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In recent years, universal scaling has gained renewed attention in the study of magnetocaloric
materials. It has been applied to a wide variety of pure elements and compounds, ranging from rare
earth-based materials to transition metal alloys; from bulk crystalline samples to nanoparticles. It
is therefore necessary to quantify the limits within which the scaling laws would remain applicable
for magnetocaloric research. For this purpose, a threefold approach has been followed: a) the
magnetocaloric responses of a set of materials with Curie temperatures ranging from 46 to 336
K have been modeled with a mean-field Brillouin model, b) experimental data for Gd has been
analyzed, and c) a 3D-Ising model —which is beyond the mean-field approximation— has been
studied. In this way we can demonstrate that the conclusions extracted in this work are model-
independent. It is found that universal scaling remains applicable up to applied fields which provide
a magnetic energy to the system up to 8% of the thermal energy at the Curie temperature. In this
range, the predicted deviations from scaling laws remain below the experimental error margin of
carefully performed experiments. Therefore, for materials whose Curie temperature is close to room
temperature, scaling laws at the Curie temperature would be applicable for the magnetic field range
available at conventional magnetism laboratories (∼ 10 T), well above the fields which are usually
available for magnetocaloric devices.

PACS numbers: 64.60.F- 75.30.Sg 05.10.Ln 71.20.Eh

I. INTRODUCTION

The magnetocaloric effect (MCE) is an intrinsic prop-
erty of some materials consisting in a reversible tempera-
ture change upon the application/removal of a magnetic
field. Nowadays, it represents a hot topic in the material
science research. This is mainly due to its applications in
refrigeration technologies which are increasingly becom-
ing more competitive [1]. The main advantages of the
magnetic refrigeration are related to its environmental
benefits compared to older established technologies. It
is thought, especially after the discovery of several ma-
terials with a giant magnetothermal response [2–4], that
the viability of devices based on MCE materials is feasi-
ble, with a variety of prototypes which have been devel-
oped in recent years [5]. During this period of thorough
research in this field, many materials with remarkably
MCE have been found. They belong to different families:
intermetallic compounds, Heusler alloys, amorphous ma-
terials, ceramic manganites, etc. In parallel, the physical
foundations of this phenomenon have been clarified both
from the theoretical and experimental points of view as
shown in several review papers and books [6–9].
Because of the practical importance of the MCE there

has been a remarkable increment in the number of papers
devoted to the modeling of this effect from a theoretical
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point of view [6, 8, 10]. These theoretical studies on the
MCE were carried out in order to estimate the main MCE
parameters such as magnetic entropy change and adia-
batic temperature change. It is worth noting that these
models allow us to extract useful information about the
foundations of the MCE and they can provide detailed
and complementary information to the experimental re-
sults, especially in the high applied field regions, where
experiments are normally more difficult to perform. A
wide variety of models exist in the theoretical study of
the MCE. Among these theoretical models we can distin-
guish between two main groups.

On the one hand we find the so called first princi-
ples methods which try to obtain the magnetothermal
response without any empirical information, or at least
with the minimum amount of fitting parameters. These
methods consist on purely microscopic approaches. Two
classical methods belonging to this group are quantum
mechanics Hamiltonians solved by Monte Carlo (MC)
algorithms and density functional theory (DFT) simu-
lations. Both of them have already been used in model-
ing MCE. There are some interesting papers in which
MC simulations are used with different materials like
Gd(SixGe1−x)4 [11], (GdxTb1−x)5Si4 [12], and several
Heusler alloys [13–15]. Recently, a new type protocol of
the MCE was proposed in theoretical studies based on
the MC methods [16, 17]. On the other side, DFT is
less used in this research field, although it has been used
to describe both the structural and the magnetic phase
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transitions in some rare-earth intermetallic pseudo-alloys
exhibiting a giant MCE [18–23], and there have been very
few attempts to describe the MCE of materials from first
principles by only using DFT. At the moment, this latter
approach only succeeded with simple metals like gadolin-
ium [24]. Note that both of the mentioned methods con-
sist in microscopic approaches to obtain the MCE.

The other group of models is derived from phenomeno-
logical laws like those of molecular field or the Landau
theory. In this kind of approaches, which are mainly from
a macroscopic point of view, the final result is an equation
of state in which magnetization (M), applied field (H),
and temperature (T ) are related by an equation of the
form Ω(M,H, T ) = 0. Although this expression is analyt-
ical it is not ensured that it can be solved for each variable
separately. Of course, it is always possible to treat the
cited function numerically to obtain values of magnetiza-
tion for different temperatures and applied fields. In this
way, the MCE properties can be easily estimated in the
same way used for experimental data [i.e. by numerically
processing the M(H,T ) data]. These phenomenological
equations of state are divided in two main groups. The
first group includes those equations derived from mean-
field approximations, like the molecular field theory by P.
Weiss [25], the generalization proposed by C. P. Bean and
D. S. Rodbell [26] or the equation more recently derived
by M. D. Kuz’min [27] based on the Landau theory. The
second group is constituted by those expressions derived
from the scaling relations including critical exponents like
the widely used Arrott-Noakes equation [28] and others
less used like the one derived by J. T. Ho and J. D. Litster
[29] a couple of years later. Furthermore, it is possible
to find some examples of generalizations of mean-field
equations of state to include other critical exponents, as
it was proposed again by A. Arrott a few years ago [30].

