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Abstract

This article studies a new procedure to test for the equality of k regression
curves in a fully nonparametric context. The test is based on the comparison of
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population. The asymptotic behaviour of the test statistic is studied in detail. It is
shown that under the null hypothesis the distribution of the test statistic converges
to a finite combination of independent χ2

1 random variables. The coefficients in
this linear combination can be consistently estimated. The proposed test is able to
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means of simulations.

Key Words: Comparison of regression curves; empirical characteristic function; regres-
sion residuals.
∗Corresponding author. Departamento de Estatística e I.O., Facultade de Ciencias Económicas e

Empresariais, Campus Universitario As Lagoas-Marcosende, 36310 Vigo, Spain. e-mail: juancp@uvigo.es.
Telephone: +34 986 813505. Fax: +34 986 812 401.
†Departamento de Estadística e I.O., Facultad de Matemáticas, Calle Tarfia s.n., 41012 Sevilla, Spain.

e-mail: dolores@us.es.
‡Institut de statistique, biostatistique et sciences actuarielles (ISBA), Université catholique de Louvain,

Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium. e-mail: anouar.elghouch@uclouvain.be.

1



1 Introduction

Testing for the equality of the means of k populations (k ≥ 2) is a classical problem in
Statistics. When the populations are assumed to follow a normal distribution with equal
variance, then the ANOVA F-test is the classical way to perform the test.

In this paper we consider a more general setting. We assume that in each population
along with the response variable, Y , we observe another variable, X, the covariate, so that
the mean and the variance of the response variable depend on the values of the covariate.
More specifically, let (Xj, Yj), 1 ≤ j ≤ k, be k independent random vectors satisfying
general nonparametric regression models

Yj = mj(Xj) + σj(Xj)εj, (1)

where mj(x) = E(Yj | Xj = x) is the regression function, σ2
j (x) = V ar(Yj | Xj = x) is

the conditional variance function and εj is the regression error, which is assumed to be
independent of Xj. Note that, by construction, E(εj) = 0 and V ar(εj)=1. The covariate
Xj is continuous with density function fj. The regression functions, the variance functions,
the distribution of the errors and the distribution of the covariates are unknown and no
parametric models are assumed for them. Under this framework our approach is fully
nonparametric.

In this conditional setting, the hypothesis of equality of means is stated in terms of
the conditional means or regression functions

H0 : m1 = m2 = . . . = mk,

or, in other words, the mean effect of the covariates over the responses is equal in the k
populations. Since the objective is to compare the regression curves, it is reasonable to
assume that the covariates have common support. The alternative hypothesis is

H1 : H0 is not true.

Note that this testing problem contains the simpler case described in the first paragraph
as a particular case by only eliminating the covariates in the models.

The problem of testing for the equality of regression curves in nonparametric settings
has been previously treated in the statistical literature. The majority of the available
papers are either devoted to the comparison of only two curves or impose some restrictive
assumptions like fixed design, equal sample sizes, identical design points or homoscedas-
ticity of the residuals. Examples of such works include Delgado (1993), Kulasekera (1995),
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Munk and Dette (1998), Neumeyer and Pardo-Fernández (2009) and Srihera and Stute
(2010), among many others. To the best of our knowledge, the most related works to
ours are the papers of Neumeyer and Dette (2003) and of Pardo-Fernández et al. (2007).
These papers proposed and studied a procedure to test the hypothesis of equality of k
(k ≥ 2) regression functions based on the comparison of marked empirical processes of
the residuals for the former and the comparison of distribution functions of the residuals
for the latter.

In this work, we investigate a new test procedure based on a weighted process gene-
rated by the characteristic functions of the residuals. Compared to the competitors, the
main advantages of the proposed method are the following. First, the test is universally
consistent for any fixed alternative without any restrictions on the weight function involved
in the definition of the test statistic (except for the fact that it should be positive) and
without any restrictions on the distribution of the regression errors. Thus, the method
can be applied when the distributions of the errors are arbitrary: continuous, discrete or
mixed. This is illustrated in the simulation study where an example with errors having
a mixed distribution is given. Second, the test can be used to check the equality of any
number of regression curves and can detect local alternatives converging to the null at the
rate n−1/2. Third, the critical values or the p-values can be obtained from the asymptotic
null distribution of the proposed test statistic. This is not the case for most of the existing
methods, which typically rely on bootstrap. In our case, although we study a bootstrap
version of our test statistic in order to perform a comparison with other methods, the
bootstrap is not needed because we are able to get the desired level and a good power
even for moderate sample sizes by using the asymptotic null distribution. This is clearly
shown for many scenarios considered in the simulation study.

Our approach is based on comparing the characteristic functions of the regression er-
rors. More specifically, let εj = {Yj−mj(Xj)}/σj(Xj) be the regression error in population
j. Let m0 be the common regression curve under the null hypothesis, and define

ε0j = {Yj −m0(Xj)}/σj(Xj) = εj + {mj(Xj)−m0(Xj)}/σj(Xj), (2)

1 ≤ j ≤ k. It turns out that the null hypothesis H0 is true if and only if, for all 1 ≤ j ≤ k,
the random variables εj and ε0j have the same distribution (see Theorem 1 in Pardo-
Fernández et al., 2007). This assessment can be interpreted in terms of the cumulative
distribution function (cdf) or in terms of any other function characterizing the probability
law of the errors. Pardo-Fernández et al. (2007) restricted their attention to the cdf.

The probability law of any random variable X is also characterized by its characteristic
function (cf), ϕ(t) = E{exp(itX)}. Recent years have witnessed an increasing number
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of proposals for hypothesis testing whose test statistics measure deviations between the
empirical characteristic function (ecf) of the available data and an estimator of the cf
under the null hypothesis. In the line of the setting considered in this paper, that is, by
assuming that the data are generated by regression models, are the papers by Jiménez-
Gamero et al. (2005) and Hušková and Meintanis (2007, 2010), for testing goodness of fit
(gof) for the errors, and Hušková and Meintanis (2009) for testing gof of the regression
function to a parametric function. An advantage of the cf approach over the one based on
the cdf, as observed in Hušková and Meintanis (2009), is that the former usually requires
less stringent assumptions for its validity. In addition, from the simulation results that
can be found in the literature (see, for example, Hušková and Meintanis, 2010) the tests
based on the ecf compete very satisfactorily with those based on the empirical cdf (ecdf).

