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ABSTRACT. In this paper we prove the equivalence between equi-attraction and continuity
of attractors for skew-product semi-flows, and equi-attraction and continuity of uniform and
cocycle attractors associated to non-autonomous dynamical systems. To this aim proper
notions of equi-attraction have to be introduced in phase spaces where the driving systems
depend on a parameter. Results on the upper and lower-semicontinuity of uniform and
cocycle attractors are relatively new in the literature, as a deep understanding of the internal
structure of these sets is needed, which is generically difficult to obtain. The notion of
lifted invariance for uniform attractors allows us to compare the three types of attractors
and introduce a common framework in which to study equi-attraction and continuity of
attractors. We also include some results on the rate of attraction to the associated attractors.

1. Introduction and preliminaries. The skew-product semiflow is an important tool to
understand the dynamics of some non-autonomous differential equations (see [24, 25, 26]).
It consists of a very ingenious way of tracking the non-autonomous nature of the equation
into an autonomous equation in a product space. Autonomous equations are nowadays
quite well known and there are many results on local and global existence and regularity of
solutions, also on existence of attractors and stability under perturbations, [1, 3, 6, 12, 14,
21, 28].

In order to analyse the asymptotic behavior of solutions, we concentrate our attention
on the attractors. These are subsets of the phase space which contain most of the important
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information concerning the long time behavior of solutions. There are several notions of at-
tractor for non-autonomous problems. On one hand, the pullback and the cocycle attractors
refer to an invariant family of time-dependent sets (with the pullback attraction property)
containing all global bounded solutions and, consequently, all interesting structures closely
related to its dynamics. On the other hand, the uniform attractor is a compact bounded sub-
set of the phase space which attracts bounded sets in the forwards sense, but not invariant.
The pullback and the uniform attractors are different in general. All these notions can be
related with the aid of the concept of skew-product semiflow, see [24, 25, 27].

The existence of attractors for autonomous dynamical systems has been studied in [1],
[6], [11], [12], [14], [21] and [28], for example. The robustness of attractors under perturba-
tion is a fundamental property and there are many works devoted to this problem, both in the
autonomous ([1, 10, 15, 16, 17, 18]) and the non-autonomous cases ([2, 5, 6, 7, 9, 20, 22]).
The continuity of attractors was soon related to the equi-attraction (see [1], also in a non-
autonomous framework [13].

The relation between equi-attraction and continuity of attractors has not been clarified
yet for uniform attractors. One of the aims of this paper is to study the relationship between
equi-attraction and continuity of uniform, cocycle and pullback attractors. To this end
we will treat all of these attractors in a skew-product semiflow framework. Though the
skew-product semiflows are semigroups in a product space, note that, under perturbation,
the phase space changes with the parameter, which was not considered in the previous
literature.

Before going further, we will introduce some necessary concepts, definitions, terminol-
ogy and results which will be crucial for our analysis.

Let A and B be two subsets of the metric space (X ,d). We denote by dist(A,B) the
Hausdorff semidistance between two subsets, that is, dist(A,B) = supa∈A d(a,B) and we
write distH(A,B) = dist(A,B)+dist(B,A) for the Hausdorff distance.

Skew-product semiflows appear in a natural way when studying non-autonomous dif-
ferential equations. Indeed, let us consider a family of differential equations in a Banach
space (X ,‖ · ‖X ). For η ∈ [0,1], let fη ∈Cb(R×X ,X), where Cb(R×X ,X) is the space of
all continuous and bounded maps from R×X to X with a suitable metric ρ .

Consider the semigroup {θt : t ∈R} in Cb(R×X ,X) where (θtφ)(s,x) := φ(t +s,x), for
all (s,x) ∈ R×X and φ ∈Cb(R×X ,X). Let us denote by Ση the closure of {θt fη : t ∈ R}
in the metric space (Cb(R×X ,X),ρ), and we assume that {θt : t ∈ R} is a group over Ση .
Furthermore, suppose that

⋃
η∈[0,1] Ση is precompact so that, in particular, Ση is compact,

for each η ∈ [0,1].
For a given σ ∈ Ση we consider the system{

ẋ = σ(t,x), t ∈ R
x(0) = x0 ∈ X ,

(1)

and for x0 ∈ X , let x(t,x0,σ) be the solution of (1) at time t ∈R with non-autonomous func-
tion σ ∈ Ση and initial condition x(0,x0,σ) = x0. We will use the notation ϕη(t,σ)x0 :=
x(t,x0,σ), when the non-autonomous function belongs to Ση . Note that these solutions
satisfy, for all x0 ∈ X and σ ∈ Ση , the following properties:

1. ϕη(0,σ)x0 = x0;
2. [0,∞)×X×Ση 3 (t,x0,σ) 7→ ϕη(t,σ)x0 ∈ X is continuous;
3. ϕη(t + s,σ)x0 = ϕη(t,θsσ)ϕη(s,σ)x0, the cocycle property.
A map ϕη : [0,∞)×X ×Ση → X together with a group {θt : t ∈ R} with the proper-

ties above is called a non-autonomous dynamical system (or nds for short) and is denoted
by (ϕη ,θ)(X ,Ση ). However, the are situations in which we can have a set of mathematical
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elements {X ,Ση ,ϕη ,θ} satisfying the precedent properties and not being necessarily as-
sociated to a differential equation in the form described above. For this reason, we will
develop now an abstract theory in which we do not need any relationship to any differential
equation, although our primary interest will be related to one of them.

Thus, in an abstract way, suppose that (C ,ρ) is a complete metric space with a group
{θt : t ∈ R}. Take a family {ση : η ∈ [0,1]} in C with the property that there is a global
solution ζη(t) for {θt : t ≥ 0} through each ση and ση → σ0, as η → 0+. From now on,
we are going to write ζη(−t) = θ−tση , for t > 0, and assume that

θtση → θtσ0, as η → 0+, uniformly for t ∈ R. (2)

For η ∈ [0,1], we denote by Γη = {θtση : t ∈ R} the orbit of ση by {θt : t ∈ R} on C .
Let Ση be the closure of Γη and we denote

Σ :=
⋃

η∈[0,1]

Ση is compact on C . (3)

We can now define the concept of uniform attractor for a non-autonomous dynamical
system. It is the minimal closed set that attracts all solutions uniformly with respect the
non-autonomous functions on Ση and with respect to initial values x0 in bounded subsets
of X . Precisely:

Definition 1.1. Suppose (ϕη ,θ)(X ,Ση ) is a non-autonomous dynamical system. A uniform
attractor Aη (if it exists) for this system is the minimal closed subset of X such that

sup
σ∈Ση

dist(ϕη(t,σ)B,Aη)→ 0, as t→+∞,

for each bounded subset B of X .