In any case, all these models must fulfill some scaling
laws in the proximity of the critical point. These scaling
laws were deduced by B. Widom in his, now famous, pa-
per of 1965 [31], where he showed how the variation of
some properties followed a certain scaling law governed
by some powers called critical exponents. Although there
are many exponents involving different magnitudes, only
two of them are independent. All others can be obtained
through the so called scaling relations. During the fol-
lowing years, the ideas of B. Widom were experimentally
confirmed in many systems including magnetic materials
and fluids [32, 33]. Of course, all this scaling formalism
can be transferred to the study on the MCE, since the
maximum in the magnetic entropy change occurs nor-
mally near the critical point. For this reason, it is pos-
sible to find power-law dependencies of the main MCE
parameters with respect to the applied field in materials
with a second-order phase transition [34]. This scaling
behavior has been observed experimentally many times
in a wide range of materials including rare earths, tran-
sition metals based alloys, amorphous alloys, and man-
ganites [35–40]. Recently, it was even used to predict the
concentration of skyrmions [41].

However, this behavior is supposed to be present only
in the vicinity of the critical point. During the last years,
the magnetocaloric community has been using these scal-
ing laws to fit and predict the values of some MCE prop-
erties regardless of the conditions of work temperatures
and applied fields. The purpose of this work is to clarify
under which conditions it is possible to use these scaling
laws. For completeness, in Sec. II, we will start with an
overview of the theory and methodologies which will be
followed by their applications to different kind of mate-
rials and models. In Sec. III, we will analyze the results
obtained by using a mean-field approximation in a wide
selection of ferromagnetic materials with different Curie
temperatures. This allows us to derive the range of ap-
plicability of the scaling laws in the MCE in terms of
temperature and applied field. In order to demonstrate
its validity, we will include some experimental data to
support our hypothesis. Then, we will carry out a sim-
ilar analysis using a 3D-Ising model, which is a micro-
scopic treatment beyond the mean-field approximation.
We will extract similar conclusions, proven that are in-
dependent of the model used. Finally, we will make some
brief remarks about other models used in MCE research
regarding how they behave with respect the critical scal-
ing.

II. THEORY

A. Scaling behavior and field dependence

Before starting with the analysis of the scaling behav-
ior and the field dependence of some MCE quantities, we
must remember that the MCE is characterized by the
magnetic entropy change and the adiabatic temperature
change that a sample undergoes upon the application of a
magnetic field. The first quantity can be defined through
the integrated version of the Maxwell relation as:

∆SM(T,H) = µ0

∫ H

0

(

∂M

∂T

)

H′

dH ′. (1)

And the second one is defined as:

∆Tad(T,H) = −µ0

∫ H

0

T

c(T )H′

(

∂M

∂T

)

H′

dH ′, (2)

where c(T )H is the specific heat at constant field of the
material and µ0 is the permeability of vacuum.
In this work we will only focus on the magnetic entropy

change. Probably the first attempt to describe the field
dependence of the maximum magnetic entropy change
was made over thirty years ago by H. Oesterreicher and
F. T. Parker [42] who showed that −∆SM(TC, H) ∝ H2/3

by expanding the Brillouin function on a power series,
where TC is the Curie temperature. This empirical law
was widely accepted among the magnetocaloric commu-
nity. Later, M. D. Kuz’min [43] added a small negative
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term independent of H , which arose from spatial inho-
mogeneities of real ferromagnetic materials. J. Lyubi-
una et al. [44], based on the Landau theory, proposed a
more complex dependence (including the Kuz’min con-
stant term) as:

−∆SM(T ≈ TC, H) = A(H +H0)
2/3

−AH
2/3
0 +BH4/3, (3)

where A and B are intrinsic material constants and H0 is
related with the Kuz’min constant term. Similar results
were obtained by using other mean-field approximations
like the Green functions formalism applied by P. Álvarez
et al. [45]. In an equivalent way, similar relations were
derived for the adiabatic temperature change [46]. Inde-
pendently from these mean-field approximations, in 2006,
V. Franco et al. [47] proposed that the field dependence
of the magnetic entropy change near TC was a power law
with an exponent n related to the critical exponents of
the material: n = 1 + (β − 1)/(β + γ). The n = 2/3
case is a particular case of this general expression when
we choose the mean-field critical exponents β = 1/2 and
γ = 1. It was proved experimentally that materials with
critical exponents far from the mean-field approximation
obeyed this power law [48, 49]. The exponent n can be
calculated for all temperatures from the magnetic en-
tropy change curves and not only at the critical point,
using the following expression

n(T,H) =
d ln |∆SM(T,H)|

d lnH
. (4)

For a given applied field, the behavior of this expo-
nent is as follows. It has a minimum near TC, (exactly at
TC for mean-field approximation) whose value is the one
pointed out previously depending on the critical expo-
nents (2/3 in the frame of the mean-field approximation).
For temperatures well above the Curie temperature, in
the paramagnetic region, it reaches the value of 2. On
the contrary, for temperatures below the Curie tempera-
ture, it reaches the value of 1 in the purely ferromagnetic
region [34].
It is also possible to construct a unique normalized

magnetic entropy change curve for all values of applied
field, which was initially called master curve [47] and
eventually universal curve [50]. The collapse of all mag-
netic entropy change curves for different applied fields has
been proved that it is a consequence of the critical scal-
ing behavior [50]. For magnetic systems near the critical
point, a scaling relation between magnetization, applied
field, and temperature must be fulfilled and it has the
form [51]:

H

M δ
= f(tM−1/β), (5)

where δ and β are the critical exponents, t ≡ (T−TC)/TC

and f is a scaling function which depends on the model
or the material. For mean-field models, this scaling is

fulfilled with δ = 3 and β = 1/2. Notice that this re-
lation should be fulfilled only in a region close to the
phase transition and not in the whole range of applied
field and temperature, except for some models which
has been constructed exclusively from scaling hypothe-
sis. As expected, the universal curve has been applied to
different materials exhibiting a second-order phase tran-
sition. However, materials with first-order phase tran-
sitions do not collapse onto a universal curve and this
fact can be used to determine the nature of the phase
transition in a given material [52]. In order to con-
struct this phenomenological curve, we firstly normal-
ize the magnetic entropy change dividing by the max-

imum ∆SM/∆Spk
M . Then we choose two reference tem-

peratures, which must fulfill the following conditions:

∆SM(Tr1 < TC)/∆Spk
M = ∆SM(Tr2 > TC)/∆Spk

M = h,
where 0 < h < 1 is an arbitrary constant. Although in
principle h could be freely selected between 0 and 1, a
too large value (reference temperatures chosen too close
to the peak temperature) would produce large numerical
errors due to the limited number of points – in experimen-
tal measurements – which lie in that region. Conversely,
if h is too small, it implies selecting reference tempera-
tures far from the critical region, where other phenomena
could take place. Once the two reference temperatures
are found, we define a new variable θ for the temperature
axis as:

θ =







−(T − TC)/(Tr1 − TC) if T ≤ TC

(T − TC)/(Tr2 − TC) if T > TC.
(6)

The representation of the different magnetic entropy

change curves on the ∆SM/∆Spk
M and θ axis produces the

phenomenological universal curve. It was subsequently
proved that the use of two reference temperatures was
not necessary, unless there were multiple phases in the
sample or the demagnetizing factor was not negligible
[34]. Therefore, in our analysis, we will only use a single
reference temperature for T > TC. Notice that in Eq. (6),
we have used TC which coincides with T pk in mean-field
models but in general they might be slightly different
[53]. In any case, they are very close and they can be
used indistinctly.

B. Mean-field model

One simple approach to describe the ferromagnetic be-
havior of a substance is to consider the possible orienta-
tions of the magnetic moment with respect the applied
field H at temperature T, according to the possible 2J+1
values of the magnetic quantum number (from −J to
+J). In that case, it is straightforward to calculate the
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single-dipole partition function [54]:

Z(T,H,M) =

sinh

(

2J + 1

2J
x

)

sinh

(

1

2J
x

) , (7)

where x = gµ0µBJ(H +λM)/kBT. Here kB is the Boltz-
mann constant, g is the Landé factor, µB is the Bohr
magneton and λ is the phenomenological constant of the
Weiss molecular field. From this partition function it is
possible to deduce all important quantities, especially the
magnetization:

M =
NkBT

µ0

(

∂ lnZ

∂H

)

= MsBJ(x), (8)

where Ms = (N/V )µBgJ is the saturation magnetization
and BJ(x) is the well know Brillouin function. Here, N
and V are the number of magnetic ions and the volume,
respectively. Notice that this expression represents an
equation of state for the magnetic system and this model
will be referred as mean-field Brillouin model. Although
the scaling relation is not obtained for the whole range
of temperature, it is not hard to deduce that for T ≈ TC

the scaling relation given by Eq. (5) is indeed confirmed
with f(x) = x + c being c a constant. The magnetic
entropy per mole, in terms of the gas constant R, has the
following analytical expression:

SM(T,H,M)

R
= lnZ + T

(

∂ lnZ

∂T

)

= ln

sinh

(

2J + 1

2J
x

)

sinh

(

1

2J
x

) − xBJ(x).

(9)

The magnetic entropy change can be calculated as
∆SM = SM(T,H) − SM(T, 0). At very high tempera-
tures the magnetic entropy reaches its maximum value
(maximum disorder) and it is easy to see that SM(T →
∞, H) = R ln(2J + 1). By applying a magnetic field all
dipoles begin to align in the same direction of the ap-
plied field, hence reducing the magnetic entropy, reaching
SM(T → 0, H) = SM(T,H → ∞) = 0 for very low tem-
perature or infinitely high field. Therefore, the maximum
magnetic entropy change achievable for a given material
is −R ln(2J + 1). In this work we do not use the analyt-
ical form of the magnetic entropy to calculate the MCE.
Instead of this, we proceed in an analogous way as that
used for experimental data; differentiating and integrat-
ing the magnetization curves. In this way we get much
more information about the system. This simple model
only needs two parameters to describe the MCE; the sat-
uration magnetization (or only the atomic density) and
the Curie temperature. Remember that in this model,

the Curie temperature is related to the phenomenolog-
ical constant, as TC = µ0(N/V )J(J + 1)(gµB)

2λ/3kB.
To study the field dependence of the magnetic entropy
change peak we can use the scaling relation near the
Curie temperature and it is possible to obtain the fol-
lowing expression:

∆SM(TC, H) ≃ −
µ0λ

2TC

[

10(J + 1)2M2
s

3λ(2J2 + 2J + 1)

]2/3

×H2/3.

