
Design of a FET/IFET module as an IP core

suitable for embedded systems

J. Viejo, A. Millan, M. J. Bellido, J. Juan, P. Ruiz-de-Clavijo, D. Guerrero, E. Ostua, and A. Mufioz
Grupo de Tecnologia Microelectronica

Departamento de Tecnologia Electronica-Universidad de Sevilla
E. T. S. Ing. Informatica, Campus Universitario Reina Mercedes

Sevilla 41012 (SPAIN)
e-mail: julian@dte.us.es, amillan@dte.us.es, bellido@dte.us.es, jjchico@dte.us.es,

paulino@ dte.us.es, guerre @dte.us.es, ostua@ dte.us.es, amrivera@ dte.us.es

Abstract- In this work, we have laid the foundations that allow
us to accomplish the implementation of a FFT/IFFT module
as an IP core. The main objective is to design a configurable
optimized core that can be integrated as a standard peripheral
of a microprocessor system. Thus, three different methodologies
have been compared: VHDL coding, System-level tools at RT
level, and System-level tools at macroblock level; in order to
propose a general methodology that facilitates the design process
as well as allows designers to maintain total control over the
module internal architecture.

I. INTRODUCTION

The technological development has produced a significant
increase of the integration density that is causing more and
more parts of a complete system to be included inside the
main core, constituted by a single chip. This chip has been
traditionally referred to as Integrated Circuit, but new terms
like Integrated System or System on Chip (SoC) have become
popular because they better express the fact that the chip can
contain not only a part of the system but the whole system
itself.

Nowadays, SoC designs are commonly built out of already
available parts in the form of Intellectual Property (IP) cores:
microprocessors, memory blocks, ethernet controllers, stan-
dard input/output devices, etc. Thus, SoC designers typically
do a work of integrations of already available parts and design
of specific functions, as for example, digital signal processing
(DSP) functions.

In this way, in previous works, we have presented the
design and implementation of a FFT/IFFT module on FPGA
(Field Programmable Gate Array) [1] and ASIC (Application
Specific Integrated Circuit) [2]. These implementations were
performed by using a methodology based on coding in VHDL
(VHSIC Hardware Description Language) [3]. However, it
was very important to evaluate the usefulness of the system-
level tools provided by the FPGA foundry in order to improve
such implementations. Thus, the objectives of the current work
were: (a) perform a comparison between the VHDL coding
and the system-level tools approach (b) propose a set of steps
which summarize the best way to carry out the design process
depending on the type of system, and (c) lay the foundations
that allow us to design this DSP function as an IP core in the
future.

The system-level tools approach allows designers to work
at different abstraction levels. So, the first objective actually
involved the comparison of three methodologies:

1) VHDL coding (VC): the system architecture is designed
at RT (Register Transfer) level and implemented by
direct coding in VHDL.

2) System-level tools at RT level (STR): the system ar-
chitecture is designed at RTL and implemented using
the system-level tools provided by the FPGA foundry.
Specifically, we have used System Generator for DSP
v7.1 from Xilinx [4].

3) System-level tools at macroblock level (STM): the
FFT/IFFT module is implemented using the FFT mac-
roblock provided by System Generator (which can also
calculate the IFFT). This methodology is very easy
to apply but it has an important drawback: the FFT
macroblock only supports up to 16-bit data (having 19-
bit as the amount necessary to maintain the precision),
which produces a remarkable accuracy loss.

The rest of the paper is organized as follows: in the next
section the three methodologies used and the main results
for both the simulation and the implementation processes are
presented, besides results obtained are discussed, in the third
section, a general methodology is proposed, in the fourth
section, lines of work that are going to be developed in the
future are presented, and finally some conclusions are derived.

II. COMPARISON BETWEEN METHODOLOGIES

A. Design methodologies for implementation on FPGA

As we have mentioned previously, our aim was to evaluate
the effectiveness of System Generator for DSP. The workflow
we have used is conformed of three stages (Fig. 1):

1) Design: this stage differs from one methodology to
another and it is explained on the next.

2) Synthesis and implementation: this stage is carried out
by using ISE v7.li from Xilinx. Moreover, the module
operation, considering gate delay, is tested by post-P&R
(Placement and Routing) simulation through ModelSim
v6.0 from Mentor Graphics.

