
Solving SAT with membrane creation?

Miguel Ángel Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, and Francisco José
Romero-Campero

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012

Sevilla, Spain
{magutier,marper,fran}@us.es

Abstract. Membrane Computing is a branch of Natural Computing
which starts from the assumption that the processes taking place in the
compartmental structure of a living cell can be interpreted as compu-
tations. In this paper we present a solution to the SAT problem using
Membrane Computing devices (P systems) where an exponential number
of membranes can be created from objects in polynomial time.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing introduced
by Păun in [9]. Since then it has received important attention from the scientific
community. In fact, Membrane Computing has been selected by the Institute
for Scientific Information, USA, as a fast Emerging Research Front in Computer
Science, and [8] was mentioned in [12] as a highly cited paper in October 2003.

This new non-deterministic model of computation starts from the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations. The devices of this model are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure, in
the compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner1.
The representation of data as multisets is an abstraction from the way in which
chemical compounds are found in living cells.

Membrane Computing is a cross-disciplinary field with contributions by com-
puter scientists, biologists, formal linguists and complexity theoreticians, enrich-
ing each others with results, open problems and promising new research lines.

In this paper we present a contribution from the computational side. We
introduce a family of P systems with membrane creation, constructed in an

? This work is supported by Ministerio de Ciencia y Tecnoloǵıa of Spain, by Plan
Nacional de I+D+I (2000–2003) (TIC2002-04220-C03-01), cofinanced by FEDER
funds, and by a FPI fellowship (of the first author) from the University of Sevilla.

1 A layman-oriented introduction can be found in [10] and further bibliography at
[13].

uniform way, that solves the problem of determining for a given formula in
conjunctive normal form whether it is satisfiable or not (the SAT problem).

The paper is organised as follows: first P systems with membrane creation are
introduced in the next section. In section 3 recognizer P systems (devices that
capture the intuitive idea underlying the concept of algorithm) are presented.
The solution in the framework of membrane creation to the SAT problem is given
in section 4. Finally, some formal details and conclusions are given.

2 P systems with membrane creation

Polynomial solutions to NP-complete problems in Membrane Computing is done
by trading time by space. This is inspired from the capability of cells to pro-
duce an exponential number of new membranes (new workspace) in polynomial
time. Basically there are two ways of producing new membranes in living cells:
mitosis (membrane division) and autopoiesis (membrane creation), see [3]. Both
ways of generating new membranes have given rise to different variants of P
systems: P systems with active membranes, where the new workspace is gener-
ated by membrane division and P systems with membrane creation, where the
new membranes are created from objects. Both models have been proved to be
universal, but up to now there is no theoretical result proving that these models
simulate each other in polynomial time. P systems with active membranes have
been successfully used to design solutions to NP-complete problems, as SAT [7],
Subset Sum [4], Knapsack [5], Bin Packing [6] and Partition [2], but as Gh. Păun
pointed in [11] “membrane division was much more carefully investigated than
membrane creation as a way to obtain tractable solutions to hard problems”.

In this paper we investigate the second variant mentioned above. Mem-
branes are created in living cells, for instance, in the process of vesicle me-
diated transport and in order to keep molecules close to each other to facili-
tate their reactions. Membranes can also be created in a laboratory - see [3].
Here we abstract the operation of creation of new membranes under the influ-
ence of existing chemical substances to define P systems with membrane cre-
ation. Recall that a P system with membrane creation is a construct of the form
Π = (O,H, µ,w1, . . . , wm, R) where:

1. m ≥ 1 is the initial degree of the system; O is the alphabet of objects and H
is a finite set of labels for membranes;

2. µ is a membrane structure consisting of m membranes labelled (not necessar-
ily in a one-to-one manner) with elements of H and w1, . . . , wm are strings
over O, describing the multisets of objects placed in the m regions of µ;

3. R is a finite set of rules, of the following forms:

(a) [a → v]h where h ∈ H, a ∈ O and v is a string over O describing
a multiset of objects. These are object evolution rules associated with
membranes and depending only on the label of the membrane.

(b) a[]h → [b]h where h ∈ H, a, b ∈ O. These are send-in communication
rules. An object is introduced in the membrane possibly modified.

(c) [a]h → []h b where h ∈ H, a, b ∈ O. These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a]h → b where h ∈ H, a, b ∈ O. These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in
the rule can be modified.

(e) [a→ [v]h2
]h1

where h1, h2 ∈ H, a ∈ O and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an
initial multiset and a label.