(10)

As it was expected, the dependence is a power law with
n = 2/3, which corresponds with the mean-field critical
exponents. This result was previously obtained by J. H.
Belo et al. [55] and of course is compatible with the
mentioned behavior suggested by H. Oesterreicher and
F. T. Parker in 1984 [42].
Despite being very simple, this mean-field model can

be used to fit experimental data with a reasonable agree-
ment in simple ferromagnetic materials [8]. This model
can be improved by adding a new term in the argument
of the Brillouin function of the type λ3M

3 as proposed by
C. P. Bean and D. S. Rodbell [26]. They showed this new
term affected the transition temperature and, moreover,
depending on the value of the phenomenological constant
λ3, the transition could be of first or second-order type.
On the other hand another extra term can be added to
the Gibbs free energy to take into account changes of vol-
ume during the phase transition. In this way it is possi-
ble to study pressure effects during the phase transition
which sometimes have an important role in the MCE.
This model has been successfully used to reproduce the
MCE of some materials with giant MCE and first-order
phase transitions where pressure may have an important
role [56–60], and some other materials like manganites
[61] with both first and second-order phase transitions.
Moreover this kind of theoretical models can provide use-
ful information about the foundations of the different
types of phase transitions that produce the MCE [62, 63].

C. 3D-Ising Model

The other model that we will use in this work is the
Ising model on a cubic lattice which will be referred as
3D-Ising model. Let N be the number of sites which is
given by N = L×L×L, where L is the linear dimension.
The Hamiltonian of this model is defined as:

H = −Jex
∑

〈i,j〉

szi s
z
j − gµ0µBH

∑

i

szi , (szi = ±1/2),

(11)

where Jex > 0 is the ferromagnetic exchange interac-
tion parameter between nearest-neighbor spin pairs 〈i, j〉.
Here we consider an S = 1/2 system which corresponds
to the case of J = 1/2 in Sec. II B. Thus, only at zero ap-
plied field, this model exhibits a second-order phase tran-
sition. According to Ref. [72], in which high-precision
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TABLE I. Parameters used in the mean-field Brillouin model simulations for gadolinium based compounds. From crystallo-
graphic data it is possible to determine the number of atoms and the volume of the unit cell Vcell, to calculate the mass density
ρ, and the saturation magnetization Ms = (N/V )µBgJ.

Material Structure Space Group Vcell ρ TC λ g J Ms at ≈ 0 K Refs.
(Å3) (g cm−3) (K) (kA m−1)

Gd5Si4 Sm5Ge4 Pnma 854.78 6.98 336 87.7 2 7/2 1513 [64]
Gd hcp P63/mmc 66.101 7.90 293 58.8 2 7/2 1963 [65]
Gd3In Fe3C Pnma 391.561 9.95 213 42.3 2 7/2 1989 [66][67]
GdMg ClCs Pm3̄m 55.35 5.45 119 40.1 2 7/2 1172 [68]
GdRu2 MgZn2 P63/mmc 214.241 11.14 84 27.4 2 7/2 1212 [69][70]
GdPd CrB Cmcm 183.419 4.77 46 25.7 2 7/2 707 [71]

FIG. 1. Magnetic entropy change obtained in the mean-field Brillouin model for the selected materials at several values of
applied field. They are ordered by decreasing Curie temperature. Be aware that the scale of ordinate-axis is different depending
on the material.

MC calculation was done, the phase transition tempera-
ture, that is, the Curie temperature, is kBTC/Jex = 1.127
and the critical exponents are β = 0.3265, γ = 1.2372,
and δ = 4.789 [73, 74]. In this paper, we calculate the
magnetic entropy change of this model by MC simula-
tions based on the Wang-Landau method [75–77]. The
Wang-Landau method is one of the multicanonical meth-
ods, which can directly obtain the density of states.
Then, the behavior of magnetic entropy can be calcu-
lated with high accuracy [16, 17]. We confirmed that the
magnetic entropies for L = 8, L = 12, and L = 16 are
almost collapsed. Thus, we use the simulation results for
L = 16 in the analysis throughout this paper. Notice

that the maximum value of magnetic entropy achievable
for this model is R ln 2 ≈ 0.693R when kBT → ∞.

III. RESULTS AND DISCUSSION

A. Mean-field model

In this subsection we will analyze the results regarding
the mean-field Brillouin model for ferromagnetic materi-
als. As it was previously pointed out, this model repro-
duces in a reasonable way the magnetic behavior of sim-
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FIG. 2. Exponent n obtained in the mean-field Brillouin model through Eq. (4) for the selected materials at different applied
fields. Notice that for those materials with low Curie temperatures, that is, GdRu2 and GdPd, the value of the exponent at
TC becomes field dependent for moderately high fields deviating from the mean-field predicted value of 2/3. Besides, for these
low TC materials at very low temperatures, the limit of n = 1 is not reached.

ple ferromagnetic materials. Therefore, in principle, we
cannot deal with materials exhibiting other types of mag-
netic order such as antiferromagnetism, ferrimagnetism,
etc. Among these ideal ferromagnetic materials we can
find pure elements like iron, cobalt, and nickel. All lan-
thanides except lanthanum and lutetium have unpaired
f electrons so they do present magnetic behavior. All of
them have been previously studied in this frame of the
mean-field approximation [78, 79]. However, speaking
strictly, the use of this simple model is only justified in
the case of gadolinium, which has a simple ferromagnetic
behavior. In all other cases, the crystal field interaction
plays a key role in the establishment of the magnetic or-
der. The mean-field model would be valid only in the
high applied-field regime well above the critical fields of
the antiferromagnetic order. Of course, there are more
sophisticated formalisms available to deal with these ma-
terials [8]. Since we are restricted to a narrow group of
materials we will focus on gadolinium and some gadolin-
ium based compounds with non-magnetic atoms. We
present in Table I our selection of materials covering a
wide range of Curie temperatures from 46 K in GdPd
to 336 K in Gd5Si4. In this way we are able to study
how the magnitude of applied fields affects the scaling

relations of the MCE in these materials with very dif-
ferent working temperatures. As it was shown in Sec.
II B, for this model, we only need the Curie temperature
of the material and its saturation magnetization (or the
atomic density, which can be easily calculated from crys-
tallographic data). All required parameters are collected
from the literature and compiled in Table I. It is worth
mentioning that, in order to be able to make realistic
predictions which would match experimental results, it
is necessary to make such a broad selection of materials
and transition temperatures. The reliability of the pre-
dictions will be shown with experimental results for Gd
in Sec. III B.

