
Characterizing Tractability with Membrane Creation
Miguel A. Gutiérrez–Naranjo, Mario J. Pérez–Jiménez, Agustı́n Riscos–Núñez, Francisco J. Romero–Campero

Research Group on Natural Computing
Dpt. Computer Science and Artificial Intelligence, University of Sevilla

Avda. Reina Mercedes s/n, 41012 - Sevilla, SPAIN
Email: {magutier, marper, ariscosn, fran}@us.es

Abstract— This paper analyzes the role that membrane disso-
lution rules play in order to characterize (in the framework of
recognizer P systems with membrane creation) the tractability of
decision problems –that is, the efficient solvability of problems by
deterministic Turing machines. In this context, the use or not of
these rules provides an interesting borderline between tractability
and (presumable) intractability.

I. INTRODUCTION

Membrane Computing is a cross-disciplinary field of Nat-
ural Computing with contributions by computer scientists,
biologists and formal linguists that was introduced by Gh.
Păun in [6]. Since then it has received important attention
from the scientific community. In fact, Membrane Computing
has been chosen by the Institute for Scientific Information as a
fast Emerging Research Front in Computer Science in October
2003 [14].

This new non-deterministic model of computation starts
from the assumption that the processes taking place in the
compartmental structure of a living cell can be interpreted as
computations. The devices of this model are called P systems.
Roughly speaking, a P system consists of a cell-like membrane
structure, in the compartments of which one places multisets of
objects which evolve according to given rules in a synchronous
non-deterministic maximally parallel manner1.

In living cells, new membranes are produced basically
through two processes, mitosis (membrane division) and au-
topoiesis (membrane creation)2. These two processes have
inspired two variants of P systems, namely P systems with
active membranes and P systems with membrane creation.

P systems with active membranes have been successfully
used to design solutions to well-known NP-complete problems
(e.g. [11], [12], [13]). Recently, the first (uniform) results re-
lated to the computational efficiency using membrane creation
have arisen (see [2], [3]).

The paper is organized as follows. First, we summarize basic
notions on computational complexity in P systems. Section
III recalls P systems with membrane creation. The concept
of dependency graph is defined in Section IV, providing a
characterization of standard class P in terms of recognizer
P systems with membrane creation without using dissolution

1A detailed description can be found in [7] and further bibliography at [15].
2Membranes are created in living cells, for instance, in the process of vesicle

mediated transport and in order to keep molecules close to each other to
facilitate their reactions. Membranes can also be created in a laboratory - see
[4].

rules. A linear solution to QSAT by P systems with membrane
creation is presented in Section V, showing a surprising role
of dissolution rules: using them we go beyond tractability.
Finally, some conclusions are given in Section VI.

II. RECOGNIZER P SYSTEMS

In the structure and functioning of a cell, biological mem-
branes play an essential role. The cell is separated from its
environment by means of a skin membrane, and it is internally
compartmentalized by means of internal membranes. Within
the cell there are chemical substances that can participate in
various reactions, depending on the compartment where they
reside.

In this way, the main syntactic ingredients of a cell–like
membrane system (P system) are the membrane structure, the
multisets, and the evolution rules.

• A membrane structure consists of several membranes
arranged hierarchically inside a main membrane (the
skin), and delimiting regions (the space in–between a
membrane and the immediately inner membranes, if any).
Each membrane identifies a region inside the system. A
membrane structure can be represented by a rooted tree.

• Regions defined by a membrane structure contain objects.
We shall describe such objects by symbols, in such a way
that multisets of objects are located in the regions of the
membrane structure.

• The objects can evolve according to given evolution rules,
associated with the regions (hence, with the membranes).

For the semantics of the cell–like membrane systems we take
a non–deterministic and synchronous mode (a global clock is
assumed).

• A configuration of a cell–like membrane system consists
of a membrane structure and a family of multisets of
objects associated with each region of the structure. At
the beginning, there is a configuration called the initial
configuration of the system.

• In each time unit we can transform a given configuration
into another one by applying evolution rules to the objects
placed inside the regions, in a non–deterministic and
maximally parallel manner (the rules are chosen in a non–
deterministic way, and in each region all objects that can
evolve must do it). In this way, we get transitions between
configurations.

• A computation of the system is a (finite or infinite)
sequence of configurations such that each configuration

–except the initial one– is obtained from the previous one
by a transition.

• A computation which reaches a configuration where no
more rules can be applied to the existing objects is called
a halting computation.

• The result of a halting computation is usually defined
through the multiset associated with a specific output
membrane (or the environment) in the final configuration.
If the output is collected in the environment, then we say
that the system has external output.

Thus, a computation in a P system is summarized as follows:
it starts with the initial configuration of the system, then the
computation proceeds, and when it stops the result is to be
found in the output membrane (or in the environment).

In this paper we use membrane computing as a framework
to address the resolution of decision problems. In order to
solve these kinds of problems, having in mind that solving
them is equivalent to recognizing the languages associated
with them, we consider P systems as language recognizer
devices.

Definition 1: A P system with input is a tuple (Π,Σ, iΠ),
where: (a) Π is a P system with working alphabet Γ,
with p membranes labelled by 1, . . . , p, and initial multisets
M1, . . . ,Mp associated with them; (b) Σ is an (input) alpha-
bet strictly contained in Γ and the initial multisets are over
Γ−Σ; (c) iΠ is the label of a distinguished (input) membrane.

