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Introduction

In the production of certain composite materials, the mixture of the components is
carried out at a microscopic level or, more precisely, at a mesoscopic level (small from
the macroscopic point of view but sufficiently large to neglect the quantum effects).
The first difficulty involved is the numerical resolution of the partial differential
equations that describe the behaviour of the related physical quantities. It would be
necessary to use meshes whose elements are small compared to the measure of the
structures formed by the components of the mixture. This would lead to systems
of equations whose large sizes make their direct resolution virtually unattainable.
Both physicians and engineers have usually tackled this kind of problems by inserting
some small parameters with the purpose of making an asymptotic expansion with
respect to them. As a consequence, they obtain much simpler problems whose
solutions provide a good approximation of the solution to the original problem.
In many occasions, a later mathematical justification for the resulting models has
been obtained, proving some convergence results in certain functional spaces. In
mathematics, the homogenization theory is the field that deals with this type of
questions.

As an example, we recall the perhaps most classical result in the theory of homo-
genization. We consider the electric material obtained upon periodic repetition of a
cell with small period € > 0. The electrostatic theory states that the electrostatic
potential u,. is a solution to

—div (A (g) Vu.) =p inQ, (1)

where ) is an open subset of RV (N = 2,3 in practice) and p is the charge density.
The matrix of coefficients A depends on the dielectric constant of the medium and
is Yy-periodic (where Yy is the unit cube of RY). In order to have the uniqueness of
solution to (1), an additional boundary condition is clearly needed. The generation
of materials under this procedure is very common in engineering.

The method of asymptotic expansions (see e.g. [9], [65], [71], [84], [85]) applied
to this problem consists in assuming that the function u. admits an expansion of
the type

ug(x) ~ UO(ZL‘) + cuq <$’ E) + 5211,2 (I’, E) + ... ,
3 £

with uy,ug, ... periodic with respect to their second variable. By replacing it in (1)
and identifying the coefficients with the same power of ¢, one formally obtains that
ug is a solution to

— div(A,Vug) = p in Q, (2)

11
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where A, (the homogenized matrix) is defined by

Ang = | A+ Vyuwe)dy, YEERY, (3)

YN

with wg solution to
—div (AVwe) =0 in RY,
we Yn-periodic.

In addition, it is possible to prove

Ul(fE, ?J) = quo(as)(y)'

The previous result explains the term homogenization. Whereas in (1) we had a
strongly heterogeneous material, the constant matrix A, in (2) corresponds to a
homogeneous material. Note also that the numerical resolution of ug and u; is
much simpler than that of u.. From a more theoretical point of view and on the
macroscopic side, the electric properties of the material corresponding to A(z/e) are
similar to the properties of the material modelled by Aj. If, for instance, the matrix
A is the outcome of the mixture of two materials, i.e. there exist a measurable set
Z C Yy and two matrices Ay, Ay such that

Aly) = Aixz(y) + A2(1 = xz(y)), ae. y € Yn,

then, we build a new material, corresponding to A;, whose properties depend not
only on the proportion of the two mixed material (i.e. the measure of Z) but also
on their geometric arrangement. Therefore, even if A; and A, are scalar matrices
corresponding to isotropic materials (i.e. their properties do not depend on the
direction), the homogenized matrix A, does not need to be scalar.

Even though the method described above for obtaining A, is formal, some con-
vergence results can be found in [9] and [65]. In fact, due to its importance in
architecture and engineering, many methods have been developed in order to math-
ematically solve problems with some periodicity assumption like the one above. We
would like to highlight the two-scale convergence and the unfolding methods ([2],
4], [34), [36], [41], [s1]).

The previous example shows how the process of obtaining new materials through
the mixture of existing ones can be analysed using highly oscillating distributions.
This is done by studying the asymptotic behaviour of PDE with varying coefficients.
Although we talked about a periodic problem before, it is also of great importance
to know the behaviour of similar problems under no periodicity condition in order
to be able to obtain more general materials. In this context, the first question that
arises is whether or not the kind of equations that we are dealing with is stable in
the limit. Otherwise we would need more general models.

To our knowledge, the first results regarding the stability in the limit of a sequence
of PDE with varying coefficients deal with the case of a sequence of second-order
elliptic linear equations in the divergence form. S. Spagnolo showed in [87] (see also
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[52]) that if the sequence of symmetric matrix-valued functions A, is bounded in
L (Q)N*N and is uniformly elliptic in the sense that there exists o > 0 satisfying

Al -€>alé)?, YneN, VEERY, ae. Q, (4)

then there exist a subsequence of A, still denoted by A,,, and a symmetric matrix

function A € L®°(Q)V*N also fulfilling (4) such that for every f € H~1(Q), the
solutions to

—div (A,Vu,) = f in Q,

{ .

Up =0 on 0f),

weakly converge in Hj () to the solution u of the problem obtained upon substitu-
tion of A,, by A. The extension of this result to the corresponding parabolic operator
is also shown in the cited reference (the extension to the hyperbolic case appears
in [43]). F. Murat and L. Tartar later generalised this result to the case of general
matrices without any assumption of symmetry ([76]), also proving the convergence
of A,Vu, to AVu in L*(Q2)N. This result can be easily extended to systems of
elliptic equations and, especially to the linear elasticity system that describes the
elastic deformation of a solid (supposing that the derivatives of the deformations are
negligible). We refer to the works of G. Francfort [59], E. Sanchez-Palencia [85] and
G. Duvaut (unavailable reference). The proof of this result relies on the oscillating
functions method and the key idea is to use specific sequences of test functions (the
previously mentioned two-scale convergence is also based on this idea). An essential
tool in this proof is the div-curl theorem, which is the best known result of the
compensated compactness theory, also introduced by F. Murat and L. Tartar ([77],
[89]). The div-curl theorem states that for p € (1, 00), if

o, — o in LP(Q)N, T, — 7 in LP(Q)N, ©)
, 6
dive, — dive in W HP(Q), curl 7, — curl7 in W5 (Q)VN

then
Op-Tn — 07 inD(Q).

Although the convergence result for (5) is usually stated with homogeneous Dirichlet
boundary conditions as we did, it also holds for other kinds of boundary conditions.
In addition, the result is local in the sense that the value of the homogenized matrix
A in an arbitrary open subset of €2 only depends on the values of A, in that subset.
Some extensions to nonlinear equations can be found e.g. in [82] and [53].

It is also worth mentioning that this sort of results is applied to the resolution
of optimal material design problems by providing relaxed formulations (see e.g. [2],
[35], [80]).

A common question that emerges from the cited results is what happens if the
sequence A,, is not uniformly bounded or uniformly elliptic. This is known as high-
contrast homogenization.

A very useful tool that allows to tackle this kind of problems is the I'-convergence
that was introduced by E. De Giorgi (see e.g. [12], [14], [48], [51]). Let X be a metric
space (the definition can be extended to non metric spaces) and F,, : X — RU{+o00}
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a sequence of functionals, F), is said to I'-converge to F' in X if the two following
conditions hold:

T, — v in X = liminf F,,(z,) > F(x),

n—oo

Vo e X, dz, — x such that limsup F,(z,) < F(z).

n—oo

The most important result in the I'-convergence theory states that if F}, reaches a
minimum at x, and the sequence z,, is compact in X, then every limit point of x,,
is a point of minimum of F'. Therefore, if we go back to problem (5) and assume
that A, is symmetric, then w, is a solution if and only if it is a solution to

min {/ AnVu-Vudx—Q(f,u)}.
Q

ueHL(Q)

Furthermore, taking into account that, thanks to (4), the solutions to (5) are
bounded in L?*(2), we can conclude that the result by S. Spagnolo can be deduced
by showing (assuming that the right-hand side belongs to L?())

{ui—)/Q(AnVu-VU—qu) dx] — {uH/g(AVu-Vu—qu)dm} in L*(92),

or, equivalently (as a consequence of considering f as an element of the dual of
L*(Q))

{u — / A Vu-Vu d:v] AN {u — / AVu - Vu dx} in L*(9).
Q Q
This formulation has the advantage that the functional
u > / A, Vu-Vudz, (7)
Q

is well defined even though the integral might be infinite. This allows to work with
the case of A, not being in L>®°(Q)V*Y more easily. However, the disadvantage is
that it must be possible to write the problem as a minimization problem.

As a classic example of applicability of the theory of I'-convergence to the res-
olution of homogenization problems, we point out the work [33] by L. Carbone and
C. Sbordone, where they analyse the I'-convergence in L>°(£2) of the sequence of
functionals

uH/Fn(x,u,Vu) dz, (8)
Q

with £, : @ x R x RY — R a sequence of Carathéodory functions (measurable in
the first variable and continuous in the other two), convex with respect to the last
variable and such that

0 < Fu(z,8,8) < an(x)(1+|s|P +£7), V(s,&) ERxRY, ae z€Q, (9)
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with p > 1 and a,, bounded in L'(Q). The authors show that, for a subsequence of n,
there exists the I-limit of these functionals in L>°(£2) and that it admits an integral
representation of the same type, at least for the regular functions. Moreover, if a,
is equi-integrable then the I-limit in L°>°(£2) coincides with the I-limit in L'(Q). In
addition the homogenization process is local as in the previous cases.

If we wanted to apply this result to the convergence of minima, then these func-
tionals would need to attain a minimum and, also, these minima would have to be
contained in a compact set of the considered topology. Thus, if a,, is equi-integrable,
it is enough to have the boundedness of the sequence of minima in WH1(Q2). This
can be achieved imposing some suitable coercivity condition, for instance,

1 ,
0 < bp(z)|€]P < Fy(x,5,6), V(s5,6) eERxRY, ae. 2€Q, b,” bounded in LF (Q).

If a, were only bounded in L'(€2), we would need the sequence of minima to be
compact in L*>(Q)), which, essentially, would mean to take p > NN and a coercivity
condition such as

aléP < Fo(z,5,€), V(5,) ERxRY ae. x€Q, a>0.

As an example, the results in [33] can be applied to problem (5), deducing that, for
N > 2 and A, symmetric satisfying

ba(2)€]* < Ap(2)€ - € S an(@)[€]?, VEERY, ae zeQ,
an, by, >0, a, bounded in L'(Q), equi-integrable, b, bounded in L'(),

and f regular enough, then the solutions to (5) converge weakly-* in BV (2) to the
solution to a problem of the same type.

In [56] (see also [8], [28]) V. N. Fenchenko and E. Ya. Khruslov provide an
example where a, is a function bounded in L'() (but not equi-integrable) with
Q) =w x (0,1) and w is an open bounded subset of R?, satisfying that the solutions
to

—div (a,Vu,) = f in Q,
Uy =0 on 051,

converge in H}(€2)-weak to the solution to

1
—Au+ 271 (u+/ h(xg,t)u(xl,xg,t)dt) =f inQ,

0
u=">0 on 0f),

where h is a nonzero function. This is a case where the limit equation changes.
In the limit we find a term of zero order and a nonlocal term. A general result
in the same vein has been obtained by U. Mosco in [74] where, making use of the
Beurling-Deny representation formula of Dirichlet forms ([10]), it is proved that the
[-limit in L?(Q2) of the sequence of functionals given by (7), with A,, nonnegative,
bounded in L'(Q)V*N and symmetric, converge to a functional of the type

U /QAVU -Vudu(zr) + /Quzdy(:v) +/Q . (u(z) — u(y))an(I, Y), (10)
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with p, v and n nonnegative bounded Borel measures. In general, the homogeniz-
ation process thus leads us to nonlocal terms even if one starts with strongly local
terms.

Thanks to a generalisation of the div-curl theorem, it has been proved later in
[17], [19] that, in dimension N = 2, assuming that A, is uniformly elliptic, the
two last terms are actually zero, i.e. the functional does not change of form upon
I'-convergence and thus, the homogeneization process remains local. This result
has been subsequently generalised in [20], where the authors show that it is not
even necessary to impose the condition of boundedness in L'(Q)V*N. Some related
results concerning equations in the periodic case and the appearance of zero-order
terms can be found in [13] and [21] respectively. All these works make use of certain
recent results of uniform convergence for the solutions to elliptic PDE ([22], [72]).
In fact, with these ideas it has been obtained in [23] an extension of the results
by L. Carbone and C. Sbordone in [33] where the condition p > N — 1 (instead
of p > N) implies the equivalence between the I-limit in L'(Q2) and L*>°(Q) of the
functionals defined by (8).

The results of uniform convergence in the references [13], [20], [21], [23] and [33]
rely on the maximum principle, and so does the Beurling-Deny formula that leads
to expression (10). For this reason, the generalisation of these results to the case
of systems of equations does not hold. As a consequence, contrary to (10), the
absence of a uniform bound of the coefficients in the linear elasticity may cause the
appearance of second-order derivatives in the I'-limit as proved by C. Pideri and
P. Seppecher in [83]. Furthermore, M. Camar-Eddine and P. Seppecher showed in
[32] that it is possible to reach any lower-semicontinuous quadratic functional that
vanishes for the rigid movements.

Due to the lack of the maximum principle, there are not general results, to our
knowledge, about what assumptions of boundedness or ellipticity on the coefficients
are needed in order for a system of PDE to keep its structure in the limit and for
the homogenization process to be local. It is worth mentioning the existence of
some particular results for the linear case via I'-convergence. For N = 2, it has
been proved in [18] the stability of the linear elasticity system assuming that the
coefficients are uniformly elliptic and bounded in L!. This result is based on the
generalisation of the div-curl theorem in [26]. Another result relative to a general
elliptic system corresponding to M equations in an open set  C RY has been
obtained in [24], where the authors consider a sequence of coefficients tensors A,
such that there exists another sequence of uniformly elliptic and bounded tensors
B,, in such a way that A, — B,, strongly converges to zero in L'(Q; L(RM*Y)). Note
that the uniform ellipticity is imposed in an integral way, i.e.

a/ | Duldz < / A,Du: Dudx, Vue Hy(Q)Y, (11)
Q Q
with @ > 0. It is known (see e.g. [48]) that this implies

A€ € > alef, VESRMY Rank(€) =1, ae. ©, (12)

and thus, in the case of equations (M = 1), it is equivalent to (4). However, this
is not the case for systems. In order to distinguish these cases, in the literature,
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it is common to say that a tensor which satisfies (12) is strongly elliptic whereas,
in the case when this condition holds for all £ € RM*¥  then it is said to be very
strongly elliptic. The theory of compensated compactness shows that if A, is a
regular function in € then conditions (12) and (11) are equivalent.

The main problem that we are going to tackle in the two first chapters of this
thesis is to obtain some ellipticity and/or boundedness conditions in an arbitrary
dimension, for linear and nonlinear systems, that lead to a local limit system. For
that, we will make use of certain extensions of the div-curl theorem ([25], [26]).
In the third chapter we will go on with this question but when there is also a
reduction of dimension in the domain. Namely, we consider the elasticity system
for the thin beam Q. = (0,1) X (ew) where w is an open bounded regular subset
of RV~=1. Contrary to the previous chapters where the problem is posed in a fixed
domain, now we intend to deduce a uni-dimensional limit system. This is a classical
problem in engineering. When trying to directly solve a problem of PDE posed
in a domain where at least one of the dimensions is much smaller than the rest,
we usually come across the previously mentioned difficulty of having to use very
fine meshes. The idea in homogenization is to approximate the solutions of the
problem by those of a problem posed in a domain of smaller dimension. Therefore,
in the case of a beam, the problem that is usually solved, consists in two uncoupled
elliptic equations of fourth order. From the mathematical point of view (see e.g.
[68], [92]) these equations are obtained by passing to the limit in the elasticity
system corresponding to a homogeneous isotropic material in dimension 3 when the
thickness of the beam tens to zero. The solution to the limit problem provides an
approximation of the transverse deformations of the beam. More generally, in [79]
(see also [37]) the authors consider an elasticity tensor of the form A(xq,xs/e, x3/€),
where A is an element of L>((0,1) x w; L(R3*?)) and satisfies the usual ellipticity
condition. This allows, for instance, to deal with materials in which there is a
kernel of a certain material surrounded by another one. In this case the obtained
approximation of the deformation is more complex.

Continuing the discussion from the beginning of this introduction, an important
problem is to know what happens when the thin domain (beam or plate) is formed
by an arbitrary mixture of materials. This leads to the study of the asymptotic
behaviour of a problem of PDE posed in a thin domain 2., where £ > 0 is a small
value that measures the thickness and where the coefficients also depend on €. Up
to our knowledge, this problem has not been studied so deeply as the case where
there is a fixed domain. Nonetheless, we can refer to some related works such as
[5], [30] and [86], where the authors analyse this problem under certain periodicity
conditions. As it has been previously explained, this allows to deal with materials
that are usually present in engineering. However, if we were interested in deducing
what materials can be constructed upon the mixture of given ones, we would need
to remove the conditions of periodicity. In the case of diffusion problems in a beam
(0,1) x (ew) and assuming uniform ellipticity and boundedness, the problem has
been studied in [45] under certain conditions on the structure that allow to apply a
result of the div-curl type as well as in [39] for a general setting. In this last reference,
the authors deal with very general right-hand-side terms and deduce a limit system
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posed in the domain (0,1) X w which is nonlocal in general. When we restrict to
right-hand-side terms that do not strongly oscillate in the variables corresponding to
the degenerating dimensions, the limit problem is reduced to a one-dimensional local
problem. For the study of the asymptotic behaviour of the elasticity system with
variable coefficients in a degenerating domain, we cite [50] where the case of a beam
w % (0,¢) with w C R? open and bounded, is considered. Under suitable conditions
of isotropy and assuming that the coefficients are uniformly elliptic and bounded, it
is obtained a fourth-order limit equation corresponding to the vertical displacement,
which is similar to the usual case studied in engineering for plates formed by isotropic
materials. The case when there is no isotropy but the coefficients only depend on the
height variable is analysed in [62]. In the limit system for this case it is not possible
to uncouple, in general, the deformations in the horizontal and vertical variables.