The calculated magnetic entropy change curves in the
mean-field Brillouin model for different applied fields are
shown in Fig 1. Since the magnetic entropy is expressed
per mole, the magnitude of the MCE is quite different de-
pending on the material, ranging from −0.3R to −1.2R
for 9 T, still far from R ln 8 ≈ 2.08R of the maximum
value. All of the curves have the well know caret shape
characteristic of simple ferromagnetic materials with a
second-order phase transition. Just after this prelimi-
nary characterization, we can calculate the exponent n
for the whole range of temperatures, as shown in Fig. 2.
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FIG. 3. Applied-field dependence of the magnetic entropy change peak for the selected materials ordered by decreasing Curie
temperature. In each graph, we have a comparison between the analytical expression of the ideal scaling (black dashed line)
and the real behavior obtained with the mean-field Brillouin model (red solid line). In order to clarify the main results, all
graphs are divided in three regions: low-field regime where the difference between the peak value predicted by the ideal relation
and the real one is below a 5% (green) so the scaling approximation is valid; high-field regime, where the scaling approximation
is not valid any more because the discrepancies are over 8% (red) and a mid-field region where the errors are within 5% and
8% (yellow).

Although it seems that all materials follow the behavior
described in Sec. II A, if we analyze these results care-
fully we can appreciate how some deviations from the ex-
pected behavior appear in those materials with low Curie
temperatures. For instance, the ideal tendency of n = 2
for T ≫ TC is found in all cases, but this limit is reached
at higher temperatures for increasing values of applied
field. However, if we focus around the Curie tempera-
ture, we can see a slight decrease of n at TC for increasing
fields. In principle, since we are using a mean-field ap-
proximation, n was expected to be 2/3 in all cases. This
is true for Gd5Si4, Gd, Gd3In, and GdMg (with minor
discrepancies). But for GdRu2 and GdPd, whose Curie
temperatures are 84 K and 46 K respectively, the drop
in the value is quite evident, being close to n = 0.5 for
9 T in both cases. Moreover, if we look at the ferromag-
netic region, (below TC) for these low Curie temperature
materials the limit of n = 1 is not reached. In fact, at
some point in temperature n starts to decrease. After
this brief analysis, we could wonder which are the ap-
plicability limits of the power laws in the study of the
MCE. Of course, it is well know that all the power laws
described in Sec. II A are only fulfilled in the “neighbor-
hood of the phase transition.” Our goal is to transform
this loose statement into a more quantitative one when
the MCE magnitudes are concerned.

First of all, if we think in very basic terms there is
one magnitude that will certainly induce the destruction
of the scaling behavior of the magnetic entropy change
peak. For some value of applied field, a very close value
to the theoretical limit of ∆SM is going to be achieved.
For this large enough value of applied field all magnetic
spins are going to be aligned along the same direction.
Then, if at that point we increase the applied field we are

TABLE II. Relevant values of applied field for the applicabil-
ity of scaling relations.

Material TC µ0H(5%) µ0H(8%) kBTC/gJµB (T)
(K) (T) (T) (T)

Gd5Si4 336 5.86 11.87 71.4
Gd 293 5.08 10.33 62.3
Gd3In 213 3.62 7.45 45.3
GdMg 119 1.76 2.94 25.3
GdRu2 84 0.54 2.43 17.9
GdPd 46 0.32 1.30 9.8

not going to notoriously increase the value of the mag-
netic entropy change because it is indeed very close to
the maximum value. Hence, in this regime of very high
applied fields, the value of the exponent n is going to be
0 or very close to it. This is in agreement with the de-
crease from 0.66 to 0.5 showed in Fig. 2 for the cases of
GdRu2 and GdPd. For this reason, it is obvious that for
some value of the applied field the exponent n at TC will
begin to decrease from the predicted value of the criti-
cal exponents to 0. Now, we want to elucidate which are
the values of these fields for which the power laws are not
valid any more. However, according to the results showed
in Fig. 2, we cannot focus exclusively on the magnetic
field because the deviations from the ideal behavior are
only apparent for the low Curie temperature materials
(when we restrict ourselves to the same values of applied
field). Therefore, both magnitudes have to be involved
in the worsening of the scaling behavior. In order to ex-
tract some quantitative conclusions, we analyze the field
dependence of the magnetic entropy change peak for all
these materials. In Sec. II B we have showed the expres-
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FIG. 4. Normalized magnetic entropy change curves as a function of the reduced temperature θ using a single reference
temperature defined with h = 0.6 for the selected materials. Notice that the larger deviations from scaling are observed for the
materials with low TC.