The semantics of a P system with input (Π,Σ, iΠ) is esen-
tially the same as for Π. However, now the initial configuration
of (Π,Σ, iΠ) is not unique, for every possible input multiset
over Σ there is an associated initial configuration:

Definition 2: Let (Π,Σ, iΠ) be a P system with input. Let Γ
be the working alphabet of Π, µ the membrane structure, and
M1, . . . ,Mp the initial multisets of Π. Let m be a multiset
over Σ. The initial configuration of (Π,Σ, iΠ) with input m

is (µ,M1, . . . ,MiΠ
∪m, . . . ,Mp).

Let (Π,Σ, iΠ) be a P system with input. Let Γ be the work-
ing alphabet of Π, µ the membrane structure andM1, . . . ,Mp

the initial multisets of Π. Let m be a multiset over Σ. Then
we denote M∗

j
= {(a, j) : a ∈ Mj}, for 1 ≤ j ≤ p, and

m∗ = {(a, iΠ) : a ∈ m}. This notation will be useful in
Section IV.

Definition 3: A recognizer P system is a P system with
external output such that:

1) The working alphabet contains two distinguished ele-
ments yes and no.

2) All computations halt.
3) If C is a computation of the system, then either object

yes or object no (but not both) must have been released
into the environment, and only in the last step of the
computation.

In recognizer P systems, we say that a computation C is an
accepting computation (respectively, rejecting computation) if
the object yes (respectively, no) appears in the environment
associated with the corresponding halting configuration of C.
Hence, these devices send to the environment an accepting or
rejecting answer, at the end of their computations.

Let us recall that a decision problem X is a pair (IX , θX)
where IX is a language over a finite alphabet (whose elements
are called instances) and θX is a predicate (a total boolean
function) over IX .

Definition 4: Let X = (IX , θX) be a decision problem. Let
Π = (Π(n))n∈N be a family of recognizer P systems with
input. A polynomial encoding from X to Π is a pair (cod, s)
of polynomial time computable functions over IX such that for
each instance w ∈ IX , s(w) is a natural number and cod(w)
is an input multiset for the system Π(s(w)).

It is easy to prove that polynomial encodings are stable
under polynomial time reductions. More formally:

Proposition 1: Let X1, X2 be decision problems. Let r be
a polynomial time reduction from X1 to X2. Let (cod, s) be
a polynomial encoding from X2 to Π. Then (cod ◦ r, s ◦ r) is
a polynomial encoding from X1 to Π.

Definition 5: Let X = (IX , θX) be a decision problem. Let
Π = (Π(n))n∈N be a family of recognizer P systems with
input. Let (cod, s) be a polynomial encoding from X to Π.

• We say that the family Π is sound with regard to
(X, cod, s) if the following holds: for each instance of the
problem w ∈ IX , if there exists an accepting computation
of Π(s(w)) with input cod(w), then θX(w) = 1.

• We say that the family Π is complete with regard to
(X, cod, s) if the following holds: for each instance
of the problem u ∈ IX , if θX(u) = 1, then every
computation of Π(s(u)) with input cod(u) is an accepting
computation.

Next, we propose to solve a decision problem through
a family of P systems (constructed in polynomial time by
a deterministic Turing machine) where each element of the
family processes, in a specified sense, all the instances of
equivalent size.

Definition 6: Let R be a class of recognizer P systems
with input membrane. A decision problem X = (IX , θX) is
solvable in polynomial time by a family Π = (Π(n))n∈N of
P systems from R, and we denote this by X ∈ PMCR, if
the following holds:

• The family Π is polynomially uniform by Turing ma-
chines, that is, there exists a deterministic Turing machine
working in polynomial time which constructs the system
Π(w) from the instance w ∈ IX .

• There exists a polynomial encoding (cod, s) from X to
Π such that

– The family Π is polynomially bounded with regard
to (X, cod, s), that is, there exists a polynomial
function p, such that for each u ∈ IX every compu-
tation of Π(s(u)) with input cod(u) is halting and,
moreover, it performs at most p(|u|) steps.

– The family Π is sound and complete with regard to
(X, cod, s).

It is easy to see that the class PMCR is closed under
polynomial–time reduction and complement (see [9] for de-
tails).

III. P SYSTEMS WITH MEMBRANE CREATION

In this section we recall the description of cellular devices
with membrane creation. Basically there are two ways of
producing new membranes in living cells: mitosis (membrane
division) and autopoiesis (membrane creation, see [4]).

The replication is one of the most important functions of a
cell and, in ideal circumstances, by division we can obtain an
exponential number of cells in linear time.

One of the roles of membranes is to keep the molecules
of a compartment close to each other, in order to facilitate
their reactions; when a compartment becomes too large, it
often happens that new membranes appear (are created) inside
it (new membranes are produced under the influence of the
existing objects).

Both ways of generating new membranes have given rise
to different variants of P systems: P systems with active mem-
branes, where the new workspace is generated by membrane
division, and P systems with membrane creation, where the
new membranes are created from objects. Both models have
been proved to be universal, but up to now there is no theo-
retical result proving that these models simulate each other in
polynomial time. P systems with active membranes have been
successfully used to design solutions to many NP-complete
problems3, but as Gh. Păun pointed in [8] “membrane division
was much more carefully investigated than membrane creation
as a way to obtain tractable solutions to hard problems”.
Recently it has been shown that NP–complete problems can
also be uniformly solved in the membrane creation framework
(see, e.g., [2], [3]).