Having in mind the reasons above, the purpose of the present paper is to test H0 by
comparing consistent estimators of the cfs of the random variables εj and ε0j, say ϕ̂j(t)
and ϕ̂0j(t), respectively, 1 ≤ j ≤ k. To measure deviations between these estimators, we
consider a Cramér-von Mises type test statistic. In order to derive the asymptotic null
distribution of the test statistic, we first give a stochastic expansion for the differences
ϕ̂j(t) − ϕ̂0j(t). As a consequence of this expansion, it is shown that the test statistic
converges in law to a finite linear combination of independent chi-square variables. More-
over, under certain weak conditions on the distributions of the errors and the covariates,
the asymptotic null distribution is proportional to a χ2

k−1 distribution. We provide con-
sistent estimators of the coefficients appearing in this linear combination, which allow us
to propose a consistent estimator of the asymptotic null distribution. The behaviour of
the test under fixed and local alternatives is also studied. Specifically, it is shown that
the proposed test is able to detect any fixed alternative and contiguous alternatives con-
verging to the null at the rate n−1/2, where n denotes the total sample size. In contrast
to the procedure in Pardo-Fernández et al. (2007), to derive these properties we do not
require further assumptions on the distribution on the errors, such as that they have a
probability density. For finite sample, the quality of the proposed approximation of the
null distribution of the test statistic as well as the power are investigated numerically.
From this numerical study, we conclude that the proposed approximation of the null dis-
tribution works adequately for moderate sample sizes, and in terms of power the proposed
test competes very satisfactorily with those based on the ecdf.

The paper is organized as follows. Section 2 introduces the test statistic and also
provides an alternative expression, which is useful from a computational point of view.
The asymptotic null distribution of the test statistic and the behaviour of the test under
fixed and local alternatives are studied in Section 3. Section 4 reports a summary of a
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numerical study conducted to study the practical performance of the test and to compare
it with other existing methods. Section 5 concludes the paper. All proofs of the theoretical
results are deferred to the Appendix.

The following notation will be used along the paper: P0 denotes probability assuming
that H0 is true; E0 denotes expectation assuming that H0 is true; P∗ denotes the condi-
tional probability law, given the data; all limits in this paper are taken when n → ∞;
L→ denotes convergence in distribution; P→ denotes convergence in probability; a.s.→ denotes
the almost sure convergence; if x ∈ Rk, with x′ = (x1, . . . , xk), then diag(x) is the k × k
diagonal matrix whose (i, i) entry is xi, 1 ≤ i ≤ k; for any complex number z = a + ib,
Re(z) = a is its real part, z̄ = a − ib is its conjugate and |z| is its modulus; Nk(µ,Σ)

denotes the multivariate normal distribution with mean vector µ and variance-covariance
matrix Σ; an unspecified integral denotes integration over the whole real line R; for a given
non-negative real-valued function w and for any complex-valued measurable function g,
we denote ‖g‖w =

(∫
|g(t)|2w(t)dt

)1/2 to the norm in the Hilbert space L2(R, w).

2 The test statistic

Let (Xjl, Yjl), 1 ≤ l ≤ nj, be independent and identically distributed (iid) observations
from (Xj, Yj), 1 ≤ j ≤ k. Let fj(x) be the probability density function (pdf) of Xj, n =∑k

j=1 nj, and let fmix(x) =
∑k

j=1 pjfj(x) be the pdf of the mixture of covariates according
to the weights p1, . . . , pk, where pj = limnj/n. In order to estimate the errors, we first
need to estimate the regression functions, mj(x) = E(Yj|Xj = x), the variance functions,
σ2
j (x) = E[{Yj−mj(x)}2|Xj = x], and the common regression function underH0,m0(x) =∑k
j=1 pj{fj(x)/fmix(x)}mj(x). With this aim we use nonparametric estimators based on

kernel smoothing techniques. Let K denote a nonnegative kernel function defined on R,
let 0 < hn ≡ h→ 0 be the bandwidth or smoothing parameter and Kh(x) = h−1K(x/h).
We use the following estimators for the functions mj, σ2

j and m0:

m̂j(x) =

nj∑
l=1

wjl(x)Yjl, σ̂2
j (x) =

nj∑
l=1

wjl(x)Y 2
jl − m̂2

j(x), m̂0(x) =
k∑
j=1

nj
n

f̂j(x)

f̂mix(x)
m̂j(x),

where

f̂j(x) = n−1j

nj∑
l=1

Kh(x−Xjl), f̂mix(x) =
k∑
j=1

nj
n
f̂j(x),

1 ≤ j ≤ k. The quantities wjl are, either the local-linear weights given by

wjl(x) =
Kh(Xjl − x)

{
S2,nj

(x)− (Xjl − x)S1,nj

}
S0,nj

(x)S2,nj
(x)− S2

1,nj
(x)

,
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with Sk,nj
(x) =

∑nj

l=1(Xjl − x)kKh(Xjl − x), k = 0, 1, 2, or the Nadaraya-Watson weights

wjl(x) =
Kh(Xjl − x)∑nj

v=1Kh(Xjv − x)
,

Both are particular cases of local-polynomial weighting (see Fan and Gijbles, 1996). Under
the model assumptions that will be stated in the next section, the results in this article
are valid for local-linear and for Nadaraya-Watson (local-constant) estimators.

Based on these estimators, for each population j, 1 ≤ j ≤ k, we construct two samples
of residuals:

ε̂jl =
Yjl − m̂j(Xjl)

σ̂j(Xjl)
and ε̂0jl =

Yjl − m̂0(Xjl)

σ̂j(Xjl)
, (3)

1 ≤ l ≤ nj, whose ecfs are

ϕ̂j(t) =
1

nj

nj∑
l=1

exp(itε̂jl) and ϕ̂0j(t) =
1

nj

nj∑
l=1

exp(itε̂0jl), (4)

respectively. These ecfs are nothing but (consistent) kernel based nonparametric estima-
tors of the population cfs ϕj(t) = E{exp(itεj)} and ϕ0j(t) = E{exp(itε0j)}, respectively,
where ε0j is as defined in (2). The testing procedure consists of comparing ϕ̂j(t) and
ϕ̂0j(t), 1 ≤ j ≤ k, using a weighted L2−distance. More precisely, following the work of
Hušková and Meintanis (2007, 2009, 2010) we define the test statistic

T1n ≡ T1n(w) =
k∑
j=1

nj
n
‖ϕ̂j(t)− ϕ̂0j(t)‖2w , (5)

where w is any given non-negative weight function with finite integral,
∫
w(t)dt < ∞.