Along this introduction, we have mentioned many cases for which the structure
of a problem of PDE, where the coefficients are variable, is preserved in the limit.
Nevertheless, there are notable examples where some important properties are lost
in the limiting process. This can be used to construct materials with very particular
properties. In this sense, we analyse the difference between local and global coerciv-
ity that we mentioned above when we talked about the homogenization of systems.
It is a known result that the formula of periodic homogenization (3) remains true
for systems by imposing integral (instead of pointwise) coercivity. Moreover, for the
case M = N it has been proved in [61] that it suffices to have the existence of a > 0
such that (for A Yy-periodic)

/ ADu : Dudy > a/ |Dul?dy, Yue H..(RY) Yy-periodic,
YN

loc
YN

(13)
ADu : Dudy >0, YucDRY)N.
RN

An interesting question is what properties of ellipticity are fulfilled by the homo-
genised tensor. S. Gutiérrez proves in [64] that, a certain homogenization scheme
(called 1*-convergence in [27]) applied to the lamination of a strongly elliptic iso-
tropic material, in the sense that (12) holds, and a very strongly elliptic isotropic
material (i.e. that (12) holds for all £ € R¥*Y) can lead to a limit material that
does not even satisfy the strong ellipticity condition. S. Gutiérrez carries out this
study for the two- and three-dimensional cases. In some cases in dimension 3, it is
in fact necessary to perform a second lamination with a third material (that can
be chosen very strongly elliptic). However, the process followed by S. Gutiérrez re-
quires a priori bounds in L? for the sequence of deformations, which is incompatible
with the assumption of weak coercivity. Therefore, S. Gutiérrez’ result does not
address the asymptotic behaviour of the corresponding sequence of systems of PDE.
In [27], the authors provide, for the two-dimensional case, a justification of this res-
ult in terms of I'-convergence and show the canonical character of the lamination
performed by S. Gutiérrez. Recall that if the tensor functions x — A(z/¢e) fulfilled
the uniform integral ellipticity condition

/ A <£) Du : Dudx > a/ |Du*dz, Yue Ce(Q)Y, (14)
Q € Q
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with @ > 0 (independent of ¢), then the I'-limit would also satisfy this property.
This means that the tensor A constructed by S. Gutiérrez does not satisfy condition
(14), although each one of the homogeneous phases of A does. As it has been
pointed out by M. Briane and G. Francfort in [27], there exist tensor functions
A RN — L(RY*N) with jump discontinuities such that (12) holds for Q = RY
but where condition (11) fails. This can be easily seen with the change of variable
y = z/e. This means that the equivalence between the two definitions that we
mentioned before for a regular tensor function A is not true in general.

In the fourth chapter of this thesis we provide justification for the results by
S. Gutiérrez in the three-dimensional case through the I'-convergence theory.

In the exposition that we have conducted so far, we have introduced the different
problems that interest us in the present PhD project, their motivation and the
existing related results carried out by other authors. In addition, we have outlined
the precise questions that we intend to tackle. In what follows, we provide an explicit
description of the problems that we study in each chapter of this PhD project, the
results that we have obtained as well as the difficulties that arose and the methods
and tools that we used to overcome them.

Chapter 1

We consider © an open bounded subset of RY, N > 2, and an integer number
M > 1. In this chapter we study the asymptotic behaviour of the following elliptic
linear problems

(15)

—Div (A, Du,) = f, in Q,
Uy, =0 on 0f).

Our purpose is to give conditions of integrability and ellipticity on the sequence of
tensor functions A, € LP(Q; L(RM*N)) in order for the homogenized problem to be
of the same type, at least for sufficiently regular elements, and in order to have a local
homogenization process. As mentioned above, in the case of equations (M = 1),
it is enough to have A ! bounded in L'(Q)V*Y and A,, bounded in L'(2)¥*" and
equi-integrable. In fact, the result is not true if the condition of equi-integrability
of A,, is removed. The proof of these results uses the maximum principle and thus,
it is not valid for systems.

In our case, we first show the existence of an abstract homogenization result
when the coefficients A,, only fulfil

A,, bounded in L*(Q; L(RM*M)), (16)

A€ €>0, VE e RN (17)

%
3K >0, / |Duldz < K </ A,Du : Du da:> , Yu e Wy ()M, (18)
Q Q



20

In the proof we use some estimates which are based on the theory of I'-convergence
applied to the symmetric part of A,. For that, we also assume that the skew-
symmetric part of A, can be uniformly controlled by the symmetric part, namely,

AR >0, |48 n| < RIALL : €|2| A |2, V& e RN vpeN, ae Q. (19)

Moreover, note that thanks to condition (16) we can assume the existence of a €

M(Q) such that
|A,| = a en M(Q). (20)

The mentioned theorem (see Theorem 1.16 for further details) states

Theorem 0.1. Assume A, € L>®(Q; L(RM*N)) satisfies (16), (17), (18) and (19).
Then, there exist a subsequence of n, still denoted by n, a Hilbert space H C
W (M and a continuous linear operator ¥ : H — LLQ)M*N such that for
every sequence f, weakly-+ converging to f in L>°(Q)M, the unique solution to (15)
satisfies

U, —u in BV ()M,

A, Du, = S(u)a in M(Q)M*N, (21)

Observe that (21), together with the convergence of f,, establishes that u is a
solution to the equation .
—Div(X(u)a) = f in Q,

and thus, it gives the existence of a limit equation. However, it does not yield a
representation of 3. We recall that even for the case M = 1, the limit ¥ is nonlocal
in general, and therefore it does not have the form of i(u) = ADu for some tensor
function A.

The result that we show in this chapter (Theorem 1.16) is actually more general
and, additionally, it gives the convergence of the energies in the sense that there
exists a continuous bilinear operator B : H x H — M(Q) such that if u, is as in
the theorem and v, is a sequence in Wy (Q)M that fulfils

Uy = v in BV(Q)M, limsup/ A,Dv, : Dv, dx < 400,
Q

n—oQ

then )
A, Du, : Dv, = B(u,v) in M(Q).

Furthermore, this operator B is related to X by
B(u,v) =%(u) : Dva inQ, Yove Cl{)M,

and u is the unique solution to

u € H,

/dé(u,v):/fmda:, Vv e H.
Q 0
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Observe that the ellipticity condition (18) on A, is integral instead of pointwise.
As mentioned above, these two conditions are not equivalent in the case of systems.
This allows us to apply our results to the linear elasticity, where pointwise ellipticity
fails. A sufficient pointwise condition in order to have (18) would be to impose A *
bounded in L!'(Q; L(RM*V)).

In order to have a local representation of the operator ¥ (and of B) it is necessary
to assume some integrability conditions on A,,. The obtained result is based on the
div-curl theorem in [26], which, contrary to the classical result (see (6)), is applicable
to the case of o, bounded in LP(2)" and 7, bounded in L(Q)" with

-+-<1+

1 1
h —. 292
P oq N (22)

We have (see Theorem 1.11 for further details)

Theorem 0.2. Under the assumptions of Theorem 0.1, let us also assume that

N
A, bounded in LP(; LRM*NY),  pc {5,00} ;

/ |Du|"dx < / Yo(ApDu - Du)idz, Yue W, (QM, ¥n €N,
0 0

with
2N
r = m, Tn bounded in L%(Q),

then there exists A € LP(2; LRM*N)) such that
S(u)a= ADu, Yue HAW r1(Q)M,

It is worth pointing out that if a weaker integrability is imposed on A,, (i.e. smal-
ler p), then a stronger ellipticity (larger r) is required for the integral representation
and, conversely, a stronger integrability condition would allow a weaker ellipticity.

In addition, this theorem also includes, in particular, the results in [18] for the
two-dimensional elasticity system with coefficients uniformly elliptic and bounded
in L', which also uses the version of the div-curl theorem in [26].

Chapter 2

As in the previous chapter, we consider an open bounded set Q C RY with N > 2
and an integer number M > 1. In this chapter we analyse the I-limit in LP(2)M,
p > 1, of sequences of nonlinear functionals defined over vector functions of the type

Zo(v) = /Q Fu(z, Dv)dz for v € WiP(Q)M. (23)
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We assume that the energy densities F, : Q x RM*N — [0, 00) are Carathéodory
functions such that there exist «, 5,7 > 0 and two sequences of non-negative meas-
urable functions h,,, a,, with h, bounded in L'(€) and a,, bounded in L"(2), where
r>810 ifl<p< N -1,
r=1, iftp>N—1,
satisfying the following assumptions of (integral) ellipticity, growth and Lipschit-

zianity

Fo(,0) =0, ae Q (24)
/ F,(z, Du) dx > a/ |DulP dz — 3, Yu e WyP(Q)M, (25)
Q Q

E (2, 0) < hy(z) +yF,(2,8), VA€[0,1], V€ € RN ae 2 €Q, (26)

|Fn(xa£) _Fn<$>77)‘ -
< (ha(2) + Fo(2,€) + Falw,n) + [P + 7)) 7 an(2)7 |€ =1l (27)
VENERMN ae xeq.

Condition (24) implies that the functionals (23) reach a minimum for v = 0 which
is usual in nonlinear elasticity. This means that in the equilibrium (no displace-
ments) the elastic energy is zero. Concerning the rest of the assumptions, they are
also fulfilled in the usual models of nonlinear elasticity, for instance, some hyper-
elastic materials such as the Saint Venant-Kirchhoff materials and some Ogden’s
type hyper-elastic materials ([40], Vol. 1). As a prototypical example, consider

Fo(2,8) = |Ap(2)& : &]5, VEECRMN ae 2,
with & the symmetric part of £&. In this case, one can take
an(z) = |An(2)[2,

which shows that a,, essentially measures how big the coefficients are.

We do not impose the convexity of F, with respect to its second variable as
it is usual in equations. In fact, it is known that the I'-limit of a sequence of
functionals in a given topology agrees with the I'-limit of the lower-semicontinuous
hull of these functionals. It is also known that if a functional of the type (23) is
lower semicontinuous for the topology of LP(Q2) then F),, as a function of its second
variable, is convex for the rank-one matrices (F, is rank-one convex). For this reason,
contrary to the case of equations, the assumption of convexity is more restrictive for
systems.

As a consequence of the nonlinearity of the problem, the div-curl theorem cannot
be applied directly as we did in the previous chapter. Nevertheless, we make use of
a lemma in [25] which is essential for the proof of the version of the div-curl theorem
that appears in the same reference. It is a compactness result for bounded sequences
in W14 based on the embedding W14(SN-1) ¢ L7 (SV-1), where SV~ is the unit
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sphere of R¥~1. Whereas in the div-curl theorem in [26] condition (22) is assumed,
in [25] it is only necessary to have

1 1 ] 1

]—? + 5 <1+ N_1
As a result, if we applied the results in this chapter to the linear case (i.e. F),
quadratic with respect to its second variable), we could improve the main theorem
of the previous chapter when r = 2, A,, symmetric and N > 3, showing that the
assumption p > N/2 can be relaxed by replacing it by p > (N — 1) /2.

The main results of this chapter (see Theorems 2.3 and 2.4 for further details)
show the existence of a function F' : Q@ x RM*N — R which satisfies similar properties
to those of F,, such that, at least for regular functions, the I-limit .# in LP(Q)M of
the sequence .7, satisfies

F(v) = /Q F(z, Dv) dx.

Furthermore, the result is local in the sense that the value of F' in an open subset
of 2 only depends on the value of F;, in that subset.

Chapter 3

In this chapter we consider the linear elasticity system posed in a thin beam of

thickness € > 0, 2. := (0,1) x (ew), when the tensor of coefficients also depends on

e. Specifically, we study the problem
—div(Ace(ue)) = he  in Q, (28)
Ace(us)v =0 on (0,1) x (e0w),

where w C RV~ is a regular, connected, bounded domain (in practice N = 2, 3),
v is the unitary outward normal vector to w on Ow, u. is the deformation of the
beam, e(u.) is the strain tensor and h. = (h. 1, h.) is the exterior force that will be
assumed of the type

/ / /
hea(z) = fi (xl, £) , hi(x)=¢ef <x1, 95_) +d (1’1, x—) , a.e. x €,
£ £ £
with f € L2(Q)Y and ¢’ € L*(Q)N =1 (where 2 := Q) such that

/!J’dy’ =0, ae y €(0,1).

Observe that, in order to have the uniqueness of solution, it would be necessary to
impose some boundary condition on {0,1} X (ew). Our results remain true with
different boundary conditions.
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Our aim is to find a one-dimensional limit system whose solution provides an approx-
imation of the solutions to (28) without any assumption of isotropy or homogeneity
on the elasticity coefficients A..

For the sake of simplicity, we assume uniform ellipticity, that is

Ja >0, AL:&>alE)?, VESRYN ae (0,1) x (ew).

Nevertheless, as done in the previous chapters, we do not require the coefficients to
be uniformly bounded. Namely, we just impose

The main result that we obtain (see Theorem 3.1) gives an approximation for
the solutions of the type

(29)

\

This approximation consists in the sum of a deformation of Bernouilli-Navier’s type
given by the function u = (u4,...,uy) plus a torsion term given by the matrix
function Z, which is skew-symmetric. The latter corresponds to an infinitesimal
rotation around the axis of the beam. We show that the functions u and Z are
solutions to a one-dimensional linear system that, in variational form, reads as

/0 Aeg(u, Z):eo(a, Z )dy, = ’/ (f1 (ul y/> +f - +4q - (Zy/)) dy,

V(a, Z) € Hy(0,1) x Hg (0, 1)N_1 x HX(0, I;ng DX(N=1)y

1
with / Aey(it, Z) - eo(ii, Z) day < o0,
0

\

(30)
where the subindex sk refers to skew-symmetric matrices and the operator eg is
defined by

duy <d2u’ >T
2
eo(u, 2) = dry dzi
d*u’ az
dx? dxy

In addition, the tensor function A belongs to L'(0, 1;£(Ri,v %)) and is such that
there exist 8,7 > 0 and a € L'(0,1), a > 0, satisfying

1

AE| < B(AE : E)?a®, YEeRYY ae (0,1),

s1sk’

|E|? <~yAE:E, VEcRY ae (0,1),

s1sk’
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where Ré\i ;,j,v is the subspace of the matrices M € RV*N that satisfy
Mli:Mil,izl,...,N, Mi’:_Mjia ’L,]ZZ,,N

Observe that, even though the sequence A, is only bounded in L!, the limit tensor
A also belongs to L'. The proof of this result is an adaptation of the classical proof
of the H-convergence theorem by F. Murat and L. Tartar (cf. [76, 91]) combined
with a decomposition result for sequences of deformations in thin domains that can
be found in [38].

The limit system (30) provides a general model for strongly heterogeneous beams
that do not satisfy any isotropy condition. Recall that for a homogeneous isotropic
material, the model used in architecture or engineering corresponds (in dimension
3) to a system of two fourth-order equations (given by the functions uy and us in

(30)).

Chapter 4

In this chapter we focus on the homogenization, via I'-convergence, of weakly coer-
cive integral energies with densities IL(x/e)Dv : Dv, where L € L2 (Yy; Z,(RY*Y))
is a periodic, symmetric, tensor function.

This chapter is divided into two main parts.

In the first part of Chapter 4, we analyse condition (13) (with A replaced by L)
which, as previously mentioned, is enough in order for the periodic homogenization
formula (3) to hold for systems. In [27], the authors give a class of examples in
dimension 2 that fulfil (13) but such that L is not very strongly elliptic (i.e. (12)
does not hold for all £ € RV*Y). Following the same ideas, in Theorem 4.4 we show
a set of mixtures in dimension 3 that satisfy (13) and are not very strongly elliptic.
In addition, Theorem 4.5 improves condition (13) showing that it is enough to have

/ LDu: Dudy >0, Yue& DRV (31)
RN

for the I'-convergence result to hold true.