sion of Eq. (10) for the theoretical field dependence of
the magnetic entropy change peak near the phase tran-
sition, so we can compare this ideal behavior (which is a
power law) with the real behavior obtained by Eq. (8).
In this way, we can observe simultaneously which is the
effect of both quantities. On the one hand, we analyze
for which applied field breakdown of the power laws ap-
pears, on the other hand, by comparing different mate-
rials with different working temperatures, we analyze if
this applied-field limit has a tendency with respect to the
Curie temperature. All these results are collected in Fig.
3, where we have marked, for each material, a couple
of values of applied field, labeled by H(5%) and H(8%),
which represent those values for which the power law pre-
diction of the maximum magnetic entropy change differs
only by 5% and 8% from the real one, respectively. The
5% limit has been chosen taking into account the typ-
ical error margin of experimental MCE measurements.
The 8% limit represents deviations from the scaling be-
havior which cannot be ascribed to experimental uncer-
tainty. Although these two limiting values can be consid-
ered somewhat arbitrary, especially the upper one, their
modification would not alter the conclusions of this work.
According to this, for applied field lower than H(5%) we
can apply all power laws in a reliable way. For applied

fields between H(5%) and H(8%), we could apply them
too, but it is possible that we have non-negligible errors.
And for applied fields above H(8%), we should not ap-
ply any power law at all because the differences are too
large. As we can see in Fig. 3, these reference values
of applied field are different for each material and, as
expected, these values are clearly related to the Curie
temperature. In Table II, we have collected all these val-
ues and compared them with an intrinsic field given by
kBTC/gJµB. This quantity provides information about
the ratio between the magnetic energy and thermal en-
ergy at TC. According to the data of Table II, the power
laws are only valid when the applied field is around one
order of magnitude (∼ 8%) smaller than this intrinsic
field of the material. To give some useful numbers, for
materials with near room temperature transition all scal-
ing approximations are valid even for applied field up to
around 10 T. However, for those materials with Curie
temperatures below the nitrogen boiling point, this kind
of approximations have a limited applicability for applied
fields of ∼ 1 T.

We can also analyze the correlation between the scal-
ing behavior and the collapse onto the universal curve of
all magnetic entropy change curves for different applied
fields. In Sec. II A we have discussed in detail that col-
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lapse of the normalized magnetic entropy change curves
is direct consequence of the scaling behavior of ∆SM. In
Fig. 4 we collect the universal curves for the six studied
materials. As expected, the dispersion of the universal
curve for θ < 0 (the ferromagnetic region) remains small
only for those materials with large Curie temperature and
it becomes large for the rest, where significant deviations
from the scaling laws were observed in the exponent n.
This kind of deviation from the ideal behavior predicted
by scaling laws has been observed before in measurements
of low Curie temperature materials. See, for example, the
work by Y. Su et al. [39] on YbTiO3, with TC = 42 K,
and related perovskites or the recent paper by L. Li et al.
[80], which deals with HoZn intermetallic compound with
TC ∼ 72 K. Our results point out that the presence of ad-
ditional magnetic phase transition is not the only cause
of the lack of universal scaling at low temperatures.

B. Experimental support

As it was previously pointed out, with the Brillouin
function the magnetothermal response of a simple fer-
romagnetic material can be reproduced with reasonable
accuracy. To show this, Fig. 5 shows a comparison be-
tween the magnetic entropy change and n(T ) curves ob-
tained with the mean-field Brillouin model and experi-
mental data for a flat disk shaped piece of Gd measured
in a vibrating sample magnetometer for different applied
fields up to 9 T. Despite of the simplicity of the model,
it is obvious that the agreement is quite good, at least
around the Curie temperature. In both cases experimen-
tal data were corrected with a demagnetizing factor of
0.26 in SI untis. Notice that in the case of the experi-
mental data, even if the shape of the sample (a thin plate
measured with the field applied in the plane of the sam-
ple) has been chosen to minimize the influence of the de-
magnetizing factor, a contribution of this demagnetizing
field is known to alter the MCE of materials change peak
[81]. This effect is especially relevant in the n(T ) curves
where n = 1 limits would not be achieved for T ≪ TC in
the presence of demagnetizing fields [82] as in this case
does. With the aid of the experimental data we can check
our proposal of the limits of validity of scaling relations
obtained by the mean-field Brillouin model. According
to our previous results for gadolinium, whose Curie tem-
perature is 293 K, in the proximity of room temperature,
we should expect a good power law behavior for applied
fields up to 10 T. In Fig. 6 we show the field depen-
dence of the magnetic entropy change peak obtained in
the mean-field Brillouin model together with the result
of experimental data. Notice how the correction of the
demagnetization factor is completely necessary [82], oth-
erwise, we would find a relevant discrepancy in the low-
field region but completely artificial and unrelated to the
theoretical model. The calculated maximum of magnetic
entropy change is slightly lower (<4%) than the exper-
imental one but they are close enough. Another impor-

FIG. 5. Comparison between the calculated magnetic entropy
change curves with the mean-field Brillouin model (solid lines)
and the experimental data of gadolinium with applied fields
up to 9 T (symbols) (a). The same comparison between the
exponent n obtained with Eq. (4) (b). In both cases ex-
perimental data are corrected with a demagnetizing factor of
0.26. This correction is especially relevant in the calculation
of the exponent n. Despite of the simplicity of the model, the
agreement is quite reasonable.

tant point that must be clarified is that critical exponents
of real gadolinium (β = 0.39 and γ = 1.24) [83] are sig-
nificantly different from those of mean-field values. How-
ever, it is possible to compare directly all results because
the exponent n in the case of real gadolinium is 0.626,
which very close to the 2/3 value of the mean-field theory.
Therefore, no relevant difference is expected in the slope
of the critical scaling when plotting both sets of data.
We see how up to applied fields of 9 T the agreement be-
tween calculated data by the mean-field Brillouin model
and experimental data is excellent. Consequently, as it
is shown experimentally it is possible to apply scaling re-
lations in the maximum entropy change of the MCE in
the usual working applied fields for materials with Curie
temperature close to room temperature. This fact can be
used to estimate the performance of different materials
without carrying out experimental measurements at very
high applied fields.