Recall that a P system with membrane creation is a construct
of the form Π = (Γ, H, µ,M1, . . . ,Mp, R) where:

1) p ≥ 1 is the initial degree of the system; Γ is the alphabet
of objects and H is a finite set of labels for membranes;

2) µ is a membrane structure consisting of p membranes,
with the membranes injectively labelled with elements
of H, and M1, . . . ,Mp are strings over Γ, describing
the multisets of objects placed in the p regions of µ;

3) R is a finite set of rules, of the following forms:
(a) [a → u]h where h ∈ H , a ∈ Γ and u is a string

over Γ describing a multiset of objects. These are
object evolution rules associated with membranes
and depending only on the label of the membrane.

(b) a[]h → [b]h where h ∈ H , a, b ∈ Γ. These
are send-in communication rules. An object is
introduced in the membrane, possibly modified.

(c) [a]h → []h b where h ∈ H , a, b ∈ Γ. These are
send-out communication rules. An object is sent
out of the membrane, possibly modified.

(d) [a]h → b where h ∈ H , a, b ∈ Γ. These are
dissolution rules. Under the influence of an object,
a membrane is dissolved, while the object specified
in the rule can be modified.

(e) [a → [u]h′]h where h, h
′

∈ H , a ∈ Γ and u is
a string over Γ describing a multiset of objects.
These are creation rules. As the effect of the

3See [15] for a comprehensive bibliography of such solutions.

evolution of an object, a, a new membrane is
created. This new membrane is placed inside the
membrane of the object which triggers the rule and
has associated an initial multiset, u, and a label, h′.

Rules are applied according to the following principles:
• Rules from (a) to (d) are used as usual in the framework

of membrane computing, that is, in a maximally parallel
way. In one step, each object in a membrane can only
be used for one rule (non–deterministically chosen when
there are several possibilities), but any object which can
evolve by a rule of any form must do it.

• Rules of type (e) are also used in a maximally parallel
way. Each object a in a membrane labelled with h

produces a new membrane with label h′ placing in it
the multiset of objects described by the string u.

• If a membrane is dissolved, its content (multiset and
interior membranes) becomes part of the immediately ex-
ternal membrane. The skin membrane is never dissolved.

• All the elements which are not involved in any of the
operations to be applied remain unchanged.

• The rules associated with the label h are used for all
membranes with this label, irrespectively of whether or
not the membrane is an initial one or it was obtained by
creation.

• Several rules can be applied to different objects in the
same membrane simultaneously. The exception are the
rules of type (d) since a membrane can be dissolved only
once.

We denote by MC−d (respectively, MC+d) the class of
recognizer P systems with membrane creation and without
dissolution rules (respectively, with dissolution rules).

IV. DEPENDENCY GRAPH OF A RECOGNIZER P SYSTEM
WITH MEMBRANE CREATION

Let Π be a recognizer P system with membrane creation
and without dissolution. Let R be the set of rules associated
with Π.

Each rule can be considered, in some sense, as a dependency
relationship between the object triggering the rule and the
object(s) produced by its application.

We can consider a general pattern for all kinds of rules
of such systems, except for dissolution rules, as follows:
(a, h) → (a1, h

′)(a2, h
′) . . . (as, h

′), according to the follow-
ing criterion:

• The rules of type (a) correspond to the case h = h′,
u = a1 . . . as, and s ≥ 1.

• The rules of type (b) correspond to the case h ∈ F (h′)
and s = 1.

• The rules of type (c) correspond to the case h′ ∈ F (h)
and s = 1.

• The rules of type (e) correspond to the case u = a1 . . . as,
and s ≥ 1.

If h is the label of a membrane, then F (h) denotes the set
of labels h′ ∈ H such that h′ is the label of the father of the
membrane labelled by h in the initial configuration, or there
exist a ∈ Γ, u ∈ Γ∗ verifying [a → [u]h]h′ ∈ R, where R is
the set of rules associated with the system. Given h, h′ ∈ H

the cost of determining whether or not h′ ∈ F (h) is of the
order O(|R|+ p), being p the number of initial membranes.

We adopt the convention that the set F (h) associated with
the skin membrane is the singleton whose only element is the
label of the environment, denoted by env ∈ H .

For example, let us consider a general rule (a, h) →
(a1, h

′) . . . (as, h
′). Then we can interpret that from the object

a in membrane labelled by h we can reach the objects
a1, . . . , as in membrane labelled by h′.

