [1yes]0
1
→ [1 ]01yes.

Let us see now that this P system indeed solves SAT for the formula φ.
The objects ai contained in the initial internal membrane of the system

correspond to the variables xi. By using a rule from (a.1), for i nondeterminis-
tically chosen, we produce the truth values true and false assigned to variable
xi. The truth values are represented by the objects ti and fi, respectively, and
are placed in two separate copies of the internal membrane. Since the charge
remains neutral for both membranes, the process can continue.

In this way, in n steps we assign truth values to all variables. Hence, we get
all the 2n different truth assignments for the formula φ, placed in 2n separate
internal membranes, which, in turn, are placed in the skin membrane. Note
that, in spite of the fact that in each step the object ai is nondeterministically
chosen, after n steps we get the same result, regardless of the objects used in
each step.

On the other hand, the objects di are used as counters, to control when
the process described above has finished. The initial internal membrane starts
with the object d0 and at each division step we pass from dk to dk+1 using
the rules from (a.2). Also, each new internal membrane created by division
gets copies of these objects, keeping their own counter this way. At the step
before the last division, the rule from (a.3) introduces both dn and c1. The
former object will exit the membrane (at step n+1 using the rule from (a.4)),
changing its polarization to positive, and this finishes the first stage and starts
the second one in that membrane. The latter object will be used in the third
stage.

In the second stage we look for the clauses satisfied by the truth assign-
ments associated with each internal membrane. We do this in one step in par-
allel for all the 2n membranes and in parallel for all the truth values present in
them, using the rules from (b.1) and (b.2). These rules introduce an object ri

in the membrane for each clause satisfied by the truth value being considered.
If, after completing this step, there is at least one internal membrane which

contains all symbols r1, . . . , rm, this means that the truth assignment associ-
ated with that membrane satisfies all the clauses, and therefore satisfies the
formula φ. Otherwise, if no internal membrane gets all the objects r1, . . . , rm,
the formula φ is not satisfiable. Note that the satisfiability problem has al-
ready been solved, in n + 2 steps, making an essential use of the parallelism,
but we still have to “read” the answer and send a suitable signal out of the
system.

We use the rules from (c.1–4) in the third stage to check if some internal
membrane has an associated truth assignment that makes true all the clauses



of φ. To do this we carry out a loop in which we check in each step if the object
r1 is present, eliminate it, and perform a rotation of the objects r2, . . . , rm,
decreasing their subscripts by 1. It is clear that an internal membrane contains
all the objects r1, . . . , rm (that is, the truth assignment associated with it
satisfies all the clauses and, hence, the formula) if and only if we can run m
steps of the loop.

Let us take a closer look at how one step of the loop is performed. First the
rule from (c.1) checks whether or not the object r1 is present in the membrane.
If this is the case, r1 is sent out of the membrane, and the polarization of
the membrane is changed to negative. The membranes which do not contain
the object r1 remain positively charged and will no longer evolve; no further
rule can be applied to them. Next, for all the internal membranes negatively
charged (that is, those that had contained an object r1) the rules from (c.3)
decrease the subscripts of the objects r2, . . . , rm in that membrane, and the
rule from (c.4) gives back the object r1 from the skin membrane, changed to a
dummy object r0 which will never evolve again, and changing the polarization
of the membrane to positive so that the process can be started again. Note the
important fact that in the skin membrane we have a number of copies of the
object r1 equal to the number of membranes with a negative charge. Because
a rule from (c.4) can only involve one membrane and because these rules are
applied in the maximally parallel way, each membrane which contained before
an object r1 will now contain an object r0 and will be able to continue running
the loop.

Simultaneously, in an internal membrane negatively charged, the rule (c.2)
increases the subscripts of the objects ci. These objects are used to count the
number of steps of the previous loop that have been carried out. Thus, if an
object cm+1 appears in the membrane, it means the membrane contained all
the objects r1, . . . , rm since all the m steps of the loop have been able to run.
Also, the membrane is positively charged because the rule from (c.4) has just
been applied. Therefore, we can apply the rule from (c.5), which sends out
the object cm+1 to the skin as an object yes. Finally, this object is sent out
to the environment by means of the rule from (d.1).

The family of P systems Π(φ) constructed as above for each propositional
formula φ in conjunctive normal form is Turing polynomially uniform. Indeed,
the evolution rules are computable in a uniform way; the size of the working
alphabet is 4n + 2m + 2; the number of membranes in the initial membrane
structure is 2; the maximum cardinality of the initial multisets is n + 1; the
total number of rules is 4n + 2m + 4 and the maximum length of a rule is
max(7, m + 3).

However, this family should be adjusted in several respects in order to
fulfill the conditions requested by Definition 2 from Section 4 for a linear time
solution to SAT.

1. First, the P systems constructed above, although confluent, are nonde-
terministic. This is not really a problem, but if we want deterministic P



systems, we have to change the rules for stage 1 so that they cover all the
objects ai sequentially, instead of choosing them nondeterministically.

2. Then, the P systems may not halt in linear time, because the rule from
(d.1) can only be applied once at a given time. If, for example, the formula
φ is valid, then we may have 2n objects yes in the skin membrane at
the last step of the computation. These objects are then sent out to the
environment one by one, so the total time used will be exponential. The
solution is easy: we change the polarization of the skin when the first
object yes is sent out, so that the rule from (c.2) cannot be applied any
more and the system halts.

3. Third, the P systems above are not recognizer systems. If the formula is
satisfiable, we obtain the answer yes in the environment, but if the formula
is not satisfiable the system halts without answering anything. To solve
this problem we can add objects to the skin membrane that count the
number of computation steps that have been carried out. With the aid
of these counters we can check if the system should have already sent an
object yes in case the formula is satisfiable. Otherwise, we can be sure that
the formula is not satisfiable and send an object no to the environment.

4.2 A Quadratic Time Solution to HPP

A Hamiltonian path in a graph G is a path that visits each of the nodes of G
exactly once. The Hamiltonian Path Problem (HPP) is the following decision
problem:

Given a graph G, determine if there exists a Hamil-
tonian path in G.

In the following discussion we will construct, in a way similar to that of
Section 7.2.2 of [25], a family of recognizer P systems with active membranes
using 2-division that solves HPP in quadratic time. Specifically, given an in-
stance G of HPP of size n (that is, with n nodes), we construct a P system
Π(G) whose functioning can be divided into the following stages:

(a) Generate all the possible paths in G of length n.
(b) For each of the previous paths, determine whether it visits all the nodes

of G.
(c) Answer yes or no depending on the results from (b).