Rules are applied according to the following principles:

– Rules from (a) to (d) are used as usual in the framework of membrane
computing, that is, in a maximal parallel way. In one step, each object in a
membrane can only be used for one rule (non deterministically chosen when
there are several possibilities), but any object which can evolve by a rule of
any form must do it (with the restrictions below indicated).

– Rules of type (e) are used also in a maximal parallel way. Each object a in a
membrane labelled with h1 produces a new membrane with label h2 placing
in it the multiset of objects described by the string v.

– If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

– Several rules can be applied to different objects in the same membrane si-
multaneously. The exception are the rules of type (d) since a membrane can
be dissolved only once.

3 Recognizer P systems with membrane creation

Recognizer P systems were introduced in [5] and are the natural framework to
study and solve decision problems, since deciding whether an instance has an
affirmative or negative answer is equivalent to deciding if a string belongs or not
to the language associated with the problem.

In the literature, recognizer P systems are associated in a natural way with P
systems with input. The data related to an instance of the decision problem has
to be provided to the P system in order to compute the appropriate answer. This
is done by codifying each instance as a multiset placed in an input membrane.
The output of the computation (yes or no) is sent to the environment. In this way,
P systems with input and external output are devices which can be seen as black
boxes, in which the user provides the data before the computation starts and the

P system sends to the environment the output in the last step of the computation.
Another important feature of P systems is the non-determinism. The design of
a family of recognizer P system has to consider it, because all possibilities in the
non-deterministic computations have to output the same answer. This can be
summarized in the following definitions (taken from [1]).

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets w1, . . . , wp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; and (c) iΠ is the
label of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input
m is (µ,w1, . . . , wiΠ ∪m, . . . wp).

Definition 2. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements yes, no.
2. All its computations halt.
3. If C is a computation of Π, then either some object yes or some object no

(but not both) must have been released into the environment, and only in
the last step of the computation. We say that C is an accepting computa-
tion (respectively, rejecting computation) if the object yes (respectively, no)
appears in the external environment associated to the corresponding halting
configuration of C.

In the next section we present a solution to the SAT problem in linear time
in the sense of the following definition.

Definition 3. Let F be a class of recognizer P systems. We say that a decision
problem X = (IX , θX) is solvable in polynomial time by a family Π = (Π(n))n∈N,
of F , and we denote this by X ∈ PMCF , if the following is true:

• The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N in
polynomial time.
• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u)).
− the family Π is polynomially bounded with regard to (X, cod, s); that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most, p(|u|) steps.

− the family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1.

− the family Π is complete with regard to (X, cod, s); that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation of a system with the same input must
always give the same answer.

It can be proved that PMCF is closed under polynomial–time reduction and
complement, see [7]. In this paper we will deal with the class MC of recognizer
P systems with membrane creation.

4 Solving SAT in linear time with membrane creation

The SAT problem is the following: Given a boolean formula in conjunctive nor-
mal form, to determine whether or not it is satisfiable, that is, whether there
exists an assignment to its variables on which it evaluates true.

In this section we describe a family of P systems which solves it. We will
address the resolution via a brute force algorithm, in the framework of recognizer
P systems with membrane creation, which consists in the following phases:

– Generation and Evaluation Stage: Using membrane creation we will generate
all possible assignments associated with the formula and evaluate it on each
one.

– Checking Stage: In each membrane we check whether or not the formula
evaluates true on the assignment associated with it.

– Output Stage: The systems sends out to the environment the right answer
according to the previous stage.

Let us consider the pair function 〈 , 〉 defined by 〈n,m〉 = ((n+m)(n+m+
1)/2)+n. This function is polynomial-time computable (it is primitive recursive
and bijective from N2 onto N). For any given formula, ϕ = C1∧ · · ·∧Cm, with n
variables and m clauses we construct a P system Π(〈n,m〉) solving it. Therefore
the family presented here is

Π = {(Π(〈n,m〉), Σ(〈n,m〉), i(〈n,m〉)) : (n,m) ∈ N2}

For each element of the family, the input alphabet is

Σ(〈n,m〉) = {xi,j , xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the input membrane is i(〈n,m〉) = t, and the P system

Π(〈n,m〉) = (Γ (〈n,m〉), {a, t, f, 1, . . . ,m}, µ, wa, wt, R(〈n,m〉))

is define as follows:
• Working alphabet:

Γ (〈n,m〉) = Σ(〈n,m〉) ∪ {xi,j,l, xi,j,l, zi, zi,l, rj , rj,l, dj : l = t, f, 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {yes, no, yesi, noj : 0 ≤ i ≤ 9, 0 ≤ j ≤ 2n+ 11}
∪ {q, k0, k1, k2, t0, t1, t2, t3}