A recent characterization of a uniform attractor ([2]) is given by the property of lift
invariance. A global solution through x ∈ X and σ ∈ Ση for the nds (ϕη ,θ)(X ,Ση ) is a map
ξ : R→ X that satisfies, for all t ≥ s,

ϕη(t− s,θsσ)ξ (s) = ξ (t) and ξ (0) = x,

Definition 1.2. We say a subset M of X is lifted invariant by the nds (ϕη ,θ)(X ,Ση ) if for
every x ∈ M there is σ ∈ Ση and a global solution ξ : R → X through x and σ in M.
Moreover, we say that M is an isolated lifted invariant if there is a neighborhood U of M
such that M is the maximal lifted invariant set on U .

Proposition 1.3. [2, Proposition 3.21] The uniform attractor of the non-autonomous dy-
namical system (ϕη ,θ)(X ,Ση ), if it exists, is the maximal bounded isolated lifted invariant
set of X.

Now let us define the skew-product semiflow associated to a non-autonomous dynamical
system (ϕη ,θ)(X ,Ση ). For t ≥ 0 and (x,σ) ∈ X×Ση let

πη(t)(x,σ) := (ϕη(t,σ)x,θtσ) ∈ X×Ση .

It is easy to see that {πη(t) : t ≥ 0} is a semigroup on X×Ση .
The existence of uniform attractor for the non-autonomous dynamical system (ϕη ,θ)(X ,Ση )

is equivalent to the existence of a global attractor for the skew-product semiflow, see [2,
Proposition 3.1]. Furthermore, we have the relation ΠXAη = Aη , where Aη denotes the
global attractor for the skew-product, ΠX is the continuous first coordinate projection of
X×Ση and Aη the uniform attractor of the non-autonomous dynamical system.

There is also a relation between uniform attractors and pullback attractors which is
shown by means of cocycle attractors. A non-autonomous set is a family of subsets of
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X which is indexed in Ση , formally {B(σ) ⊂ X : σ ∈ Ση}. We say the non-autonomous
set is bounded, closed or compact, if every fiber B(σ) is bounded, closed or compact on X ,
respectively.

Definition 1.4. Suppose {(ϕη ,θ)}(X ,Ση ) is a non-autonomous dynamical system and {θt :
t ∈ R} is a driving group over Ση . We say that the compact non-autonomous set {Aη(σ) :
σ ∈ Ση} is a cocycle attractor for the non-autonomous dynamical system if

(i) {Aη(σ)}σ∈Ση
is invariant, that is ϕη(t,σ)Aη(σ) = Aη(θtσ) for all t ∈ R+ and σ ∈

Ση ;
(ii) {Aη(σ)}σ∈Ση

Ση -pullback attracts bounded subsets of X , that is, for any bounded
subset D⊂ X , we have

dist(ϕη(t,θ−tσ)D,Aη(σ))→ 0, as t→ ∞. (4)

If
⋃

σ∈Ση
Aη(σ) is precompact and the pullback attraction of (4) is uniform on σ ∈

Ση , then the existence of the cocycle attractor is equivalent to the existence of the global
attractor for the skew-product semiflow on X ×Ση , therefore to the existence of uniform
attractor, see [2, Theorem 3.11]).

Moreover, we can associate the cocycle attractor with a pullback attractor for an evo-
lution process. Given σ ∈ Ση , define the evolution process {Sη

σ (t,s) : t ≥ s ∈ R} by the
expression

Sη
σ (t,s) := ϕη(t− s,θsσ). (5)

The family {Aη(θtσ) : t ∈R}, where {Aη(σ) : σ ∈Ση} is the cocycle attractor described
above, is a pullback attractor for the evolution process (5); indeed, we have that

(i) {Aη(θtσ) : t ∈ R} is invariant over Sη
σ (t,s), that is,

Sη
σ (t,s)Aη(θsσ) = Aη(θtσ), for all t ≥ s.

(ii) Aη(θtσ) pullback attracts bounded subsets B of X by Sη
σ (t,s) at the time t,

lim
s→−∞

dist(Sη
σ (t,s)B,Aη(θtσ))→ 0.

In this paper we study equi-attraction and continuity of attractors for all of these different
notions of attractors. More particularly, in Section 2.1 we prove that equi-attraction is
equivalent to continuity of global attractors for skew-product semiflows. It is remarkable
that even though the skew-product is a semigroup on a product space, this space changes
depending on a parameter on the driving system, so that our results cannot be deduced
directly from previous ones in the literature. In Section 2.2 we show that uniform attraction
of bounded subsets (uniformly with respect to parameters) is equivalent to continuity of
uniform attractors, extending the results of [9] to the case of uniform attractors. Then, in
Subsection 2.3 we discuss this equivalence for cocycle attractors, extending the results on
[13]. In Section 3 we relate continuity of global attractors for skew-product semiflows with
continuity of uniform and cocycle attractors for non-autonomous dynamical systems. An
application to a non-autonomous perturbation of an autonomous differential equation is
also shown to illustrate our abstract results.

2. Equi-attraction for non-autonomous systems. This section is devoted to the defi-
nition of equi-attraction on the different settings for non-autonomous systems and relate
equi-attraction with continuity of the attractor.

We start by stating the assumptions for the rest of the section. Let X be a Banach space
and (C ,ρ) a complete metric space with a semigroup {θt : t ≥ 0}. Then take a family of
elements on C , {ση ∈ C : η ∈ [0,1]}, such that it holds (2) and (3) .

It is easy to see from (2) that the family {Γη}η∈[0,1] is continuous at η = 0 on C .
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Thus, suppose that {(ϕη ,σ)(X ,Ση )}η∈[0,1] is a family of non-autonomous dynamical sys-
tems and define the skew-product semiflow πη(t) : X×Ση → X×Ση by

πη(t)(x,σ) = (ϕη(t,σ)x,θtσ).

Suppose that for each η there is a global attractor Aη for the skew-product semiflow.
So there exists a uniform attractor Aη = ΠXAη for the non-autonomous dynamical system
(ϕη ,θ)(X ,Ση ) on X .

Then the global attractor of the skew-product semiflow Aη may be expressed in the
product space X×Ση in terms of the cocycle attractor. We have that Aη ⊂Aη×Ση , for all
η ∈ [0,1], but the equality does not hold in general. However, if the non-autonomous set
{Aη(σ) : σ ∈ Ση} is the cocycle attractor for the nds (ϕη ,θ)(X ,Ση ), then (see [4, Theorem
3.4] or [20, Propositions 3.30 and 3.31])

Aη =
⋃

σ∈Ση

Aη(σ)×{σ}.

We assume, furthermore, that for the family {ση}η∈[0,1] it holds that

Aη =
⋃

τ∈R
Aη(θτ ση)×{θτ ση}, (6)

for each η ∈ [0,1].
The next lemma provides us with a sufficient condition for (6) to hold true.