We formalize these ideas in the following definition.
Definition 7: Let Π be a recognizer P system with mem-

brane creation and without dissolution. Let R be the set of
rules associated with Π. The dependency graph associated
with Π is the directed graph GΠ = (VΠ, EΠ) defined as
follows:

VΠ = V LΠ ∪ V RΠ,

(a, h) ∈ V LΠ if and only if:

• ∃u ∈ Γ∗ ([a→ u]h ∈ R), or
• ∃b ∈ Γ ([a]h → []hb ∈ R), or
• ∃b ∈ Γ ∃h′ ∈ H (h ∈ F (h′) ∧ a[]h′ → [b]h′ ∈ R), or
• ∃u ∈ Γ∗ ∃b ∈ Γ ∃h′ ∈ H (b ∈ alph(u) ∧ h ∈ F (h′) ∧

[a→ [u]h′]h ∈ R);

(b, h) ∈ V RΠ if and only if:

• ∃a ∈ Γ ∃u ∈ Γ∗ ([a→ u]h ∈ R ∧ b ∈ alph(u)), or
• ∃a ∈ Γ ∃h′ ∈ H (h ∈ F (h′) ∧ [a]h′ → []h′b ∈ R), or
• ∃a ∈ Γ (a[]h → [b]h ∈ R), or
• ∃a ∈ Γ ∃u ∈ Γ∗ ∃h′ ∈ F (h) (b ∈ alph(u) ∧ [a →

[u]h]h′ ∈ R);

((a, h), (b, h′)) ∈ EΠ if and only if:

• ∃u ∈ Γ∗ ([a→ u]h ∈ R ∧ b ∈ alph(u) ∧ h = h′) ∨
([a]h → []hb ∈ R ∧ h′ ∈ F (h)) ∨
(a[]h′ → [b]h′ ∈ R ∧ h ∈ F (h′)), or

• ∃u ∈ Γ∗ (b ∈ alph(u) ∧ h ∈ F (h′) ∧ [a→ [u]h′]h ∈ R).

Proposition 2: Let Π be a recognizer P system with mem-
brane creation and without dissolution. There exists a Turing
machine that constructs the dependency graph, GΠ, associated
with Π, in polynomial time, that is, in a time bounded by a
polynomial function depending on the total number of rules
and the maximum length of the rules.

Proof: A deterministic algorithm that, given a P system
Π with the set R of rules, constructs the corresponding
dependency graph, is the following:

Input: Π (with R as its set of rules)
VΠ ← ∅; EΠ ← ∅

for each rule r ∈ R of Π do

if r = [a→ u]h ∧ alph(u) = {a1, . . . , as} then

VΠ ← VΠ ∪
⋃

s

j=1{(a, h), (aj , h)};

EΠ ← EΠ ∪
⋃

s

j=1{((a, h), (aj , h))}

if r = [a]h → []hb then

for each h′ ∈ F (h) do

VΠ ← VΠ ∪ {(a, h), (b, h′)};

EΠ ← EΠ ∪ {((a, h), (b, h′))}

if r = a[]h → [b]h then

for each h′ ∈ F (h) do

VΠ ← VΠ ∪ {(a, h′), (b, h)};

EΠ ← EΠ ∪ {((a, h′), (b, h))}

if r = [a→ [u]h′]h ∧ alph(u) = {a1, . . . , as} then

VΠ ← VΠ ∪
⋃

s

j=1{(a, h), (aj , h
′)};

EΠ ← EΠ ∪
⋃

s

j=1{((a, h), (aj , h
′))}

The cost of this algorithm is of the order O(|R| ·(q+|R|+p)),
where q = max{length(r) : r ∈ R}, and p is the number of
initial membranes.

Proposition 3: Let Π be a recognizer P system with mem-
brane creation and without dissolution. Let ∆Π be defined
as follows: (a, h) ∈ ∆Π if and only if there exists a path
(within the dependency graph) from (a, h) to (yes, env).
Then, there exists a Turing machine that constructs the set
∆Π in polynomial time, that is, in a time bounded by a
polynomial function depending on the total number of rules
and the maximum length of the rules.

Proof: We can construct the set ∆Π from Π as follows:
• Construct the dependency graph GΠ associated with Π.
• Consider the following algorithm:

Input: GΠ = (VΠ, EΠ)

∆Π ← ∅

for each (a, h) ∈ VΠ do

if there exists a path from (a, h) to
(yes, env) in GΠ, then

∆Π ← ∆Π ∪ {(a, h)}

The running time of this algorithm is of the order O(|VΠ| ·
|VΠ|

2), hence it is of the order O(|Γ|3 · |H|3), where Γ is the
working alphabet and H the set of labels of Π.

Remark 1: It is easy to design an algorithm running in
polynomial time solving the following decision problem: given
a directed graph G, and two nodes a, b, determine whether or
not the node b is reachable from a, that is, whether or not
there exists a path in the graph from a to b. For example,
given a directed graph G, and two nodes a, b, we consider
a depth–first–search with source a, and we check if b is in
the tree of the computation forest whose root is a. The total
running time of this algorithm is O(|V |+ |E|), that is, in the
worst case is quadratic in the number of nodes. Moreover, this
algorithm needs to store a linear number of items.

Proposition 4: Let X = (IX , θX) be a decision problem.
Let Π = (Π(n))n∈N be a family of recognizer P systems
with input membrane solving X , according to Definition 6.
Let (cod, s) be the polynomial encoding associated with that
solution. Then, for each instance w of the problem X the
following assertions are equivalent:
(a) θX(w) = 1 (that is, the answer to the problem is yes

for w).
(b) ∆Π(s(w)) ∩ ((cod(w))∗ ∪

⋃
p

j=1M
∗

j
) 6= ∅, where

M1, . . . ,Mp are the initial multisets of the system
Π(s(w)).