Consequently, this P system solves HPP for G, because a path in G is Hamil-
tonian if and only if it has length n and visits all the nodes of G.

Before describing Π(G) in full detail, we have to fix several notations. Let
G be a graph of size n. We denote by V = {v1, . . . , vn} the set of nodes and
by E the set of edges of G. Given a node vi, we assume that the set of nodes
adj(vi) = {vji

1
, . . . , vji

k(i)
} adjacent to v is ordered such that ji

1 < · · · < ji
k(i)

(and, since we suppose G to be connected, it is nonempty).



For example, let us consider the graph in Figure 1. For this graph, V =
{v1, v2, v3} and E = {{v1, v2}, {v1, v3}}. Also, adj(v1) = {v2, v3}, so k(1) = 2
and j1

1 = 2, j1
2 = 3; adj(v2) = {v1}, so k(2) = 1 and j2

1 = 1; adj(v3) = {v1},
so k(3) = 1 and j3

1 = 1.
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�
�
�
��

�
�
�

���

�

v1

v2 v3

Fig. 1. Example graph.

The P system Π(G) is defined as follows.

• The working alphabet is

Γ (G) = {vi | 1 ≤ i ≤ n} ∪ {vi,j | 1 ≤ i, j ≤ n} ∪ {ai→j,l | 1 ≤ i, j, l ≤ n}
∪ {r′i | 1 ≤ i ≤ n} ∪ {ri | 0 ≤ i ≤ n} ∪ {ci | 1 ≤ i ≤ n + 1}
∪ {di | 0 ≤ i ≤ n2 + 2n + 4} ∪ {c, an+1, yes, no}.

• The set of labels is {1, 2}.
• The initial membrane structure is [1 [2 ]0

2
]0
1

(each membrane with label 2
is said to be internal).

• The initial multisets associated with the membranes are M1 = d0 and
M2 = v1.

• The rules are:
(a.1) [2vi]02 → [2vi,1]−2 [2vi+1]02 , for 1 ≤ i ≤ n − 2,
(a.2) [2vn−1]02 → [2vn−1,1]−2 [2vn,1]−2 ,
(a.3) [2vi,l → r′iai→ji

1,l]−2 , for 1 ≤ i ≤ n, 1 ≤ l ≤ n − 1,

(a.4) [2vi,n → r′ican+1]−2 , for 1 ≤ i ≤ n,
(a.5) [2ai→ji

k,l]−2 → [2vji
k,l+1]−2 [2ai→ji

k+1,l]−2 , for 1 ≤ i ≤ n, 1 ≤ k ≤ k(i) −
1, 1 ≤ l ≤ n − 1,

(a.6) [2ai→ji
k(i),l

→ vji
k(i),l+1]−2 , for 1 ≤ i ≤ n, 1 ≤ l ≤ n − 1,

(a.7) [2an+1]−2 → [2 ]
+
2
an+1,

(b.1) [2r
′
i → ri]+2 , for 1 ≤ i ≤ n,

(b.2) [2c → c1]+2 ,
(b.3) [2r1]+2 → [2 ]

−
2

r1,
(b.4) [2ri → ri−1]−2 , for 1 ≤ i ≤ n,



(b.5) [2ci → ci+1]−2 , for 1 ≤ i ≤ n,
(b.6) r1[2 ]

−
2
→ [2r0]+2 ,

(b.7) [2cn+1]+2 → [2 ]+2 cn+1,

(c.1) [1cn+1]01 → [1 ]+1 yes,
(c.2) [1di → di+1]01 , for 0 ≤ i ≤ n2 + 2n + 3,
(c.3) [1dn2+2n+4]01 → [1 ]

−
1

no.

Let us see now that this P system indeed solves HPP for G.
The rules from (a.1) to (a.7) perform the first stage; that is, they generate

all the possible paths in G of length n. In this stage, the objects vi denote
the starting node of the path to be generated, whereas the objects vi,l means
that we are considering the node vi as the lth element of the path.

We first create by succesive divisions, using the rules from (a.1) and (a.2),
n internal membranes in which the paths starting from each of the nodes
of G will be generated. Each of these membranes contains a different object
vi,1; that is, the first node in the path being considered in the corresponding
membrane is the node vi. Also, these membranes are negatively charged, and
they remain this way through the first stage.

Suppose now that an internal membrane contains an object vi,l, meaning
that the current node being considered as the lth element of the path is the
node vi. The rule (a.3) keeps a record of this fact by means of the object r′i
and starts the process of choosing the next node in the path. This process is
performed by the rules from (a.5) and (a.6) which generate a new membrane
for each of the nodes adjacent to vi. This is done by successive divisions of
the internal membrane using the objects of type ai→j,l to cover all the nodes
in adj(vi). These objects transform themselves into an object vj,l+1 in one of
the new membranes created, to indicate that the (l + 1)th node to include in
the path is vj , and into another object ai→j′,l in the other new membrane, to
consider the next node adjacent to vi.

Observe that the generation of the paths is done in parallel but not si-
multaneously, because we continue generating the path as soon as we choose
the node adjacent to the current one. In other words, we do not wait until
all the membranes considering a node adjacent to the current one have been
generated to continue with the next element of the path.

Finally, when the last node of the path is reached, the rules from (a.4) are
applied, keeping a record of this last node and introducing an object c to be
used in the next stage and an object an+1 to start the stage.

For the rules corresponding to the second stage not to be fired at the same
time as the rules corresponding to the first stage, the sets of objects used in
each of them are disjoint. At the beginning of the second stage the objects
r′i and c produced in the first stage are transformed into objects ri and c1,
respectively. Now we can check for the existence of a membrane containing
all the objects r1, . . . , rn the same way as is done in the third stage of the
solution to SAT presented in subsection 4.1.



Finally, suppose that there is a Hamiltonian path in G. Then, at least one
of the internal membranes created along the first stage contains all the objects
r1, . . . , rn. An object cn+1 is then sent out of this membrane at the end of the
second stage. Using the rule (c.1) this object is sent to the environment as an
object yes and the charge of the skin is changed to positive. Hence, the rule
(c.3) cannot be applied and, since the P system eventually halts, the answer
to the HPP problem for G is positive.