• Initial membrane structure: µ = [[]a]t
• Initial Multisets: wa = {no0} wt = {z0,t, z0,f}
• The set of evolution rules, R(〈n,m〉), consists of the following rules (recall that
λ denotes the empty string):

1. [zj,t → [zj+1 k0]t]l
[zj,f → [zj+1 k0]f]l

}
for

l = t, f
j = 0, . . . , n− 2

The goal of these rules is to create one membrane for each assignment to
the variables of the formula. The new membrane with label t, where the object
zj+1 is placed, represents the assignment xj+1 = true; on the other hand the
new membrane with label f , where the object zj+1 is placed represents the
assignment xj+1 = false.

2. [xij → xi,j,txi,j,f]l
[xi,j → xi,j,txi,j,f]l

[ri → ri,tri,f]l

[zk → zk,t zk,f]l





for

l = t, f
k = 0, . . . , n− 1
i = 1, . . . ,m
j = 1, . . . n

These rules duplicate the objects representing the formula so it can be eval-
uated on the two possible assignments, xj = true (xi,j,t, xi,j,t) and xj = false
(xi,j,f , xi,j,f). The objects ri are also duplicated (ri,t, ri,f) in order to keep track
of the clauses that evaluate true on the previous assignments to the variables.
Finally the objects zk produce the objects zk,t and zk,f which will create the
new membranes representing the two possible assignments for the next variable.

3. xi,1,t[]t → [ri]t, xi,1,t[]t → [λ]t
xi,1,f []f → [λ]f , xi,1,f []f → [ri]f

}
for i = 1, . . . ,m

According to these rules the formula is evaluated in the two possible assign-
ments for the variable that is being analysed. The objects xi,1,t (resp. xi,1,f)
get into the membrane labelled with t (resp. f) being transformed into the ob-
jects ri representing that the clause number i evaluates true on the assignment
xj+1 = true (resp. xj+1 = false). On the other hand the objects xi,1,t (resp.
xi,1,t) get into the membrane labelled with f (resp. t) producing no objects.
This represents that these objects do not make the clause true in the assignment
xj+1 = true (resp. xj+1 = false).

4. xi,j,t[]t → [xi,j−1]t, xi,j,t[]t → [xi,j−1]t
xi,j,f []f → [xi,j−1]f , xi,j,f []f → [xi,j−1]f

ri,t[]t → [ri]t, ri,f []f → [ri]f





for
i = 1, . . . ,m
j = 2, . . . , n

In order to analyse the next variable the second subscript of the objects xi,j,l
and xi,j,l are decreased when they are sent into the corresponding membrane
labelled with l. Moreover, following the last rule, the objects ri,l get into the
new membranes to keep track of the clauses that evaluate true on the previous
assignments.

5. [ks → ks+1]l
[k2]l → λ

}
for

l = t, f
s = 0, 1

The objects ki for i = 0, 1, 2 are counters that dissolve membranes when they
are not useful anymore during the rest of the computation.

6. [zn−1,t → [zn]t]l, [zn−1,f → [zn]f]l
[zn → d1 . . . dmq]l

}
for l = t, f

At the end of the generation stage the objects zn−1,l create two new mem-
branes where the formula will be evaluated on the two possible assignments for
the last variable xn. The object zn is placed in both membranes and will produce
the objects d1, . . . , dm and yes0, which will take part in the checking stage.
7. [di → [t0]i]l

ri,t[]i → [ri]i, [ri]i → λ

[ts → ts+1]i, [t2]i → t3





for
i = 1, . . . ,m
s = 0, 1

Following these rules each object di creates a new membrane with label i
where the object t0 is placed; this object will act as a counter. The object ri gets
into the membrane labelled with i and dissolves it preventing the counter, ti,
from reaching the object t2. The fact that the object t2 appears in a membrane
with label i means that there is no object ri, that is, the clause number i does
not evaluate true on the assignment associated with the membrane; therefore
neither does the formula evaluate true on the associated assignment.
8. [q → [yes0]a]l

t3[]a → [t3]a [t3]a → λ

[yesh → yesh+1]a, [yes5]a → yes6

[yes6]l → yes7[]l





for
l = t, f
h = 0, . . . , 4

The object q creates a membrane with label a where the object yes0 is placed.
The object yesh evolves to the object yesh+1; at the same time the objects t3
can get into the membrane labelled with a and dissolve it preventing the object
yes6 from being sent out from this membrane.
9. [nop → nop+1]a, [no2n+10]a → no2n+11