The presence of the weight function w in the integrals appearing in the expression of T1n
is necessary in order to ensure their finiteness, since ‖ϕ̂j(t)− ϕ̂0j(t)‖2w ≤ 4

∫
w(t)dt, for

all j.

The motivation behind the test statistic T1n is the following: T1n converges in proba-
bility to (see Theorem 7 below)

T1 ≡ T1(w) =
k∑
j=1

pj ‖ϕj(t)− ϕ0j(t)‖2w . (6)

Under H0, ϕj(t) = ϕ0j(t) for all t and for 1 ≤ j ≤ k, and thus T1 vanishes. As a
consequence, under H0, T1n should be “very small”. We then conclude that, any value of
T1n which is “significantly large” should lead to the rejection of H0. In practice, given a
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significance level, a threshold value above which H0 is rejected needs to be established. To
this end we need to study the null distribution of T1n. Since this distribution is unknown,
as an approximation to it we derive the asymptotic null distribution. This will be done
in the next section.

Remark 1 From Lemma 1 in Alba-Fernández et al. (2008), an alternative expression
for T1n, which is useful from a computational point of view, is given by

nT1n =
k∑
j=1

1

nj

{
nj∑
l,s=1

Iw(ε̂jl − ε̂js) +

nj∑
l,s=1

Iw(ε̂0jl − ε̂0js)− 2

nj∑
l,s=1

Iw(ε̂jl − ε̂0js)

}
,

where Iw(t) =
∫

cos(tx)w(x)dx. If w is a pdf with cf ϕw then Iw(t) = Re{ϕw(t)}, which
clearly coincides with ϕw when w is a symmetric pdf.

3 Asymptotics

In order to study the limit behaviour of the test statistic T1n we first need to introduce
some assumptions on the models (1) and on the available data. Recall that we are
assuming that {(Xjl, Yjl), 1 ≤ l ≤ nj} are iid observations from (Xj, Yj) and the sets
{(X1l, Y1l), 1 ≤ l ≤ n1}, . . ., {(Xjk, Yjk), 1 ≤ l ≤ nk} are independent.

Assumption (A):

(A.1) For 1 ≤ j ≤ k: (i) Xj has a compact support R. (ii) fj, mj and σj are two
times continuously differentiable on R. (iii) infx∈R fj(x) > 0 and infx∈R σj(x) > 0.

(A.2) For 1 ≤ j ≤ k: the samples sizes satisfy limnj/n = pj, where 0 < pj < 1.

(A.3) K is a twice continuously differentiable symmetric pdf with compact support.

(A.4) The weight function satisfies w(t) ≥ 0, for all t ∈ R, and
∫
t4w(t)dt <∞.

(A.5) nh4n → 0 and nh2n/ lnn→∞.

These assumptions are mainly needed to guarantee the uniform consistency of the
kernel estimators f̂j, σ̂j, m̂j and m̂0. Unlike the methods based on the ecdf, observe
that we do not impose any restriction on the distribution of the errors, like the existence
of a pdf. So the results in this paper could be used to compare two or more regression
functions when the distributions of the errors are arbitrary: continuous, discrete or mixed.
An example with errors having a mixed distribution is given in Section 4.
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3.1 Asymptotic null distribution

The following theorem gives an asymptotic approximation for √nj{ϕj(t) − ϕ0j(t)}, 1 ≤
j ≤ nj, that will allow us to derive the asymptotic null distribution of the test statistic
T1n, given in the subsequent corollary. Let Σ = (σjv)1≤j,v≤k be the matrix whose elements
are

σjj = 1− 2pjE

{
fj(Xj)

fmix(Xj)

}
+ pj

k∑
r=1

prE

{
σ2
r(Xr)

σ2
j (Xr)

f 2
j (Xr)

f 2
mix(Xr)

}
,

σjv =
√
pjpv

k∑
r=1

prE

{
σ2
r(Xr)

σj(Xr)σv(Xr)

fj(Xr)fv(Xr)

f 2
mix(Xr)

}
−√pjpvE

{
σv(Xv)

σj(Xv)

fj(Xv)

fmix(Xv)
+
σj(Xj)

σv(Xj)

fv(Xj)

fmix(Xj)

}
, j 6= v.

(7)

Theorem 2 Under assumptions (A.1)-(A.3) and (A.5), if H0 is true, then

√
nj {ϕ̂j(t)− ϕ̂0j(t)} = itϕj(t)Zj + tR1j(t) + t2R2j(t),

where sup
t
|Rsj(t)| = op(1), s = 1, 2, and Z := (Z1, . . . , Zk)

′ ∼ Nk(0,Σ).

Define the diagonal matrix A = diag(a1, . . . , ak), where aj = ‖tϕj(t)‖2w, 1 ≤ j ≤ k.
The results in the theorems and the corollaries below will hold whenever trace(AΣ) > 0.
Before stating the results, we briefly discuss this condition. Observe that

trace(AΣ) =
k∑
j=1

ajσjj > 0 if and only if aj > 0 and σjj > 0 for some j , 1 ≤ j ≤ k.

The quantities σjj in (7) can be also expressed as

σjj = pj

k∑
l=1

plE

[
σ2
l (Xl)

σ2
j (Xl)

{
fj(Xl)

fmix(Xl)
− I(l = j)

pl

}2
]
,

where I(A) denotes the indicator function of the set A. From Assumptions (A.1)(iii) and
(A.2) it follows that σjj > 0 for all j. Thus, to ensure trace(AΣ) > 0 we only need to
ensure that aj > 0 for some j. An easy way to get aj > 0 is by taking w(t) > 0, for t in
a neighborhood of the origin.