On the other hand, if there is no Hamiltonian path in G, no internal
membrane contains all the objects r1, . . . , rn. Therefore, all these membranes
stall at some moment of the second stage without sending out an object cn+1,
which, in turn, cannot be sent out to the environment to produce a positive
answer.

We focus our attention on the rule (c.2); this rule is applied at each step
of the computation and uses objects di to count how many steps have been
performed. It is easy to see that stage 1 lasts at most n2 + 1 steps and stage
2 lasts at most 2n + 2 steps. Hence, if at step n2 + 2n + 4 the charge of the
skin has not changed to positive by means of the rule (c.1), then the answer
must be negative; this is shown using the rule (c.3) to send an object no to
the environment. The P system then halts.

Now, we are going to justify that the family Π = (Π(G))G∈HPP solves
the problem HPP in quadratic time.

First, the above description of the evolution rules is computable in a uni-
form way. It is also a polynomial description, since the size of the working
alphabet is n3 + 2n2 + 6n + 10; the number of membranes in the initial mem-
brane structure is 2; the maximum cardinal of the initial multisets is 1; the
total number of evolution rules is at most n3 + 7n + 9; and the maximum
length of a rule is 7. Hence, the family Π is Turing polynomially uniform.

Second, the family Π is polynomially bounded, since Π(G) is deterministic
for every G and the total number of steps performed by the computation of
Π(G) is at most n2 + 2n + 5, which is quadratic in the size of G.

Third, from the description of the functioning of the P system Π(G) it
can be seen that the family Π is sound and complete.

5 Recognizer P Systems with Input

Recall that a P system with input is a tuple (Π, Σ, iΠ), where (a) Π is a P
system with working alphabet Γ and p membranes labeled 1, . . . , p, with initial
multisets M1, . . . ,Mp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ , and the initial multisets are over Γ − Σ; and (c) iΠ
is the label of a distinguished (input) membrane. If m is a multiset over Σ,
then the initial configuration of (Π, Σ, iΠ) with input m is (μ,M1, . . . ,MiΠ ∪
m, . . . ,Mp).

In this section we deal with recognizer P systems with input membrane and
we propose to solve hard problems in a uniform way in the following sense: all



instances of a decision problem that have the same size (according to a given
polynomial time computable criterion) are processed by the same system, to
which an apropriate input, that depends on the concrete instance, is supplied.

This method for solving problems provides a general purpose algorithmic
solution in the following sense: if we want to implement such a solution, a
system constructed to solve an instance of the problem can also to be used
when trying to solve another instance of the same size.

Now, we formalize these ideas in the following definition.

Definition 3. Let X = (IX , θX) be a decision problem. We say that X is
solvable in polynomial time by a family of recognizer membrane systems with
input Π = (Π(n))n∈N if the following is true:

• The family Π is Turing polynomially uniform; that is, there exists a de-
terministic Turing machine that constructs in polynomial time the system
Π(n) starting from n ∈ N.

• There exist two polynomial time computable functions, cod and s over the
set IX of instances of X, such that:
– For every w ∈ IX , s(w) is a natural number and cod(w) is an input

multiset of the system Π(s(w)).
– The family Π is polynomially bounded; that is, there exists a polynomial

function p(n) such that for each w ∈ IX every computation of the
system Π(s(w)) with input cod(w) is halting and, moreover, performs
at most p(|w|) steps.

– The family Π is sound; that is, for each w ∈ IX if there exists an
accepting computation of the system Π(s(w)) with input cod(w), then
θX(w) = 1.

– The family Π is complete; that is, for each w ∈ IX , if θX(w) = 1,
then every computation of the system Π(s(w)) with input cod(w) is an
accepting computation.

The soundness property means that if given an instance we obtain an
acceptance response of the system associated with it (and individualized by the
apropriate input multiset) through some computation, then the answer to the
problem (for that instance) has to be yes. The completeness property means
that if we obtain an affirmative response to the problem, then any computation
of the system associated with it (and individualized by the apropriate input
multiset) must be an accepting one.

Note that in the above definition we consider three different tasks. The
first is the construction of the family solving the problem, which we require
to be done in polynomial time. The second is the task performed by the
polynomial time computable functions cod and s. The third is the execution
of the systems Π(n) of the family (with the appropriate input multiset), for
which we impose the total number of steps performed by their computations
to be bounded by a polynomial function.

Hence, to solve an instance w, we first of all need to compute the natu-
ral number s(w), obtain the input multiset cod(w), and construct the system



Π(s(w)). This is a precomputation stage, running in polynomial time repre-
sented by the number of sequential steps. Next, we execute the system Π(s(w))
with input cod(w). This is the proper computation stage, also running in poly-
nomial time, but now the time is represented by the number of parallel steps.

Consequently, in order to solve a decision problem in this context, we
need two polynomial time computable functions over the set of instances of
the problem, in such a way that the first function assigns the P system that
will process the instance when we give a suitable input provided by the second
function. Then the system will accept or reject the instance. Bearing in mind
the nondeterminism of the system, we require the confluence condition; that
is, all computations of the system associated with the instance must always
have the same answer.

Now, we briefly comment on the different efficient solutions of NP-
complete problems obtained in the framework of P systems with input, de-
scribed in a uniform way, so far proposed. Unless stated otherwise, the so-
lutions cited are described in the usual framework of P systems with active
membranes using 2-division, with three electrical charges, without change of
membrane labels, without cooperation, and without priority.

M.J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini present
in [34] a linear time solution to SAT in a semi-uniform manner but in such a
way that we can easily decribe that solution in an uniform manner (see [35]).
Other interesting uniform linear time solutions to SAT are given by:

• A. Alhazov [1], through P systems with active membranes and using only
two electrical charges.

• L. Pan, A. Alhazov, and T.O. Ishdorj [18], in the framework of P systems
with active membranes, and without division, without polarizations, but
using three types of membrane rules (separation, merging, and release).

• L. Pan and T.O. Ishdorj [19], through P systems with separation rules
instead of division rules, in two different cases: in the first, using polar-
izations and separation rules; and in the second without polarizations and
without change of membrane labels, but using separation rules with change
of membrane labels.

• Gh. Păun, M.J. Pérez-Jiménez, and A. Riscos-Núñez [26], using P systems
with tables of rules (each membrane is associated with several sets of
rules, one of which is nondeterministically chosen in each computation
step); in particular, they consider tables with obligatory rules, which are
distinguished rules which must be applied at least once when the table is
applied.