Proof: Let w ∈ IX . Then w ∈ LX if and only if there
exists an accepting computation of the system Π(s(w)) with
input multiset cod(w). But this condition is equivalent to the
following: in the initial configuration of Π(s(w)) with input
multiset cod(w) there exists an object a ∈ Γ in a membrane
labelled by h such that in the dependency graph the node
(yes, env) is reachable from (a, h).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩M
∗

1 6= ∅, or
. . ., or ∆Π(s(w)) ∩M

∗

p
6= ∅, or ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅.

Next, we show that, in the framework of recognizer P sys-
tems with membrane creation (but not using dissolution rules),
constructing in polynomial time an exponential workspace
(number of membranes) is not enough to solve NP–complete
problems in polynomial time (unless P = NP).

Theorem 1: PMCMC−d
= P.

Proof: We have P ⊆ PMCMC−d
because the class

PMCMC−d
is closed under polynomial time reduction.

Next, we show that PMCMC−d
⊆ P. For that, let X ∈

PMCMC−d
. Let Π = (Π(n))n∈N be a family of recognizer

P systems with membrane creation and without dissolution
solving X , according to Definition 6. Let (cod, s) be the
polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(s(w)) with input
multiset cod(w)

- Construct the dependency graph GΠ(s(w))

associated with Π(s(w))

- Construct the set ∆Π(s(w)) according to
Proposition 3

- Consider the following algorithm:

answer ← no; j ← 1

while j ≤ p ∧ answer =no do

if ∆Π(s(w)) ∩M
∗

j
6= ∅ then

answer ← yes

j ← j + 1

endwhile

if ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and
only if there exists a pair (a, h) belonging to ∆Π(s(w)) such
that in the membrane labelled by h in the initial configuration
(with input the multiset cod(w)) appears the symbol a.

On the other hand, a pair (a, h) belongs to ∆Π(s(w)) if
and only if there exists a path from (a, h) to (yes, env); that
this, if and only if we can obtain an accepting computation
of Π(s(w)) with input cod(w). Hence, the algorithm above
described solves the problem X .

The cost to determine whether or not ∆Π(s(w)) ∩M
∗

j
6= ∅

(or ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅) is of the order O(|Γ|2 · |H|2).
Hence, the running in time of this algorithm can be bounded

by f(|w|) + O(|R| · q) + O(p · |Γ|2 · |H|2), where f is the

(total) cost of a polynomial encoding from X to Π, R the set
of rules of Π, p is the initial number of membranes, and q =
max {length(r) : r ∈ R}. But from Definition 6 we have
that all involved parameters are polynomials in |w|. That is,
the algorithm is polynomial in the size |w| of the input.

V. SOLVING QSAT IN LINEAR TIME

In this section we design a family of recognizer P systems
with membrane creation (and using dissolution rules) which
solves QSAT (the quantified satisfiability problem) in linear
time.

Given a boolean formula ϕ(x1, . . . , xn) in conjunctive
normal form, with boolean variables x1, . . . , xn, the sentence
ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn) (where Qn is ∃ if n is
odd, and Qn is ∀ otherwise) is said to be the (existential) fully
quantified formula associated with ϕ(x1, . . . , xn). Recall that
a sentence is a boolean formula in which every variable is in
scope of a quantifier.

We say that ϕ∗ is satisfiable if there exists a truth assign-
ment, σ, over {i : 1 ≤ i ≤ n ∧ i odd} such that each exten-
sion, σ∗, of σ over {1, . . . , n} verifies σ∗(ϕ(x1, . . . , xn)) = 1.

The QSAT problem is the following one: Given the (exis-
tential) fully quantified formula ϕ∗ associated with a boolean
formula ϕ(x1, . . . , xn) in conjunctive normal form, determine
whether or not ϕ∗ is satisfiable.

It is well known that QSAT is a PSPACE–complete prob-
lem [5].

Next, we provide a polynomial time solution to QSAT by
a family of recognizer P systems with membrane creation and
using dissolution rules, according to Definition 6.

The solution follows a brute force approach, in the frame-
work of recognizer P systems with membrane creation, and
consists in the following phases:

• Generation and Evaluation Stage: Using membrane cre-
ation, a binary complete tree is constructed. The leaves of
that tree encode all possible truth assignments associated
with the formula. Nodes whose level is even (respectively,
odd) are codified by an OR gate (respectively, AND gate).
So, we can consider the constructed tree as a boolean
circuit that only have gates AND, OR. In this stage, the
values of the formula corresponding to each assignment
is obtained in the leaves.

• Checking Stage: We proceed to compute the output of
that boolean circuit from the inputs obtained in the leaves
by propagating values along the wires and computing the
respective gates until the output gate (the root of the tree)
has assigned a value.

• Output Stage: The systems sends out to the environment
the right answer according to the result of the previous
stage.

Let us consider the pair function 〈 , 〉 defined by
〈n,m〉 = ((n + m)(n + m + 1)/2) + n.

This function is polynomial-time computable (it is primitive
recursive and bijective from N

2 onto N).
For any given boolean formula, ϕ(x1, . . . , xn) = C1 ∧

· · · ∧ Cm, in conjunctive normal form, with n variables and

m clauses, we construct a P system Π(〈n,m〉) processing
the (existential) fully quantified formula ϕ∗ associated with
ϕ (when an appropriate input is supplied).