C. 3D-Ising model

It is important to complete our results using the 3D-
Ising model introduced in Sec. II C since different results
have been often observed in models beyond the mean-
field approximation. Regarding the MCE, we can find
several examples, for instance, in all magnetic equations
of state based on mean-field approximation [25–27] the
exponent n for the applied field dependence of the mag-
netic entropy change at the peak is going to be 2/3, as
predicted by mean-field critical exponents. On the con-
trary, in other models beyond the mean-field approxima-
tion, this value is different and it is given in terms of the
critical exponents. Other example is the peak position
of the magnetic entropy change. While in the mean-
field approximations the temperature of the peak coin-
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FIG. 6. Comparison of the field dependence of the magnetic
entropy change peak between the mean-field Brillouin model
and the experimental data with and without demagnetization
factor (DF). As it was predicted by the model for the case of
gadolinium whose Curie temperature is at room temperature
the power law for the field dependence is fulfilled up to fields
of 10 T.

cides with the Curie temperature, in the models beyond
the mean-field approximation the peak temperature is lo-
cated slightly above the Curie temperature and linearly
increases with the applied field [53].

The aim of this section is to carry out a similar analy-
sis of the previous sections in the 3D-Ising model where
Jex > 0 as explained in Sec. II C. The Ising model is
a microscopic model and can treat physical properties
beyond the mean-field approximation and it belong to a
different universality class [74]. By using the 3D-Ising
model, we can confirm that the conclusions extracted
in Secs. III A and III B are completely general. Fig-
ure 7 shows the temperature dependence of the magnetic
entropy change for different applied fields for L = 16,
which are calculated by the Wang-Landau method. We

FIG. 7. Calculated magnetic entropy change curves with the
3D-Ising model for different applied fields. Notice that in this
case we work with dimensionless magnitudes in applied field
and temperature.

have chosen values of the applied field so that the usual
experimental conditions can be reproduced. In the ex-
perimental data of gadolinium presented in Sec. III B
the applied field was within the range 1 − 10 T. In this
paper, Jex is the energy unit, so the temperature and
applied field are expressed by kBT/Jex and gµ0µBH/Jex,
respectively. By comparing kBT/Jex and gµ0µBH/Jex,
we can estimate the value of the applied field, finding
that gµ0µBH/Jex > 1 corresponds to over 100 T for the
materials whose Curie temperatures are ∼ 100 K. Thus,
in order to reproduce the order of 1 − 10 T, it is rea-
sonable to use gµ0µBH/Jex in the range of 0.01 − 0.1.
The temperature dependence of the exponent n for dif-
ferent applied fields is shown in Fig. 8. The same behav-
iors observed in the mean-field Brillouin model shown
in Fig. 2 explained in Sec. III A, that is, at T ≪ TC

and T ≫ TC, respectively, bounds of n = 1 and n = 2,
are obtained in the 3D-Ising model for low applied fields.
The different point from the mean-field Brillouin model
is that the value of n at TC becomes 0.569, which is ob-
tained by the critical exponents of the 3D-Ising model by
n = 1 + (β − 1)/(β + γ). However, these behaviors are
shifted when the applied field becomes large, because the
applied field is so high that we are close to the saturation
magnetization regime, as discussed in Sec. III A. Figure

9 shows the magnetic entropy change at the peak |∆Spk
M |,

plotted in logarithmic scale, as a function of the applied
field. In this model, we cannot provide an analytical ex-
pression of the magnetic entropy change. However, it is
possible to confirm the power-law behavior of this mag-
nitude by performing a linear fitting in the low applied
field region. The intrinsic field of this model defined in
Sec. III A is 2kBTC/Jex = 2.254 (taking into account the

FIG. 8. Exponent n with the 3D-Ising model for different ap-
plied fields calculated from Eq. (4). Notice that the behavior
is the same as in the mean-field Brillouin model. For high
applied field the exponent at TC begins to decrease and the
limit of n = 1 is not satisfied for very low temperatures.
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FIG. 9. Applied-field dependence of the magnetic entropy
change peak in the 3D-Ising model. In this case, an analyt-
ical expression for the scaling relation cannot be provided.
Instead, we perform a linear fitting in the low applied field
region. The exponent obtained in the fitting is very similar
to the value predicted by the critical exponents of the model.
(see text for details).

FIG. 10. Universal curve of the magnetic entropy change in
the 3D-Ising model. The specific value of the Curie tempera-
ture of this model produces a quick saturation of the material
in the ferromagnetic range, affecting the collapse of the curves
as discussed in the text.

value of J = 1/2 in this model) and the 8% of this field
is 0.18. By performing the linear fitting in this region
gµ0µBH/Jex < 0.18, we obtain n = 0.571, which is in
perfect agreement with the expected value of 0.569 from
the critical exponents. This fitting curve is also shown
in Fig. 9 and notice that expanding the linear fitting
to higher values of applied fields the obtained value of
exponent n differs dramatically from the expected value.