In [36], M.J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini
present the first linear time uniform solution to the VALIDITY problem, for
formulas in conjuctive normal form.

Different efficient solutions to graph problems (Vertex Cover, Clique) in a
uniform way are presented by A. Alhazov, C. Mart́ın-Vide, and L. Pan in [3].



The first efficient and uniform solutions to numerical NP-complete prob-
lems were given by M.J. Pérez-Jiménez and A. Riscos-Núñez in [30] where a
solution to the Knapsack problem was presented. A uniform solution to Mul-
tiset 0–1 Knapsack problem is given in the same framework by L. Pan and C.
Mart́ın-Vide in [20].

Other uniform solutions to numerical problems are the following:

• M.J. Pérez-Jiménez and A. Riscos-Núñez provide in [31] a solution to
Subset Sum, and in [7] give a solution to the Partition problem.

• M.J. Pérez-Jiménez and F.J. Romero-Campero present in [32] a solution
to the Bin Packing problem, and in [33] give a solution to Common Al-
gorithmic Problem, a problem with a property of local universality in the
sense that many other interesting NP-complete problems can be reduced
to it in linear time.

In this section we present a linear time uniform solution to the Knapsack
problem, and a quadratic time uniform solution to the decision version of the
Common Algorithmic Problem.

5.1 A Linear Time Solution to the Decision Knapsack Problem

The decision Knapsack problem (0/1) is as follows:

Given a knapsack of capacity k ∈ N, a set A of n elements,
where each element has a “weight” wi ∈ N and a “value”
vi ∈ N, and given a constant c ∈ N, decide whether or
not there exists a subset of A such that its weight does not
exceed k and its value is greater than or equal to c.

The instances of the problem will be represented by tuples of the form
(n, (w1, . . . , wn), (v1, . . . , vn), k, c), where n is the size of the set A, (w1, . . . , wn)
and (v1, . . . , vn) are the weights and the values, respectively, of the elements
from A, and k and c are the constants mentioned above. The funtions w and
v can be extended to every subset of A in a natural way from the data in
the instance. Also, we consider the size of the instance to be 〈n, k, c〉 (where
〈〉 is a polynomial encoding of the tuple, for example, using the Cantor pair
function).

In the discussion that follows we will construct a family of recognizer P
systems with active membranes using 2-division and with input that solves
the decision Knapsack problem (0/1) in linear time. Specifically, given the size
n of the set A and two constants k and c, we construct a P system Π(n, k, c)
that solves all the instances of size 〈n, k, c〉, given an appropriate encoding for
the input membrane of the weights and values of the elements from A. The
functioning of this P system can be divided in the following stages:

(a) Generate all the subsets of A, computing simultaneously the weights and
the values of the subsets.



(b) For all the subsets check if the condition w(B) ≤ k holds.
(c) For all the subsets of A that satisfy the first condition, check if the con-

dition v(B) ≥ c holds.
(d) Answer yes or no according to the results of the two checking stages.

The P system Π(n, k, c) is defined as follows.

• The input alphabet is Σ(n, k, c) = {x1, . . . , xn, y1, . . . , yn}.
• The working alphabet is

Γ (n, k, c) = {a0, a, ā0, ā, b0, b, b̄0, b̄, b̂0, b̂, d+, d−, e0, . . . , en,

q0, . . . , q2k+1, q, q̄, q̄0, . . . , q̄2c+1, x0, . . . , xn, y0, . . . , yn,

yes, no, z0, . . . , z2n+2k+2c+6, #}.

• The set of labels is {s, e}.
• The initial membrane structure is [

s
[
e

]0
e
]0
s

(each membrane with label e is
said to be internal).

• The input membrane is the one with label e.
• The initial multisets associated with the membranes are Ms = z0 and

Me = e0ā
kb̄c.

• The rules are:
(a.1) [

e
ei]0e → [

e
q]−

e
[
e
ei]+e , for 0 ≤ i ≤ n,

(a.2) [
e
ei]+e → [

e
ei+1]0e [eei+1]+e , for 0 ≤ i ≤ n − 1,

(a.3) [
e
x0 → λ]+

e
, [

e
xi → xi−1]+e , for 1 ≤ i ≤ n,

(a.4) [ex0 → ā0]0e ,
(a.5) [

e
y0 → λ]+

e
, [

e
yi → yi−1]+e , for 1 ≤ i ≤ n,

(a.6) [ey0 → b̄0]0e ,

(a.7) [
e
q → q̄q0]−e , [

e
ā0 → a0]−e , [

e
ā → a]−

e
, [

e
b̄0 → b̂0]−e , [

e
b̄ → b̂]−

e
,

(b.1) [
e
a0]−e → [

e
]0
e
#, [

e
a]0

e
→ [

e
]−
e

#,
(b.2) [

e
q2j → q2j+1]−e , for 0 ≤ j ≤ k,

(b.3) [eq2j+1 → q2j+2]0e , for 0 ≤ j ≤ k − 1,
(b.4) [

e
q2j+1]−e → [

e
]+
e

#, for 0 ≤ j ≤ k,

(b.5) [e q̄ → q̄0]+e , [e b̂0 → b0]+e , [e b̂ → b]+
e
, [ea → λ]+

e
,

(c.1) [
e
b0]+e → [

e
]0
e
#, [

e
b]0

e
→ [

e
]+
e
#,

(c.2) [
e
q̄2j → q̄2j+1]+e , for 0 ≤ j ≤ c,

(c.3) [
e
q̄2j+1 → q̄2j+2]0e , for 0 ≤ j ≤ c − 1,

(c.4) [
e
q̄2c+1]+e → [

e
]0
e
yes, [

e
q̄2c+1]0e → [

e
]0
e
yes,

(d.1) [szi → zi+1]0s , for 0 ≤ i ≤ 2n + 2k + 2c + 5,



(d.2) [
s
z2n+2k+2c+6 → d+d−]0

s
,

(d.3) [
s
d+]0

s
→ [

s
]+
s
d+, [

s
d− → no]+

s
,

(d.4) [
s
yes]+

s
→ [

s
]0
s
yes, [

s
no]+

s
→ [

s
]0
s
no.