The family of recognizer P systems with membrane creation
and using dissolution rules presented here is

Π = {(Π(〈n,m〉),Σ(〈n,m〉), i(〈n,m〉)) : (n,m) ∈ N
2}

where the input alphabet is

Σ(〈n,m〉) = {xi,j , xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the input membrane is i(〈n,m〉) =< t,∨ >, and the P system

Π(〈n, m〉) = (Γ(〈n, m〉), H(〈n, m〉), µ,Ms,M<t,∨>, R(〈n, m〉))

is defined as follows:
• Working alphabet, Γ(〈n,m〉), is

Σ(〈n,m〉) ∪
{zj,c | j ∈ {0, . . . n}, c ∈ {∧,∨} } ∪
{zj,c,l | j ∈ {0, . . . , n− 1}, c ∈ {∧,∨}, l ∈ {t, f}} ∪
{xi,j,l, xi,j,l | j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, l ∈ {t, f}} ∪
{xi,j | j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}} ∪
{ri, ri,t, ri,f | i ∈ {1, . . . ,m}} ∪
{d1, . . . , dm, q, t0, . . . , t4, ans0, . . . , ans5} ∪
{yes, yes∨, yes∗, yes∧, yes

∧
, Y ES} ∪

{no, no∨, no∗, no
∨
, no∧, no

∧
, NO}

• The set of labels, H(〈n,m〉), is

{< l, c >: l ∈ {t, f}, c ∈ {∧,∨}} ∪ {a, s, 1, . . . ,m}

• Initial membrane structure: µ = [[]<t,∨>]s
• Initial multisets: Ms = ∅, M<t,∨> = {z0,∧,tz0,∧,f}
• Input membrane: []<t,∨>

• The set of evolution rules, R(〈n,m〉), consists of the
following rules (recall that λ denotes the empty string, and
if c is ∧ then c is ∨, and if c is ∨ then c is ∧):

1. [zj,c → zj,c,t, zj,c,f]<l,c>

[zj,c,l → [zj+1,c]<l,c>]<l′,c>

}

,

for l, l′ ∈ {t, f}, c ∈ {∨,∧}, j ∈ {0, . . . , n− 1}.
The goal of these rules is to create one membrane for

each assignment to the variables of the formula. Firstly, the
object zj,c evolves to two objects, one for the assignment
true (the object zj,c,t), and a second one for the assignment
false (the object zj,c,f). In a second step these objects will
create two membranes. The new membrane with t in its label
represents the assignment xj+1 = true; on the other hand, the
new membrane with f in its label represents the assignment
xj+1 = false.

2. [xi,j → xi,j,txi,j,f]<l,c>

[xi,j → xi,j,txi,j,f]<l,c>

[ri → ri,tri,f]<l,c>







,

for l ∈ {t, f}, i ∈ {1, . . . ,m}, c ∈ {∨,∧}, j ∈ {1, . . . , n}.
These rules duplicate the objects representing the formula so

it can be evaluated on the two possible assignments, xj = true

(xi,j,t, xi,j,t) and xj = false (xi,j,f , xi,j,f). The objects ri are
also duplicated (ri,t, ri,f) in order to keep track of the clauses
that evaluate true on the previous assignments to the variables.

3. xi,1,t[]<t,c> → [ri]<t,c> xi,1,t[]<t,c> → [λ]<t,c>

xi,1,f []<f,c> → [λ]<f,c> xi,1,f []<f,c> → [ri]<f,c>

}

,

for i ∈ {1, . . . ,m}, c ∈ {∨,∧}.

According to these rules the formula is evaluated in the two
possible assignments for the variable that is being analyzed.
The objects xi,1,t (resp. xi,1,f) get into the membrane with
t in its label (resp. f) being transformed into the objects
ri representing that the clause number i evaluates true on
the assignment xj+1 = true (resp. xj+1 = false). On
the other hand, the objects xi,1,t (resp. xi,1,t) get into the
membrane with f in its label (resp. t) producing no objects.
This represents that these objects do not make the clause true
in the assignment xj+1 = true (resp. xj+1 = false).

4. xi,j,l[]<l,c> → [xi,j−1]<l,c>

xi,j,t[]<l,c> → [xi,j−1]<l,c>

ri,t[]<l,c> → [ri]<l,c>







,

for l ∈ {t, f}, i ∈ {1, . . . ,m}, c ∈ {∨,∧}, j ∈ {2, . . . , n}.

In order to analyze the next variable the second subscript of
the objects xi,j,l and xi,j,l are decreased when they are sent
into the corresponding membrane labelled with l. Moreover,
following the last rule, the objects ri,l get into the new
membranes to keep track of the clauses that evaluate true on
the previous assignments.

5. [zn,c → d1 . . . dmq]<l,c>, for l ∈ {t, f} and c ∈ {∨,∧}.

At the end of the generation stage the object zn will produce
the objects d1, . . . , dm and yes0, which will take part in the
checking stage.

6. [di → [t0]i]<l,c>

ri,t[]i → [ri]i [ri]i → λ

[tj → tj+1]i [t2]i → t3







,

for i ∈ {1, . . . ,m}, j ∈ {0, 1}, l ∈ {t, f}, c ∈ {∨,∧}.

Following these rules each object di creates a new mem-
brane with label i where the object t0 is placed; this object will
act as a counter. The object ri gets into the membrane labelled
with i and dissolves it preventing the counter ti from reaching
the object t2. The fact that the object t2 appears in a membrane
with label i means that there is no object ri, that is, the clause
number i does not evaluate true on the assignment associated
with the membrane; therefore neither does the formula on the
associated assignment.