The following assumption will appear in the statement of some of the results below.

Assumption (B): aj > 0 for some 1 ≤ j ≤ k.
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Corollary 3 Under Assumptions (A) and (B), if H0 is true, then nT1n
L−→ W1 = Z ′AZ,

where Z is as in Theorem 2.

In other words, the limiting distribution of nT1n under H0 is a finite linear combination
of independent chi-square variables,

∑k
j=1 βjχ

2
1,j, where χ2

1,1, . . . , χ
2
1,k are independent chi-

square random variates with one degree of freedom and β1, . . . , βk are the eigenvalues
of AΣ. Unfortunately, the quantities βj in this linear combination are unknown. They
depend on the distribution of the errors through the a1, . . . , ak, and on the distribution
of the covariates through Σ = (σjv)1≤j,v≤k. They also depend on the unknown design
densities, fj, and the conditional variance functions, σ2

j . So to use Theorem 2 in practice,
one first need to find a consistent estimator, say β̂j, for every βj, 1 ≤ j ≤ k. This can be
easily done via plug-in method using the estimators defined above instead of the unknown
functions ϕj, fj, fmix and σ2

j . In order to perform the test we also need to approximate the
distribution of

∑k
j=1 β̂jχ

2
1,j which can be done via Monte Carlo method or some numerical

method (see for example Kotz et al, 1967, Castaño-Martínez et al, 2005). With such a
distribution, we can finally get the critical value and/or the p-value for the test based on
T1n. The next result states the validity of this procedure.

To estimate aj we replace ϕj(t) by ϕ̂j(t) in its expression obtaining,

ãj =

∫
t2|ϕ̂j(t)|2w(t)dt =

1

n2
j

nj∑
r,s=1

∫
t2 cos{t(ε̂jr−ε̂js)}w(t)dt =

nj − 1

nj
âj+

1

nj

∫
t2w(t)dt,

where

âj =
−1(
nj

2

) ∑
1≤r<s≤nj

D2Iw(ε̂jr − ε̂js), 1 ≤ j ≤ k, (8)

D2Iw(t) = ∂2

∂t2
Iw(t) = −

∫
t2 cos(tu)w(u)du and Iw is as defined in Remark 1. Since∫

t2w(t)dt is a constant term, we estimate aj by âj, which resembles a U-statistic. Let
Â = diag(â1, . . . , âk) and Σ̂ = (σ̂jv)1≤j,v≤k, with σ̂jj = 1 − 2p̂jµ̂j + p̂j

∑k
r=1 p̂rµ̂jjr,

σ̂jv =
√
p̂j p̂v

∑k
r=1 p̂rµ̂jvr −

√
p̂j p̂v(µ̂jv + µ̂vj), j 6= v,

p̂j =
nj
n
, µ̂j =

1

nj

nj∑
l=1

f̂j(Xjl)

f̂mix(Xjl)
, µ̂jv =

1

nv

nv∑
l=1

σ̂v(Xvl)

σ̂j(Xvl)

f̂j(Xvl)

f̂mix(Xvl)
,

µ̂jvr =
1

nr

nr∑
l=1

σ̂2
r(Xrl)

σ̂j(Xrl)σ̂v(Xrl)

f̂j(Xrl)f̂v(Xrl)

f̂ 2
mix(Xrl)

,

1 ≤ j, v, r ≤ k.
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Let W1n =
∑k

j=1 β̂jχ
2
1j, where χ2

11, . . . , χ
2
1k are independent chi-square variables with

one degree of freedom and β̂1, . . . , β̂k are the eigenvalues of ÂΣ̂.

Theorem 4 Under Assumptions (A) and (B),

sup
x
|P0{nT1n ≤ x} − P∗(W1n ≤ x)| P−→ 0.

Remark 5 If all the covariates have the same distribution, f1 = . . . = fk, and all variance
functions are equal, σ1 = . . . = σk, then

Σ = Ik − pp′, p′ = (
√
p1, . . . ,

√
pk). (9)

In this case, it is easy to see that Σ has two different eigenvalues: 0, with multiplicity 1,
and 1, with multiplicity k − 1. Therefore, if it is also assumed that the laws of the errors
are such that a = a1 = . . . = ak (for instance, if they also have the same distribution),
then a−1nT1n(w)

L→
∑k−1

j=1 χ
2
1j = χ2

k−1, which coincides with the null distribution of the
classical ANOVA test for comparing means. To get a consistent null distribution estimator
of nT1n(w) in this case, it suffices to have a consistent estimator of a.

Corollary 6 Suppose that Assumptions (A) and (B) hold. If all covariates have the
same distribution, all variance functions are equal and the laws of the errors are such that
a = a1 = . . . = ak, then

sup
x
|P0{nT1n ≤ x} − P∗(W01n ≤ x)| P−→ 0,

where W01n = âχ2
k−1, with â =

∑k
j=1 p̂j âj, and âj is as defined by (8).

The result in Corollary 3 tells us that nT1n = OP (1). As a decision rule for testing H0

against H1 we propose to use Ψ1,α = I(nT1n > t1,α), where t1,α is the 1− α percentile of
the null distribution of nT1n or any consistent estimator of it.

3.2 Consistency

In this section we study the test statistic T1n when the alternative hypothesis is fixed. The
following theorem shows that, with probability tending to 1, T1n behaves (asymptotically)
like T1, see (6). This will allow us to derive the consistency of the test Ψ1,α.

Theorem 7 Suppose that Assumption (A) hold. Then, T1n = T1 + op(1), where T1 is as
defined in (6).
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As an immediate consequence of the above theorem and Corollary 3, we conclude that
the test Ψ1,α is consistent against all fixed alternatives. This property is formally stated
in the following corollary.

Corollary 8 Suppose that Assumption (A) and the alternative hypothesis H1 hold. If
w(t) > 0, for all t ∈ R, then limn→∞ P (Ψ1,α = 1) = 1, for any 0 < α < 1.