[no2n+11]t → no[]t

yes7[]a → [yes8]a, [yes8]a → yes9

[yes9]t → yes[]t





for p = 0, . . . , 2n+ 9

From the beginning of the computation the object nop evolves to the object
nop+1 inside the membrane labelled with a. If any object yes7 is produced during
the computation, which means that the formula evaluates true on some assign-
ment to its variables, it gets into this membrane and dissolved it producing the
object yes9 that will send out to the environment the object yes. On the other
hand if no object yes7 appears in the skin the object no2n+10 will dissolve the
membrane labelled with a producing the object no2n+11 that will send out to
the environment the object no.

4.1 An overview of the computation

First of all we define a polynomial encoding of the SAT problem in the family Π
constructed in the previous section. Given a formula in CNF, ϕ = C1 ∧ · · · ∧Cm
such that V ar(ϕ) = {x1, . . . , xn} we define s(ϕ) = 〈n,m〉 (recall the bijection
mentioned in the previous section) and the input multiset cod(ϕ) = {xi,j : xj ∈
Ci} ∪ {xi,j : ¬xi,j ∈ Ci}.

Next we describe informally how the recognizer P system with membrane
creation Π(s(ϕ)) with input cod(ϕ) works.

In the initial configuration we have on the one hand the input multiset cod(ϕ)
and the objects z0,t and z0,f placed in the skin (membrane labelled with t); and
on the other hand we have in the membrane labelled with a the object no0. This
object evolves during the computation following the first rule in the set 9.

In the first step of the computation the object z0,t creates a new membrane
with label t which represents the assignment x1 = true and the object z0,f cre-
ates a new membrane with label f which represents the assignment x1 = false.
In these two new membranes the objects z1 and k0 are placed. At the same time
the input multiset representing the formula is duplicated following the two first
rules in 2. In the next step, according to the rules in 3, the formula is evaluated
on the two possible assignments for x1. In the same step the rules in 4 decrease
the second subscript of the objects representing the formula (xi,j,l, xi,j,l with
j ≥ 2) in order to analyse the next variable. Moreover, at the same time, the
object z1 produces the object z1,t and z1,f and the system is ready to analyse
the next variable. And so the generation and evaluation stages goes until all the
possible assignments to the variables are generated and the formula is evaluated
on each one of them. Observe that it takes two steps to generate the possible
assignments for a variable and evaluate the formula on them; therefore the gen-
eration and evaluation stages take 2n steps. Note that the object k0 in the rules
5 is a counter that dissolves the membrane when the object k2 appears; that is
it dissolves the membrane once the membrane is not useful anymore in the rest
of the computation.

The checking stage starts when the object zn produces the objects d1, . . . , dm
and the object q. In the first step of the checking stage each object di, for i =
1, . . . ,m creates a new membrane labelled with i where the object t0 is placed,
and the object q creates a new membrane with label a placing the object yes0 in
it. The objects ri, which represent that the clause number i evaluates true on the
assignment associated with the membrane, are sent into the membranes by the
last rule in 4 so the system keeps track of the clauses that are true. The objects
ri,t get into the membrane with label i and dissolves it in the following two
steps preventing the counter t2 from dissolving the membrane and producing the
object t3 according to the last rule in 7. If for some i there is no object ri, which
means that the clause i does not evaluate true on the associated assignment, the
object t2 will dissolve the membrane labelled with i producing the object t3 that
will get into the membrane with label a where the object yesh evolves following
the rules in 8. The object t3 dissolves the membrane preventing the production
of the object yes6. Therefore the checking stage takes 6 steps.

Finally the output stage takes place according to the rules in 9. On the one
hand if some object yes6 is present in any membrane (which represents that the
formula evaluates true on the assignment associated with this membrane) it is
sent out to the skin being transformed into the object yes7. In the next step
yes7 gets into the membrane labelled with a being transformed into yes8 then
it dissolves the membrane producing the object yes9. This dissolution prevents

the object no2n+11 from being produced. And finally the object yes is sent out
to the environment. On the other hand if there is no object yes6 the membrane
with label a is not dissolved, and then the object no2n+11 is produced and the
object no is sent out to the environment. Observe that the output stage takes 5
steps if the answer is yes, and 6 steps if the answer is no.