The second part of this chapter focuses on the loss of strong ellipticity through
the homogenization process in the case of linear elasticity in dimension 3. We make
a deep study of the lamination process carried out by S. Gutiérrez in [64] and we try
to justify it, in terms of I'-convergence, by using Theorem 4.5. In order to apply this
theorem we need the relaxed functional coercivity (31) and, for that, we make use
of the translation method for the null-Lagrangians. This method consists in finding
a matrix D € R3*3 such that

LM :M+D:Adj(M)>0 VM cR*?® ae. Yy, (32)

as it was done in [27] for the two-dimensional case. Surprisingly, contrary to what
happens in dimension 2, we prove in Theorem 4.8 that if a strongly elliptic, lam-
inated (i.e. L(y) = L(y;)) material fulfils (32), then it is impossible to obtain an
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effective material for which the strong ellipticity condition fails. Therefore, we need
to perform a second lamination (in a new direction), as done by S. Gutiérrez in
[64], in order to produce a limit material that losses strong ellipticity. Indeed, The-
orem 4.14 shows that there exist certain strongly elliptic materials for which the
strong ellipticity can be lost after a rank-two lamination with some specific very
strongly elliptic materials.



Introduccion

En la elaboracion de ciertos materiales compuestos, la mezcla de los distintos com-
ponentes se realiza a nivel microscépico, o més exactamente mesoscépico (pequeno
desde el punto de vista macroscopico pero suficientemente grande para que se pue-
dan despreciar los efectos cuanticos). La primera dificultad que esto entrana es la
resolucion numérica de las ecuaciones en derivadas parciales que describen el com-
portamiento de las distintas magnitudes fisicas relacionadas. Para ello, es necesario
usar mallas cuyos elementos sean pequenos con respecto a la medida de las estructu-
ras que forman los compuestos que aparecen en la mezcla. Esto da lugar a sistemas
de ecuaciones tan grandes que su resolucion directa puede ser imposible. Tanto fisi-
cos como ingenieros han atacado usualmente este tipo de problemas mediante la
introduccién de pequenos parametros con la idea de mas tarde llevar a cabo un
desarrollo asintotico con respecto a ellos. Ello conduce a la resolucion de problemas
mucho mas simples, los cuales proporcionan una buena aproximacion de la solucion
del problema original. En muchos casos, se ha dado posteriormente justificacion
matematica a los distintos modelos aproximados obtenidos, probandose resultados
de convergencia en ciertos espacios funcionales. La parte de la Matemaética que se
ocupa de este tipo de cuestiones se conoce como teoria de la homogeneizacion.
Como ejemplo recordamos el que probablemente es el problema mas clésico en
homogeneizacion. Por fijar ideas consideramos un material eléctrico que se obtie-
ne repitiendo una célula de forma periddica con un pequeno periodo € > 0. Las
ecuaciones de la electrostatica nos dicen que el potencial eléctrico u. es solucién de

—div (A (g) Vu.) =p en (1)

donde © es un abierto de RY (en la practica N = 2, 3) y p es la densidad de carga. La
matriz de coeficientes A depende de la constante dieléctrica del medio y es peridédica
de periodo el cubo unidad. Claramente, a fin de tener unicidad de soluciéon para
(1) es necesario anadir alguna condicién de contorno. La construccién de materiales
mediante este procedimiento es usual en Ingenieria.

El método de desarrollos asintéticos (ver e.g. [9], [65], [71], [84], [85]) aplicado a
este problema consiste en suponer que la funcién u, admite un desarrollo del tipo

UE(ZB) ~ UQ(QZ) + cuq <.CE, £> + €2u2 <£L’, E) 4
€ €

con las funciones uy, ug, ... periddicas en la segunda variable. Sustituyendo en (1) e
igualando los coeficientes con el mismo exponente en € se obtiene formalmente que

27
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ug es solucion del problema
— div(A,Vug) = p en Q, (2)

donde A; (matriz homogeneizada) viene dada por

A€ = | A€+ Vyuwe)dy, VEERY, (3)

YN

con wg solucién de

—div (AVwge) =0 en RY,
we periddica de periodo el cubo unidad Y.

Ademas se puede probar
ul(xv y) = Wvug(x) (y>

El resultado anterior nos da una muestra de por qué usar el término homogenei-
zacién. Mientras que en (1) nos encontrdbamos con un material fuertemente hete-
rogéneo, en (2) nos encontramos con un material homogéneo dado por la matriz
constante Ay. Observar que la resolucién numérica de las funciones ug y w1 es mu-
cho més simple que la de u.. El resultado merece también ser analizado desde un
punto de vista mas teérico. Desde el punto de vista macroscopico, las propiedades
eléctricas del material correspondiente a la matriz A(x/e) son similares a las del
material correspondiente a Aj,. Si pensamos por ejemplo que la matriz A se obtiene
mezclando dos materiales, i.e. existen Z C Yy medible y Ay, A, matrices tales que

A(y) = Aixz(y) + A2(1 = xz(y)), ect.y € Yy,

entonces, al mezclar estos materiales hemos construido uno nuevo, correspondiente
a la matriz Ay, cuyas propiedades no dependen solamente de la proporcién de ambos
(i.e. de la medida de Z) sino también de su disposicién geométrica. Asi por ejemplo
aunque A; y Ay sean matrices escalares, correspondientes a materiales isétropos
(i.e. sus propiedades no dependen de la direccién), la matriz A, no tiene por qué ser
escalar.

Aunque el método descrito anteriormente para la obtencion de Aj, es formal,
resultados de convergencia se pueden encontrar por ejemplo en [9] y [65]. De hecho
debido a su importancia especialmente en Ingenieria y Arquitectura, se han desa-
rrollado diversos métodos para poder resolver matematicamente problemas como el
anterior donde hay algin tipo de periodicidad. Destacar los métodos de convergencia
en dos escalas y “unfolding” ([2], [4], [34], [36], [41], [81]).

El ejemplo anterior nos muestra como podemos analizar desde el punto de vis-
ta matematico la obtencién de nuevos materiales mediante la mezcla de otros ya
existentes, usando distribuciones que suelen ser altamente oscilantes. La idea es
estudiar la convergencia de ecuaciones en derivadas parciales con coeficientes va-
riables. Si bien en el caso anterior nos encontrabamos con un problema periédico,
a fin de obtener materiales generales, es importante conocer qué ocurre cuando no
hay ningun tipo de periodicidad. La primera pregunta que surge es si el tipo de
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ecuaciones que estamos considerando es estable cuando pasamos al limite. En caso
contrario deberemos usar modelos mas generales.

Los primeros resultados, en nuestro conocimiento, referentes a la estabilidad en
el paso al limite de una sucesién de EDP con coeficientes variables, se refieren al
caso de una sucesion de ecuaciones lineales elipticas de segundo orden escritas en
forma de divergencia. Asi, en [87] (ver también [52]) S. Spagnolo mostré que si A,
es una sucesién acotada en L°°(Q)V*Y con valores en las matrices simétricas y tal
que es uniformemente eliptica en el sentido de que existe a > 0 con

Al -E>al€f?, YneN, VEERY, ect. Q, (4)

entonces, existe una subsucesiéon de A,, que seguimos denotando por A,, y una
funcién matricial simtrica A € L*°(Q)N*N verificando también (4), tal que para
toda f € H~(Q), las soluciones de

(5)
0 sobre 02,

{—div (ApVu,)=f en
convergen en Hg(€2) débil hacia la solucién u del problema resultante de cambiar
A, por A. Se muestra ademas como el resultado se extiende al operador parabdlico
correspondiente (la extension al caso hiperbélico aparece en [43]). F. Murat y L. Tar-
tar extendieron mas adelante este resultado al caso de matrices no necesariamente
simétricas ([76]) mostrando ademds que se tiene la convergencia de A, Vu, a AVu en
L*(Q)N. El resultado se extiende facilmente a sistemas de ecuaciones elipticas y en
particular al sistema de la elasticidad lineal que nos describe la deformacién elastica
de un sélido (suponiendo que las derivadas de las deformaciones son pequenas). En
este sentido mencionamos los trabajos de G. Francfort [59], E. Sanchez-Palencia [85]
y G. Duvaut (referencia no disponible). La demostracién de este resultado se basa
en lo que actualmente se denomina método de las funciones oscilantes y consiste en
usar sucesiones especiales de funciones test (la convergencia en dos escalas mencio-
nada anteriormente también se basa en esta idea). Una herramienta importante en
la demostracion es el teorema del div-rot que es el resultado mas conocido de lo que
se conoce como compacidad por compensacion, también introducida por F. Murat
y L. Tartar ([77], [89]) ¥ que establece que dado p € (1, 00), si

o, — o en LP(Q)V, T, — T en LP(Q)V,

divo, — dive en W HP(Q), rot 7, — rot 7 en WP (Q)N*N,

(6)

entonces
Op Ty —0-7 en D'(Q).

Aunque el resultado de convergencia para (5) se suele enunciar, tal y como hemos
hecho, con condiciones de contorno de tipo Dirichlet homogéneas, también es cierto
con otras condiciones de contorno. Ademas es local en el sentido de que el valor de
la matriz A en un subconjunto abierto arbitrario de €2 solo depende de los valores
de A, en ese conjunto. Extensiones a ecuaciones no lineales aparecen por ejemplo
en [53] y [82].
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Mencionar que este tipo de resultados se usa en la resoluciéon de problemas de
disenio éptimo de materiales proporcionando formulaciones relajadas (ver e.g. [2],
[35], [80]).

Una pregunta que surge a partir de los resultados mencionados es qué ocurre si
la sucesién A,, no estd uniformemente acotada y/o no es uniformemente eliptica. Es
lo que se conoce como homogeneizacién con alto contraste.

Una herramienta importante para tratar con este tipo de problemas es la I'-
convergencia introducida por E. De Giorgi (ver e.g. [12], [14], [48], [51]). Dado un
espacio métrico X (la definicién se extiende a espacios no métricos) y una sucesién
de funcionales F,, : X — R U {400}, se dice que F,, I'-converge a F' en X si se
cumple

z, — v en X = liminf F,(z,) > F(z),

n—oo

Vo e X, dz, — x tal que limsup F,,(z,) < F(x).

n—oo

El resultado més importante de la I'-convergencia establece que si F;, alcanza minimo
en x,, y si la sucesién x,, es compacta en X, entonces todos los puntos de acumulacién
de z,, son puntos de minimo para F'. Asi, si volvemos al problema (5) y suponemos
A, simétrica, sabemos que u,, es solucion si y sélo si lo es del problema

min {/ A, Vu - Vudr — 2(f,u>} :
ueH; () (Jo

Teniendo ademés en cuenta que gracias a (4) las soluciones de (5) estédn acotadas en
H{(Q) y por tanto son compactas en L*(€2), deducimos que el resultado de S. Spag-
nolo se puede obtener probando (suponemos el segundo miembro en L?((2))

[u — /Q (A, Vu-Vu—2fu) dx} LN {u — /Q (AVu-Vu — 2fu)dx} en L*(Q),
o equivalentemente (es consecuencia de considerar f en el dual de L?(Q)) a que
{u — /QAnVu : Vudm} N {u — /QAVu : Vudx} en L*(Q).
Una ventaja de esta formulacién es que el funcional
u /QAnVu -Vudz, (7)

estd bien definido aunque la integral pueda ser infinita, lo que permite tratar mas
facilmente el caso en que A, no estd en L°°(Q)V*V. La desventaja es que el problema
tiene que poder plantearse como un problema de minimo.

Como ejemplo clasico de aplicacion de la teoria de I'-convergencia a la resolu-
cién de problemas de homogeneizacién, destacamos el articulo [33] de L. Carbone
y C. Sbordone, donde se estudia la I'-convergencia en L>(2) de la sucesién de
funcionales

uH/Fn(x,u,Vu) dz, (8)
Q
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con F, : @ x R x RY — R una sucesién de funciones de Carathéodory (medibles en
la primera variable y continuas en las otras dos), convexas en la tltima variable y
tales que se verifica

0< Fu(z,5,8) < an(z)(14[sP +|€P), V(s,6) eERxRY, ect.zcQ, (9)

conp > 1y a, acotada en L'(Q). Los autores muestran que, para una subsucesién de
n, existe el I-limite de estos funcionales en L*°(£2) y que al menos para las funciones
regulares admite una representacion integral del mismo tipo. Ademas, si a,, es equi-
integrable entonces el [-limite en L>(£2) coincide con el I-limite en L'(£2). Comentar
que como en los casos anteriores, el proceso de homogeneizacion es ademés local.

Si queremos aplicar este resultado a la convergencia de minimos, necesitamos
también que estos funcionales admitan minimo y que los minimos se encuentren
en un compacto de la topologia que estamos considerando. Asi, si suponemos a,
equi-integrable, nos basta que la sucesién de minimos esté acotada en WH1(), lo
que se puede obtener mediante alguna hipotesis de coercitividad adecuada como por
ejemplo

1 )
0 < bu()|€]P < Fy(x,5,6), V(5,6) €ERxRY, ecct. 2 €9, b,” acotado en LP ().

Si a,, estd solo acotada en L'(€)) necesitamos que la sucesiéon de minimos sea com-
pacta en L*(£2), lo que nos llevara esencialmente a tomar p > N y una hipdtesis de
coercitividad tal como

alé]P < Fy(x,5,€), V(5,6) ERxRY, ect. 2 €Q, a>0.

Como ejemplo se pueden aplicar los resultados de [33] al problema (5), deduciéndose
que para N > 2y A, simétrica, verificando

ba(2)|€)? < Ap(2)E - € < an ()€, VEERY, ect. €,

an,b, >0, a, acotada en L'(Q), equi-integrable, b ' acotada en L'(12),

y [ suficientemente regular, las soluciones de (5) convergen *-débil en BV () hacia
la solucién de un problema del mismo tipo.

En [56] (ver también [8], [28]) V. N. Fenchenko y E. Ya. Khruslov muestran un
ejemplo de una funcién a, > 1, acotada en L'(Q) (pero no equi-integrable) con
Q) =wx (0,1), w C R? abierto acotado, tal que las soluciones del problema

—div (a,Vu,) = f enQ,
=0 sobre 0f2,

convergen débilmente en H}(Q) hacia la solucién de

1
—Au+ 271 (u—i—/ h(mg,t)u(xl,xg,t)dt> =f en ),

0
u=>0 sobre 0f2,
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con h una funcién no nula. Vemos por tanto cémo ahora la ecuacion cambia de
forma. En el limite encontramos un término de orden cero y un término no local.
Un resultado general en este sentido ha sido obtenido por U. Mosco en [74], donde
usando la férmula de representacién de Beurling-Deny para formas de Dirichlet ([10])
se prueba que el I-limite en L*(€2) de la sucesién de funcionales definidos por (7)
con A, no negativa, acotada en L'(Q)N*¥ y simétrica converge hacia un funcional
del tipo

u /QAVU -Vudp(x) + /Qu2du(x) + / (u(z) — u(y))zdn(:&, ), (10)

QxN

con u, v y 1 medidas Borelianas no negativas y acotadas. En general, el proceso
de homogeneizacion lleva a la aparicién de términos no locales incluso partiendo de
términos fuertemente locales.

Gracias a una generalizacion del teorema del div-rot se ha probado mas tarde
en [17], [19] que en realidad en dimensién N = 2, suponiendo A, uniformemente
eliptica, los dos ultimos términos son siempre nulos, i.e. el funcional no cambia de
forma por I'-convergencia y el proceso de homogeneizacion sigue siendo local. Este
resultado ha sido generalizado posteriormente en [20] mostrando que ni siquiera es
necesario suponer la acotaciéon en L'(Q)V*¥ . Resultados relacionados referentes a
ecuaciones en el caso periddico y a la aparicién de términos de orden cero pueden
encontrarse en [13] y [21] respectivamente. Todos estos trabajos usan ciertos resul-
tados recientes de convergencia uniforme para las soluciones de EDP elipticas ([22],
[72]). De hecho con estas ideas se ha obtenido en [23] una extensién de los resulta-
dos de L. Carbone y C. Sbordone en [33] donde se muestra que para la equivalencia
entre el T-limite en L'(Q) y L>(£2) de los funcionales que aparecen en (8) basta en
realidad tomar p > N — 1 en lugar de p > N.

Los resultados de convergencia uniforme que se usan en las referencias [13], [20],
[21], [23] v [33] estan basados en el principio del maximo. También la férmula de
Beurling-Deny que conduce a la expresion (10) estd basada en él. Ello hace que en
principio no se puedan generalizar los resultados que aparecen en estos trabajos al
caso de sistemas de ecuaciones. Asi, contrariamente a (10), en el caso de la elasti-
cidad lineal la ausencia de acotacion uniforme de los coeficientes puede provocar la
aparicion en el I'-limite de derivadas de segundo orden como probaron C. Pideri y
P. Seppecher en [83]. Es més, M. Camar-Eddine y P. Seppecher probaron en [32] que
se puede alcanzar cualquier funcional cuadratico semicontinuo inferiormente que sea
nulo para los movimientos rigidos.