It is known that two distinct characteristic functions can be equal in a finite interval
(see, for example, Feller, 1971; p. 479). In order to ensure that T1 > 0 whenever mr 6= ms,
for some 1 ≤ r, s ≤ k, r 6= s, we made the assumption that w > 0. It is important to note
that this assumption does not involve any characteristic of the underlying data generating
procedure. For instance, taking w to be the pdf of, for example, a normal law guarantees
the universal consistency of our test. In opposition, some existing works made rather
restrictive assumptions that exclude certain type of alternatives. For example, the test
of Srihera and Stute (2010) may not be able to detect a difference between two crossing
curves.

3.3 Local alternatives

In this section, we study the limiting behaviour of the test statistic under local alternatives
converging to the null hypothesis at the rate n−1/2. Specifically, let us consider the
following local alternative hypothesis

H1,n : mj = m00 + n−1/2rj, 1 ≤ j ≤ k,

where m00 is assumed to be two times continuously differentiable, and the functions rj
satisfy

E{r2j (Xl)} <∞, 1 ≤ j, l ≤ k. (10)

Theorem 9 Under Assumption (A) and the alternative hypothesis H1,n, if (10) holds,
then

√
nj {ϕ̂j(t)− ϕ̂0j(t)} = itϕj(t)(Zj +

√
pjµj) +Rj(t),

where ‖Rj‖w = op(1), Z = (Z1, . . . , Zk)
′ is as in Theorem (2) and

µj =
k∑
v=1

pvE

{
fv(Xj)rv(Xj)

fmix(Xj)σj(Xj)

}
− E

{
rj(Xj)

σj(Xj)

}
, 1 ≤ j ≤ k.
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Corollary 10 Under Assumption (A) and the alternative hypothesis H1,n, if (10) holds,
then nT1n

L−→ (Z+µ)′A(Z+µ), where Z is as defined in Theorem 2 and µ′ = (
√
p1µ1, . . . ,√

pkµk).

We conclude that, although the test based on the rule Ψ1,α is fully nonparametric,
it is able to detect local alternatives converging to the null hypothesis at the rate n−1/2

whenever µ′A 6= 0.

3.4 A second test statistic

The paper by Pardo-Fernández et al. (2007) studies two Kolmogorov-Smirnov and two
Cramér-von Mises type statistics for testing H0 based on the ecdf of the residuals. Our
test statistic T1n can be seen as the cf analogue of their first Cramér-von Mises type
statistic. An ecf version of their second Cramér-von Mises type statistic is

T2n = ‖ϕ̂(t)− ϕ̂0(t)‖2w ,

where ϕ̂(t) =
∑k

j=1
nj

n
ϕ̂j(t) and ϕ̂0(t) =

∑k
j=1

nj

n
ϕ̂0j(t), which are consistent estimators

of ϕ(t) =
∑k

j=1 pjϕj(t) and ϕ0(t) =
∑k

j=1 pjϕ0j(t), respectively. The motivation of this
statistic is that the equality of ϕ(t) and ϕ0(t) also characterizes the null hypothesis.

The same steps followed in the analysis of T1n can be used to study T2n. In particular,
T2n can be computed as (see Remark 1)

n2T2n =
k∑

j,v=1

nj∑
l=1

nv∑
s=1

{Iw(ε̂jl − ε̂vs) + Iw(ε̂0jl − ε̂0vs)− 2Iw(ε̂jl − ε̂0vs)} .

The asymptotic null distribution of T2n is given in the following result, which is analogous
to Corollary 2.

Corollary 11 Let B = diag(p)Cdiag(p), where p is as defined in (9) and C = (cjv)1≤j,v≤k

is the matrix with elements

cjv =

∫
t2Re{ϕj(t)ϕv(t)}w(t)dt, 1 ≤ j, v,≤ k.

Under Assumption (A), if H0 is true and trace(BΣ) > 0, then nT2n
L−→ W2 = Z ′BZ,

where Z is as in Theorem 2.

In contrast to the case of T1n, there is no easy way of ensuring that trace(BΣ) > 0.
To see this fact, consider for example the case with f1 = . . . = fk and σ1 = . . . = σk. In
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this situation we saw that Σ has the expression (9); if in addition the errors are such that
c = cjv, 1 ≤ j, v ≤ k, then trace(BΣ) = 0, and thus the distribution of nT2n is degenerate
for any choice of the weight function w.

The asymptotic distribution of T2n under H0 depends on certain properties of the
populations, which are typically unknown, and it can be summarized as

nT2n =

{
Op(1) if trace(BΣ) > 0,

op(1) if trace(BΣ) = 0.

In the first case (trace(BΣ) > 0), the asymptotic null distribution of T2n is analogous to
the distribution of T1n, that is, a combination of chi-square random variables multiplied
by the eigenvalues of BΣ, which can be estimated as in Theorem 4. In the second case
(trace(BΣ) = 0), a deeper analysis of the asymptotic distribution is required. However,
from a practical point of view, this analysis is somehow useless since the practitioner
would not know which one of the two situations apply for a given data set. Because of
these reasons, we have focused on the test statistic T1n.

4 Numerical results

In this section we report the results of an experiment carried out to study the practical
behaviour of the proposed testing procedure by means of simulations. We investigate the
approximation given in Theorem 4 and also the bootstrap approximation used in Pardo-
Fernández et al. (2007) in order to compare their tests with ours. In all cases, the tables
display the observed proportion of rejections in 1000 simulated data sets.

Firstly, in a two-population (k = 2) framework, the following regression models are
considered:

(i) m1(x) = m2(x) = 1

(ii) m1(x) = m2(x) = x

(iii) m1(x) = m2(x) = sin(2πx)

(iv) m1(x) = m2(x) = exp(x)

(v) m1(x) = x, m2(x) = 1 + x

(vi) m1(x) = exp(x), m2(x) = exp(x) + x

13



(vii) m1(x) = sin(2πx), m2(x) = sin(2πx) + x

(viii) m1(x) = 1, m2(x) = 1 + sin(2πx)

Models (i)-(iv) are under the null hypothesis, and models (v)-(viii) are under the alterna-
tive. For the scale functions, in each case we study a homoscedastic and a heteroscedastic
scenario:

Homoscedastic models (S1): σ1(x) = 0.50; σ2(x) =
√

0.50.