Let us see if this P system solves the Knapsack problem for every instance
of size 〈n, k, c〉. First of all we must define a polynomial encoding of the prob-
lem into the family Π in order to give a suitable input to the system. Given an
instance u = (n, (w1, . . . , wn), (v1, . . . vn), k, c) of the Knapsack problem, we
define cod(u) = xw1

1 . . . xwn
n yv1

1 . . . yvn
n . Now we will informally describe how

the system Π(n, k, c) with input cod(u) works.
As we have just shown, the objects xi and yi will represent the weights

and values of the elements of A. On the other hand, the objects ā and b̄ (the
first will change to a for the second stage, while the second will change to b̂
for the second stage and to b for the third stage), included from the beginning
by definition of the system, represent the constants k and c, respectively.

In the first stage of the computation the initial internal membrane is con-
tinuosly divided by means of the rules from (a.1) and (a.2). These membrane
divisions are controlled by the objects ei, which represent the elements of the
set A being considered. The charges of the newly created membranes indicate
whether or not the element has been included in the subsets of A that are
being generated. We show in Figure 2 an example for n = 4 of the membrane
generation tree that is obtained.

Let us introduce the concept of subset associated with an internal mem-
brane through the following recursive definition:

• The subset associated with the initial internal membrane is the empty one.
• When an object ej appears in a neutrally charged internal membrane

(with j < n), the jth element of A is selected and added to the previously
associated subset. Once the stage is over, the associated subset will not be
modified any more.

• When a division rule is applied, the two newborn internal membranes
inherit the associated subset from the original one.

What we intend to get is a single internal membrane for each subset of A
but, as we will later see, the membranes are not generated simultaneously (it
can be shown that the membrane corresponding to the subset {ai1 , . . . , air}
is generated at the (ir + r + 2)th computation step).

After a division rule from (a.1) is applied, the two new membranes will
behave in quite different ways. On the one hand, in the negatively charged
membrane (we have marked such membranes in Figure 2 with a circle) the
first stage ends, and in the next step the rules from (a.5) will be applied,
renaming the objects to prepare the third stage. This is a significant step,
so we will designate as relevant those membranes that have negative charge
and contain an object q0. A relevant membrane will not further divide during
the computation, and its associated subset will remain unchanged. On the
other hand, the positively charged membranes will continue the generation of
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Fig. 2. Membrane generation tree for n = 4.



subsets of A; they will give rise to membranes associated with subsets that
are obtained by adding elements of A of index i + 1 or greater to the current
subset. Note that if i = n, then the membrane cannot continue generating
subsets, since it is not possible to add elements of indices greater than n. This
has been taking into account because, as there is no rule from (a.1) or (a.2)
that can be applied to an object en in a positively charged membrane (see the
membranes surrounded by a diamond in Figure 2), the membrane halts.

Thus, since the indices of objects ei never decrease, the relevant membranes
are generated in a kind of lexicographic order, in the following sense: if the
jth element of A has already been added to the associated subset, then no
element with index lower than j will be added later to the subset associated
with that membrane, or to the subsets associated with its descendants.

The generation of subsets and the computation of their weights and values
are carried out in parallel. In fact, there is only a gap of one step of compu-
tation between the time an element is added to the associated subset and the
time the new weight and value of the subset are updated. The rules involved
here are those from (a.3–6). Recall that the objects xi represent the weights
of the elements of A and the objects yi represent their values. The rules from
(a.3) and (a.5) performed a rotation of these objects so that the objects x0

and y0 correspond to the weight and the value of the current element of A;
that is, if a positively charged internal membrane contains an object ei, mean-
ing that the element of A being considered is the ith one, then the objects x0

represent the weight of the element and the objects y0 represent the value. On
the other hand, if an internal membrane contains an object ei and is neutrally
charged, it means that the ith element of A is going to be added to the subset
associated with the membrane. Then the weight and value of the subset have
to be updated. This is done by means of the rules from (a.4) and (a.6), which
transform the objects x0 and y0 into objects ā0 and b̄0 representing the partial
weight and value of the subset (note that the objects ā0 will change to a0 for
the second stage, and the objects b̄0 will change to b̂0 for the second stage and
to b0 for the third stage).

The purpose of the rules from (a.5) is to prevent the rules for the second
stage from being applied to an internal membrane that has not yet reached
the end of the first stage. For that, we rename the objects obtained at the
end of the latter, q, ā0, ā, b̄0, and b̄, to objects q̄, q0, a0, a, b̂0, and b̂ that are not
used in it. The objects q̄, b̂0, and b̂ are not used until the third stage, so they
remain unchanged through the second stage. The objects a0 and a are used in
a loop that checks if the weight of the subset of A being considered satisfies
the condition of being less than or equal to k. The rules from (b.1) eliminate
alternatively (the alternation is controlled by the negative and neutral charges
of the membrane), at each step of the loop, one by one, until we run out of
one (or both) of the objects. It is easy to see that the required condition is
verified if and only if the loop can make an even number of steps. The objects
qi are then used to count the number of steps performed by the loop.



Let us see in a more detail how this loop works. Let B be a subset of a
certain weight wB. The evolution of the relevant membrane associated with
it along the second stage is described in Table 1.

Multiset Charge Parity of qi

q0a
wB
0 ak q̄b̂vB

0 b̂c − EVEN

q1a
wB−1
0 ak q̄b̂vB

0 b̂c 0 ODD

q2a
wB−1
0 ak−1 q̄b̂vB

0 b̂c − EVEN
...

...
...

q2j awB−j
0 ak−j q̄b̂vB

0 b̂c − EVEN

q2j+1 a
wB−(j+1)
0 ak−j q̄b̂vB

0 b̂c 0 ODD
...

...
...

Table 1. Comparison of weight with k.

Note 1. Observe that the index of qi coincides with the total number of copies
of a and a0 that have already been erased during the comparison.

Note 2. If B = {ai1 , . . . , air} with ir �= n, then there will be in the multiset
some objects xj and yj, for 1 ≤ j ≤ n − ir, but they are irrelevant for this
stage and therefore they will be omitted.

If the number wB of objects a0 is less than or equal to the number k of
objects a, then the result of this stage is successful and we can proceed with
the next stage. This situation is described in Table 2.

Multiset Charge Parity of qi

...
...