Debido a la falta de principio del méximo, no hay resultados generales, en nuestro
conocimiento, acerca de qué hipdtesis de acotacién o elipticidad son necesarias en
los coeficientes de un sistema de EDP de forma que en el limite mantenga su estruc-
tura y el proceso de homogeneizacion sea local. Comentar la existencia de algunos
resultados particulares en el caso lineal usando I'-convergencia. Asi, para N = 2,
se ha probado en [18] la estabilidad del sistema de la elasticidad lineal suponiendo
que los coeficientes son uniformemente elipticos y acotados en L'. El resultado se
basa en la generalizacion del teorema del div-rot que aparece en [26]. Otro resultado
relativo a un sistema eliptico general correspondiente a M ecuaciones en un abierto
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Q) de RY ha sido obtenido en [24] donde se supone que el tensor de coeficientes A,
es tal que existe otra sucesion de tensores B,, uniformemente elipticos y acotados de
forma que A, — B,, converge fuertemente a cero en L!(Q; L(RM*N)). Comentar que
la elipticidad uniforme solo se impone en forma integral, i.e.

a/ | Du|?dx < / A,Du : Dudr, Yue Hy(Q)M, (11)
Q Q

con o > 0. Es conocido (ver e.g. [48]) que esto implica
AE > alé)?, VEE RN Rang(é) =1, ect. Q, (12)

y por tanto en el caso de ecuaciones, M = 1, es equivalente a (4). Sin embargo
esto no es asi para sistemas. Para distinguir estos casos, en la literatura, es usual
decir que un tensor que verifica la condicién (12) es fuertemente eliptico mientras
que en el caso en que esta condicién es satisfecha para todo & € RM*¥  se dice que
es muy fuertemente eliptico. Cuando A,, es una funcion regular en €2, la teoria de
compacidad por compensacién (ver e.g. [76], [89]) muestra que (12) es equivalente
a (11).

El problema principal en el que nos interesamos en los dos primeros capitulos
de la tesis es obtener condiciones de elipticidad y/o acotacién generales en dimen-
sion arbitraria, primero para sistemas lineales y posteriormente para no lineales, que
conduzcan a un sistema limite local para lo que usaremos extensiones del teorema
del div-rot ([25], [26]). En el tercer capitulo continuaremos con esta cuestién pero
en el caso en que ademas hay una reduccién de dimension. Concretamente consi-
deraremos el sistema de la elasticidad para barras delgadas Q. = (0,1) x (ew) con
w un abierto acotado regular de RV—!. A diferencia de los casos mencionados ante-
riormente donde el abierto en el que planteamos la ecuacion esté fijo, ahora lo que
se pretende es obtener un problema limite uni-dimensional. Esta es una cuestién
clasica en Ingenierfa. Al tratar de resolver directamente un problema de EDP en un
dominio donde al menos una de sus dimensiones es mucho menor que las demas,
nos encontramos con la dificultad anteriormente mencionada de tener que utilizar
mallas muy finas. La idea es aproximar las soluciones del problema por las de otro
planteado en un dominio con menor dimension. Asi, en el caso de vigas, el proble-
ma que se resuelve usualmente consiste en un sistema formado por dos ecuaciones
elipticas de cuarto orden desacopladas. Desde el punto de vista matemético (ver
e.g. [68], [92]) estas ecuaciones se obtienen pasando al limite cuando el grosor de
la viga tiende a cero en el sistema de la elasticidad correspondiente a un material
homogéneo e isétropo en dimension 3 y su solucién proporciona una aproximacion
de las deformaciones transversales a la viga. Mas generalmente, en [79] (ver también
[37]) se ha considerado el caso de un tensor de la forma A(xy,z5/e,23/€), donde
A pertenece a L>=((0,1) x w; L(R3*3)) y verifica la hipétesis de elipticidad usual.
Esto permite por ejemplo tratar con materiales en los que aparece un nucleo de
un determinado material rodeado por otro. En este caso los autores obtienen una
aproximacién mas compleja de las soluciones.

Siguiendo con la discusion planteada al principio de esta introducciéon, un pro-
blema importante es saber qué ocurre cuando el dominio delgado (viga o placa) esté
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formado por una mezcla arbitraria de materiales. Esto lleva a estudiar el compor-
tamiento asintético de un problema de EDP planteado en un dominio delgado €.,
con € > 0 un valor pequeno, que nos mide el grosor, en el cual los coeficientes tam-
bién dependen de €. Aunque en nuestro conocimiento este problema no ha sido tan
estudiado como el caso en que el dominio esta fijo, podemos sin embargo referen-
ciar ciertos trabajos en este sentido. Asi, en [5], [30] y [86] se analiza este problema
imponiendo ciertas hipétesis de periodicidad. Como ya explicamos anteriormente,
esto permite tratar con varios materiales que aparecen usualmente en Ingenieria.
Sin embargo, si queremos saber qué tipo de materiales generales se pueden obtener
a partir de unos dados tendremos que eliminar la hipotesis de periodicidad. En el
caso de problemas de difusién en una viga (0,1) X (sw) e imponiendo hipétesis de
elipticidad y acotacién uniformes, el problema ha sido tratado en [45] bajo ciertas
hipétesis de estructura que permiten aplicar un resultado de tipo div-rot y en [39]
de forma general. En esta tltima referencia se trata con segundos miembros muy
generales que conducen a un sistema limite planteado en el dominio (0, 1) X w, el cual
es no local en general. Cuando nos restringimos a segundos miembros que no oscilan
fuertemente en la variable correspondiente a las dimensiones que estan degenerando,
se puede comprobar como el problema se reduce a un problema local unidimensional.
En el caso del comportamiento asintdtico del sistema de la elasticidad con coeficien-
tes variables en un dominio que degenera, debemos citar la referencia [50] donde se
considera el caso de una placa w x (0,¢) con w C R? abierto regular. Imponiendo
ciertas hipotesis de isotropia y suponiendo que los coeficientes son uniformemente
elipticos y acotados, se obtiene una ecuacion limite de cuarto orden correspondiente
al desplazamiento vertical, lo que es similar al caso que normalmente se trata en In-
genieria para placas formadas por materiales is6tropos. En [62] se considera el caso
en que no hay ninguna isotropia pero los coeficientes sélo dependen de la variable en
altura de la placa. Ahora en el sistema limite no se pueden desacoplar en general las
deformaciones en las variables horizontal y vertical y por tanto el problema limite
tiene una estructura distinta.

A lo largo de esta introduccién hemos visto cémo en muchos casos la estructura
de un problema de EDP donde los coeficientes varian se conserva por paso al limite.
Sin embargo algunos ejemplos notables conducen a casos en los cuales algunas pro-
piedades importantes no se conservan. Ello puede ser usado para obtener materiales
con caracteristicas muy particulares. En este sentido, consideramos la diferencia en-
tre coercitividad local y coercitividad global que expusimos anteriormente al hablar
de la homogeneizacién de sistemas. Recordar que la féormula de homogeneizacion
periddica del comienzo de esta introduccion, (3), sigue siendo cierta para sistemas
imponiendo la coercitividad integral en lugar de la puntual. Més ain, en el caso
M = N, ha sido mostrado en [61] que el resultado es cierto imponiendo simple-
mente la existencia de a > 0 tal que (para A periddica de periodo el cubo unidad
Yv)

/ ADu:Dudy > o |Dul?dy, Yuec H. (RY) periédica de periodo Yy,
YN YN

(13)
/ ADu:Dudy >0, Yuc DR)N.
R

N
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Una importante pregunta es qué propiedades de elipticidad verifica el tensor
homogeneizado. S. Gutiérrez en [64] prueba que, en un cierto marco de homogenei-
zacion (llamado 1*-convergencia en [27]), a partir de la laminacién de un material
isotrépo fuertemente eliptico, en el sentido de que se satisface (12), con uno muy
fuertemente eliptico (i.e. que (12) se verifica para toda £ € RV*")_ se puede obtener
un material para el cual ni siquiera la elipticidad fuerte es satisfecha. S. Gutiérrez
realiza este estudio en los casos bidimensional y tridimensional. En algunos casos
en dimension 3, es necesario ademas realizar una segunda laminaciéon con un tercer
material (que puede ser elegido muy fuertemente eliptico). Sin embargo, el proceso
seguido por S. Gutiérrez requiere cotas a priori en L? para la sucesién de deforma-
ciones, lo cual es incompatible con la hipétesis de coercitividad débil. Por tanto, el
resultado de S. Gutiérrez no se refiere al paso al limite en la sucesién de sistemas
de EDP correspondientes. En [27] los autores proporcionan en el caso bidimensio-
nal una justificacion de este resultado en términos de I'-convergencia y muestran el
caracter canénico de la laminacion llevada a cabo por S. Gutiérrez. En este sentido
recordar que si las funciones tensoriales x +— A(x/¢) verificaran la propiedad de
elipticidad integral uniforme

/ A (g) Du : Dudx > a/ |Dul?*dz, VYue CX(Q)Y, (14)
Q Q
con « positiva (independiente de ¢), el I'-limite también verificaria esta propiedad.
Esto significa que el tensor A propuesto por S. Gutiérrez no cumple (14), aunque si
lo cumple cada una de las fases que constituyen el tensor A. Tal y como observan
M. Briane y G. Francfort en [27], realizando el cambio de variables y = x /¢, esto
significa que existen funciones tensoriales A : RY — L£(RV*¥) con discontinuidades
de salto, las cuales verifican (12) con = RY pero no cumplen (11). Es decir, la
equivalencia entre estas definiciones que expusimos anteriormente para A regular,
no es cierta en general.

En el cuarto capitulo de la presente memoria formalizamos los resultados de
S. Gutiérrez en el caso tridimensional en el marco de la I'-convergencia.

En la exposicién que hemos llevado a cabo anteriormente hemos realizado una
introduccién a los distintos problemas que nos interesan en la presente memoria,
su motivacion y lo resultados previos obtenidos por otros autores. También hemos
esquematizado cudles son las cuestiones precisas que pretendemos abordar. Rea-
lizamos a continuacién una descripcion explicita, desglosada por capitulos, de los
distintos resultados que hemos obtenido a lo largo de la memoria, las dificultades
que se presentan y los métodos que hemos usado para abordarlas:

Capitulo 1

Consideramos  un subconjunto abierto y acotado de RY, N > 2, y un ntimero
entero M > 1. En este capitulo nos proponemos obtener condiciones de integrabi-
lidad y elipticidad sobre la sucesién de funciones tensoriales A, € LP(§; L(RM*M))
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de forma que podamos asegurar que el problema homogeneizado correspondiente a
los problemas elipticos lineales
—Div (A, Du,) = f, en Q, (15)
Up =0 sobre 02,

sea del mismo tipo, al menos para las funciones suficientemente regulares y que
ademas el proceso de homogeneizaciéon sea local. Como se ha mencionado anterior-
mente, en el caso de ecuaciones (M = 1), basta que A1 esté acotado en L(Q)V*N
y A, esté acotado en LY(Q)N*N y sea equi-integrable. El resultado ademés es falso
si se elimina la hipdtesis de equi-integrabilidad. La demostracién de estos resultados
usa el principio del maximo que no es valido para sistemas.

En nuestro caso, comenzamos probando la existencia de un resultado abstracto
de homogeneizaciéon cuando los coeficientes A,, solamente verifican las propiedades

A, acotado en L*(Q; L(RM*NY), (16)

Ang €20, Ve R, (17)

JK >0, / |Du|de < K (/ A,Du : Dudx) , Yu € Wyt (M. (18)
0 Q

La demostracién usa estimaciones que estan basadas en la teoria de la I'-convergencia
aplicada a la parte simétrica de A,,. Para ello, suponemos también que la parte an-
tisimétrica de A,, estd uniformemente controlada por su parte simétrica, concreta-
mente

AR >0, |A.€ 0| < RIALL : €|2| Ay |2, VE,n € RN Vn e N, ect. Q. (19)

Observar también que gracias a (16) podemos suponer la existencia de a € M(Q)

tal que

|A,| = a en M(Q). (20)
El teorema en cuestion establece (ver Teorema 1.16 para mas detalles)
Theorem 0.1. Supongamos que A, € L®(Q; LRM*N)) werifica (16), (17), (18)
y (19). Entonces, existe una subsucesion de n, que sequimos denotando por n, un
espacio del Hilbert H C Wy (Q)M y un operador lineal continuo ¥ : H — LL(Q)M*N

tal que para toda sucesion f, que converge x-débil a f en L®°(Q)M, se tiene que la
unica solucion de (15) verifica

u, —u en BV(Q)M,
ApDu, = S(u)a en M(Q)M*N, (21)

Observar que (21) junto con la convergencia de f,, establece que u es solucién
de la ecuacién

—Div(f)(u)a) =f en (),
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y por tanto nos proporciona la existencia de una ecuacién limite. Sin embargo no
tenemos una representacion de 3. Recordamos que ya en el caso M = 1 se tiene que
> es en general no local y por tanto no es de la forma Y (u) = ADu para una cierta
funcién tensorial A.

El resultado que probamos en el capitulo (Teorema 1.16) es en realidad més
general y en particular proporciona también la convergencia de las energias en el
sentido de que existe un operador bilineal, continuo B : H x H — M(Q) tal que si
u, es como en el teorema y v,, es una sucesion en VVO1 M tal que

v, v en BV(Q)M, limsup/ A, Duv, : Dv, dr < +00,
Q

n—o0

entonces

A, Du, : Dv, = B(u,v) en M(Q).

Ademas, este operador B esta relacionado con ¥ mediante

B(u,v) =X(u) : Dva en Q, Yve CHQ)M,
y se tiene que u es la tnica solucion de

u € H,
/dé(u,v):/fmda:, Vv e H.
Q 0

Noétese también que la condicién de elipticidad (18) sobre A, estd escrita en forma
integral y no en forma puntual. Como ya hemos indicado anteriormente, estas dos
condiciones no son equivalentes en el caso de sistemas. Esto permite, en particular,
aplicar nuestros resultados al caso de la elasticidad lineal, donde la elipticidad pun-
tual falla. Una condicién puntual suficiente para asegurar (18) seria imponer que
A1 estuviese acotada en L(Q; L(RM*NY).

A fin de obtener una representacién local para el operador % (y para B) es
necesario suponer algunas hipotesis de integrabilidad sobre A,. El resultado que
obtenemos estd basado en el teorema del div-rot que aparece en [26], el cual a
diferencia del caso cldsico (ver (6)) permite tratar el caso o,, acotado en LP(Q)V y

7, acotado en LI(Q)N con

11 1
SH-<1+ . 22
il ~ (22)

Se tiene (ver Teorema 1.11 para mas detalles)

Theorem 0.2. En las condiciones del Teorema 0.1, supongamos ademds

N
A, acotada en LP(Q; LRM*NY)), pe |:57OO:| )

/ |Du|"dz < / Yo(Ap,Du - Du)adz, Yu e W, ()M, Vn €N,
Q Q
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con o N
p 2
r=-————_ 7, acotada en L2+ (1),
(N+2p—N | 1)

entonces existe A € LP(Q; LIRM*NY)) tal que

S(w)a=ADu, Yue HAW 1 (Q)M.

Nétese también que si imponemos una menor integrabilidad de A,, (p més pe-
queno), necesitamos una elipticidad mds fuerte (r mayor) para la representacién
integral, y al contrario, tener mayor integrabilidad permite una elipticidad menor.

Comentar que este teorema incluye, en particular, los resultados obtenidos en
[18] para el sistema de la elasticidad en dimension 2 con coeficientes uniformemente
elipticos y acotados en L!, teorema que también usa la versién del div-rot que aparece
en [26].

Capitulo 2

Como en el capitulo anterior, consideramos un subconjunto abierto y acotado 2 C
RY con N > 2 y un nimero entero M > 1. En este capitulo analizamos el I-limite
en LP(Q)M p > 1, de sucesiones de funcionales no lineales definidos sobre funciones
vectoriales del tipo

Fn(v) = / F,(z,Dv)dz parav € WP (Q)M. (23)
Q

Suponemos que las densidades de energfa F), : Q x RM*N — [0, 00) son funciones de
Carathéodory tales que existen «, 3,7 > 0 y dos sucesiones de funciones medibles
no negativas h,, a,, con h, acotada en L'(Q) y a,, acotada en L"(Q2), donde

p

r>81 §il<p< N—1,
r=1, sip>N —1.

de forma que se satisfacen las siguientes hipétesis de elipticidad (integral), creci-
miento y Lipschitzianidad
F.(-,0) =0, e.c.t.Q, (24)

/ F.(z, Du) dx > a/ |DulP dz — 3, Yu € WyP(Q)M, (25)
Q Q

Fo(2,08) < ho(w) +yE,(7,6), VA€[0,1], V€ e RN ect.z€Q,  (26)
|Fn(5ﬂjf)_Fn($ﬂ7)’ -
< (hn(2) + Fo(2,6) + Fo(a,n) + [P + nP) 7 an(2) € =1, (27)
VEn e RMXN ect. z € Q.

La hipotesis (24) implica que los funcionales definidos por (23) alcanzan un minimo
para v = 0, lo cual es usual en elasticidad no lineal. Esto significa que en la posicion
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de reposo (sin desplazamientos) la energia eldstica es nula. Respecto a las demads
hipétesis, también se satisfacen en modelos usuales en elasticidad no lineal como
por ejemplo ciertos materiales hiperelasticos como los materiales de Saint Venant-
Kirchhoff y algunos materiales de tipo Ogden ([40], Vol. 1). Como ejemplo modelo
considerar

Fo(z,8) = |[Ap(2)&, - &2, VEERMN cct. e,
con &, la parte simétrica de £. En este caso se puede tomar
an(z) = |An(z)|2,

lo que nos muestra que a, mide esencialmente como de grandes son los coeficientes.