Heteroscedastic models (S2): σ1(x) = 7
6
0.50x+ 1

2
0.50; σ2(x) = 7

8

√
0.50x+ 1

2

√
0.50.

The covariates X1 and X2 have distributions Beta(1.5, 2) and Beta(2, 1.5), respec-
tively. This choice of the distributions of the covariates motivates the models of the
scale functions in the heteroscedastic case, as they verify that E[σ1(X1)] = 0.50 and
E[σ2(X2)] =

√
0.50, so the homoscedastic case and the heteroscedastic case are some-

how comparable. If not mentioned otherwise, the regression errors ε1 and ε2 are N(0, 1),
although other distributions will also be considered in Section 4.3.

Nonparametric estimation of the regression functions is performed by the local-linear
estimator. For the estimation of the variance functions, we prefer the local-constant
estimator (Nadaraya-Watson), since the local-linear may produce negative values. In both
cases the kernel function is the kernel of EpanechnikovK(u) = 0.75(1−u2)I(−1 < u < 1),
which have some optimal properties. In the next section we will discuss the choice of the
smoothing parameter.

4.1 The choice of the smoothing parameter

The choice of the smoothing parameter or bandwidth is certainly a delicate issue in any
non-parametric procedure. For estimation purposes, it is well known that the bandwidth
controls the trade-off between bias and variance of the estimator. In the context of testing,
this problem has not been studied in detail yet. González-Manteiga and Crujeiras (2013)
gave a very recent review about goodness-of-fit problems in nonparametric regression,
including the comparison of regression curves. In the discussion of the paper, the authors
say that the bandwidth selection for tests based on smoothing is a “really tough problem”
and “it is far from being solved”. This conclusion was also raised by several discussants of
the paper (see, for example, the discussions of Sperlich (2013) and de Uña-Álvarez (2013)
to the abovementioned article). We also share that opinion.
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Although a detailed study on this topic is still missing, in the context of comparing
regression curves several practical proposals have been made, sometimes explicitly, some-
thing implicitly. We will review here three of relatively recent and relevant papers on the
topic: (a) In Neumeyer and Dette (2003) the proposed methodology allows for the use
of the optimal bandwidth for estimation (of order n−1/5) and bandwidths based on the
classical rule of the thumb are employed. (b) In Pardo-Fernández et al. (2007), the theory
does not allow for the use of the optimal bandwidth in estimation (which is also the case
in the current piece of research), but some practical recommendations are suggested: first,
when estimating the regression curves to be compared it is recommended to use a common
bandwidth; second, in practical applications, the test can be performed for a reasonable
range of bandwidths and the obtained p-values can be analysed. (c) In Sriheda and Stute
(2010) nearest-neighbor estimators are used and the optimal smoothing parameters for
estimation are also excluded by the theory; in simulations fixed values are used.

In a recent paper about testing for the distribution of the regression error, Heuchenne
and Van Keilegom (2010) suggested several possibilities for the choice of the smoothing
parameter based on cross-validation techniques. We have checked the practical perfor-
mance of one of their proposal in our context (the one referred as method f, which is the
one recommended by the authors). A summary of the obtained results is given in Table
1, which shows the approximation of the level of the test based on T1n for models (i)-(iv)
with sample sizes n1 = n2 = 100. The weight function, w, is the pdf of a standard normal
(see the discussion about the role of the weight function in the next section). The crit-
ical values are obtained from the approximation of the asymptotic distribution given in
Theorem 4. The level approximation is good for model (iv) but not correct for models (i)
and (iii). Besides, we have observed that the proposed cross-validation procedure tends
to pick very large bandwidths (often, the largest value in the allowed interval). Although
the use of cross-validation bandwidths might be a reasonable choice in some cases, we are
not sure that they offer a global solution to the problem since their practical performance
is not always satisfactory.

[ Table 1 to be placed here ]

In the simulations contained in the rest of this section, we essay to study the general
behaviour of the proposed test and therefore we prefer to consider non-data dependent
bandwidths. We take a bandwidth depending on the sample size of the form hn = Cna.
According to assumption (A.5), the allowed values for a are −0.5 < a < −0.25. We
choose to take the exponent in the middle of the interval of allowed values, a = −0.375,
and then several values of the constant C are taken into account.
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4.2 The weight function

In the present section we discuss the role of the weight function w. For our test to be
consistent, it is only needed a positive w satisfying

∫
t4w(t)dt < ∞. However, from the

results in Section 3, it is clear that the choice of the weight function affects the power. In
fact, from Corollary 10, the asymptotic power of the test Ψ1,α is given by

P ((Z + µ)′A(Z + µ) > t1,α). (11)

This probability depends on w throughA = diag(a1, . . . , ak), where aj =
∫
t2|ϕj(t)|2w(t)dt,

1 ≤ j ≤ k. Clearly, the optimal weight (the one that maximizes the power) depends on
the characteristic functions ϕ1, . . . , ϕk and on µ1, . . . , µk. Because all these quantities are
unknown and involve the unobservable residuals, formula (11) is of little help in practice.

An alternative approach is to use different weight functions w1, . . . , wk for the different
populations. This leads to the following test statistic

k∑
j=1

nj
n
‖ϕ̂j(t)− ϕ̂0j(t)‖2wj

.

By Theorem 2, this quantity has the same asymptotic properties as T1n. In fact, one
only needs to replace aj = ‖tϕj(t)‖2w by āj = ‖tϕj(t)‖2wj

for the results given in Section 3
to continue to hold. Following the guidelines in Epps and Pulley (1983) (see also Epps,
2005, Jiménez-Gamero et al., 2009, Hušková and Meintanis, 2010), a reasonable choice
for wj(t) is |ϕj(t)|2. This choice attempts to give high weight where the statistic ϕ̂j(t)
is a relatively precise estimator of ϕj(t). The problem is that ϕj(t) is unknown and
needs to be estimated. Taking wj(t) ∝ |ϕ̂j(t)|2 is not possible because

∫
|ϕ̂j(t)|2dt = ∞,

since ϕ̂j(t) is a periodic function. To overcome this difficulty we could consider a kernel
smoothing estimator, but its application requires to assume rather strong assumptions on
the distribution of the errors.