...

q2wB−1 ak−wB+1 q̄b̂vB
0 b̂c 0 ODD

q2wB ak−wB q̄b̂vB
0 b̂c − EVEN

q2wB+1 ak−wB q̄b̂vB
0 b̂c − ODD

ak−wB q̄b̂vB
0 b̂c + ODD

Table 2. Weight less than or equal to k.

If the number wB of objects a0 is greater than the number k of objects a,
then every time the rules from (b.2) can be applied (that is, for j = 0, . . . , k),



the first rule from (b.1) will also be applied. Thus, we can never get to a
situation where the index of the counter qi is an odd number and the charge
of the internal membrane is negative. This means that the rule (b.4) can
never be applied, and moreover, the membrane gets blocked (it will not evolve
anymore during the computation). This situation is described in Table 3.

Multiset Charge Parity of qi

...
...

...

q2k−1 awB−k
0 a q̄b̂vB

0 b̂c 0 ODD

q2k awB−k
0 q̄b̂vB

0 b̂c − EVEN

q2k+1 a
wB−(k+1)
0 q̄b̂vB

0 b̂c 0 ODD

Table 3. Weight greater than k.

Let us suppose that the second stage has successfully finished in an internal
membrane. That means that this membrane encodes a subset B ⊆ A such
that w(B) ≤ k. Then, after applying the rule (b.4), this membrane gets a
positive charge. For the objects used in this stage, so as not to fire the rules
corresponding to the next stage, they are renamed by means of the rules from
(b.5). In this way, the objects b̂0 are transformed to objects b0 and the objects
b̂ to objects b. The counter q̄i is initialized to q̄0.

The third stage works in a similar way as the second one, using the rules
from (c.1), (c.2), and (c.2) corresponding to the rules from (b.1), (b.2), and
(b.3), respectively. The end of the stage, however, is different. In this stage,
we have to check if the number of objects b0, corresponding to the value of
the subset of A associated with the membrane, is greater than or equal to the
number of objects b, corresponding to the constant c. Therefore, to pass to
the final stage the two rules from (c.1) must have been applied c times each.
Consequently, the rules from (c.2) and (c.3) take the counter of the loop to
qc+1, when the rules from (c.4) send it out to the skin as a yes object. Table
4 summarizes all the process described above.

Finally, rules from (d.1–3) are associated with the skin membrane and
take care of the output stage. The counter zi, used by the rules from (d.1)
and (d.2), waits through 2n + 2k + 2c + 7 steps (2n + 3 steps for the first
stage, 2k + 2 steps for the second stage and 2c + 2 for the third stage). After
all these steps are performed, we are sure that all the inner membranes have
already finished their checking stages (or have already got blocked), and thus,
the output process is activated.

Then, the skin will be neutrally charged and will contain the objects d+

and d−. Furthermore, some objects yes will be present in the skin if and only
if both checking stages have been successful in at least one internal membrane.



Multiset Charge Parity of qi

q̄0b
vB
0 bc + EVEN

q̄1b
vB−1
0 bc 0 ODD
...

...
...

q̄2c−1b
vB−c
0 b 0 ODD

q̄2cb
vB−c
0 + EVEN

q̄2c+1b
vB−(c+1)
0 (if vB > c) 0 ODD

or q̄2c+1 (if vB = c) + ODD

b
vB−(c+1)
0 or ∅ +

Table 4. Comparison of value with c.

The output process then begins. First the object d+ is sent out to the
environment, giving a positive charge to the skin. Then the object d− evolves
to no inside the skin and, simultaneously, if there exists any object yes present
in the membrane, it is sent out of the system, giving a neutral charge to the
skin and making the system halt (in particular, further evolution of the object
no is avoided).

Otherwise, if none of the membranes has successfully passed both checking
stages, then there will be no object yes present in the skin when the output
stage begins. Thus, after the object no is generated, the skin will still have
a positive charge, so the object will be sent out to the environment and the
system will halt.

Now we are going to justify that the family Π = (Π(n, k, c))n,k,c∈N solves
the decision Knapsack problem (0/1) in linear time.

First, the above description of the system is computable in a uniform way.
It is also a polynomial description, since the size of the input alphabet is 2n;
the size of the working alphabet is 5n + 4k + 4c + 31; the size of the set of
labels is 2; the number of membranes in the initial membrane structure is
2; the maximum cardinal of the initial multisets is 3; the total number of
evolution rules is 6n + 5k + 4c + 34; and the maximum length of a rule is 7.
Hence, the family Π is Turing polynomially uniform.

Second, the family Π is linearly bounded, since given an instance u =
(n, (w1, . . . , wn), (v1, . . . , vn), k, c) of the problem, the total number of steps
performed by the unique computation of the system Π(n, k, c) given the input
cod(u) is at most 2n + 2k + 2c + 10.

Third, from the description of the functioning of the P system Π(n, k, c)
it can be seen that the family Π is sound and complete.



5.2 A Quadratic Time Solution to CADP

The Common Algorithmic Problem (CAP) [8] is the following optimization
problem:

Let S be a finite set and F be a family of subsets of S, called
forbidden sets. Find the cardinality of a maximal subset of
S which does not include any set belonging to F .

The Common Algorithmic Problem can be transformed into a roughly
equivalent decision problem by supplying a target value to the quantity to
be optimized, and asking the question as to whether or not this value can be
attained.

The Common Algorithmic Decision Problem (CADP) is the following deci-
sion problem:

Let S be a finite set, F be a family of subsets of S, and
k ∈ N. Determine if there exists a subset A of S such that
|A| ≥ k, and which does not include any set belonging to F .

We will say that a problem X is a subproblem of another problem Y if
there exists a linear time reduction from X to Y (using logarithmic bounded
space). That is, X is a subproblem of Y if we can pass from the former to the
latter by a simple rewriting process.

Next, we present some NP-complete decision problems that are subprob-
lems of CADP.

• The Independent Set Decision Problem (ISD): Given an undirected graph
G, and k ∈ N, determine whether or not G has an independent set of size
at least k.

• The Vertex Cover Decision Problem (VCD): Given an undirected graph G,
and k ∈ N, determine whether or not G has a vertex cover of size at
most k.

• The Clique Decision Problem (CDP): Given an undirected graph G, and
k ∈ N, determine whether or not G has a clique of size at least k.

• The Hamiltonian Path Problem (HPP).
• The Satisfiability Problem (SAT).
• The Tripartite Matching Problem: Given three sets B, G, and H, each

containing n elements, and a ternary relation T ⊆ B ×G×H, determine
whether or not there exists a subset T ′ of T such that |T ′| = n and no two
triples belonging to T ′ have a component in common.