Lemma 2.1. Assume that

lim
t→∞

sup
τ∈R

dist(ϕη(t,θτ−tση)B,Aη(θτ ση)) = 0, (7)

for any bounded subset B of X Then, the global attractor for the skew-product semiflow is
given by

Aη =
⋃

τ∈R
Aη(θτ ση)×{θτ ση}.

Proof. One of the inclusions is trivial, since Aη(θτ ση)×{θτ ση} ⊂ Aη , for every τ ∈ R
and Aη is closed in X×Σ.

As for the other, let (x,σ) ∈ Aη be given. Note that, by our definition of Ση , there is a
sequence τk ∈ R such that θτk ση → σ on Ση . We must show that there is also a sequence
xk ∈ Aη(θτk ση) such that xk→ x on X as k→ ∞.

Indeed, if {Sη
σ (t,s) : t ≥ s} denotes the evolution process defined in (5), we know that

x ∈ Aη(σ), which is the pullback attractor for Sη
σ (·, ·), at time t = 0, thus there is a global

solution γ for {Sη
σ (t,s) : t ≥ s} such that γ(t)∈ Aη(θtσ), for all t ∈R, γ(0) = x and it holds

that
Sη

σ (t,s)γ(s) = γ(t), for every t ≥ s. (8)

Observe that Γ :=
⋃

t∈R γ(t) is bounded. So, by (7),

lim
t→∞

sup
τ∈R

dist(ϕη(t,θ−tθτ ση)Γ,Aη(θτ ση)) = 0.

And, given ε > 0, there exists t0 = t0(Γ,ε) > 0 such that for t ≥ t0

sup
τ∈R

sup
r∈R

dist(ϕη(t,θ−tθτ ση)γ(r),Aη(θτ ση)) < ε/2.

Thus, for every r ∈ R, there exists xk
r ∈ Aη(θτk ση) with

d(ϕη(t0,θ−t0θτk ση)γ(r),xk
r) < ε/2. (9)
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Then, as θτk ση→ σ in Ση and the nds (ϕη ,θ)(X ,Ση ) is uniformly continuous on compact
subsets of X , we have that ϕη(t0,θ−t0θτk ση)γ(r)→ ϕη(t0,θ−t0σ)γ(r), as k→∞ uniformly
for r ∈ R. Therefore, there is k0 ∈ N such that if k ≥ k0 we have

sup
r∈R

d(ϕη(t0,θ−t0θτk ση)γ(r),ϕη(t0,θ−t0σ)γ(r)) < ε/2. (10)

Hence, from (9) and (10), choosing r =−t0 and taking xk := xk
−t0 ∈ Aη(θτk ση), we have

that
d(ϕη(t0,θ−t0σ)γ(−t0),xk) < ε. (11)

Therefore, by (8), noting that x = Sη
σ (0,−t0)γ(−t0) = ϕη(t0,θ−t0σ)γ(−t0), and thanks

to (11) the proof is concluded.

Hypothesis (7) is needed in order to prove that existence of cocycle attractors implies
existence of global attractors for skew-product semiflows. It plays an important role on the
relation of equi-attraction and continuity.

2.1. On skew-product semiflows. Skew-product semiflows are semigroups in a product
space X ×Ση , so one could think that we can just apply the known results for continuity
and equi-attraction in [13]. The difference here is that the family πη acts on the phase space
X ×Ση and they change with the parameter η ∈ [0,1]. As seen before Ση is the closure of
the orbit of an element of a fixed metric space C (which in the case of the non-autonomous
differential equation is Cb(R×X ,X)), thus possessing a common metric.

2.1.1. Equi-attraction and continuity. We prove here results of the equivalence between
equi-attraction and continuity for skew-product semiflows.

Consider (Λ,dΛ) a metric space (the parameter space). We recall that a family of subsets
{Cλ}λ∈Λ of the metric space (X ,d) is said to be

• upper semicontinuous at λ = λ0 if

dist(Cλ ,Cλ0)→ 0, as λ → λ0;

• lower semicontinuous at λ = λ0 if

dist(Cλ0 ,Cλ )→ 0, as λ → λ0.

If {Cλ}λ∈Λ is both upper and lower semicontinuous at λ0 it is said to be continuous at λ0.
Suppose a continuity hypothesis on the skew-product semiflows, that is

sup
t∈[0,T ]

sup
x∈K

sup
τ∈R

d(πη(t)(x,θτ ση),π0(t)(x,θτ σ0))→ 0, as η → 0, (12)

for any compact subset K of X and T > 0. Since, for τ ∈ R, πη(t)(x,θτ ση) ∈ X ×Ση and
π0(t)(x,θτ σ0) ∈ X×Σ0, we compare both elements on X×Σ.

Moreover, suppose that ⋃
η∈[0,1]

Aη is precompact in X×Σ. (13)

We say that the family of global attractors {Aη : η ∈ [0,1]} for a family of skew-product
semiflows {πη(t) : t ≥ 0} is equi-attracting if for every bounded B of X we have

lim
t→∞

sup
η∈[0,1]

sup
x∈B

sup
σ∈Ση

dist(πη(t)(x,σ),Aη)→ 0. (14)
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Theorem 2.2. Suppose the family of skew-product semiflows {πη(t) : t ≥ 0}η∈[0,1] with
global attractors {Aη : η ∈ [0,1]} satisfy (12) and (13). If {Aη : η ∈ [0,1]} is equi-
attracting, then this family of attractors is continuous at η = 0, that is,

lim
η→0

distH(Aη ,A0) = 0.

Proof. Let B =
⋃

η∈[0,1] ΠXAη ⊂ X , by (13) we know that B is compact in X . So, given
ε > 0, there is t0 = t0(B,ε) > 0 such that

sup
η∈[0,1]

sup
σ∈Ση

sup
x∈B

dist(πη(t)(x,σ),Aη) < ε/2, for t ≥ t0, (15)

from the equi-attraction of the global attractors.
On the other hand, our continuity assumption (12) on the skew-product semiflows im-

plies that

dist(Aη ,A0)≤ dist(πη(t0)Aη ,π0(t0)[B×Σ0])+dist(π0(t0)[B×Σ0],A0)

≤ sup
τ∈R

dist(πη(t0)[Aη(θτ ση)×{θτ ση}],π0(t0)[B×Σ0])+ ε/2

≤ ε.

For the other term of the Hausdorff distance, notice that

dist(A0,Aη) = dist(π0(t0)A0,Aη)

≤ sup
τ∈R

dist(π0(t0)[A0(θτ σ0)×{θτ σ0}],πη(t0)[B×Ση ])+dist(πη(t0)[B×Ση ],Aη)

≤ ε.

Thanks to both inequalities the theorem is proved.

We emphasize here that it is not an easy task to define and prove a result as above when
the family of semigroups is defined on phase spaces that vary with the parameter. The prob-
lem arises as it is not possible to define a suitable notion of continuity of semigroups. An
important feature of skew-product semiflows is that even though the phase space changes,
there is a common one such that we are able to keep fixed.