A more practical method avoiding the above difficulties is to use a parametric density
function as a weight. The density function should put most of the weight near the origin,
because the ecf estimates more accurately the population cf around t = 0. This approach
is connected with the comparison of kernel density estimators as follows. Let S be a pdf
symmetric around the origin and let w be such that w1/2(x) = (2π)−1/2

∫
exp(itx)S(t)dt.

Lemma 2.1 in Fan (1998) (see also Anderson et al, 1994, Henze et al, 2005, Hušková and
Meintanis, 2012 and Meintanis, 2013) shows that∫

|ϕ̂j(t)− ϕ̂0j(t)|2wj(t)dt =

∫ {
f̂j(t)− f̂0j(t)

}2

dt,
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where

f̂j(t) =
1

n

nj∑
l=1

S(t− ε̂jl), f̂0j(t) =
1

n

nj∑
l=1

S(t− ε̂0jl),

that is to say, for adequate choices of the weight function wj, the quantity ‖ϕ̂j − ϕ̂0j‖2w
coincides with the integral of the squared of the difference between kernel estimators of
the pdf of the errors, both estimated with bandwidth η = 1. This bandwidth can be
taken arbitrary by considering Sη(x) = η−1S(x/η) instead of S = S1.

The above observation does not narrow down the spectrum of possibilities. So further
criteria must taken into account. From a practical point of view, the ease of computation
of T1n (also T2n) is closely related to the choice of w. This is specially appealing if
instead of using the approximation given in Theorem 4, one wishes to employ a bootstrap
approximation, which requires to evaluate the test statistic in a high number of artificial
samples. In this sense, a good choice is

w(t) ∝ exp{−t2/2σ2
w}, (12)

which is tantamount to estimate the pdf of the errors by using the normal kernel and
bandwidth σw. Nevertheless, at this point we must say that the choice of σw cannot
be guided by standard results on kernel density estimation, because in such a case the
asymptotic results in this paper are no longer true. A theoretical study of the optimal
choice of σw in terms of Bahadur slopes can be found in Tenreiro (2009) for the problem
of testing goodness-of-fit for the normal distribution. The results in the cited paper show
that the optimal choice of σw depends on the alternative, which is unknown in practice.
Because of this reason, we did not pursue this line. Neither too large, nor too small values
of σw are appropriate because, proceeding as in Henze at al (2005), we get

lim
σw→0

σ−2w T1n =
k∑
j=1

nj
n

(¯̂εj − ¯̂ε0j)
2, (13)

with ¯̂εj = 1
nj

∑nj

j=1 ε̂jl, ¯̂ε0j = 1
nj

∑nj

j=1 ε̂0jl, 1 ≤ j ≤ k. The right-side of (13) estimates
θ =

∑k
j=1 pj{E(εj)−E(ε0j)}2. In certain situations θ might be zero, even when H0 is not

true and therefore the resulting test based on small σw would not be consistent against
all fixed alternatives. A similar phenomenon occurs when σw →∞.

In the context of testing goodness-of-fit for the distribution of the errors in nonpara-
metric regression models, the simulations in Hušková and Meintanis (2010) reveal that
taking σw = 1 gives good results. We have also investigated numerically the effect of
changing the parameter σw in models (iv) (level approximation) and (vi) (power) when
the critical values are approximated from the asymptotic distribution of T1n as explained
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in Theorem 4. Table 2 (which is just a part of a larger simulation study) summarizes the
obtained results. It can be seen that the results are quite homogeneous with slightly better
level with σw = 1, which is the value that we will consider in the rest of the simulations.

[ Table 2 to be placed here ]

4.3 Results of the test based on the asymptotic null distribution

In this section we present the results of the test based on the approximation of the
asymptotic null distribution of T1n as given in Theorem 4. Tables 3 (homoscedastic
models) and 4 (heteroscedastic models) display the results for bandwidths of the form
h = Cn−0.375, with C = 1, 1.5, 2, which provide reasonable values for the considered
setups. The level –models (i)-(iv)– is slightly overestimated for small sample sizes, but
the approximation improves as the sample sizes increase, reaching a good approximation
for (n1, n2) = (100, 100). The test also reaches good power, both in the homoscedastic
case and in the heteroscedastic case.

We have also run simulations with error distributions different from the normal dis-
tribution. In particular, we have considered two cases: (a) errors with mixed distribution
of the form

εj =

{
0 with probability 0.5

N(0,
√

2) with probability 0.5,

j = 1, 2, which in practice could model a case where the observations come from two
devices, one of them with no measurement error; and (b) errors with a recentered Ex-
ponential distribution, i.e., εj + 1 ∼ Exponential(1), for j = 1, 2. Table 5 displays a
brief summary of the obtained results for models (ii), (iv), (vi) and (viii) under het-
eroscedasticity and sample sizes n1 = n2 = 100. In the case of the mixed distribution,
the approximation of the level is very good. In the case on the exponential distribution,
we observe an overestimation of the level, probably cause by a bad approximation of the
asymptotic null distribution due to the asymmetry of the error distribution (although not
shown in the table, better approximations are achieved for larger sample sizes). Both
cases show good power. The same kind of conclusions can be established for the rest of
the models, which are not shown here.

[ Table 3 to be placed here ]

[ Table 4 to be placed here ]

[ Table 5 to be placed here ]
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4.4 Results based on a bootstrap approximation

The aim of this subsection is to compare the power of the test proposed in this pa-
per with those in Pardo-Fernández et al. (2007). To approximate the null distribution
of their test statistics, Pardo-Fernández et al. (2007) employed a bootstrap procedure
based on smoothed residuals (see also Neumeyer, 2009, for a theoretical justification). Of
course, the same bootstrap procedure could be used to approximate the null distribution
of nT1n. Nevertheless, from a computational point of view, the estimators in Theorem
4 and Corollary 6 are less time consuming. In order to establish a fair comparison, we
have also estimated the null distribution of the test proposed in this paper by using the
bootstrap algorithm defined in the above-mentioned paper. Besides, we have also incor-
porated here the test statistic T2n, for which the asymptotic null distribution is difficult
to approximate. Table 6 shows the results of the tests based on T1n and T2n and the four
tests proposed in Pardo-Fernández et al. (2007), which are denoted by T 1

KS, T 2
KS, T 1

CM

and T 2
CM . For the sake of brevity of the presentation of the table, we restrict ourselves

to the significance level α = 0.05 and bandwidth with C = 1 (similar results have been
obtained for other significance levels and other specifications of the bandwidth). In terms
of level approximation, we can see that it is good for all test statistics, except for T 2

KS.
Compared to the asymptotic approximation, the bootstrap approximation improves the
behaviour of the test statistic T1n for small sample sizes. For models (v)-(vii), the highest
power is achieved by the test based on the ecf, T1n. For model (viii), the highest power
is achieved by T2n, which is also based on the ecf. Note that in this model T1n reaches
reasonable power and it is much better than its ecdf-based analog T 1

CM . Summarizing,
for the models considered, the test based on T1n presents, as a whole, the best behaviour.