In what follows we will construct a family of recognizer P systems with
active membranes using 2-division and with input that solves CADP in polyno-
mial time. Specifically, given the size n of the set S, the size m of the set F ,
and a constant k, we construct a P system Π(n, m, k) that solves the problem
for all the instances of size 〈n, m, k〉, given as input an appropriate encoding
of the subsets of S belonging to F . The functioning of this P system can be
divided into the following stages:



(a) Generate maximal subsets A of S not including any element of F . For
this, we start from the complete set S and eliminate one element from
each of the forbidden sets.

(b) For all the previous subsets, compute their cardinality.
(c) Check if any of the subsets has cardinality greater than or equal to k (in

fact, we check if the cardinality is greater than k − 1).
(d) Answer yes or no according to the results from the previous stage.

The P system Π(n, m, k) is defined as follows.

• The input alphabet is Σ(n, m, k) = {si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
• The working alphabet is

Γ (n, m, k) = Σ(n, m, k) ∪ {ai | 1 ≤ i ≤ m} ∪ {ci | 0 ≤ i ≤ 2n + 1}
∪ {chi | 0 ≤ i ≤ 2k − 1} ∪ {fj | 1 ≤ j ≤ n + 1}
∪ {ei, j, l | 1 ≤ i ≤ m, 1 ≤ j ≤ n,−1 ≤ l ≤ j + 1}
∪ {gj | 0 ≤ j ≤ nm + m + 1}
∪ {z, s+, s−, S+, S−, S, o, Õ, O, t, neg,#, yes, preno, no}.

• The set of labels is {1, 2}.
• The initial membrane structure is [1 [2 ]0

2
]0
1

(each membrane with label 2
is said to be internal).

• The input membrane is the one with label 2.
• The initial multisets associated with the membranes are M1 = λ and

M2 = g0z
msn

+ok−1.
• The rules are:
(a.1) [2s1,j → fj]02 , for 1 ≤ j ≤ n,
(a.2) [2si,j → ei,j,j ]02 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n,
(a.3) [2f1]02 → [2#]0

2
[2s−]+

2
,

(a.4) [2fj → fj−1]02 , for 2 ≤ j ≤ n + 1,
(a.5) [2fj → λ]+

2
, for 1 ≤ j ≤ n + 1,

(a.6) [2ei,j,l → ei,j,l−1]02 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ l ≤ j + 1,
(a.7) [2e2,j,l → fj+1]+2 , for 1 ≤ j ≤ n,−1 ≤ l ≤ j + 1, l �= 0,
(a.8) [2ei,j,l → ei−1,j,j+1]+2 , for 3 ≤ i ≤ m, 1 ≤ j ≤ n,−1 ≤ l ≤ j + 1, l �= 0,
(a.9) [2ei,j,0 → ai−1]+2 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n,

(a.10) [2z]+
2
→ [2 ]

0
2
#,

(a.11) [2a1]02 → [2 ]
+
2
#,

(a.12) [2a1 → λ]+
2

, [2ai → ai−1]+2 , for 2 ≤ i ≤ m,
(a.13) [2gj → gj+1]02 , [2gj → gj+1]+2 , for 0 ≤ j ≤ nm + m,
(a.14) [2gnm+m+1 → c0neg]0

2
,

(a.15) [2neg]0
2
→ [2 ]

−
2

#,



(a.16) [2s+ → S+]−
2

, [2s− → S−]−
2

, [2o → Õ]−
2

,
(a.17) [2z]−

2
→ #,

(b.1) [2S−]−
2
→ [2 ]

+
2
#, [2S+]+

2
→ [2 ]

−
2

#,
(b.2) [2ci → ci+1]−2 , [2ci → ci+1]+2 , for 0 ≤ i ≤ 2n,
(b.3) [2c2n+1 → ch0t]−2 ,
(b.4) [2t]−2 → [2 ]02#,

(b.5) [2S+ → S]0
2
, [2Õ → O]0

2
,

(c.1) [2S]0
2
→ [2 ]

+
2

#, [2O]+
2
→ [2 ]

0
2
#,

(c.2) [2chi → chi+1]02 , [2chi → chi+1]+2 , for 0 ≤ i ≤ 2k − 2,
(c.3) [2ch2k−1]+2 → [2 ]

+
2

yes, [2ch2k−1]02 → [2 ]
0
2
preno,

(d.1) [1yes]0
1
→ [1 ]+1 yes,

(d.2) [1preno → no]0
1
,

(d.3) [1no]0
1
→ [1 ]

−
1

no.

Let us see if this P system solves CADP for every instance of size 〈n, m, k〉.
First of all we must define a polynomial encoding of the problem into the
family Π in order to give a suitable input to the system. Given an instance
u = (S, F, k) of the problem, where S = {a1, . . . , an}, F = {B1, . . . , Bm}, and
Bi = {aji

1
, . . . , aji

k(i)
}, we define cod(u) = s1,j1

1
. . . s1,j1

k(1)
. . . sm,jm

1
. . . sm,jm

k(m)
.

That is, the object si,j introduced in the initial membrane will represent the
fact that the set Bi contains the element aj .

Now we informally describe how the system Π(n, m, k) with input cod(u)
works.

To perform the first stage we start from the complete set S and make a
loop to consider sequentially all the sets B1, . . . , Bm. Inside this loop we make
another loop in which we generate a number of diferent subsets of S obtained
by eliminating only one element of the current set Bi.

The core of this stage are the rules from groups (a.3–8). For these rules, the
objects fi represent the elements of the current set Bi, while the objects ei,j,l

represent the elements of the sets Bj not yet considered. The purpose of the
rules from (a.1) and (a.2) is now clear; we have to change the representation
of the sets Bi from the objects si,j to the objects fi and ei,j,l, and we do this
in such a way that B1 is the first forbidden set considered.

In the rule from (a.3) the object f1 represents the element to eliminate
from the current forbidden set. This rule creates two new membranes, one
neutrally charged and the other positively charged. The former means that we
have decided not to eliminate the element, so with the rule (a.4) we perform
a rotation of the subscripts of the objects fi, for the elements of Bi to be
considered for elimination in a sequential way. The latter membrane means



that we have eliminated the element and that we can proceed with the next
forbidden set – but before that we have to do several things.