We recall that continuity of global attractors does not imply that the family is equi-
attracting, so we need the following additional hypothesis on the semigroups. Moreover
we shall adapt the definitions to our skew-product semiflow, since the spaces change as the
parameter η varies.

Definition 2.3. The family of skew-product semiflows {πη(t) : t ≥ 0}η∈[0,1] is said to be
uniformly bounded if ⋃

η∈[0,1]

⋃
t≥0

πη(t)[B×ϒη ] is bounded in X×Σ (16)

whenever B⊂ X and ϒη ⊂ Ση are bounded.

In this case, we ask
⋃

η∈[0,1] Ση to be precompact in C , therefore it is bounded. As each
Ση is invariant over {θt : t ≥ 0}, if⋃

η∈[0,1]

⋃
t≥0

⋃
σ∈Ση

ϕη(t,σ)B is bounded,

whenever B⊂ X is bounded, then the family {πη(t) : t ≥ 0}η∈[0,1] is uniformly bounded.
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Definition 2.4. The family of skew-product semiflows {πη(t) : t ≥ 0}η∈[0,1] is said to be

collectively asymptotically compact if, for tk
k→∞−→ ∞ in (0,∞), ηk

k→∞−→ 0+ in (0,1], {xk}
bounded in X and σk ∈Σηk are such that {πηk(tk)(xk,σk)} is bounded in X×Σ, the sequence
{πηk(tk)(xk,σk)} has a convergent subsequence.

Again, as
⋃

η∈[0,1] Ση is precompact in C and Ση is invariant over {θt : t ≥ 0}, every
sequence {σk}k∈N (or {θτk σk}k∈N) has a convergent subsequence. Thus, in order to verify
collective asymptotic compactness we may only care about the term of {πηk(tk)(xk,σk)}
that lies on X . More precisely, if for every sequences tk → ∞ and {xk} bounded in X ,
for which the corresponding sequence {ϕηk(tk,σk)xk} is also bounded in X , we have that
the sequence {ϕηk(tk,σk)xk} admits a convergent subsequence, then the family of skew-
product semiflows is collectively asymptotically compact.

The following result is the converse to Theorem 2.2.

Theorem 2.5. Suppose {πη(t) : t ≥ 0}η∈[0,1] is uniformly bounded and collectively asymp-
totic compact with a family of global attractors that is continuous at η = 0. Then the family
of global attractors {Aη : η ∈ [0,1]} is equi-attracting.

Proof. Suppose by contradiction that there exist ε > 0, sequences ηk→ 0, tk→ ∞, τk ∈ R
and {xk} ⊂ X bounded such that

dist(πηk(tk)(xk,θτk ση),A0)≥ ε, (17)

for all k∈N. Note at first that there exists a sequence σk ∈Σηk , although, as {θτ σηk : τ ∈R}
is dense on Σηk and the skew-product semiflow is continuous, we can assume that the
sequence in (17) may be taken in {θτ σηk : τ ∈ R}.

Observe that
B =

⋃
k∈N

⋃
t≥0

πηk(t)(xk,σk)

is bounded on X×Σ since the skew-product semiflows are uniformly bounded.
Fix t > 0. Let sk := tk − t > 0, the family of skew-product semiflows is collectively

asymptotically compact, thus {πηk(sk)(xk,θτk σηk) : k ∈ N} is relatively compact. Assume
then that πηk(sk)(xk,θτk σηk)→ (b,ξ ) ∈ X×Σ0, on the topology of X×Σ, as k→ ∞.

Therefore, by (12) and the above,

π0(t)(b,ξ ) = lim
k→∞

πηk(t)πηk(sk)(xk,θτk σηk)

= lim
k→∞

πηk(tk)(xk,θτk σηk).

That is, for any given t > 0, there is (b,ξ ) ∈ X×Σ0 such that dist(π0(t)(b,ξ ),A0)≥ ε and
that contradicts the fact that A0 is the global attractor for {π0(t) : t ≥ 0}.

2.1.2. Rates of convergence. We can use the equi-attraction for semigroups to obtain a bet-
ter estimate and rate of convergence of the global attractors for the skew-product semiflows.
This is a consequence of the theorem for semigroups.

Theorem 2.6. Suppose {πη(t) : t ≥ 0} is a skew-product semiflow on the space X ×Ση ,
with global attractor Aη , η ∈ [0,1], such that B =

⋃
η∈[0,1] Aη ⊂ X ×Σ is precompact and

define B = ΠX (B)⊂ X. Assume that there exists a decreasing function ζ : [0,∞)→ (0,∞)
such that ζ (0) = ζ0, lim

t→∞
ζ (t) = 0 and

sup
η∈[0,1]

dist(πη(t)[B×Ση ],Aη)≤ ζ (t), (18)

for all t ≥ 0.
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Also, suppose that

sup
τ∈R

sup
x∈B

d(πη(t)(x,θτ ση),π0(t)(x,θτ σ0))≤ Eη(t), for all t ≥ 0, (19)

where Eη(t)→ 0, as η → 0, for each t ≥ 0.
Then

dist(Aη ,A0)≤ inf
ε∈(0,ζ0)

2{Eη(ζ−1(ε))+ ε}. (20)

Proof. Fix t ≥ 0. Remember that Aη = πη(t)Aη and that B = ΠXB is precompact in X .
Thus, we have that

dist(Aη ,A0)≤ dist(πη(t)Aη ,π0(t)B)+dist(π0(t)B,A0).

From Lemma 2.1

dist(πη(t)Aη ,π0(t)B) = sup
τ∈R

dist(πη(t)[Aη(θτ ση)×{θτ ση}],π0(t)B).

Since B⊂
⋃

η∈[0,1] B×Ση , the above inequalities ensure that

dist(Aη ,A0)≤ Eη(t)+ζ (t). (21)

Analogously, we have that

dist(A0,Aη)≤ dist(π0(t)A0,πη(t)[B×Ση ])+dist(πη(t)[B×Ση ],Aη). (22)

In order to complete the proof, from (21) and (22) we choose ε ≤ ζ0 and t = ζ−1(ε).

Corollary 2.7. [6, Corollary 3.20] Suppose, in addition to the hypotheses in the last theo-
rem, that there exist c > 0 and v > 0 such that ζ (t) = ce−vt , t ≥ 0, and that Eη(t) = ρ(η)eLt ,
with L > 0 and ρ : [0,1]→ [0,∞) continuous with ρ(0) = 0.

Then, there is a constant c > 0 such that

distH(Aη ,A0)≤ cρ(η)
v

v+L . (23)

2.2. On uniform attractors. In this section we state a definition for equi-attraction in the
sense of uniform attractors and show the equivalence between equi-attraction and continu-
ity for uniform attractors.