7. [q → [ans0]a]<l,c>

t3[]a → [t4]a [t4]a → λ

[ansh → ansh+1]a [ans5]a → yes

[ans5 → no]<l,c>







,

for l ∈ {t, f}, c ∈ {∨,∧}, h = 0, . . . , 4.

The object q creates a membrane with label a where the
object ans0 is placed. The object ansh evolves to the object
ansh+1; at the same time the objects t3 can get into the
membrane labelled with a and dissolve it preventing the object
yes from being sent out from this membrane.

8. [yes]<l,c> → yesc [no]<l,c> → noc

[yes∨]<l,∨> → yes∗ [no∨ → no
∨
]<l,∨>

[yes∗ → yes∧]<l,∧> [no
∨
]<l,∨> → no∧

[no
∨
→ λ]<l,∧> [yes∨ → λ]<l,∧>

[no∧]<l,∧> → no∗ [yes∧ → yes
∧
]<l,∧>

[no∗ → no∨]<l,∨> [yes
∧
]<l,∧> → yes∨

[no
∧
→ λ]<l,∨> [yes

∧
→ λ]<l,∨>

[yes∗]s → Y ES []s [no∧]s → NO []s







,

for l ∈ {t, f}.
This set of rules controls the output stage. After the evalua-

tion stage, from each working membrane we obtain an object
yes or no depending on whether the assignment associated
with this membrane satisfies or not the formula. Contrary
to the SAT problem, in QSAT it is not enough that one
assignment satisfies the formula, but the final answer is YES
if an appropriate combination of assignments according to the
quantifiers ∃ and ∀ is found.

A. An overview of the computation
First of all we define a polynomial encoding of the QSAT

problem in the family Π constructed in the previous sec-
tion. Given a boolean formula in conjunctive normal form,
ϕ = C1 ∧ . . . ∧ Cm such that V ar(ϕ) = {x1, . . . , xn},
and considering ϕ∗ the (existential) fully quantified formula
associated with it, we define s(ϕ∗) = 〈n,m〉 (recall the
bijection mentioned in the previous section) and cod(ϕ∗) =
{xi,j : xj ∈ Ci} ∪ {xi,j : ¬xj ∈ Ci}.

Next we describe informally how the recognizer P system
with membrane creation Π(s(ϕ∗)) with input cod(ϕ∗) works.

In the initial configuration we have the input multiset
cod(ϕ∗) and the objects z0,∧,t and z0,∧,f placed in the input
membrane (membrane labelled with < t,∨ >). In the first step
of the computation the object z0,∧,t creates a new membrane
with label < t,∨ > which represents the assignment x1 =
true and the object z0,∧,f creates a new membrane with label
< f,∨ > which represents the assignment x1 = false. The
second component of the labels, i.e., ∧ and ∨ will be used in
the output stage.

In these two new membranes the object z1,∨ is placed. At
the same time the input multiset representing the formula ϕ∗

is duplicated following the two first rules in group 2. In the
next step, according to the rules in group 3, the formula is
evaluated on the two possible assignments for x1. In the same
step the rules in group 4 decrease the second subscript of
the objects representing the formula (xi,j,l, xi,j,l with j ≥ 2)
in order to analyze the next variable. Moreover, at the same
time, the object z1,c produces the object z1,c,t and z1,c,f (c ∈
{∧,∨}) and the system is ready to analyze the next variable.
The generation and evaluation stage goes on in this way until
all the possible assignments to the variables are generated and
the formula is evaluated on each of them. Observe that it takes
two steps to generate the possible assignments for a variable
and evaluate the formula on them; therefore the generation and
evaluation stage takes 2n steps.

The checking stage starts when the object zn,c produces
the objects d1, . . . , dm and the object q. In the first step of the

checking stage each object di, for i = 1, . . . ,m, creates a new
membrane labelled with i where the object t0 is placed, and
the object q creates a new membrane with label a placing the
object yes0 in it.

The objects ri,t, which indicate that the clause number i

evaluates true on the assignment associated with the mem-
brane, are sent into the membranes by the last rule in group
4 so the system keeps track of the clauses that are true.
The objects ri,t get into the membrane with label i and
dissolves it in the following two steps preventing the counter
t2 from dissolving the membrane and producing the object t3
according to the last rule in group 6. If for some i there is no
object ri, which means that the clause i does not evaluate true
on the associated assignment, the object t2 will dissolve the
membrane labelled with i producing the object t3 that will
get into the membrane with label a where the object ansh

evolves following the rules in group 7. The object t4 dissolves
the membrane with label a preventing the production of the
object ans5. Therefore the checking stage takes 7 steps.

Finally the output stage takes place according to the rules
in group 8. If some object ans5 is present in any membrane
with label < l, c >, (l ∈ {t, f}, c ∈ {∧,∨}), this means that
there exists at least one clause not satisfied by the assignment
associated with the membrane, and by the last rule in group
7 we obtain no in this membrane. Otherwise, the object ans5

will be inside the membrane with label a, it will dissolve the
membrane, and send yes to the working membrane.