Remarcar que no se impone la convexidad de F), en la segunda variable como
es normal en los trabajos dedicados a ecuaciones. En realidad, es conocido que
el I'-limite de una sucesién de funcionales en una determinada topologia coincide
con el I'-limite de la envolvente semicontinua inferior de estos funcionales. Por otra
parte se sabe que si un funcional del tipo (23) es semicontinuo inferiormente para
la topologia de LP(2) entonces, F,, como funcién de la segunda variable es convexa
sobre las matrices de rango 1 (rango-1 convexa). Por ello la hipétesis de convexidad
no es restrictiva en el caso de ecuaciones pero si para sistemas.

Debido a la no-linealidad del problema no se puede aplicar, como en el capitulo
anterior, el teorema del div-rot. Sin embargo, usamos un lema que aparece en [25],
el cual es fundamental para probar la version del teorema del div-rot que aparece
en esta referencia. Se trata de un resultado de compacidad para sucesiones acotadas
en W4 basado en la inyeccién W14(SN=1) c L7 (SV~1), donde SN¥~! es la esfera
unidad en RY~!. Mientras que en el teorema del div-rot que aparece en [26] se
imponia (22), en [25] sélo se necesita

1+1<1+ L
P q N-—-1

Gracias a esto, si aplicamos los resultados de este capitulo al caso lineal (F}, cuadrati-
co en la segunda variable), podemos mejorar el teorema principal del capitulo ante-
rior cuando r = 2, A, simétricas y N > 3, mostrando que la hipétesis p > N/2 se
puede relajar a p > (N —1)/2.

Los resultados principales de este capitulo (ver Teoremas 2.3 y 2.4 para més
detalles) muestran la existencia de una funcién F : Q x RM*¥ — R verificando pro-
piedades similares a las de F}, de forma que, al menos sobre las funciones regulares,
el funcional T-limite .% en LP(2)M de la sucesién %, verifica

F(v) = /Q F(z, Dv) dx.

Ademas el resultado es local en el sentido que el valor de F' en un subconjunto
abierto de € sélo depende del valor de Fj, en este subconjunto.
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Capitulo 3

En este capitulo consideramos el sistema de la elasticidad lineal en una viga de
grosor € > 0, . := (0,1) x (ew), cuando el tensor de coeficientes también varia
con €. En concreto, estudiamos el problema

{_diWAEemE)) = he en (28)

Ace(us)v =0 sobre (0, 1) x (e0w),

donde w C R¥~! es un dominio regular, conexo y acotado (en la practica N = 2, 3),
v es el vector normal unitario exterior a w sobre dw, u. es la deformacién de la viga,
e(ue) es el tensor de esfuerzos y h. = (h. 1, hl) es la fuerza externa que se supone de
la forma

/ / /
heq(x) = fr (xl, %) , hi(x)=c¢ef <m1, %) +d <x1, xg) , e.c.t. z e,

con f e L*(Q)N y g € L*(Q)VN! (donde Q2 := Q) tal que

/g’dy' =0, ect. y; €(0,1).

Obsérvese que para tener la unicidad de solucién seria necesario imponer también
condiciones de frontera sobre {0,1} X (ew). Nuestros resultados permiten trabajar
con distintas condiciones en este conjunto.
Nuestro objetivo es encontrar un sistema limite en dimension 1 cuya solucién aproxi-
me las soluciones de (28) sin imponer ninguna hip6tesis de isotropia ni homogeneidad
sobre los coeficientes de elasticidad A..

Para simplificar, suponemos la hipétesis de elipticidad uniforme

Ja >0, AL:E>alé)?, VEERVN ect. (0,1) x (ew),

pero, como en los capitulos anteriores, no imponemos que los coeficientes estén
uniformemente acotados. Concretamente s6lo imponemos

El resultado principal que obtenemos (véase Teorema 3.1) proporciona una apro-
ximacién de las soluciones del tipo

N

/u .

Ue1(z) ~ uy(xy) g _d —
—2

p

(29)

N
1 Z; .
e (@) ~ Zus(m) + 3 Zis(a) 7y €200 N
1=2

\

que consiste en la suma de una deformacién de tipo Bernouilli-Navier dada por la
funcién v = (ug, ..., uy) més un término de torsiéon dado por la funcién matricial Z,
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la cual es antisimétrica. Este tultimo se corresponde con una rotacion infinitesimal
alrededor del eje de la viga. Probamos que las funciones u y Z son soluciones de un
sistema lineal unidimensional que en forma variacional se puede escribir como

( 1
/ Aeo(u, Z) 60(’LL Z dyl ’/ (f1 (’LLl y') + f/ . ’L~Ll + g/ . (Z?/)) dy7
0

V(@, Z) € Hy(0,1) x Hg (0, 1) ~1x Hy (0, 1;Rifk‘f— )% (N—l))7

1
con / Aey(ti, Z) = eg(it, Z) dxy < o0,
0

\

(30)
donde el subindice sk se refiere a matrices antisimétricas y donde el operador e; esta
dado por

duy <d2u’ ) r
2
col, Z) = dxy dxy
d*u’ dz
dif dn

Ademas la funcién tensorial A estd en L1(0, 1; E(]Riv %)) v es tal que existen 3,y > 0

y a € L'(0,1), no negativa tales que

1

AE| < B(AE : E)?a}, YEeRYY ect. (0,1),

|E* <yAE:E, YEeR)G, ect. (0,1),

donde R son las matrices M € RV*V tales que

Mli:Mil,’izl,...,N, MZJI—M

iz

i,j=2,...,N.

Observar que aunque la sucesién A, estd acotada solo en L', el tensor limite A
tiene los coeficientes en L'. La prueba de este resultado es una adaptacién de la
prueba clasica del teorema de H-convergencia de F. Murat y L. Tartar (cf. [76, 91])
combinado con un resultado de descomposicién para sucesiones de deformaciones en
dominios finos que puede encontrarse en [38].

El sistema limite (30) proporciona un modelo general para vigas fuertemente hete-
rogéneas que no verifican ninguna hipétesis de isotropia. Recordar que en el caso de
un material isétropo homogéneo, el sistema que se usa en Arquitectura o Ingenieria
corresponde (en dimension 3) a dos ecuaciones de cuarto orden (que proporcionarian
las funciones us y uz que aparecen en (30)).

Capitulo 4

En este capitulo nos centramos en la homogeneizacion por medio de I'-convergencia
de energias integrales débilmente coercitivas con densidades L(x/e)Dv : Dv, donde

L € L2 (Yy; Z(RY*N)) es una funcién tensorial simétrica periédica.
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Este capitulo esté dividido en dos partes bien diferenciadas.

En la primera parte del Capitulo 4, analizamos la condicién (13) (con A reempla-
zado por L) que, como expusimos anteriormente, es suficiente para que la férmula
de homogeneizacion periédica (3) se verifique para sistemas. En [27], los autores
presentan una clase de ejemplos en dimensién 2 que verifican (13) pero tales que
L no es muy fuertemente eliptica (es decir, no verifica (12) para todo & € R¥*V).
Siguiendo las mismas ideas, en el Teorema 4.4 proporcionamos un conjunto de mez-
clas en dimensién 3 que satisfacen (13) y no son muy fuertemente elipticas. Adema4s,
con el Teorema 4.5 proporcionamos una mejora de la condicién (13) obteniendo el
mismo resultado de I'-convergencia suponiendo tnicamente que se verifica

/ LDu: Dudy >0, Yue& DRV (31)
RN

En la segunda parte del capitulo, analizamos la pérdida de elipticidad fuerte a
través de la homogeneizacion en el caso de la elasticidad lineal en dimensién 3. Hace-
mos un estudio exhaustivo del proceso de laminacién llevado a cabo por S. Gutiérrez
en [64] e intentamos darle justificacion, en términos de I'-convergencia, haciendo uso
del Teorema 4.5. Para poder aplicar este teorema necesitamos tener la condicién
relajada de coercitividad funcional (31) y para obtenerla empleamos el método de
traslacién para los Lagrangianos nulos cuadraticos, es decir, probar la existencia de
una matriz D € R3*3 tal que

LM : M+ D:Adj(M) >0 VM cR**® ect. Yy, (32)

al igual que se hizo en [27] en el caso bidimensional. Sorprendentemente, al con-
trario de lo que ocurre para dimension 2, en el Teorema 4.8 probamos que si un
material fuertemente eliptico con estructura laminada (i.e. L(y) = L(y;)) satisface
la condicién (32), entonces es imposible obtener un material efectivo para el que la
condicion de elipticidad fuerte falle. Este resultado justifica la necesidad de realizar
una segunda laminacién (en una nueva direccién) como hizo S. Gutiérrez en [64]
para poder generar materiales limite que perdieran la elipticidad fuerte. Efectiva-
mente, en el Teorema 4.14 probamos la existencia de ciertos materiales fuertemente
elipticos para los que la elipticidad fuerte puede perderse tras un proceso de lami-
nacién de segundo rango (en dos pasos) si es mezclado con determinados materiales
que pueden ser incluso muy fuertemente elipticos.
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Abstract.

We give some integrability conditions for the coefficients of a sequence of elliptic
systems with varying coefficients in order to get the stability for homogenization.
In the case of equations, it is well known that equi-integrability and bound in L' is
enough for this purpose, however this is based on the maximum principle and then,
it does not work for systems. Here, we use an extension of the Murat-Tartar div-curl
Lemma due to M. Briane, J. Casado-Diaz and F. Murat in order to get the stability
by homogenization for systems uniformly elliptic, with bounded coefficients in L%,
with N the dimension of the space. We also show that a weaker ellipticity condition
can be assumed but then, we need a stronger integrability for the coefficients.

51



52 1.1. Introduction

1.1 Introduction

Composite materials play an important role in many branches of Mechanics, Phys-
ics, Chemistry and Engineering. In such materials, some physical parameters, such
as the conductivity or the elasticity coefficients, are usually discontinuous and may
present oscillations between the characteristic values of each one of their compon-
ents. When these components are very mixed, these parameters vary very rapidly,
complicating then the microscopic structure of the material. It is reasonable to think
that a good approximation of the macroscopic behaviour of such heterogeneous ma-
terials can be achieved by making the parameter ¢, which describes the fineness of
the microscopic structure, tend to zero in the equation describing phenomena, for
instance, elasticity or thermal conductivity. The homogenization theory (see e.g.
[1]) finds its purpose in performing this limit process. It provides a good math-
ematical framework for the analysis of composite media with complete generality
without imposing any geometric or periodicity assumptions. Homogenization prob-
lems have been studied by mathematicians since the seventies and by physicists and
engineers since earlier, although they only focused their interest on very specific
cases such as periodic structures. For non-necessarily periodic problems, the most
classical results refer to a sequence of elliptic problems with uniformly elliptic and
uniformly bounded varying diffusion matrices. We refer to S. Spagnolo ([2]) in the
case of symmetric matrices and to F. Murat and L. Tartar ([3]) in the general case.
Assuming € a bounded open set in RY and A,, bounded in L®(Q)¥*¥ such that
there exists a > 0 with

Al -E>alél?, YneN, VEERY, ae. in Q, (1.1)

it is proved the existence of A € L*>(Q)V*N also satisfying (1.1) and a subsequence
of m, still denoted by n, such that for every f € H=(f2), the solutions of

{—div (A4, Vu,) = f in Q, 1.9

u, =0 on 01},

converge weakly in Hj () to the solution of the analogous problem with A,, replaced
by A. Other boundary conditions can also be considered. For the case of matrices
non-necesarily bounded in L>(Q)V*N we refer to [4], where it is studied the T-limit
in L'(Q) of the sequence of functionals

vH/fn(x,v,Vv)dx.
0

Assuming f,, convex in the second variable and such that there exist p > 1 and A,
bounded in L!(Q) and equi-integrable such that

0 < fulz,5,6) < ha(2) (L+[sP +1EF), V(s,§) ERXRY, ae z€Q,

it is proved that the I'-limit of these functionals has the same structure, at least
for smooth functions v. Applied to f, = A,(z)€ - &, this result implies that the
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limit equation of (1.2) is still of the same form for A, symmetric, bounded and
equi-integrable in L'(Q)¥*Y and satisfying an elliptic condition in such way that
the sequence of solutions of (1.2) becomes compact in L'(£2).

If N > 3 and A, is bounded in L'(Q)"*" but not equi-integrable, the limit
problem of (1.2) is not of the same type anymore. Some counterexamples can be
found in [5], [6], [7]. A general result about the structure of the limit in this case
can be found in [8]. If N = 2, it has been proved in [9] (see also [10], [11]) that the
stability by homogenization of problem (1.2) holds without any bound on A,.

The results in [4] and [9] are based on the maximum principle and therefore,
they cannot be extended to systems. For this reason the stability of (1.2) when the
function u, is valued in RM, with M > 1 and A, is a sequence of tensors bounded
in L1(Q; LRM*N)) and equi-integrable is an open question to our knowledge. A
partial result in this sense has been obtained in [12], where it is proved by assuming
that there exists a sequence of tensor functions B,, uniformly bounded and uniformly
elliptic (in an integral way) such that ||A, — By || c@mx~)) tends to zero.

A wuseful tool in homogenization which does not use the maximum principle
is the div-curl Lemma by F. Murat and L. Tartar ([13], [14]) which was already
used in [3]. An extension of this result is presented in [15], where it is applied to
the homogenization of monotone operators in WH¥ ()" showing that in this case
a bound of the coefficients in L*(Q2) (without the equi-integrability condition) is
enough to get a local homogenization result. In the case of systems, this result has
also been applied in [16] to get the homogenization of the linear elasticity system
in dimension 2, with bounded coefficients in L'(Q). A related result has also been
used in [17] to carry out the homogenization of the plate equation and the Stokes
system in dimension 2.

Our purpose in the present paper is to use the div-curl Lemma in [15] to give
some sufficient conditions on the integrability and ellipticity of the tensor functions
A,, assuring that the homogenized system corresponding to the problems

{—Div(AnDun) —f inQ,

1.3
u, =0 on (2, (13)

has the same structure at least for smooth functions. Contrary to the above men-
tioned papers which are also based on the div-curl Lemma, here the reasoning is
different. Instead of applying the G-convergence theory, we show that, assum-
ing that the non-symmetric part of A, can be controlled by the symmetric one,
the I'-convergence theory allows us to get an abstract non-local homogenization
result for problem (1.3) (see Theorem 1.16) which just assumes A, bounded in
LY(Q; L(RM*N)) and uniformly elliptic in Wy'(Q)™. Then, using the div-curl
Lemma we show that the homogenization result becomes local if A, is bounded
in LP(Q; L(RM*N)) for some p > N/2, non-negative, and is such that

/Q|Du|7"dx < /Qvn(AnDu . Du)dz, (1.4)

for r = 2Np/((N + 2)p — N) and 7, bounded in L%(Q) Assumption (1.4) holds
Np
if we suppose that A, ' is bounded in L2~ (€; L(RM*N)), which is a pointwise hy-
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pothesis while (1.4) is an integral one. In the case of equations, pointwise ellipticity
and integral ellipticity are equivalent but this is not true for systems. We observe
that if we impose a weaker integrability on A, we need a stronger ellipticity and re-
ciprocally. Namely, assuming uniform ellipticity in H} (), we just need A,, bounded
in L= (Q; L(RM*N)), while assuming ellipticity in Wi (92), we need A,, bounded
in L>®(Q; LRM*NY).

More generally than (1.3), we can replace f by a sequence of right-hand sides f,,
which can vary with n and converges in a certain sense we define in Section 1.2 (see
Definition 1.8).

Our results apply in particular to the linear elasticity system (where pointwise
ellipticity does not hold), extending the results obtained in [16] for N = 2.

Finally, we recall that, in the homogenization of the elasticity system, if we do
not impose any bound in the coefficients, then it has been proved in [18] that any
quadratic semicontiunous functional in L? can be obtained as I'-limit.

Notation

e |E| denotes the Lebesgue measure of any measurable set £ C RY.

e : denotes the euclidean inner product in RM*N ie. ¢ :n = tr(¢T'n) for any
57 n c RMXN.

e Du denotes the Jacobian matrix of a function u valued in RM. For M = 1,
we denote Du as Vu, the gradient of w.

[N

e |¢| denotes the euclidean norm of a matrix & € RM*N je. [£] = [€: €]z,
o RY*N denotes the space of symmetric matrices in RY.
e L£(X) denotes the space of linear functions from the space X into itself.
e |A| denotes the norm of A € L(RM*N) induced by the euclidean norm of
RM>N " e.
A
A= s 1

cerrrxv\(oy €]

e A' denotes the transposed tensor of A € L(RM*N)

e A% denotes the symmetric part of a tensor A € L(RM*V). It also denotes the
symmetric part of a matrix A € RV*V,

e M(Q) denotes the space of bounded Radon measures in the bounded open set
Q) c RY, which is the dual space of the continuous functions in 2, vanishing

on 99, CP(£2).

e M(Q) denotes the space of Radon measures in €, with € C RY open and
bounded. It is the dual space of the continuous functions in Q, C°(Q).