We exploit the connection between uniform attractors and global attractors for skew-
product semiflows, and also prove that continuity for attractors of skew-product semiflow
is equivalent to continuity of uniform attractors, as long as the driving group also possesses
continuous attractors.

The sense of equi-attraction we are going to use for uniform attractors of a family of
non-autonomous dynamical systems is defined as follows:

Definition 2.8. Let {(ϕη ,θ)(X ,Ση )}η∈[0,1] be a family of non-autonomous dynamical sys-
tems with uniform attractors Aη . {Aη : η ∈ [0,1]} is said to uniformly equi-attract bounded
subsets of X , if for all bounded B⊂ X we have

lim
t→∞

sup
η∈[0,1]

sup
σ∈Ση

dist(ϕη(t,σ)B,Aη) = 0. (24)

We define this concept as uniform equi-attraction since the uniform attractor Aη of
(ϕη ,θ)(X ,Ση ) is the minimal closed set of X that uniformly (for σ ∈ Ση ) attracts all bounded
subsets of X .
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2.2.1. Uniform equi-attraction and continuity of uniform attractors. Let us consider a fam-
ily of non-autonomous dynamical systems {(ϕη ,θ)(X ,Ση ) : η ∈ [0,1]} with uniform attrac-
tors Aη , η ∈ [0,1], and assume that⋃

η∈[0,1]

Aη is precompact in X . (25)

Moreover, suppose that for all compact sets K of X and any T > 0 we have

sup
t∈[0,T ]

sup
τ∈R

sup
x∈K

d(ϕη(t,θτ ση)x,ϕ0(t,θτ σ0)x)→ 0, as η → 0+. (26)

The proof of the following result follows the same steps as in Theorem 2.2. However
there are some differences which require our attention. For this reason, we prefer to fully
prove it.

Theorem 2.9. Assume that the family of uniform attractors {Aη : η ∈ [0,1]} associated to
the non-autonomous dynamical systems {(ϕη ,θ)(X ,Ση ) : η ∈ [0,1]} uniformly equi-attracts
bounded subsets of X, and that (25) and (26) hold. Then the family of uniform attractors is
continuous at η = 0, that is

distH(Aη ,A0)→ 0 as η → 0. (27)

Proof. First, observe that the subset B =
⋃

η∈[0,1] Aη is bounded in X . Therefore, given
ε > 0, there exists t0 = t0(ε,B)≥ 0 such that

sup
η∈[0,1]

sup
σ∈Ση

dist(ϕη(t,σ)B,Aη)≤ ε/2, for all t ≥ t0. (28)

From (26) there is 0 < η0 < 1 such that, for all η ≤ η0,

sup
τ∈R

dist(ϕη(t0,θτ ση)Aη ,ϕ0(t0,θτ σ0)B)≤ ε/2.

From the lifted invariance property of the uniform attractors and Lemma 2.1 it is clear
that Aη ⊆

⋃
σ∈Ση

ϕη(t,σ)Aη , from the continuity of the nds {(ϕη ,θ)}(X ,Ση ) we have that

Aη ⊆
⋃

τ∈R
ϕη(t0,θτ ση)Aη .

Therefore,

dist(Aη ,A0)≤ dist(Aη ,∪σ∈Σ0ϕ0(t0,σ)B)+dist(∪σ∈Σ0ϕ0(t0,σ)B,A0)

≤ sup
τ∈R

dist(ϕη(t0,θτ ση)Aη ,∪σ∈Σ0ϕ0(t0,σ)B)+ sup
σ∈Σ0

dist(ϕ0(t0,σ)B,A0)

≤ ε.

Now, to prove that dist(A0,Aη)→ 0 when η→ 0, we use similar arguments. As above,
we have that

dist(A0,Aη)≤ sup
τ∈R

dist(ϕ0(t0,θτ σ0)A0,∪σ∈Ση
ϕη(t0,σ)A0)+ sup

σ∈Ση

dist(ϕη(t0,σ)A0,Aη).

And we recall that, as in (28), equi-attraction implies that dist(ϕη(t0,σ)A0,Aη)≤ ε/2
for every σ ∈ Ση and η ∈ [0,1]. Also, the first term on the inequality can be estimated in a
similar way using our continuity hypothesis.

In order to prove the converse, as done before in [9], we need more uniformity on the
assumptions on the non-autonomous dynamical systems. Below we give an expected defi-
nition that is made necessary in the proof.
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Definition 2.10. A family of non-autonomous dynamical systems {(ϕη ,θ)X ,Ση
}η∈[0,1] is

said to be uniformly bounded if⋃
η∈[0,1]

⋃
σ∈Ση

⋃
t≥0

ϕη(t,σ)B is bounded, (29)

for every bounded subset B of X .

Definition 2.11. A family of non-autonomous dynamical systems {(ϕη ,θ)X ,Ση
}η∈[0,1] is

said to be collectively asymptotically compact if for every sequences ηk → 0, tk → ∞,
σk ∈ Σηk and {xk} ⊂ X bounded such that {ϕηk(tk,σk)xk} is also bounded in X , then the
set {ϕηk(tk,σk)xk : k ∈ N} is relatively compact in X .

More precisely, compactness and invariance of Σ imply that these definitions are equiv-
alent, as we discussed at Subsection 2.1.

Theorem 2.12. Let the family of non-autonomous dynamical systems {(ϕη ,θ)(X ,Ση )}η∈[0,1]
with uniform attractor Aη , η ∈ [0,1]. Suppose that (26) holds and that {(ϕη ,θ)(X ,Ση )}η∈[0,1]
is a uniformly bounded and collectively uniformly asymptotically compact family, and fur-
thermore that

distH(Aη ,A0)→ 0, as η → 0. (30)

Then, for every sequence {ηk}k∈N, with ηk→ 0 when k→ ∞,
⋃

k∈N Aηk is compact and
the sequence {Aηk : k ∈ N} uniformly equi-attracts bounded subsets of X. Consequently
there exists η0 > 0 such that

⋃
η∈[0,η0] Aη is precompact and the family {Aη}η∈[0,η0] uni-

formly equi-attracts bounded subsets of X.

Proof. Suppose by contradiction that exist ε > 0 and sequences ηk → 0, tk → ∞, when
k→ ∞, τk ∈ R and bounded sequence {xk}k∈N such that dist(ϕηk(tk,θτk σηk)xk,A0) ≥ ε ,
for all k ∈ N.

The family of non-autonomous dynamical systems is uniformly bounded, so

B =
⋃
k∈N

⋃
t≥0

ϕηk(t,θτk σηk)xk is bounded.

Fix t > 0 and define the sequence sk := tk − t > 0. From the collective uniform as-
ymptotic compactness property the sequence {ϕηk(sk,θτk σηk)xk : k ∈ N} has a convergent
subsequence, and assume without loss of generality that ϕηk(sk,θτk σηk)xk→ b in X , when
k→ ∞.