1-4244-0840-7/07/$20.00 02007 IEEE. 337

Fig. 1. Design and implementation workflow.

3) Programming: finally, the device is configured by using
iMPACT v7.li from Xilinx.

Because the design stage depends on the methodology used,
a detailed explanation of each case is presented on the next
subsections.

1) VHDL coding methodology: The VC methodology con-
sists of developing the FFT/IFFT module at RT level using
VHDL language and following the usual methodology for
digital system design (based on a control unit and a data path).
The architecture of the module has been suited to the algorithm
presented in [2]. In this architecture, the most important
component is the RADIX-8 butterfly that performs an 8-
element DFT in a parallel way and its implementation follows
the structure proposed in [5]. A more detailed explanation on
the structure and functioning of the VHDL implementation
can be found in [1],[2].

Also, verification of such designs is usually carried out by
using a VHDL simulator like ModelSim. However, another
alternative has been explored in this work: the VHDL code
has been simulated using Simulink and ModelSim together
(HDL co-simulation). That is possible through the System
Generator's BLACK BOX block which allows designers to
import VHDL code into a System Generator design. In this
type of verification, System Generator's blocks are simulated
through Simulink and the VHDL blocks (black boxes) are
simulated through ModelSim.

2) System-level tools at RTL methodology: The STR
methodology described in this work consists of designing the
FFT/IFFT module using System Generator for DSP: a tool

developed by Xilinx that facilitates the design and implemen-
tation of DSP functions on its FPGAs. This tool is a software
platform integrated within Matlab and Simulink, from The
MathWorks, and allows the design of DSP systems using the
Xilinx BlockSet [7]. Also, it handles the automatic generation
of VHDL code; synthesizable on Xilinx FPGAs.

Within this methodology, the same module architecture
employed in the VC case has been applied. In this case,
the data path has been built with the System Generator's
blocks and the same control unit has been added to the
design through the BLACK BOX block. Most of the system
simulation is carried out using Simulink while ModelSim has
been used to simulate the VHDL code (HDL co-simulation).
Such simulation is mandatory in order to take into account
those blocks, which are only available as black boxes.

3) System-level tools at macroblock level methodology: The
STM methodology consists of modeling the FFT/IFFT module
using the System Generator's FFT block. In this methodology,
it is only necessary to design an interface that adapts the
input/output signals of the FFT block to the module interface.
In this case, the functional simulation is totally carried out
using Simulink.

B. Design results

In this section, simulation and hardware implementation
results obtained for the three methodologies are described in
some detail.

1) Simulation results: In order to check that the designs
work correctly, the following simulation process has been

338

TABLE I

SIMULATION RESULTS.

VC STR STM

Clock cycles 292 292 341

Mean error 0.59% 0.59% 5.09%

carried out. At the first stage, designs have been verified
using Simulink and ModelSim. For the generation of the input
stimuli, the Source Blockset of Simulink has been employed.
So, the input signal (DATAIN FFT) has been generated with
Matlab and exported to Simulink through the From-Workspace
block. This input is conformed by 64 complex numbers where
real and imaginary parts are values from -1 up to 1. At the
second stage, once the simulation has been finished, the To-
Workspace block has allowed us to compare the results with
the ones provided by the FFT Matlab function (the From/To-
Workspace blocks provide an interface between Simulink and
Matlab). In order to estimate the results accuracy, the duration
of the whole calculation as well as the relative error of output
values have been measured (Table I).
As we can see, the VC and STR implementations consume

a lower amount of clock cycles for the calculation than the
STM one (from 341 to 292 cycles). Also, the first two imple-
mentations drastically reduce the output error with respect to
the STM one (from 5.09% to 0.59%).

2) Hardware implementation results: In order to compare

the implementations of the different FFT/IFFT designs, they
have been synthesized separately with ISE. In a first approach,
they have been implemented on a Virtex XCV1000 FPGA.
We have chosen this model because System Generator's FFT
macroblock can only be implemented in this type of FPGAs.
This device is in the high capacity range of the Virtex family
and can allocate one million system gates working at 200
MHz.