° fE fdu denotes the integral of f with respect to a measure p in a set E. If p
is the Lebesgue measure, we just write | g fdr.
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1.2 Main result

In the present section let us state the main result of the paper, Theorem 1.11. It
refers to the asymptotic behavior of the solutions of the sequence of elliptic partial
differential systems given by

1.
u, =0 on 9. (15)

{ — Div(A4,Du,) = f, in Q,
where € is a bounded open set of RY and w, is valued in RM, M > 1. In the
case M = 1, assuming that the coefficient tensors A,, are bounded in L'(Q; L(RY))
and equi-integrable and imposing some ellipticity conditions in such way that the
solutions of (1.5) become compact in L*(), it is well known that the limit problem
of (1.5) has the same structure (see e.g. [3], [2], [4]). Moreover, in dimension 2, some
bound on A,, needs to be imposed ([9]). However the proof of these results is based
on the maximum principle and thus it does not work for the case of elliptic systems
considered here. Our purpose is to get some integrability and ellipticity conditions
on A, in order to have the stability by homogenization of the solutions of (1.5).

Let us assume the existence of R > 0, p € [§,00], and v, € L%(Q), with

2Np 2N

(N+2)p—NE[N+2’ 1 (16)
Yn > 0, such that

{A,} is bounded in LP(; L(RM*NY), (1.7)
A €6>0, YVEERYMN vneN, ae. in Q, (1.8)
A€ s < RIAE €13 Am inls, Ve e RMY WneN, ae inQ,  (L9)
{¥n} is bounded in L%(Q), (1.10)
/Q\Du]rda: < /Q’yn(AnDu : Du)idz, Yue W, (QM, ¥n e N. (1.11)

Remark 1.1. The tensors A, are not necessarily supposed to be symmetric but
assumption (1.9) means that the antisymmetric part of A, can be controlled by the
symmetric one. We observe that this assumption always holds in the classical setting,
i.e. when A, is bounded in L>(Q; L(RM*NY)) and uniformly elliptic.

Remark 1.2. Assumption (1.11) is an ellipticity condition on A,. If M =1 (see
e.g. [19]), it is equivalent to assuming that

162 < |ynl A€ €, VEERY, ace. in Q. (1.12)

However this is not true for M > 2. In fact, for the most classical example of
elliptic system, the ellipticity system, assumption (1.12) does not hold because A,
vanishes on the antisymmetric matrices. In fact, as a model example of a sequence
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A, satisfying the above assumptions we can consider the following example in linear
elasticity:
Let B,, be a bounded sequence in LP(Q; L(RY*N)) p € [N/2,00] if N > 2,
p € [1,00) if N = 2, such that B, ' is bounded in LZ;V%N(Q;E(R?]XN)), and such
that (1.9) is satisfied with A, replaced by B,,. Then, defining A, € LP(Q; L(RN*N))
by
Al =B, VYEERYVY ae inQ,

and taking into account that Korn’s inequality implies

/|Du|rdx§0/ le(u)|"dx
Q Q

< 0/ 1B |7 (Bue(u) : e(w)) 2dz, Yue Wy (@)Y,
Q

it is simple to check that A, satisfies Assumptions (1.8),..., (1.11).

Observe that if B, is assumed to be just bounded in L= (0 L(RN*N)), then we
need B, to be bounded in L>®(Q; LRY*N)) which is equivalent to assuming that
B,, is uniformly elliptic. By assuming a stronger integrability on B, we can weaken
the ellipticity condition to B, being just bounded in L%(Q; L(RYN*NYY “which cor-
responds to B, bounded in L>(£2; L(RN*N)).

Since the sequence of tensor functions A,, is not assumed to be necessarily sym-
metric, problem (1.5) cannot be written in general as a minimum problem. There-
fore, the asymptotic behavior of this problem is not reduced to the study of the
['-convergence of a certain sequence of functionals. However, thanks to assumption
(1.9) which permits to estimate the skew-symmetric part of A,, from its symmetric
part, we will show that the I'-convergence theory can be used to simplify the study
of (1.5).

We recall the definition of I'-convergence (see [20], [19], [21]).

Definition 1.3. Let X be a metric space. A sequence of functionals F,, : X — R

is said to T-converge to a functional F : X — R (denoted by F, L F) if for every
xr € X, we have

(i) for every sequence x, converging to x in X

F(z) < liminf F,(z,),

n—oo

(ii) there exists a sequence &, converging to x in X such that

limsup F,(2,) < F(z).

n—o0

This sequence is said to be a recovery sequence for x.

In order to apply the I'-convergence theory to problem (1.5), we introduce
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Definition 1.4. For every n € N, we define F, : W™ (Q)M — [0, oc] by
Fo(u) = / A,Du : Dudz, Vue W, (Q)M. (1.13)
0
The domain of F,, is denoted by H,

H, = {u e Wy ()M - /QFn(u) < +oo}

(1.14)
= {u c Wy ()M / A,Du : Dudzr < —{—oo} .
Q
It 1s a Hilbert space endowed with the norm
3
\lul|m, = (/ A, Du : Dudx) , Vue H,. (1.15)
Q

Since W, (Q)™ endowed with the norm of L7(Q)" is a separable metric space,
and F), is non-negative and quadratic, Theorem 8.5 in [19] allows us to extract
a subsequence of F),, still denoted as Fj, such that there exists a non-negative
quadratic functional F' : W, ()™ — [0, 4+00] , which satisfies

F,5F (1.16)

We also recall that F' is lower semicontinuous in W, " (Q)™ endowed with the topo-
logy of L"(Q)* and that, similarly to F},, the space

H=D(F)={ueW,"(QM: F(u) < +oo},
is a Hilbert space endowed with the norm
lullg = F(u)2, Yue H. (1.17)

We aso introduce

DH ={Du:ue H}. (1.18)

Remark 1.5. Thanks to assumption (1.11), if u, € Wy (M is such that F,(u,)
is bounded, then w, is bounded in Wy ()M. Thus, by the Rellich-Kondrachov
compactness theorem, we get the existence of a subsequence of u, which converges
strongly in L"(Q)M. This is the main reason for taking the I'-convergence in the
topology of L™(Q)M. Indeed, we observe that

weakly in Wy (M ifr > 1,
= U, U (1.19)
weakly-+ in BV (Q)M ifr =1,

U, — u in LT(Q)M
Fo(u,) <C

and thus the T-convergence of F,, in the topology of L™ ()M is equivalent to the T-
convergence in the weak topology of Wy (OM if r > 1 or BV(Q)M weak-+ if r = 1
(and then N = 2, p = 1), but this is not a convergence in a metric space. Thus,
it is simpler to work with the convergence in L™(Q)M. We refer to ([19]) for the

definition of I'-convergence in an arbitrary topology not necessarily metric.
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Using the spaces H,, we can also give the definition of solution for problem (1.5),
which we will use in what follows.

Definition 1.6. Given f, € H/

. we say that u, € H, is the solution of problem
(1.5) if it satisfies

/AnDun :Dvdr = (fn,V)ur 1, Vv € Hy. (1.20)
Q

Remark 1.7. The existence and uniqueness of solution for problem (1.5) is a simple
consequence of Laz-Milgram’s theorem.

Let us introduce the following convergences for elements in the varying spaces
H, and H;,

Definition 1.8. Given a sequence v, € H,, and v € H we say that v,, H,-converges
weakly to v if
lvnllz, bounded, v, —v in L"(Q)M. (1.21)

Given f,, € H!, we say that f, H]-converges to f € H' if
(fo>vn)mr 1, = (f,0)arm, Vv, € Hy which Hy-converges weakly tov.  (1.22)

Remark 1.9. As we observed in Remark 1.5, the conditions in (1.21) imply that vy,
converges weakly to v in Wy ()M if r > 1 or in BV(Q)M weak-+ if r = 1. Thus,
the simpler example of a weakly H,-converging sequence f, is given by a sequence
which converges in W=7 (Q)M.

Remark 1.10. We will see in Proposition 1.18 below that if f, H]-converges to f,
then || fullm, is bounded. In particular this implies that the solution u, of problem
(1.5) is such that ||u,|| g, is bounded.

We are now in position to give the main result of the paper.

Theorem 1.11. Assume that A, satisfies (1.7)—(1.11), with p > 1. Then, there
exist a subsequence of n, still denoted by n, a continuous bilinear operator B : DH X

DH — M(Q), a linear operator ¥ : DH — L%(Q)MXN and a tensor function
A € LP(Q; LRM*NY) with the following properties:

B(Du,Du) >0 in Q, (1.23)

/ﬂ(pd|B(Du,Dv)| < R(/Qcpdzs‘(Du,Dq,L))é </ngdB(Dv,Dv)>2, (1.24)

for every u,v € H and every ¢ € Cy(Q), ¢ > 0.

lull < /QdB(Du,Du), Vue H, (1.25)

3
v < (T
/Q|Du| dr < (11££f||7n||L%(Q)) (/QdB(Du, Du)) , YueH, (1.26)
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IB(Du, D)y < R Jully, Ve B, (1.27)

Lsp o, 1
HE(Du)HL%(Q)MxN <R hﬁg}f HAnHLp(Q,[,(RMxN)HUHHa Vue H, (1.28)

B(Du, Dv) = %(Du):Dv a.e. inw, YwCS) open, VuEH,‘v’vEHﬂWl’%(u))M.
(1.29)

2p
Y(Du) = ADu a.e. inw, YwCQ open, Vuec HNW" i (w)M. (1.30)

Moreover, the operators B and Y provide the following homogenization result for

(1.5):
Let f,, € H] be a sequence which H] -converges to a functional f € H' and let u,
be the weak solution of (1.5). Then, defining u € H as the unique solution of

/dB(Du, Dv) = (f,v)m u, Vve€H, (1.31)
Q
we have
Uy, H,-converges weakly to u, (1.32)
ApDu, — S(Du) in Lt (Q)M, (1.33)
A, Du,: Dv, = B(Du, Dv) in M(Q), Vv, € H, which H,-converges weakly to v.
(1.34)

If p =1 the result is analogous but now, taking a subsequence of n such that there
exists a € M(2), such that

A = a  weakly-+ in M(Q), (1.35)

we have that ¥ is a linear operator from DH into M(Q)M*N A € L(Q, L(RM*NY).
Moreover, the following changes must be taken into account:

In (1.26), [, |Du|dz must be replaced by || Dul|s.

In (1.28), the norm of ¥(Du) must be taken in M(S).

In (1.29), v must be taken in H N CY(w) and the equality B(Du, Dv) = %(Du) :
Duv holds in the sense of the measures in w.

In (1.30), u must be taken in H N CY(w) and the equality X(Du) = ADu holds
in the sense of the measures in w.

In (1.33) the convergence holds in the weak-+ sense of the measures in §2.

Remark 1.12. The equality p =1 can only hold for N = 2.

Remark 1.13. From (1.29) and (1.81) we get that u is a solution of
— DivX(Du) = f (1.36)
in the sense of the distributions in ), which thanks to (1.30) also implies
—DivADu = f inQ, (1.37)

if u 1s smooth enough.
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Remark 1.14. Assertion (1.33) gives the convergence of the flux while (1.34) gives
the convergence of the energy. Equalities (1.29) and (1.30) imply that if u and v are
smooth enough, then B is given by

B(Du, Dv) = ADu : Dv a.e. in §.

Moreover, the operators X2 and B are strongly local in the following sense:
Assume uq,us,v1,v9 € H, w C  open such that uy = us, v1 = v9 in w, then

Y(Duy) = ¥(Dug), B(Duy, Dvy) = B(Dug, Dvsg) in w.
Indeed, thanks to (1.30), we have

Y(Duy) — X(Dug) = E(D(ug —ug)) =2(0) =0 inw,
while (1.29) and (1.30) give

B(Dul, D’Ul) — B(DUQ, DUQ) = B(D(Ul — UQ), D’Ul) — B(DUQ, D(UQ — 'Ul))
= X(D(u; —uz)) : Dvy — X(Dug) : D(vg —v1) =0 in w.

1.3 A first homogenization result

In this section, let us give a first homogenization result for problem (1.5) just
by assuming boundness for the coefficients in L'(Q; L(RM*Y)) and ellipticity on
WHHQ)M. Even for the case of equations it is well known that these assumptions
are not enough to get a local limit (see e.g. ([7])). Thus, we just have a global
homogenization theorem.
The assumptions on the coefficients we make in the present section are given by
(1.8), (1.9) and
{A,} is bounded in L*(€; L(RM*N)), (1.38)

1
3K >0 / |Du|dz < K </ A, Du Duda:) . Yue W ()M, ¥n e N.
Q Q
(1.39)

Remark 1.15. Thanks to (1.38) and Theorem 8.5 in [19], extracting a subsequence
if necessary, we can assume the existence of a € M(Q) and a quadratic functional
F : BV(Q)M — (0,00] such that (1.16) and (1.35) hold. We will assume in the
following that we have taken such a subsequence.

The main result of the present section is given by the following theorem

Theorem 1.16. Assume that A, satisfies (1.8), (1.9), (1.38) and (1.39). Then,
there exist a subsequence of n, still denoted by n, a continuous bilinear operator
B:HxH— M(Q) and a linear operator ¥ : H — LY (Q)M*N with the following
properties:

B(u,u) >0 inQ, VucH, (1.40)
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lull < / dBu,u), Vue H, (1.41)
Q
1B(uw, w) || pyeepy < RYullly, Yue H, (1.42)
1) |2 @n < RPllall v llulla,  Vue H, (1.43)

/sod|z%<u7v>|§R</wdé<u,u>)z(/sodé<uv>)2, Vu,veH, ¥pe @), 920,
Q Q Q

(1.44)
/Q|Du| de < K (/QdB(u,u)) , YueH, (1.45)
B(u,v) =%(u): Dv inQ, YueH, YveC (M. (1.46)

Moreover, the operators B and % provide the following homogenization result for

(1.5):
Let f,, € H] be a sequence which H] -converges to a functional f € H' and let u,
be the weak solution of (1.5). Then, defining u € H as the unique solution of

/dlg'(u,v) = (f,v)pn, YveH, (1.47)
Q
we have
u, H,-converges weakly to u, (1.48)
A, Du,, = S(u)a in BV(Q), (1.49)
A, Du,, : Dv,, > [;’(u,v) in M(Q), Vv, € H, which H,-converges weakly to v.
(1.50)

The rest of this section is devoted to the proof of Theorem 1.16.
We start with the following inequality.

Lemma 1.17. If A, satisfies (1.9) and (1.38), then, for every n € N, every u €
WEHQ)M | and every p € C°(Q), ¢ > 0 in Q, we have

/ |A, Dulpdx < R </ |An|gpda:) (/ A,Du : Dugoda:) . (1.51)
Q Q Q

Proof. We can assume A,Du : Du in L'(w), otherwise (1.51) is obvious. Ap-
plying (1.9) and Cauchy-Schwarz inequality, we have

/ | A, Dulp dx :/ sup |A,Du:nlpdr < R [ |A]Du : Du|% sup |A;n 7]|%go dx
Q Q Q

[n|=1 In|=1

< R/ |A, Du : Du|%|An|%gadx <R (/ |An|godx) (/ A,Du : Dugpd$> :
Q Q Q
(1.52)

OJ
Let us now prove the following result which in particular shows that a H)-
converging sequence has bounded norm, as we mentioned in Remark 1.10.
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Proposition 1.18. Assume that the sequence A, satisfies (1.8), (1.9), (1.38) and
(1.89). Then, every sequence f, which H! -converges to some f € H' satisfies

3 tim || £l = 1l (153)

Proof. By the Riesz Theorem, we know that the sequence u,, solution of

— Div(A? Du,) = f, in Q,
iv(A; Duy,) = f, in (1.54)
u, =0 on 09,
is such that for all n € N
HunHHn = an”H{w (1'55)
Up, 1 s
o, Vs 1, = / A2 Dup s Dunde = |[fulla.  (156)
||un||H'n ||un||Hn Q
Since
‘ _Un =1, VneN,
[vnll a5,

thanks to (1.39), there exist a subsequence of n, still denoted by n, and w € BV ()M
such that w,/||u, ||, converges weakly-* to w in BV (). Combined with (1.55),
(1.56) and the definition of H-convergence, this shows

im |un g, = lim || fullg, = (f, w)m a0 (1.57)
n—oo n—oo
In particular
u’n, * .
Up, = ||tn|m, Tunlln —u = (f,w)p gw in BV(Q)M, ||tn|| 7, bounded.

Using that wu, is defined by (1.54), we get that w, is a recovery sequence for v and
therefore,

i fJun s, = lim Fy(wn)? = F(u)? = |lullw,  (uw,0)5 = (foo)wn Vo€ H,
n—0o0 n—0oo

By the Riesz Theorem ||u||y = || f||z and thus

i || foll gy, = m fun||a, = [lullg = [1£]a-
n—oo n—oo

O
Proof of Theorem 1.16. We divide the proof into four steps.