It follows from the uniform asymptotic compactness and from (26), that for every t > 0
there exists b ∈ B and σ ∈ Σ0 such that

dist(ϕ0(t,σ)b,A0)≥ ε.

The above contradicts the fact that A0 is the global attractor for ϕ0 on X .

2.2.2. Rates of convergence. One interesting remark about equi-attraction is that if we
have an explicit bound for the attraction we are able to transfer it to get an upper bound on
the closeness of the attractors. As expected, we have also this result in the case of uniform
attractors.

Theorem 2.13. Consider a family of non-autonomous dynamical systems {(ϕη ,θ)(X ,Ση )}η∈[0,1]
with uniform attractors Aη such that B =

⋃
η∈[0,1] Aη is precompact in X.

Assume that there exists a strictly decreasing function ζ : [0,∞)→ (0,∞) with ζ (0) = ζ0
and lims→∞ ζ (s) = 0 which

sup
η∈[0,1]

sup
σ∈Ση

dist(ϕη(t,σ)B,Aη)≤ ζ (t) (31)
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for all t ≥ 0.
Suppose also that

sup
x∈B

sup
τ∈R

d(ϕη(t,θτ ση)x,ϕ0(t,θτ σ0)x)≤ Eη(t), for all t ≥ 0, (32)

where Eη(t)→ 0, as η → 0, for each t.
Then

distH(Aη ,A0)≤ inf
ε∈(0,ζ0]

2{Eη(ζ−1(ε))+ ε}.

Proof. First, let us fix t ≥ 0. Note that Aη ⊂
⋃

σ∈Ση
ϕη(t,σ)Aη , so we must have

dist(Aη ,A0)≤ sup
τ∈R

dist(ϕη(t,θτ ση)Aη ,∪σ∈Σ0ϕ0(t,σ)B)+dist(∪σ∈Σ0ϕ0(t,σ)B,A0).

From (32) we derive

sup
τ∈R

dist(ϕη(t,θτ ση)Aη ,∪σ∈Σ0ϕ0(t,σ)B)≤ sup
x∈B

sup
τ∈R

d(ϕη(t,θτ ση)x,ϕ0(t,θτ σ0)x)

≤ Eη(t).

Consequently, dist(Aη ,A0)≤ Eη(t)+ζ (t).
Also notice that

dist(A0,Aη)≤ sup
τ∈R

sup
σ∈Ση

dist(ϕ0(t,θτ σ0)A0,ϕη(t,σ)A0)+ sup
σ∈Ση

dist(ϕη(t,σ)A0,Aη).

Taking ε ≤ ζ0 and letting t = ζ−1(ε) we combine the inequalities above to deduce

distH(Aη ,A0)≤ inf
ε∈(0,ζ0]

2{Eη(ζ−1(ε)+ ε},

as it was claimed.

Corollary 2.14. In addition to the hypotheses in the theorem above suppose that there
exist c > 0 and v > 0 such that ζ (t) = ce−vt , t ≥ 0, and Eη(t) = ρ(η)eLt , with L > 0 and
ρ : [0,1]→ [0,∞) continuous with ρ(0) = 0. Then, there is a constant c > 0 such that

distH(Aη ,A0)≤ cρ(η)
v

v+L . (33)

2.3. On cocycle and pullback attractors for non-autonomous dynamical systems. In
this section we discuss equi-attraction for cocycle attractors. Some results on this topic
have already been obtained as can be checked in the existing literature (see for example
[4, 5, 6, 11, 13, 19, 20, 23]).

Let us assume that {θt : t ∈ R} is a group over Ση , for each η ∈ [0,1], which is com-
pact and invariant, and also

⋃
η∈[0,1] Ση precompact. Suppose that the non-autonomous

compact set {Aη(σ) : σ ∈ Ση} is the cocycle attractor for each η ∈ [0,1]. Recall that
Aη =

⋃
σ∈Ση

Aη(σ).
The uniform equi-attraction of cocycle attractors is in a way stronger thean the uniform

attractors. That is made clear below, since continuity of cocycle attractors implies continu-
ity of uniform attractors but the converse is not true in general.

2.3.1. Equi-attraction and continuity of cocycle attractors. We recall that the family of
cocycle attractors have a close relation to pullback attractors. To be more clear, if we
consider, for σ ∈ Ση , the evolution process

Sη
σ (t,s) = ϕη(t− s,θsσ), for t ≥ s, (34)
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then if Sη
σ has pullback attractor {Aσ (t) : t ∈ R}, for all t ∈ R, if uniqueness is assumed it

is not hard to see that Aσ (t) = Aη(θtσ), the right one being the cocycle attractor described
above.

Here we define the equi-attraction for a family of cocycle attractors {Aη(σ) : σ ∈ Ση}.
Indeed it is not the same equi-attraction for evolution processes, since we are asking for a
uniformity on the family of processes. This will allow us to gain some uniformity on the
continuity of attractors.

Definition 2.15. Let {(ϕη ,θ)(X ,Ση )}η∈[0,1] be a family of non-autonomous dynamical sys-
tems and for each η ∈ [0,1], let the non-autonomous set {Aη(σ) : σ ∈ Ση}η∈[0,1] de-
note their corresponding cocycle attractors. We say that a family of cocycle attractors
{Aη(σ) : σ ∈ Ση}η∈[0,1], uniformly equi-pullback attracts bounded sets of X if

lim
t→∞

sup
η∈[0,1]

sup
σ∈Ση

dist(ϕη(t,θ−tσ)D,Aη(σ)) = 0, (35)

for all bounded subsets D⊂ X .

Even more, one can relate Definition 2.15 with Definition 2.8, since Aη =
⋃

σ∈Ση
Aη(σ).

Recall that {θt : t ∈ R} is a group over Ση , which is invariant. Therefore, for all fixed t, as
we vary θ−tσ on Ση we are covering all Ση , then we may exchange the supreme of θ−tσ at
(35) by σ ∈ Ση to obtain that the family of uniform attractors {Aη : η ∈ [0,1]} equi-attracts
bounded subsets of X . The converse, however, does not need to be true, because attraction
of the union

⋃
σ∈Ση

Aη(σ) does not guarantee that the fiber of the non-autonomous set
Aη(σ) attracts bounded subsets by the “action of” σ .

In the same way as before, equi-pullback attraction does imply continuity of cocycle
attractors.

Theorem 2.16. Suppose that the family {Aη(θτ ση) : τ ∈ R}η∈[0,1] uniform equi-pullback
attracts bounded subsets of X, that

⋃
η∈[0,1]

⋃
σ∈Ση

Aη(σ) is precompact in X and that for
all compact subset K ⊂ X we have

sup
t∈[0,T ]

sup
τ∈R

sup
x∈K

d(ϕη(t,θτ ση)x,ϕ0(t,θτ σ0)x)→ 0 as η → 0+. (36)

Then
sup
τ∈R

distH(Aη(θτ ση),A0(θτ σ0))→ 0, as η → 0.