In Table II, the implementation results for each design are

shown. Two figures of merit are analyzed in this section:
hardware resources used and maximum operation frequency.
In terms of resource usage, the STM implementation obtains
the best results (it saves about 6-7% slices with respect to the
other ones). Analyzing the maximum operation frequency, we

can see that STM also obtains the best result (62 MHz as

opposite of 25-27 MHz).
In a second approach, the VC and STR implementations

have been programmed on a Virtex-II XC2V2000 FPGA (as
we have mentioned, the STM one can only be programmed
on the Virtex XCV1000). This device has all the features
necessary to implement DSP functions: two million system
gates, 56 embedded multipliers, and 56 Block RAMs.
As in the Virtex XCV1000 case, both VC and STR produce

similar results: VC saves a little amount of slices, flip-flops,
and LUTs while STR saves four multipliers. Also, they reach
an almost equal maximum operation frequency of 40 MHz
(Table III).

TABLE II

HARDWARE IMPLEMENTATION RESULTS ON VIRTEX XCV1000.

VC STR STM

Slices 2056 (16%) 1896 (15%) 1125 (9%)

Slice Flip Flops 629 (2%) 656 (2%) 1771 (7%)
4 input LUTs 3405 (13%) 3403 (13%) 1789 (7%)

Bonded IOBs 57 (11%) 57 (11%) 57 (11%)

Block RAMs 2 (6%) 2 (6%) 2 (6%)

MULT18x18
GCLKs 1 (25%) 1 (25%) 1 (25%)

Max. operation freq. 26.91 MHz 25.02 MHz 62.14 MHz

TABLE III

HARDWARE IMPLEMENTATION RESULTS ON VIRTEX II XC2V2000.

C. Discussion

Firstly, simulation results show that the VC and STR
implementations reduce the amount of clock cycles necessary

to the calculation from 341 to 292 cycles with respect to STM
(Table 1). Also, VC and STR reduce the output relative error

in an important way (from 5.09% to 0.59%) with respect to
STM. This is due to the internal data width they employ: STM
only supports an internal width of up to 16 bits. However, the
input data nature makes necessary an internal width of 19 bits
in order to maintain accuracy. This is not a problem in VC and
STR because designers totally control the internal structure.

Secondly, hardware implementation results show that STM
obtains the best results (on Virtex XCV1000 FPGA): in terms
of resource usage, it saves about 6-7% slices with respect to
VC and STR (Table 2). This is because the FFT macroblock
is specifically suited for this FPGA model. In the same way,

we can see that STM achieves the highest maximum operation
frequency: 62 MHz (compared to the 27 and 25 MHz of VC
and STR respectively). However, this result is not so relevant
because the module is only part of a complete system and
its clock can not be faster than the global one. Thus, it is
preferable to perform the calculation in less cycles if the
module can reach the work frequency of the whole system.

In the Virtex-II XC2V2000 FPGA case, implementation
results are also very similar for both VC and STR because
they employ the same architecture (Table 3). Even they reach
the same maximum operation frequency: 40 MHz. In this case,

we can not compare them to STM because the last one can

339

VC STR STM

Slices 1214 (11%) 1276 (11%)
Slice Flip Flops 619 (2%) 656 (3%)
4 input LUTs 1972 (9%) 2197 (10%)
Bonded IOBs 58 (14%) 58 (14%)

Block RAMs 2 (3%) 2 (3%)
MULT18x18 8 (14%) 4 (7%)

GCLKs 1 (6%) 1 (6%)
Max. operation freq. 40.02 MHz 40.03 MHz

not be programmed on this FPGA model.
Thirdly, on the one hand, it is remarkable that using

system-level tools facilitates the design tasks greatly, allowing
designers to focus on the system architecture and reducing
the design time in an important way. This is possible because
the library provided by the foundry is very optimized for the
target programmable chips as well as the available blocks
are fully parametrizable: we can decide which ones use on-
chip resources (like BRAMs or embedded multipliers) or
include different latency configurations (among other available
options). This fact allows designers to totally control the way
they are implemented and obtain a very efficient structure. On
the other hand, System Generator does not count on some
blocks that can be easily designed in VHDL, whose design
becomes a tedious task by using a GDI (Graphical User Inter-
face) tool, as for example register sets or decoders. Also, an
important drawback is that some blocks can be implemented
on specific FPGA models (as the FFT macroblock case).

In terms of VHDL coding, we have to remark the great
amount of designs available through the Xilinx LogiCORE
repository. This makes easier the design process although
using such language involves a difficult simulation process
due to the tediousness of the input stimuli generation. In this
way, we have employed an alternative: simulate the VHDL
code by HDL co-simulation.