At this point, in each of the 2n working membranes we
have an object yes or no depending on if the associated
assignment satisfies or not the formula ϕ. In the last steps we
control the flow of the objects yes and no from the working
membranes to the environment. Basically, the process is the
following: if there is one object yes inside a membrane with ∨
in its label, this object dissolves the membrane and sends out
another yes; if this does not happen, i.e., if two objects no are
inside a membrane with label ∨, the membrane is dissolved
and no is sent out. Analogously, if there is one object no

inside a membrane with ∧ in its label, this object dissolves
the membrane and sends out another no. Otherwise, if two
objects yes are inside a membrane with label ∨, the membrane
is dissolved and yes is sent out.

If the answer is affirmative, then the system halts in the
(4n+8)–step. If, on the contrary, the answer is negative, then
the system halts in the (4n+9)–step.

Hence, the family Π of recognizer P systems with mem-
brane creation using dissolution rules solves in polynomial
(actually, linear) time QSAT according to Definition 6. So,
we have the following result.

Theorem 2: QSAT ∈ PMCMC+d

Corollary 1: PSPACE ⊆ PMCMC+d

Proof: It suffices to remark that the QSAT problem is
PSPACE–complete, QSAT ∈ PMCMC+d

, and this com-
plexity class is closed under polynomial time reduction.

VI. CONCLUSIONS

It is a very interesting issue to obtain conditions providing
a distinction between tractable problems (that is, those that

are solvable by computational devices running in polynomial
time) and the problems that are not tractable.

This paper is focused in that direction and it wishes to stress
the relevant role played by an apparently innocent operation
(as dissolution rules) in order to “separate” the complexity
classes P and PSPACE. Thus, in the framework of recognizer
P systems with membrane creation, dissolution rules permit to
distinguish the tractability of decision problems, suppossing
P 6= PSPACE.

In our characterization of the class P, we have used the
concept of dependency graph, that initially was defined to help
to design strategies looking for short computations of confluent
membrane systems. We characterize the accepting computa-
tions of recognizer P systems with membrane creation and
without dissolution through the reachability of a distinguished
node of the graph from other nodes associated with the initial
configuration.

ACKNOWLEDGMENT

This work is supported by Ministerio de Ciencia y Tec-
nologı́a of Spain, by Plan Nacional de I+D+I (2000–2003)
(TIC2002-04220-C03-01), cofinanced by FEDER funds, and
by a FPI fellowship (University of Seville), in the case of the
fourth author.

REFERENCES

[1] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A fast P
system for finding a balanced 2-partition. Soft Computing, 9, 9 (2005),
673–678.

[2] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A
linear solution of Subset Sum Problem by using Membrane Creation.
In Mechanisms, symbols and models underlying cognition, First Interna-
tional Work-Conference on the interplay between Natural and Artificial
Computation, IWINAC 2005 (J. Mira, J.R. Alvarez, eds.), LNCS 3561
(2005), 258–267.

[3] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero:
Solving SAT with Membrane Creation. In Computability in Europe 2005,
CiE 2005: New Computational Paradigms (S. Barry Cooper, B. Lowe,
L. Torenvliet, eds.), Report ILLC X-2005-01, University of Amsterdam,
82–91.

[4] P.L. Luisi: The chemical implementation of autopoiesis, Self-Production
of Supramolecular Structures (G.R. Fleishaker et al., eds.), Kluwer,
Dordrecht, 1994.

[5] Ch.H. Papadimitriou: Computational Complexity, Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1995.

[6] Gh. Păun: Computing with membranes, Journal of Computer and System
Sciences, 61, 1 (2000), 108–143.

[7] Gh. Păun: Membrane Computing. An Introduction, Springer–Verlag,
Berlin, 2002.

[8] Gh. Păun: Further open problems in membrane computing. Proceedings
of the Second Brainstorming Week on Membrane Computing (Gh. Păun,
A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.), Report
RGNC 01/04, University of Seville, 2004, 354–365.

[9] M.J. Pérez–Jiménez: An approach to computational complexity in Mem-
brane Computing. In Membrane Computing, 5th International Workshop,
WMC5, Revised Selected and Invited Papers (G. Mauri, Gh. Păun, M.
J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.), LNCS 3365 (2005),
85–109.

[10] M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving the Bin Packing
problem by recognizer P systems with active membranes. Proceedings
of the Second Brainstorming Week on Membrane Computing (Gh. Păun,
A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.), Report
RGNC 01/04, University of Seville, 2004, 414–430.

[11] M.J. Pérez-Jiménez, A. Riscos-Núñez: Solving the Subset-Sum problem
by P systems with active membranes, New Generation Computing, 23, 4
(2005), 367–384.

[12] M.J. Pérez-Jiménez, A. Riscos-Núñez: A linear–time solution for the
Knapsack problem using P systems with active membranes, Membrane
Computing (C. Martı́n-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A.
Salomaa, eds.), LNCS 2933 (2004), 250–268.

[13] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A poly-
nomial complexity class in P systems using membrane division, Proceed-
ings of the 5th Workshop on Descriptional Complexity of Formal Systems,
DCFS 2003, (E. Csuhaj-Varjú, C. Kintala, D. Wotschke, Gy. Vaszil, eds.),
2003, 284-294.

[14] ISI web page: http://esi-topics.com/erf/october2003.html
[15] P systems web page: http://psystems.disco.unimib.it/