Finally, in Fig. 10, we plot the magnetic entropy
change curves for different applied fields (with a single
temperature reference) which are in the range of appli-
cability of the scaling relations (with two extra curves
outside of the correct field range). Around the Curie
temperature, all magnetic entropy change curves are su-
perposed by using normalized magnetic entropy and nor-
malized temperature but for negative values of θ not very

far away from zero because the Curie temperature is only
kBT/Jex = 1.127.

D. Other remarks

There are several aspects which might be important
when analyzing experimental data and, especially, when
comparing with theoretical models. Firstly, we have
proved in the previous sections that we have to be cau-
tious if we want to apply the power laws derived for the
MCE magnitudes. We have to make sure, first, that we
are in the appropriate conditions of temperature and ap-
plied field to do this. Additionally, when using theoreti-
cal magnetic equations of state we have to be aware that,
depending on the model, the scaling relations can be ful-
filled in a broader or narrower range. For instance, we
have seen that for the Brillouin function the range of ap-
plicability is similar to that observed in experiments but
it might not be the case for other models. Of course, the
power laws should be guaranteed at least for T → TC if
the model is well constructed. However, there are mod-
els in which the range of applicability is very narrow,
for example in the Kuz’min equation of state [27]. In
other cases, like in the Bean-Rodbell model [26], some
additional parameters are included, so they can promote
the destruction of these critical phenomena or lead to an
artificial narrowing of its validity range. This fact has
been interpreted by some researches as a proof of the
lack of scaling relations in materials [84]. Finally, we
want to pay some attention to those equations of state
based directly on scaling relations like the Arrott-Noakes
equation [28] or the Ho-Litster equation [29]. The first
one has been widely used among the MCE community
with plenty of success. In fact, it has been used to fit
experimental data with very high accuracy [48, 85]. The
Arrott-Noakes equation of state was derived originally
to reproduce the magnetothermal response of pure nickel
and can be expressed as:

(

H

M

)1/γ

= a(T − TC) + bM1/β, (12)

where a and b are two fitting parameters. This equation
is extremely useful due to its simplicity and the two fit-
ting parameters add a lot of freedom allowing the under-
standing of the experimental data. Another advantage
of this equation is the wide range of applicability, which
has been proved to be valid for t(M/H)−1/β . 25 within
errors of less than 1% [86]. Moreover, this equation has
been used to extract valuable information in the context
of MCE such as composite materials [87] or the demag-
netizing factor [82]. Nevertheless, it is worth noting that
this type of equations of state are constructed by apply-
ing the critical scaling in the whole range of applied field
and temperature, which means that in these models a
real saturation in magnetization is never reached. This
fact has the clear consequence that the exponent n is
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FIG. 11. Applied-field dependence of the exponent n eval-
uated at TC for the different materials calculated with the
mean-field Brillouin model (MF). Notice the slight depen-
dence with respect to the applied field for those materials
with low Curie temperature. For materials with near room
Curie temperature the values of n remain close to the pre-
dicted value. On the contrary, for scaling models like the
Arrott-Noakes (AN) equation there is no field dependence at
all. Dashed lines correspond to the ideal value of 2/3 and to
a 5% lower value which would be acceptable.

completely independent of the applied field because no
saturation in magnetization is taken into account.

As an example we show in Fig. 11 the applied field
dependence of the exponent n evaluated at TC for the
mean-field model and for a soft amorphous alloy modeled
by the Arrott-Noakes equation [48] with n = 0.7313.As it
is shown in the graph, with the mean-field approximation
of the Brillouin function a slight field dependence exists
in the exponent n at TC especially for materials with low
Curie temperatures as we discussed in Sec. III A. On the
contrary for the alloy modeled with the Arrott-Noakes
equation of state the exponent n is constant all over the
whole range of applied fields. As we pointed out, this
incorrect tendency is due to the absence of a real satu-
ration of magnetization. However, if we remember the
experimental data of gadolinium in Fig. 5, in the usual
experimental applied-field range we are still far from the
complete saturation region. For this reason, it is com-
pletely acceptable the use of this type of equations in the
standard experimental conditions and in the neighbor-
hood of the phase transition.

IV. CONCLUSIONS

In this work we have carried out a detailed study of
the field dependence of the magnetic entropy change by
means of a mean-field Brillouin model and a 3D-Ising
model. We have shown that the field dependence of the
magnetic entropy change at the peak obeys a power law
according to the critical exponents of each model but
not in the whole range of applied field. Therefore, we
have delimited which is the range of applicability of this
behavior in terms of temperature and applied field. We
have proven that, even for temperatures very close to the
Curie temperature for high enough applied fields, the ex-
ponent n starts to decrease, reaching zero value for in-
finitely high fields. This is due to the achievement of
the total orientation of the domains in the direction of
the applied field, reaching the theoretical maximum in
magnetic entropy change, R ln(2J +1), regardless of any
further increase of the applied field. On the other hand
for temperatures well below the Curie temperature the
scaling behavior is also lost even for moderate values of
applied fields. According to these results, the scaling be-
havior of the MCE is only valid when the energy arising
from the magnetic field µ0gJµBH is much less than the
energy contribution of the temperature kBT. In practical
terms this means that for materials with phase transition
near room temperatures these scaling approximations are
valid in a broad enough applied field range (. 10 T) so
the use of the power laws is completely justified and it
could be very useful in magnetic measurements. This
point was confirmed with experimental data of gadolin-
ium. However, for materials with transition temperature
of the order of the boiling point of nitrogen or less, we
should be very careful when applying these scaling re-
lations because they will not be valid even for such low
applied fields of the order of 1 T.
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