For a proof of the previous theorem we refer the reader to [9] and [13]. Observe that
using evolution processes it is easy to show that the family {Aη(ση)}η∈[0,1] is continuous
at η = 0. Then, by [7] and our uniformity assumption, we have that the family {Aη(θtση) :
t ∈ R}η∈[0,1] is continuous at η = 0.

Definition 2.17. The family of non-autonomous dynamical systems {(ϕη ,θ)(X ,Ση )}η∈[0,1]
is said to be collectively pullback asymptotically compact if for every sequences ηk → 0,
tk → ∞, σk ∈ Σηk and {xk} ⊂ X bounded such that {ϕηk(tk,θ−tk σk)xk} is also bounded in
X , then the set {ϕηk(tk,θ−tk σk)xk : k ∈ N} is relatively compact in X .

Theorem 2.18. Let the family of non-autonomous dynamical systems {(ϕη ,θ)(X ,Ση )}η∈[0,1]
with cocycle attractors {Aη(σ) : σ ∈ Ση}, η ∈ [0,1]. Suppose (36) holds for each compact
subset K of X and T > 0.

If {(ϕη ,θ)(X ,Ση )}η∈[0,1] is a uniformly bounded (Definition 2.10) and collectively pull-
back asymptotically compact family, and moreover

sup
τ∈R

distH(Aη(θτ ση),A0(θτ σ0))→ 0, as η → 0, (37)
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then there exists η0 > 0 such that⋃
η∈[0,η0]

⋃
τ∈R

Aη(θτ ση) is precompact,

and the family of cocycle attractors {Aη(θτ ση) : τ ∈ R}η∈[0,η0] uniformly equi-pullback
attracts bounded subsets of X.

As the proof follows the same steps as those in theorems 2.5 and 2.12, we will omit
them. The reader may check the paper [9] for a similar proof.

2.3.2. Rates of convergence. As one can imagine, a rate of equi-attraction is transferred to
the proximity of the cocycle attractors too. This is what is shown in the next theorem.

Theorem 2.19. Let {(ϕη ,θ)(X ,Ση ) : η ∈ [0,1]} be a family of non-autonomous dynamical
systems such that {θt : t ∈ R} is a group on Ση for each η ∈ [0,1]. Suppose {Aη(σ) :
σ ∈ Ση} is the cocycle attractor for (ϕη ,θ)(X ,Ση ) and that B =

⋃
η∈[0,1]

⋃
σ∈Ση

Aη(σ) is
precompact in X.

Assume that there exists a strictly decreasing function ζ : [0,∞)→ (0,∞) with ζ (0) = ζ0
and lims→∞ ζ (s) = 0 such that

sup
η∈[0,1]

sup
τ∈R

dist(ϕη(t,θτ−tση)B,Aη(θτ ση))≤ ζ (t), (38)

for all t ≥ 0. Moreover, suppose that

sup
x∈B

sup
τ∈R

d(ϕη(t,θτ−tση)x,ϕ0(t,θτ−tσ0)x)≤ Eη(t), for all t ≥ 0, (39)

with Eη(t)→ 0, as η → 0, for each t ≥ 0.
Then

sup
τ∈R

distH(Aη(θτ ση),A0(θτ σ0))≤ inf
ε∈(0,ζ0]

2{Eη(ζ−1(ε))+ ε}. (40)

The proof is analogous to the proof of theorems 2.6 and 2.13.

Corollary 2.20. In addition to the hypotheses of the preceding theorem, suppose that there
exist c > 0 and v > 0 such that ζ (t) = ce−vt , t ≥ 0, and that Eη(t) = ρ(η)eLt , with L > 0
and ρ : [0,1]→ [0,∞) is a continuous function with ρ(0) = 0. Then there exists a constant
c > 0 such that

sup
τ∈R

distH(Aη(θτ ση),A0(θτ σ0))≤ cρ(η)
v

v+L . (41)

3. Relationships on the continuity of attractors. In this final section we want to relate
continuity among the different kind of attractors described above. We know how existence
of global attractors for skew-product semiflows are almost equivalent to existence of uni-
form and cocycle attractors for non-autonomous dynamical systems. Our question now is,
if they all exist, wether continuity of global attractors for skew-product semiflows implies
that the family of uniform attractors are continuous and vice-versa.

Given a family of non-autonomous dynamical systems {(ϕη ,θ)(X ,Ση )}η∈[0,1] let {πη(t) :
t ≥ 0}η∈[0,1] denote the skew-product semiflow associated. Assume that for each η ∈ [0,1]
there exists a global attractor Aη ⊂ X × Ση for the {πη(t) : t ≥ 0}. This implies that
Aη = ΠXAη is the uniform attractor for the nds (ϕη ,θ)(X ,Ση ) and the non-autonomous
set {Aη(σ)}σ∈Σ defined as Aη(σ) := {x ∈ X |(x,σ) ∈ Aη} is the cocycle attractor (see [4,
Theorem 3.4]).
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The phase space Ση is assumed to be the closure of a given global orbit, that is, there
exists ση ∈ Ση for which Ση = {θtση : t ∈ R}. Also, that

θtση → θtσ0, as η → 0, (42)

uniformly with respect to t ∈ R. Hence, it is easy to see that the family {Ση}η∈[0,1] is
continuous at η = 0.

Finally, let us suppose that for each η ∈ [0,1] it holds

Aη =
⋃
t∈R

Aη(θtση)×{θtση}. (43)

We assume that the skew-product semiflows enjoy a kind of continuity when η goes to
0, more precisely, suppose that for each compact subset K of X and each T > 0 we have
that

sup
t∈[0,T ]

sup
x∈K

sup
τ∈R

d(πη(t)(x,θτ ση),π0(t)(x,θτ σ0))→ 0, (44)

when η → 0.
Also, we assume that ⋃

η∈[0,1]

Aη ⊂ X×Σ is precompact. (45)

Lemma 3.1. If {πη(t) : t ≥ 0}η∈[0,1] is a family of skew-product semiflows associated to
the non-autonomous dynamical systems {(ϕη ,θ)(X ,Ση )}η∈[0,1] with global attractors Aη ,
η ∈ [0,1], that satisfies (44) and (45), then the family {Aη}η∈[0,1] is upper semicontinuous
at η = 0.

For a proof of this lemma the reader is referred to [6, Theorem 1.20] or [7, Theorem
2.11].

Proposition 3.2. Suppose that the family of global attractors {Aη}η∈[0,1] of the skew-
product semiflow is continuous at η = 0. Therefore the family of uniform attractors {Aη =
ΠXAη}η∈[0,1] is continuous at η = 0. The same holds for the phase space of the driving
semigroup, namely distH(Ση ,Σ0) = 0.