5 Some formal details

In the previous section we have presented a family Π of recognizer P systems
which solves the SAT problem. For each boolean formula a P system Π(〈n,m〉) is
constructed, where n is the number of variables and m is the number of clauses.
First of all, observe that the evolution rules of Π(s(ϕ)) are defined in a recursive
manner from ϕ, in particular from n and m. Let us list the necessary resources
to construct Π(s(ϕ)):

– Size of the alphabet: 6nm+ 5n+ 4m+ 33 ∈ Θ(nm)
– Initial number of membranes: 2 ∈ Θ(1)
– Initial number of objects: 3 ∈ Θ(1)
– Sum of the lengths of the rules: 86nm+ 84n+ 144m+ 121 ∈ Θ(nm)

Therefore a Turing machine can build Π(s(ϕ)) in polynomial time with re-
spect to s(ϕ). It can also be proved that the family Π solves the SAT problem
in the sense of definition 3 in section 3.

Finally, we can prove, using a formal description of the computation, that
the P system always halts and sends to the environment the object yes or no in
the last step. The number of steps of the P system is 2n + 11 if the output is
yes and 2n+ 12 if the output is no, therefore there exists a linear bound for the
number of steps of the computation.

From the above discussion we deduce that SAT belongs to PMCMC , there-
fore this class is closed under polynomial-time reduction and complement we
have NP ∪ co-NP ⊆ PMCMC .

6 Conclusions and Future Work

Membrane Computing is a new cross-disciplinary field of Natural Computing
which has reached an important success in its short life. In these years many
results have been presented related to the computational power of membrane
devices, but up to now no implementation in vivo or in vitro has been carried
out. This paper deals with the study of algorithms to solve well-known prob-
lems and in this sense it is placed between the theoretical results, mainly related
to computational completeness and computational efficiency, and the real im-
plementation of the devices. Moreover this paper represents a new step in the
study of algorithms in the framework of P systems because it exploits membrane
creation (a variant poorly studied) to solve NP-complete problems. Recently, we
have proved that this variant is PSPACE powerful; this result will be published
in a forthcoming paper.

References

1. Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Riscos-Núñez,A.: Towards a pro-
gramming language in cellular computing. Proceedings of the 11th Workshop on
Logic, Language, Information and Computation (WoLLIC’2004), July 19-22, 2004,
1-16 Campus de Univ. Paris 12, Paris, France.

2. Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Riscos-Núñez, A.: A fast P system
for finding a balanced 2-partition, Soft Computing, in press.

3. Luisi, P.L.: The Chemical Implementation of Autopoiesis, Self-Production of
Supramolecular Structures (G.R. Fleishaker et al., eds.), Kluwer, Dordrecht, 1994

4. Pérez-Jiménez, M.J.; Riscos-Núñez, A.: Solving the Subset-Sum problem by active
membranes,New Generation Computing, in press.

5. Pérez-Jiménez, M.J.; Riscos-Núñez, A.: A linear solution for the Knapsack problem
using active membranes, Membrane Computing, C. Mart́ın-Vide, G. Mauri, Gh.
Păun, G. Rozenberg and A. Salomaa (eds.), Lecture Notes in Computer Science,
2933, 2004, 250–268.

6. Pérez-Jiménez, M.J.; Romero-Campero, F.J.: Solving the BIN PACKING problem
by recognizer P systems with active membranes, Proceedings of the Second Brain-
storming Week on Membrane Computing, Gh. Păun, A. Riscos, A. Romero and F.
Sancho (eds.), Report RGNC 01/04, University of Seville, 2004, 414–430.

7. Pérez-Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division, Proceedings of the 5th
Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, E. Csuhaj-
Varjú, C. Kintala, D. Wotschke and Gy. Vaszyl (eds.), 2003, 284-294.

8. Păun, A.; Păun, Gh.: The power of communication: P systems with sym-
port/antiport,New Generation Computing, 20, 3 (2002), 295–305

9. Păun, Gh.: Computing with membranes, Journal of Computer and System Sci-
ences, 61, 1 (2000), 108–143.

10. Păun, Gh.; Pérez-Jiménez, M.J.: Recent computing models inspired from biology:
DNA and membrane computing, Theoria, 18, 46 (2003), 72–84.

11. Păun, Gh.: Further Open Problems in Membrane Computing, Proceedings of the
Second Brainstorming Week on Membrane Computing, Gh. Păun, A. Riscos, A.
Romero and F. Sancho (eds.), Report RGNC 01/04, University of Seville, 2004,
354–365.

12. ISI web page http://esi-topics.com/erf/october2003.html

13. P systems web page http://psystems.disco.unimib.it/