Step 1. We fix a sequence f, € H] and an element f € H’ in the conditions of
(1.22), and we denote by w,, the solution of (1.5). Let us prove that

limsup/AnDun : Du, dx < || f|13, (1.58)
Q

n—oo
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and that there exist a subsequence of n, still denoted by n, a function v € H and a
function = € L:(Q2)M*N such that

u, H,-converges to u, (1.59)
A,Du, = Za  weakly-* in M (Q)*N (1.60)
with

lullF < (f,w)mrm, (1.61)

1
Tzl < el < [1f [l (1.62)
HH”Ll v < Rlfall vy Ll (1.63)

To prove these results, we use u, as test function in (1.5). We get
3
lim sup ||u,|| g, = limsup (/ A, Du,, : Du, dx) < |- (1.64)
n—r00 n—00 Q

By (1.39) and (1.51) with ¢ = 1, this proves the existence of a subsequence of n,
u € H, and o € M(Q)M*N which satisfy (1.59) and

A,Du, = co in M(Q)M*N, (1.65)

Moreover, we observe that (1.51) shows

/Qcpdlcﬂ <R (/Qsoda) | fllar, Yo e Q). (1.66)

Thus o is absolutely continuous with respect to a and then, by the Radon-Nikodym
theorem, there exists = € L1(Q)M*N such that ¢ = Za. Combined with (1.65), this
proves (1.60). Moreover, taking ¢ = 1, we get (1.63).

On the other hand, by definition of I'-convergence and (1.64), we have

n—oo

HuH%{ < liminf/QAnDun : Duy de = (f,u)p g

This proves (1.61) and then, the second inequality in (1.62). For the first one, using
Riesz Theorem, we define u € H by

(ﬂ,v)H:<f,U>H/’H, Vv e H,

where (-, )y denotes the inner product in H. Taking a recovery sequence 1, for ,
as test function in (1.5) and using (1.9) and (1.64), we have,

1Az = {f, @) w.n

= lim [ A,Du, : Du,dx

n—oo Q

< R lim (/ A, Du, : Du, da:)
n—oo 0

= R{f,u) 2| F L

N

%
(/ A, D, : Du, d.CE)
Q
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This shows
1f 3 < R*(f,wymm < R?|| fllarlulla,

and then the first inequality in (1.62).

Step 2. Let Z be a countable dense subset of C°(Q)™. Observe that Z is dense in
H' because if v € H is such that (z,v)y g =0, for every z € Z, then

/zvd:B:O, Vz e Z,
Q

and therefore v = 0 a.e. in 2.

We define SZ as the vector space generated by Z. Let us denote by w/ the
solution of (1.5) with right-hand side f € SZ. Using Step 1 and a diagonal argument,
we deduce the existence of a subsequence of n, wf € H and T/ € L{(Q)M*N such
that (1.59)—(1.63) hold, for every f € SZ, with u,, u and = replaced by w!, w/ and
Y/ respectively. Taking into account that A,Dw/ : Dw is bounded in L'(Q), for
every f and g in Z, we can also assume the existence of Q79 € M(Q) such that

A,Dw! : Dw? = Q™9 in M(Q), VfgeSZ (1.67)

It is clear that the operators f € SZ — w/ € H, f € SZ — T € L}(Q)"*N are
linear and the operator (f,g) € SZ x SZ — Q9 € M(Q) is bilinear. Moreover, by
(1.9) and (1.58), we have

QM | py < /1 (1.68)

/sOd\Qf’g\ <R (/ wde’f) 2 (/ @ng’gy , Voel'(Q), ¢>0, (L69)
Q Q Q
while (1.61), (1.62) and (1.63) give

w3 < (f. 0" urm, (1.70)

1
el < lw |l < (I f ]|, (1.71)
1T | a@pexn < Rllallpyep 1Nl (1.72)

Reasoning by density, we deduce that these operators can be extended to continuous
operators on H’, still denoted the same way.

Since the linear function f € H' — w/ € H satisfies (1.71), we can apply Lax-
Milgram’s theorem to deduce that this function is one-to-one with a continuous
inverse denoted by £. We define B: H x H — M(Q) and ¥ : H — LL(Q)M*N by

B(u,v) = QXY S(u) = T, (1.73)

By (1.68)—(1.72) and @7/ being non-negative for every f € H’, we easily deduce
(1.40), (1.41), (1.42), (1.43) and (1.44).

For v € H, with u = w/ for some f € SZ, properties (1.44) and (1.45) easily
follow from (1.9), (1.39) and A, Dw/ : Dw! converging weakly-* to B(u,u) in M(Q).
By continuity, these properties are in fact true for every u € H.
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Step 3. We consider f € SZ and a sequence v, which H,-converges weakly to a
function v. Using v, —wg, with g € SZ as test function in the equation satisfied by
w? | taking into account the definition (1.67) of @79 and passing to the limit, we get

lim [ A,Dw! : Dv,dx — / dQ"9 = lim | A,Dw! : D(v, —w?)dx

= <f,U - wg>H/,H-

Replacing in this equality g by a sequence g, which H) -converges to Lv, and taking
into account the continuity of the function (f, g) + Q/9 and definition (1.73) of B,
we have then proved

/ dB(w?,v) = lim [ A,Dw! : Dv, dz, (1.74)
ﬁ n—oo QO

for every f € SZ and every sequence v,, which H,-converges weakly in H' to v. In
particular, for every v € C1(2), we have

/ S(w!) : Dvda = / Y/ : Dvda= lim [ A,Dw!: Dvds = / dB(w’ ,v).
Q Q n=oo Jo Q
Reasoning by density, this proves (1.46).

Step 4. Let f, € H/ be a sequence which H]-converges to a functional f € H’
and let u, be the weak solution of (1.5). We also consider a sequence v, which
H,-converges weakly to some function v € H. By using Step 1, we know that there
exist a subsequence of n, u € H and = € LL(Q)™*¥ such that (1.59) and (1.60)
hold. Since A, Du, : Dv, is bounded in L'(§2) we can also assume the existence of
A € M(Q) such that A, Du, : Dv, converges weakly-* in M(Q) to A. Taking into
account (1.9) and (1.58), (1.62), (1.63) with f, replaced by f, — g, we deduce

lu —wlla < |If = gllm M= = 2@l py@pcn < Rllalpallf = glla,

|A — Qg,EvHM@ < lim Sup/QAnD(un —w?) : Dv, dz

n—oo

B
< R||f — gl (/ A, Dv,, : Dv, dx) .
Q

Then, by continuity and density, and definition (1.73) of B and % we get
u=w!, ZT=3%(u), A=Buv).

In particular, we have (1.49) and (1.50), which taking into account that

/dl’;’(u,v) = lim [ A,Du,: Dv,dr = lim (f,,v.) 5 u, = {f,v)m .o,
Q n—oo Jo n—00 n ’

and the arbitrariness of v, allow us to conclude that u is a solution of (1.47). Since
this solution is unique by Lax-Milgram’s Theorem, we conclude that it is not neces-
sary to extract any further subsequence from the one considered in Step 2. 0
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1.4 Integral representation of the limit

This section is devoted to proving the main result of the present work, Theorem 1.11,
showing that if the sequence of tensor functions A,, satisfies assumptions (1.7)—(1.11)
then the homogenization result established in the previous section is a local process.
The main tool we use to show this result is an extension of the classical Murat-Tartar
div-curl Lemma ([13], [14]) obtained in [15] or more exactly its following corollary.

Theorem 1.19. For q,r € [1,00) such that

(1.75)

1 1
+_
r

<1l+—
_+N,

=

we consider two sequences o, € LUQ)MN ., € Wy"(OM, and two functions
o€ LI)MN y e Wy (DM, such that

o, — o in LY(Q)MN ifg>1, Up —u in W ()M ifr > 1,
on =0 in MQMN ifg=1, u, = u in BV(Q)M  ifr=1,
(1.76)
WL (Q)MXN - ifp > 1,
Divo, — Divo in (1.77)
LN (Q)M*N if r =1,
on 2 Du, is bounded in M(S2). (1.78)
Then,
0n: Du, =0 : Du in M(Q). (1.79)

Remark 1.20. In Theorem 1.19, the sequence o, : Du,, is defined as an element of
D'(Q2) by

<O’n : Dun, 90>D’(§),D(§) = - <DiV0n> un(p>D’(Q)M,D(Q)M

/ (1.80)
— [ on: (u, ® Vo) de, Vo e D).
Q

We observe that this definition makes sense thanks to u, € W&’T(Q)M and Sobolev’s
inequality. In the case q = 1 it is also mecessary to use a result by J. Bourgain
and H. Brezis ([22]) showing that o, € L*(Q)M*N and Dive, smooth imply o, €
W=LN(Q)MXN  The definition of o : Du is similar.

Assumption (1.78) means that for every n € N, we can extend o, : Du, to
an element of CY(Q) = M(Q) and that the corresponding sequence of measures is
bounded.

Proof of Theorem 1.19. Thanks to the div-curl Lemma given in [15], there exist
two sequences x; € () and r; € R, such that

0n Dy — 02 Du+ Y div(rid,,) in D'(Q), (1.81)

k=1
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but by assumption o, : Du, bounded in M(2), and then for a subsequence, it
converges weakly-x to a certain measure i in M(2). By the definition of o : Du,
we then get

/gpdﬂ = —(Divo, U@>D/(Q)M7D(Q)M_/ o: (u®Vy) da:—z reVo(z,) Yo € D(Q).
Q & keN

This proves the existence of a function ¥ € LY(Q)" and a measure u € M(2) such
that

Zrchp(wk):/\If-Vgpdx—i—/god,u Vo e D),
Q Q

keN

which is only possible if r, = 0 for every k € N. This proves (1.79). U

Proof of Theorem 1.11. By Theorem 1.16, there exist a subsequence of n, still
denoted by n, a continuous bilinear operator B : H x H — M(Q) and a linear
operator ¥ : H — LL(Q)N satisfying (1.40)-(1.46) and such that if f, is a sequence
which H/-converges to a certain f, then the weak solution u, of (1.5) is such that
(1.48), (1.49) and (1.50) hold, with u € H the unique solution of (1.31).

Now, we observe that similarly to (1.52), and using that A, is bounded in
LP(; L(RM>NY)) | we have

/ |AnDu|1%cpdx < R/(AnDu : Du)ﬁ|An|ﬁg0dx
Q Q

B T _
§R</ AnDu:Dugpd:v) (/ |An|pgod$) . Yu € H, YoeC'%).
Q Q
(1.82)

From this inequality, we deduce that if u, is the solution of (1.5) for a right-hand
side f, which H/-converges to some f (and then, with bounded norm thanks to

Proposition 1.18), then A,Du,, is bounded in L%(Q)MXN. This proves that in
Theorem 1.16, we have

S(u)a € L (MY ifp>1, Vue H. (1.83)

Moreover, the solution w,, to problem (1.5) is such that A, Du,, converges weakly in
2 ~
L (Q)MAN to S(u)a if p > 1.

We define .
E, = {L () ifp> 1 (1.84)

Then, we define B: DH x DH — M(Q) and ¥ : DH — EY*Y by
B(Du, Dv) = B(u,v), Yu,ve H, (1.85)

B S(u)a if p > 1,
>(Du) = {i(u) ooy TwEl (1.86)
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Thanks to (1.40)—(1.46) and (1.82), it is clear that (1.23)—(1.28) hold. Therefore, in
order to show Theorem 1.11, it just remains to prove (1.29) and the existence of a
tensor function A € LP(Q; L(RM*N)) if p > 1, A € L(Q; LRM*N)) if p = 1, such
that (1.30) holds. This will be given in the following three steps.

Step 1. Let us prove that for every u € H, every w C €2 open and every v € H with

L (W)™ i p > 1
ve{w @Y itp>1,

1.87
CHw)M if p=1, (1.87)

we have

B(Du, Du) = | “PWDv it =L (1.88)
YX(Du): Dva ifp=1,

To prove this result, we first assume that there exists f € C°(Q)™ such that
/dB(Du, Dw) = / fwdr Yw e H, (1.89)
Q Q

and we consider the solution u, of (1.5) with right-hand side f. We know that w,
H,-converges weakly to u. Consider also a sequence v,, which H,-converges weakly
to v. Since A,,Du, : Dv, is bounded in M(Q2), we can apply Theorem 1.19 in w to
on = A, Du,. Taking into account (1.33) and (1.34), we then deduce that for every
¢ € D(w), we have

Jo2(Du) : Dvepdr  ifp>1,

dB(Du, Dv) = li A, Du, : Dv,pdr =
/990 (Du, Dv) = lim fn - P G {fQZ(Du):Dvgoda if p=1.

n—oo Q

This proves (1.88) for u satisfying (1.89), with f € C°(Q)™. The general case then
follows by using that the space of such u is dense in H and that B(-, Dv) and ¥ are
continuous in DH.

Step 2. Assume p > 1. We introduce the measure a, as (it is well defined up to a
subsequence)
AP a, in M),

and observe that (1.82) implies

l/|zu%mf&w¢r
Q

e == _
<R (/ @ dB(Du, Du)) (/ godap) , YVype C’O(Q), © >0,
Q Q

and then, using (1.88) and Hoélder’s inequality, we deduce that for w C €2 open and
2p
we HNW" i (w), we have

/ @ dB(Du, Du)

SRL(/cde(Du,Du)) (/godap) (/IDulplsodx) Ve Cyw) ¢ 20,

(1.90)
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and then

/ade(Du,Du) <R (/gpdap)p (/|Du|r2plgodx) ’ , Vo e Cw), ¢ >0,

which by the derivation measure theorem, proves
B(Du, Du) < R+ L(a,)?|Duf® a.c. in w, (1.91)

where L(a,) denotes the Lebesgue part of a,. Taking into account this result in
(1.90), we also deduce

IS(Du)| < R# L(a,)?|Dul. ae. in w. (1.92)
In the case p = 1, a similar reasoning taking into account (1.52), shows
B(Du, Du) < R*|Duf*a in M(w), Yue HNC w)™, (1.93)
|¥(Du)| < R*|Du| @-ae. inw, Yuec HNCHw)™. (1.94)
Step 3. We consider a sequence (2,, of open sets contained in {2 such that

Q=0 0 CQs, YneN, =],

neN

and a sequence of functions ¢, € C°(£2), such that ¢, =1 in €,. Then, we define
a tensor function A : Q — L(RM*N) by

A=) S(D(E-zpn))Xa,, YEERMN ae inQ (aae inQifp=1).

neN

Assume u € H N Wl’%(w)M, if p>1ue CYw)Mif p=1, with w C Q open.
Then, by the linearity of ¥, (1.92) and (1.94), we have

|X(Du) — AE| < R%L(ap)ﬂDu —¢| ae. inw (aae inwif p=1).
This proves
Y(Du) = ADu in w,
which finishes the proof of Theorem 1.11. O
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Abstract.

The present paper deals with the asymptotic behavior of equi-coercive sequences
{Z#,} of nonlinear functionals defined over vector-valued functions in W, *(Q)M,
where p > 1, M > 1, and Q is a bounded open set of RN, N > 2. The strongly local
energy density F, (-, Du) of the functional .%, satisfies a Lipschitz condition with
respect to the second variable, which is controlled by a positive sequence {a, } which
is only bounded in some suitable space L"(€2). We prove that the sequence {.%#,} I'-
converges for the strong topology of LP(2)M to a functional .% which has a strongly

73
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local density F'(-, Du) for sufficiently regular functions w. This compactness result
extends former results on the topic, which are based either on maximum principle
arguments in the nonlinear scalar case, or adapted div-curl lemmas in the linear
case. Here, the vectorial character and the nonlinearity of the problem need a new
approach based on a careful analysis of the asymptotic minimizers associated with
the functional .%,,. The relevance of the conditions which are imposed to the energy
density F, (-, Du), is illustrated by several examples including some classical hyper-
elastic energies.

2.1 Introduction

In this paper we study the asymptotic behavior of the sequence of nonlinear func-
tionals, including some hyper-elastic energies (see the examples of Section 2.2.3),
defined on vector-valued functions by

Fn(v) = / Fo(z,Dv)dz for ve WyP()M, withpe (1,00), M >1, (2.1)
0

in a bounded open set Q of RY, N > 2. The sequence .%, is assumed to be equi-
coercive. Moreover, the associated density F, (-, ) satisfies some Lipschitz condition
with respect to £ € RM*N and its coefficients are not uniformly bounded in €.