Proof. Notice that for each η ∈ [0,1] we have that Aη ⊂Aη ×Ση . Thus,

dist(Aη ,A0)≥ dist(Aη ,A0×Σ0)

= sup
σ∈Ση

sup
x∈Aη (σ)

d((x,σ),A0×Σ0)

= sup
σ∈Ση

sup
x∈Aη (σ)

[d(x,A0)+d(σ ,Σ0)]

Therefore, as {Aη}η∈[0,1] is upper semicontinuous we must have that dist(Ση ,Σ0)→ 0,
then also dist(∪σ∈Ση

Aη(σ),A0)→ 0. That is, the family {Aη}η∈[0,1] and {Ση}η∈[0,1] are
upper semicontinuous.

In the equation above, note that we may exchange Aη with A0 and obtain the same
estimates. Thus, lower semicontinuity of {Aη}η∈[0,1] implies lower semicontinuity of the
families we want. In this way we conclude the proof.

Corollary 3.3. Suppose that {πη(t) : t ≥ 0}η∈[0,1] is a family of skew-product semiflows,
with global attractors Aη , that verifies (43), (44) and (45). Then the family of uniform
attractors, Aη = ΠXAη , for the non-autonomous dynamical system (ϕη ,θ)(X ,Ση ) is upper
semicontinuous at η = 0.

Proof. This is a straightforward consequence of Lemma 3.1 and Proposition 3.2.
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However, to ensure that the family {Aη}η∈[0,1] of global attractors for the skew-product
semiflows is lower semicontinuous in terms of the uniform attractors we need more infor-
mation on the structure of cocycle attractors.

Proposition 3.4. Let {πη(t) : t ≥ 0}η∈[0,1] be a family of skew-product semiflows, with
global attractors Aη , that fulfills (43), (44) and (45). Moreover, suppose that the family
{Aη(θtση)}η∈[0,1] of cocycle attractors is lower semicontinuous at η = 0 uniformly with
respect to t ∈ R.

Then the family of global attractors for the skew-product semiflow {Aη}η∈[0,1] is lower
semicontinuous at η = 0.

Proof. Note that, from (43), we have

dist(A0,Aη) = sup
t∈R

dist(A0(θtσ0)×{θtσ0},Aη) (46)

As the families {Ση}η∈[0,1] and {Aη(θtση) : t ∈ R}η∈[0,1] are lower semicontinuous at
η = 0, uniformly on t ∈ R, we are able to conclude that dist(A0,Aη)→ 0, as η → 0,
since the right hand side of (46) is controlled by the lower semicontinuity from the cocycle
attractors.

Now we will show an example of a non-autonomous perturbation of an autonomous
dynamical system.

Consider the semilinear problem on the Banach space X{
ẋ = fη(t,x)
x(0) = x0 ∈ X .

(47)

We assume that, for η ∈ [0,1], fη : R×X → X is continuous and uniformly Lipschitz
for t ∈ R in bounded subsets of X , so the problem (47) is locally well posed. Hence
fη ∈Cb(R×X ,X) and for τ ∈ R define

θτ f (t,x) := f (t + τ,x),

for (t,x) ∈ R×X and let Ση := {θτ fη : t ∈ R}.
Let us assume that f0(t,x) = f0(x), for all t ∈R and x∈X , Ση is compact for all η ∈ [0,1]

and
⋃

η∈[0,1] Ση is precompact, furthermore, we assume, for the perturbation, that

lim
η→0

sup
(t,x)∈R×B(0,r)

‖ fη(t,x)− f0‖X +‖Dx fη(t,x)−Dx f0(x)‖L (X) = 0, (48)

for all r > 0.
It follows from (48) that

lim
η→0

sup
(t,x)∈R×B(0,r)

sup
ση∈Ση

‖ση(t,x)− f0‖X +‖Dxση(t,x)−Dx f0(x)‖L (X) = 0. (49)

We consider the problem {
ẋ = σ(t,x)
x(0) = x0 ∈ X ,

(50)

for σ ∈ Ση , and we denote by ϕη(t,σ)x0 = x(t,σ ,x0), the solution for (50) at time t with
non-autonomous function equals to σ ∈ Ση .

Hence, by (49), it is easy to see that, for each T > 0 and B bounded in X ,

sup
t∈[0,T ]

sup
σ∈Ση

sup
x∈B
‖ϕη(t,σ)x−ϕ0(t)x‖X → 0, as η → 0. (51)

We also know, from (49), that θτ ση → f0, uniformly (for τ ∈R) as η → 0. Let Σ0 = { f0}.
We assume that the skew-product semiflow πη(t) : X × Ση → X × Ση , for t ≥ 0 and

η ∈ [0,1], defined as πη(t)(x,σ) = (ϕη(t,σ)x,θtσ) has a global attractor Aη , for each η ∈
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[0,1]; this implies that there is uniform attractor, Aη = ΠXAη , for each non-autonomous
dynamical system {(ϕη ,θ)(X ,Ση )}.

Therefore we consider the evolution process on X

Sη
σ (t,s)x := ϕη(t− s,θsσ)x, t ≥ s. (52)

For each σ ∈ Ση there is a unique pullback attractor (that coincides with a subfamily of the
cocycle attractors) {Aη(θtσ) : t ∈ R} for (52).

With this assumptions, let {ϕ0(t) : t ≥ 0} be the limit semigroup on X . Suppose that
{ϕ0(t) : t ≥ 0} is a gradient dynamical system, in the sense of [14], for which all the
stationary points {e∗j : 1 ≤ j ≤ n} are hyperbolic. If for the unstable manifolds of e∗j it
holds that there exists a δ > 0 such that for any ε > 0 there exists an η0 such that for all
0 < η < η0 there exists a global hyperbolic solution ξ ∗j,η(·) of Sη

fη with

sup
j

sup
t∈R
|ξ ∗j,η(t)− e∗j |< ε,

and within a δ neighbourhood of e∗j

sup
j

distH(W u(ξ ∗j,η(·))(t),W u(e∗j)) < ε, for all t ∈ R,

that is, the unstable manifolds of e∗j behave continuously. Then

sup
t∈R

distH(Aη(θt fη),A0)→ 0, as η → 0. (53)

See [8, Theorem 7.1].
Therefore, since (53) holds, Theorem 2.18 implies that the family {Aη(θt fη) : t ∈

R}η∈[0,1] uniformly equi-pullback attracts bounded subsets of X (in terms of Definition
2.15). Thus, the hypothesis of Lemma 2.1 are fulfilled and, for every η ∈ [0,1], it holds

Aη =
⋃
t∈R

Aη(θt fη)×{θt fη}.

Hence, we conclude, thanks to Proposition 3.4, that the family of global attractors for the
skew-product semiflows {Aη}η∈[0,1] is continuous at η = 0 and, consequently, the family
of uniform attractors {Aη}η∈[0,1] is continuous at η = 0.
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