[ Table 6 to be placed here ]

4.5 The case of three populations

We have also investigated the test based on the estimated asymptotic null distribution of
T1n in the case of three populations (k = 3). Now the regression models are:

(ix) m1(x) = m2(x) = m3(x) = 1.

(x) m1(x) = m2(x) = m3(x) = x.

(xi) m1(x) = x, m2(x) = x+ 0.2, m3(x) = x+ 0.4.

(xii) m1(x) = x, m2(x) = x, m3(x) = x+ 0.25.
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(xiii) m1(x) = 0.5, m2(x) = x, m3(x) = 1− x.

(xiv) m1(x) = 0, m2(x) = sin(2πx), m3(x) = − sin(2πx).

Models (ix)-(x) are under the null hypothesis, models (xi)-(xiv) are under the alternative.
We only consider homoscedastic models with scale functions σ1(x) =

√
0.25, σ2(x) =√

0.25 and σ3(x) =
√

0.50. The covariates X1, X2 and X3 are Beta(1.5, 2), Beta(2, 1.5)

and Beta(2, 2), respectively, and all regression errors are N(0, 1). As in the previous cases,
a bandwidth of the form h = Cn−0.375 is chosen, but now the C = 2, 2.5, 3 are displayed.
Other choices for C were also tried, but better results where obtained for these values.
The results are shown in Table 7. As in Tables 3 and 4, the level is well approximated for
large sample sizes and the behaviour in terms of power is correct.

[ Table 7 to be placed here ]

5 Conclusions

A test for the comparison of k regression functions has been proposed and studied under a
totally nonparametric setting. The test statistic compares the ecf of the residuals in each
population with the ecf of the residuals under the null hypothesis. For adequate choices
of the weight function involved in the definition of the test statistic, the resulting test
is consistent against any fixed alternative and is able to detect contiguous alternatives
converging to the null at a rate n−1/2. To derive these properties we have assumed
certain assumptions, which are weaker than those required by those based on the ecdf.
Specifically, no requirement is imposed on the distributions of the errors. An estimation of
the asymptotic null distribution has been proposed as an estimator of the null distribution
of the test statistic. In the cases tried in our numerical experiments it is observed that
this approximation works, in the sense of providing type I errors close to the nominal
values, specially when the sample sizes are at least 100. For smaller sample sizes it is
recommended to approximate the null distribution through a bootstrap mechanism.
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6 Appendix

See the supplementary material available from the journal website.
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Table 1: Empirical level of the test based on the asymptotic distribution of T1n for
homoscedastic and heteroscedastic models and smoothing parameters chosen by cross-
validation with n1 = n2 = 100.

homoscedastic models heteroscedastic models
model α : 0.100 0.050 0.010 0.100 0.050 0.010
(i) 0.154 0.064 0.018 0.148 0.062 0.012
(ii) 0.136 0.052 0.012 0.124 0.052 0.010
(iii) 0.152 0.088 0.016 0.152 0.086 0.012
(iv) 0.106 0.048 0.010 0.106 0.046 0.010

Table 2: Observed rejection proportions of the test based on the asymptotic distribution
of T1n for homoscedastic models (iv) and (vi) and for different choices of the parameter
σw with n1 = n2 = 100.

α: 0.100 0.100 0.100 0.050 0.050 0.050 0.010 0.010 0.010
model σw C: 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
(iv) 0.50 0.100 0.082 0.078 0.046 0.041 0.039 0.012 0.009 0.007

0.75 0.111 0.090 0.083 0.049 0.043 0.039 0.012 0.009 0.008
1.00 0.122 0.097 0.084 0.052 0.046 0.041 0.012 0.009 0.008
1.25 0.133 0.100 0.086 0.056 0.047 0.042 0.012 0.010 0.008
1.50 0.138 0.109 0.093 0.065 0.051 0.044 0.013 0.010 0.008

(vi) 0.50 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.996
0.75 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.997
1.00 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.997
1.25 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997
1.50 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.997

Table 3: See the supplementary material available from the journal website.

Table 4: See the supplementary material available from the journal website.
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Table 5: Observed rejection proportions of the test based on the asymptotic distribution of
T1n for different error distribution with n1 = n2 = 100. The models are for heteroscedastic.

α: 0.100 0.100 0.100 0.050 0.050 0.050 0.010 0.010 0.010
error distribution model C: 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0

mixed (ii) 0.104 0.094 0.093 0.051 0.050 0.047 0.010 0.007 0.008
(iv) 0.105 0.090 0.083 0.049 0.046 0.044 0.011 0.008 0.007
(vi) 0.996 1.000 0.999 0.992 0.998 0.998 0.985 0.993 0.990
(viii) 0.989 0.997 0.994 0.987 0.992 0.985 0.950 0.917 0.836

exponential (ii) 0.149 0.125 0.115 0.076 0.063 0.055 0.015 0.014 0.010
(iv) 0.146 0.115 0.105 0.077 0.061 0.046 0.015 0.012 0.008
(vi) 0.997 0.999 0.999 0.997 0.999 0.998 0.992 0.990 0.988
(viii) 0.998 1.000 0.995 0.995 0.990 0.981 0.948 0.904 0.812

Table 6: See the supplementary material available from the journal website.

Table 7: See the supplementary material available from the journal website.
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