III. PROPOSAL OF A GENERAL METHODOLOGY

In this section, we propose a specific methodology which
allows designers to carry out this type of systems efficiently.
In this way, we have to conclude that STM is the best
option if the available macroblocks are suited to the specific
aims (taking into account the possible data width and FPGA
model restrictions) but, as a general methodology, our proposal
combines both VC and STR and it can be summarized as
follows:

1) Design the module with System Generator at RT level
but using VHDL coding for those blocks that are easier
to program with such a language (these blocks can be
included into the module through the BLACK BOX
block).

2) Verify the module by HDL co-simulation. This type of
verification employs Simulink to simulate the System
Generator blocks and ModelSim to simulate the VHDL
ones (black boxes).

Thus, the proposed methodology facilitates the design pro-
cess greatly as well as it allows designers to maintain total
control over the module internal architecture and obtain an
efficient structure.

IV. FUTURE LINES OF WORK

As it was mentioned in the introduction, the main aim of
this work is to design the FFT/IFFT module as an IP core,
so that it can be used by SoC designers to build embedded
systems. Thus, a set of future lines of work are presented next:

1) Firstly, it is necessary to improve the FFT/IFFT module
in order to make it fully configurable in terms of data
width, symbol length, internal data precision, etc.

2) Secondly, an important objective is to optimize the
design, reducing the hardware resources used, increasing
the operation frequency, and improving its performance
with respect to other existing designs.

3) Finally, in order to facilitate the module usage, it is
advisable to add an interface to it that allows its connec-
tion to a standard bus (On-Chip Peripheral Bus (OPB),
Advanced Peripheral Bus (APB), etc.).

V. CONCLUSION

We have compared three different methodologies for the
FPGA implementation of a FFT/IFFT module: VHDL coding,
System-level tools at RT level, and System-level tools at
macroblock level. In terms of resource usage, the last one is
the best option if the available macroblocks are suited to the
specific aims. However, such implementation has two main
drawbacks: the internal data width is very restricted (which
yields to an important output error) and the available FPGA
models are very restricted too (to only one model for the
FFT case). Thus, as a general methodology, our proposal is to
combine the two first ones (VC and STR) in order to count on
the advantages of them both: it facilitates the design process
as well as allows designers to maintain total control over the
module internal architecture and obtain an efficient structure
(which greatly reduces the output error).
The work we have just carried out allows us to approach our

next objectives: make the module fully configurable, improve
its performance, and add a standard interface to it.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish
Government's MEC META project TEC-2004-00840/MIC and
the Andalusian Regional Government's EXC-2005-TIC- 1023
project.

REFERENCES

[1] A. Millan, M. J. Bellido, J. Juan, P. Ruiz-de Clavijo, D. Guerrero, and
E. Ostua, "Diseno eficiente de un modulo FFT/IFFT sobre FPGA," in
Proc. III Reconfigurable Computing and Applications Conference (JCRA),
Madrid (Spain), Sept. 2003, pp. 107-114.

[2] A. Millan, M. J. Bellido, J. Juan, P. Ruiz-de Clavijo, D. Guerrero,
E. Ostua, and J. Viejo, "Efficient design of a FFT/IFFT-64 module on
ASIC," in Proc. XI Iberchip Workshop (IWS), Salvador de Bahia (Brazil),
Mar. 2005, pp. 305-306.

[3] P. J. Ashenden, The Designer's Guide to VHDL, 2nd ed. Academic
Press, 2002.

[4] Xilinx System Generator for DSP v8.1 User's Guide, Xilinx Inc., 2005.
[5] T. Widhe, J. Melander, and L. Wanhammar, "Design of efficient radix-

8 butterfly PEs for VLSI," in Proc. IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 3, Hong Kong (PRC), 1997, pp. 9-
12.

[6] J. M. Berge, A. Fonkoua, S. Maginot, and J. Rouillard, VHDL Designer's
Reference. Kluwer Academic Publishers, 1992.

[7] J. Hwang, B. Milne, N.Shirazi, and J. Stroomer, "System Level Tools
for DSP in FPGAs," in Proc. XI International Conference on Field
Programmable Logic and Applications (FPL), Belfast, Northern Ireland
(UK), Aug 2001.

340