First we eliminate, by means of the rules from (a.5), the remaining objects
fi, since to meet the cardinal maximality condition we do not eliminate any
other object of the forbidden set. This takes us to the following question: what
if the element eliminated also belonged to a forbidden set Bj not considered
yet? In that case the condition Bj �⊆ A is fulfilled, and we do not have to
eliminate any object from Bj . To control this from happening at the same
time as for the elements fi, we make a rotation of the subscripts of the objects
ei,j,l (representing the elements of the forbidden sets not considered yet) so
that they are always in correspondence with the objects fi (representing the
elements of the forbidden set being considered). The rotation is done to the
third subscript of the objects, using the rules from (a.6), while the two first
subscripts keep a record of which element it represented and which forbidden
set contained it. In this way, before passing to the next step of the main loop
we can “restore” the objects, by means of the rules from (a.7) and (a.8), and,
using the objects ai, we “memorize” which additional forbidden sets Bj satisfy
Bj �⊆ A by means of the rules from (a.9). Also, the rule from (a.10) uses the
object z to count how many of these sets satisfy the previous condition.

Note that when restoring the objects, as described above, the third sub-
script gets a value which exceeds by one what it should be. This is because
before continuing with the next step of the main loop we have to check if
the next forbidden set to consider is not included in A; that is, we have to
check for the existence of an object a1. If this is the case, the rule from (a.11)
skips that step, changing the polarization of the membrane to positive. We
can then restore again the objects ei,j,l, using the rules from (a.7) and (a.8),
and perform a rotation of the subscripts of the objects ai, using the rules from
(a.12).

To synchronize the finalization of this first stage in all the generated in-
ternal membranes, we use the objects gi as counters (rules from (a.13)). Since
the worst case lasts at most nm + m computation steps, when the rule from
(a.14) is applied introducing the objects c0 and neg, we can be sure that the
first stage has reached the end in all the internal membranes. The object neg
is then sent out to change the polarization of the membrane to negative (rule
from (a.15)), so that the second stage can start, before which we make a re-
naming of objects to obtain the ones that will be used in this stage (rules
from (a.17)).

A careful look at how the internal membranes are created by the rule
from (a.3) shows two things. The first one is that, when the element of the
forbidden set is eliminated (that is, in the membrane with positive charge), an
element s− is introduced. This object counts how many elements have been
eliminated. It is also possible to obtain an internal membrane where none of
the elements of the forbidden set being considered have been eliminated. In
this case, when the end of the first stage is reached in the membrane, there will



be z objects left. The rule from (a.17) allows us to dissolve these disturbing
membranes.

The task of the second stage is to compute the cardinality of the subsets of
S that are associated with the internal membranes created in the first stage.
We have seen in the previous paragraph that the object s− (changed to S− in
this stage) represents the number of objects eliminated. On the other hand,
the object s+ (changed to S+ in this stage) represents the total cardinality of
the set S, and this is why this object has multiplicity n in the initial multiset
of the initial internal membrane. It is clear then that we have only to do
a subtraction. For that, the rules from (b.1) alternatively erase the objects
S− and S+. The latter can only be erased after the former has been erased.
Hence, we have only to wait 2n computation steps to get the result of the
subtraction. This is the purpose of the rules from (b.2), that use the objects
ci as counters. When the object c2n+1 appears, we can pass to the next stage,
so the rule from (b.3) introduces the initial counter for that stage, ch0, and an
object t that allows us to change the polarization of the membrane to neutral
(rule from (b.4)), which in turn allows us to rename the objects to obtain the
ones used in the third stage (rules from (b.5)).

To check if the cardinality of the subset is greater than or equal to k, we
check if it is greater than k − 1. This is why we keep k − 1 objects o (now
transformed to O) from the beginning of the computation. The rules from
(c.1) erase once and again an object S, changing the polarization to positive,
and an object O, changing the polarization back to neutral. If we wait 2k− 2
computation steps (this is done by the rules from (c.2) using the objects chi as
counters), the comparison is finished. If the final polarization is positive, then
the cardinality is greater than k − 1, so the rule from (c.3) sends an object
yes to the skin. Otherwise, what is sent is an object preno.

Finally, the output stage is very simple. We have only to be careful, looking
for the positive answers before looking for the negative ones. If there is an
object yes in the skin, it is sent out to the environment, the charge of the
skin membrane is changed to positive (rule from (d.1)), and the system halts.
If not, the objects preno are changed to objects no (rule from (d.2)) and one
of them is sent out to the environment, the charge of the skin membrane is
changed to negative (rule from (d.3)), and the system halts.

Now we are going to justify that the family Π = (Π(n, m, k))n,m,k∈N

solves CADP in polynomial time.
First, the above description of the system is computable in a uniform way.

It is also a polynomial description, since the size of the input alphabet is mn;
the size of the working alphabet is at most mn2 +4mn−m+3n+2k+18; the
size of the set of labels is 2; the number of membranes in the initial membrane
structure is 2; the maximum cardinality of the initial multisets is m + n + k;
the total number of evolution rules is at most 2mn2 + 8mn + 3m− 2n2 + n +
4k+23; and the maximum length of a rule is 7. Hence, the family Π is Turing
polynomially uniform.



Second, the family Π is quadratically bounded, since, given an instance
u = (S, F, k) of the problem, the total number of steps performed by the
unique computation of the system Π(n, m, k), given the input cod(u), lasts at
most mn + m + 2n + 2k + 8 steps.

Third, from the description of the functioning of the P system Π(n, m, k)
it can be seen that the family Π is sound and complete.

6 Conclusions

The possibility of finding a systematic and suitable framework to address in an
efficient way the resolution of many practical problems that are presumably
intractable (unless P=NP) is studied in this chapter.

We consider P systems as recognizer devices. Solutions to NP-complete
problems are looked for in this framework by making use of appropriate fam-
ilies of P systems that can be constructed in a semi-uniform or uniform way.
In this chapter we have discussed the differences between these constructions,
and have presented a survey of the different solutions known in the current
literature of membrane systems. Also, we have described in some detail two
semi-uniform solutions, to SAT and HPP, and two uniform solutions, to the
Knapsack problem and the Common Algorithmic problem.
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(N. Jonoska, Gh. Păun, G. Rozenberg, eds.), LNCS 2950, Springer, Berlin, 2004,
1–22.
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