The linear scalar case, i.e. when F,(-,€) is quadratic with respect to & € RY
(M = 1), with uniformly bounded coefficients was widely investigated in the seven-
ties through G-convergence by Spagnolo [33], extended by Murat and Tartar with H-
convergence [28, 35, and alternatively through I'-convergence by De Giorgi [22, 23]
(see also [21, 4]). The linear elasticity case was probably first derived by Duvaut
(unavailable reference), and can be found in [32, 25]. In the nonlinear scalar case
the first compactness results are due to Carbone, Sbordone [17] and Buttazzo, Dal
Maso [14] by a I'-convergence approach assuming the L'-equi-integrability of the
coefficients. More recently, these results were extended in [5, 9, 10] relaxing the L'-
boundedness of the coefficients but assuming that p > N—1 if N > 3, showing then
the uniform convergence of the minimizers thanks to the maximum principle. In all
these works the scalar framework combined with the condition p > N—1if N > 3
and the equi-coercivity of the functionals, induce in terms of the I'-convergence for
the strong topology of LP()), a limit energy .# of the same nature satisfying

F(v) = /QF(ZU,D"U) dv forveW, (2.2)

where C1(Q)™ C W is some suitable subspace of W, ?(Q), and v is some Radon
measure on ). Removing the L!-equi-integrability of the coefficients in the three-
dimensional linear scalar case (note that p = N—1 = 2 in this case), Fenchenko and
Khruslov [24] (see also [26]) were, up to our knowledge, the first to obtain a violation
of the compactness result due to the appearance of local and nonlocal terms in the
limit energy .%. This seminal work was also revisited by Bellieud and Bouchitté [2].
Actually, the local and nonlocal terms in addition to the classical strongly local term
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come from the Beurling-Deny [3] representation formula of a Dirichlet form, and arise
naturally in the homogenization process as shown by Mosco [27]. The complete pic-
ture of the attainable energies was obtained by Camar-Eddine and Seppecher [15] in
the linear scalar case. The elasticity case is much more intricate even in the linear
framework, since the loss of uniform boundedness of the elastic coefficients may in-
duce the appearance of second gradient terms as Seppecher and Pideri proved in [30].
The situation is dramatically different from the scalar case, since the Beurling-Deny
formula does not hold in the vector-valued case. In fact, Camar-Eddine and Sep-
pecher [16] proved that any lower semi-continuous quadratic functional vanishing
on the rigid displacements, can be attained. Compactness results were obtained in
the linear elasticity case using some (strong) equi-integrability of the coefficients in
[11], and using various extensions of the classical Murat-Tartar [28] div-curl result
in [7, 13, 12, 29] (which were themselves initiated in the former works [6, 9] of the
two first authors).

In our context the vectorial character of the problem and its nonlinearity pre-
vent us from using the uniform convergence of [10] and the div-curl lemma of [12],
which are (up to our knowledge) the more recent general compactness results on the
topic. We assume that the nonnegative energy density F,, (-, §) of the functional (2.1)
attains its minimum at ¢ = 0, and satisfies the following Lipschitz condition with
respect to & € RM*V:

{ | P2, €)= Fu(z,n)| < (hn(x)Jan(x,€)+Fn(fl?ﬂ7)+\€!”+!77|p)p’%lan(x)% ISl
VENERMN ae x €,

which is controlled by a positive function a,(-) (see the whole set of conditions (2.3)
to (2.8) below). The sequence {a,} is assumed to be bounded in L"(Q2) for some
r>(N-1)/pif 1 <p < N—1, and bounded in L'(Q) if p > N—1. Note that for
p > N —1 our condition is better than the L!-equi-integrability used in the scalar
case of [17, 14], but not for 1 < p < N—1. Under these assumptions we prove (see
Theorem 2.4) that the sequence {.%,} of (2.1) I'-converges for the strong topology
of LP(Q)M (see Definition 2.1) to a functional of type (2.2) with

WL QM if 1<p< N—1,
W c _
cr oM it p>N-1,

and
{ Lebesgue measure if 1 <p < N-—-1,
y =

A (Q)x — lim a, if p>N—1.
n—oo

Various types of boundary conditions can be taken into account in this I'-
convergence approach.

A preliminary result (see Theorem 2.3) allows us to prove that the sequence
of energy density {F, (-, Du,)} converges in the sense of Radon measures to some
strongly local energy density F'(-, Du), when w,, is an asymptotic minimizer for .%, of
limit u (see definition (2.17)). The proof of this new compactness result is based on
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an extension (see Lemma 2.6) of the fundamental estimate for recovery sequences in
[-convergence (see, e.g., [21], Chapters 18, 19), which provides a bound (see (2.26))
satisfied by the weak-* limit of {F,(-, Du,)} with respect to the weak-* limit of
any sequence {F,(-, Dv,)} such that the sequence {v, — u,} converges weakly to 0
in Wy ?(Q)M. Rather than using fixed smooth cut-off functions as in the classical
fundamental estimate, here we need to consider sequences of radial cut-off functions
v, whose gradient has support in n-dependent sets on which u,, — u satisfies some
uniform estimate with respect to the radial coordinate (see Lemma 2.11 and its
proof). This allows us to control the zero-order term Ve, (u, — u), when we put
the trial function ¢, (u, — u) in the functional .%, of (2.1). The uniform estimate
is a consequence of the Sobolev compact embedding for the (N — 1)-dimensional
sphere, and explains the role of the exponent r > (N—1)/pif 1l <p < N—1. A
similar argument was used in the linear case [12] to obtain a new div-curl lemma
which is the key-ingredient for the compactness of quadratic elasticity functionals
of type (2.1).

Notations

o RY*N denotes the set of the symmetric matrices in RV*V.

e For any £ € RV*N ¢7 s the transposed matrix of £, and £° := %({ +¢&1) is the
symmetrized matrix of £.

e [y denotes the unit matrix of RV*/V,

e - denotes the scalar product in RY, and : denotes the scalar product in RM*¥
defined by
§:mi=tr({Tny) for &ne RN,
where tr is the trace.
e |-| denotes both the euclidian norm in RY, and the Frobenius norm in RM*¥
i.e.

Y

€l = (tr (fo))% for £ € RMXN,

e For a bounded open set w C RY, .Z(w) denotes the space of the Radon
measures on w with bounded total variation. It agrees with the dual space of
CJ(w), namely the space of the continuous functions in & which vanish on dw.
Moreover, .# () denotes the space of the Radon measures on w. It agrees
with the dual space of C°(@).

e For any measures ¢, € .#(w), with w C RY, open, bounded, we define
CHe L}L(Q) as the derivative of ¢ with respect to u. When p is the Lebesgue
measure, we write (L.

e (' is a positive constant which may vary from line to line.

e O, is a real sequence which tends to zero as n tends to infinity. It can vary
from line to line.
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Recall the definition of the De Giorgi I'-convergence (see, e.g., [21, 4] for further
details).

Definition 2.1. Let V' be a metric space, and let F#,,.F : V — [0,00|, n € N, be
functionals defined on V. The sequence {%,} is said to T'-converge to .F for the
topology of V' in a set W C V' and we write

F, 5T W,

- the I'-liminf inequality holds

VoeW, Yo, —wv iV, F(v)<liminf.%,(v,),

n—oo
- the T'-limsup inequality holds

Yo e W, 31, v iV, F(v)= lim Z%,(v,).

Any sequence T, satisfying (2.1) is called a recovery sequence for %, of limit v.

2.2 Statement of the results and examples

2.2.1 The main results

Consider a bounded open set @ C RY with N > 2, M a positive integer, a sequence
of nonnegative Carathéodory functions F,, : Q x RM*Y — [0, 00), and p > 1 with
the following properties:

e There exist two constants a > 0 and $ > 0 such that
/ F,(z, Du) dx > a/ |DulP dz — 3, Yue WP (Q)M, (2.3)
Q Q

and
F.(-,0) =0 a.e. in Q. (2.4)

e There exist two sequences of measurable functions h,,, a, > 0, and a constant
~v > 0 such that

h,, is bounded in L'(€), (2.5)

N—-1
r> T ifl<p< N-1
a, is bounded in L" () with P (2.6)

r=1, ifp>N-—1,
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|Fn(x7§) _Fn<x7n)’ I
< (hn(@) + Fal,8) + Falz,n) + 157+ [0l7) 7 an(@)? [€ =0l (2.7)
VEneERMN ae € Q,

and
Fo(z,A8) < hy(z) + 7 Fu(z,6), YA€[0,1], VEECRMN ae €. (2.8)

Remark 2.2. From (2.7) and Young’s inequality, we get that

p—1

Fu(,€) < Fu(a,n)+ (ha(@) + Fulw, )+ Fu(a,m) + [P+ [n]?) 7 an() |€ = )
< Folw, n)#%(hn(xHFn(:c,£>+Fn(x,n>+\5!p+|n!”)+% an (@) [€=nI",

and then

VENe RN qe zeq.

(2.9)
In particular, taking n = 0, we have

Fo(z,) < (p— 1D ho(z) + (p— 1+ an(2)) [P, VEERY N, ae. 2 €Q, (2.10)

where the right-hand side is a bounded sequence in L'(S).

From now on, we assume that
al A in () and h, > h in A(9). (2.11)

The paper deals with the asymptotic behavior of the sequence of functionals
Fo(v) = / Fu(z, Do)de for v e W(Q)M. (2.12)
Q

First of all, we have the following result on the convergence of the energy density
F,(-, Du,), where u, is an asymptotic minimizer associated with functional (2.12).

Theorem 2.3. Let F, : QxRM*N — [0, 00) be a sequence of Carathéodory functions
satisfying (2.3) to (2.8). Then, there exist a function F : Q x RM*YN — R and a
subsequence of n, still denoted by n, such that for any &,n € RV,

(-,

F(-
Lo

1s Lebesque measurable, if 1 <p < N—1
? I fl<p (2.13)

) is A-measurable, ifp>N-—1,
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p—1

(C(E+ F(2,6)+ F(a,n)+ (1+ (A€l + 1nl") 7 - if 1<p<N-1
S (AB)PlE =] ae. in Q _ |
C(1+h* + F(z,€) + F(z,n) + €] + [n") 7

if p>N-—1,
L - 1€ —n] A-a.e. in Q

(2.14)
and
F(-,0) =0 a.e. in Q. (2.15)

For any open set w C Q, and any sequence {u,} in WP(w)M

weakly in WYP(w)M to a function u satisfying

which converges

WhaZt ()M, fl<p< N—1

u € () fl<p= (2.16)
01<W)M7 ifp>N_17

and such that

3 lim [ F,(z, Du,)dx
n—oo

w (2.17)
= min {liminf/ F.(x, Dw,)dx : w, —u, = 0 in Wol’p(w)M} < 00,

n—o0

we have

. | F(-Du), ifl<p<N-1 ,
F,.(-, Du,) — F.Du)A. ifp> N1 in M (w). (2.18)

From Theorem 2.3 we may deduce the I'-limit (see Definition 2.1) of the sequence
of functionals (2.12) with various boundary conditions.

Theorem 2.4. Let F;, : QxRM*N — [0, 00) be a sequence of Carathéodory functions
satisfying (2.3) to (2.8). Let w be an open set such that w CC Q, and let V be a
subset of WHP(w)M such that

YueV, Yoe Wy (wM, u+tveV. (2.19)

Define the functional F) 1V — [0,00) by
FY (v) = /Fn(x,Dv) dx  forvelV. (2.20)

Assume that the open set w satisfies

dw| =0, ifl<p<N-1
{I | f1<p 2.21)

A(Ow) =0, ifp>N—1.
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Then, for the subsequence of n (still denoted by n) obtained in Theorem 2.3 we get

gﬁygﬁv ::/F(x,Dv)d:c n VAW T ()M, ifl<p< N—1
) @ (2.22)
FV = FV ::/F(;E,Dv)dx in'VNCH@)M, if p>N—1,

for the strong topology of LP(w)™, where F is given by convergence (2.18).

Remark 2.5. The condition (2.21) on the open set w is not so restrictive. Indeed,
for any family (w);er of open sets of Q with two by two disjoint boundaries, at most
a countable subfamily of (Ow);cr does not satisfy (2.21).

2.2.2 Auxiliary lemmas

The proof of Theorem 2.3 is based on the following lemma which provides an estimate
of the energy density for asymptotic minimizers. In our context it is equivalent to the
fundamental estimate for recovery sequences (see Definition 2.1) in I'-convergence
theory (see, e.g., [21], Chapters 18, 19).

Lemma 2.6. Let F, : Q x RM*N — [0, 00) be a sequence of Carathéodory functions
satisfying (2.3) to (2.8). Consider an open set w C €2, and a sequence {u,} C
WP ()M converging weakly in WHP(w)™ to a function u satisfying (2.16), and
such that
Fo(-, Duy) > p in A (W),
|Duy|P = 0 in M (w).

Then, the measure o satisfies

< { C(|Dul” + | DulP(aL)~ +h+p+ah) ae inw, ifl<p<N-1

C(|DulPA+h+ p+ A) A-a.e. inw, ifp>N-—1.
(2.23)
Moreover if u,, satisfies
3 lim [ F,(x, Du,)dx
e (2.24)
= min {liggjlf/ F.(xz, Dw,)dx : w, —u, — 0 in Wol’p(w)M} ,

then for any sequence {v,} C WYP(w)M which converges weakly in W1P(w)M to a
function

WhET ()M, ifl<p< N—1
(S
CHw)™, ifp>N-1,

and such that
Fo(-,Dvy) > v in M (w), (2.25)
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|Dup|P 2w in o (w),
we have

1 p=1
3

v+ O(RE +vF +wh + (14 (D)D) D —v)P) 7 -

1 Zf 1<p§N_]->
(AHT|D(u—v)| ae inw
p=1

v+C(1+h+1v*+ @ +|Du—v)P) * -

if p>N-—1.
“A|D(u—v)| A-a.e inw

\

(2.26)

We can improve the statement of Lemma 2.6 if we add a non-homogeneous
Dirichlet boundary condition on Ow.

Lemma 2.7. Let w be an open set such that w CC ), and let u be a function
satisfying

WhaSt( )M, ifl<p< N—1
u € _ (€) fl<ps (2.27)
ctM, ifp>N-1.

Let {u,} and {v,} be two sequences in WHP(w)M | such that u,, satisfies condition
(2.24) and

Up — U, Up —UE W()Lp(w)M7
F.(-,Du,) = p and F,(-,Dv,) >v in .4 (), (2.28)
|Du,|P = 0 and |Dv,|P > w in . #(@). (2.29)

Then, estimates (2.23) and (2.26) hold in @.

Remark 2.8. Condition (2.24) means that u, is a recovery sequence in w for the
functional

w € WP (w)M /Fn(x,Dw) dx, (2.30)
with the Dirichlet condition w —u, € Wy (w)M. Since w = u, clearly satisfies w—
Up € VVO1 P(W)M | this makes u,, a recovery sequence without imposing any boundary

condition. In particular, condition (2.24) is fulfilled if for a fived f € W=1P(w)M,
U, satisfies

/an(x, Du,) dz = min {/w Fy (2, Dlun + ) dz — (f,0) : v € W&»P(M)M} |

Assuming the differentiability of F, with respect to the second variable, it follows
that u,, satisfies the variational equation

/Dan(x,Dun) :Dvdr — (f,v) =0, Yoe WP (w)M,

i.e. Uy 1S a solution of

—Div (D¢F,(z,Du)) = [ inw,
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where no boundary condition is imposed.

Assumption (2.24) allows us to take into account very general boundary con-
ditions. For example, if u, is a recovery sequence for (2.30) with (non necessar-
ily homogeneous) Dirichlet or Neumann boundary condition, then it also satisfies
(2.24).

Remark 2.9. Condition (2.24) is equivalent to the asymptotic minimizer property
satisfied by uy:

/Fn(:c,Dun) do < /Fn(x,Dwn) dr+0,, Yw, with w,—u, — 0 in Wol’p(w)M.

w

We can check that if u, satisfies this condition in w, then wu, Satisfies it in any
open subset w C w. To this end, it is enough to consider for a sequence w, with
Wy, — u, € WyP ()M, the extension

W, N
Wy, 1= : .
" Up N w\ Q.

Corollary 2.10. Let F,, : Q x RM*N — [0,00) be a sequence of Carathéodory
functions satisfying (2.3) to (2.8). Consider two open sets wi,ws C Q such that
w1 Nwy # D, a sequence u, converging weakly in WP (w)M to a function u and a
sequence v, converging weakly in WP (w.)M to a function v, such that

WhET (w Nw)M,  ifl<p< N—1
u,v €
CH(wr Nws)™, ifp>N-1,
|Dun|p = o, Fn<7Dun) RN Hu m ///(wﬁ,
|‘D/U7’L|piw7 Fn(7DUn) iV Zn %(u}z),

3 lim

n—o0

x, Du,,) dx

Ey(
= min {hm inf Fn(x, Dwy,)dx : w, —u, — 0 in Wol’p(wl)M} ,

n—0o0

3 lim F,.(x, Dv,) dz

n—o0 wsy

n—oo

= min {lim inf/ F.(x, Dw,)dx : w, —v, =0 in Wol’p(wz)M} .
w2

Then, we have

lw—v| <

(C(hE 4"+ 1"+ " + "+ (1 + (D)) D(u—v)|7) 7 -

o | if 1<p<N-—1,
(AM)PD(u— )| ace. inwy Nws

-
A A A A A _ D .
CA+n"+p*+v*+ 0" +@* + |Du—v)P) 7 if p=N_1.
L -A|D(u—v)| A-a.e. in wy Nwy

(2.31)
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Lemma 2.6 is itself based on the following compactness result.

Lemma 2.11. Let F,, : QxRM*N — [0, 00) be a sequence of Carathéodory functions
satisfying (2.3) to (2.8), and let w be an open subset of Q. Consider a sequence

{&,} € LP(w)M*N such that

Fo(,6) > A and &P 22 in (). (2.32)

e If1 < p < N—1 and the sequence {p,} converges strongly to p in Lrp%l(w)MXN,

then there exist a subsequence of n and a function 9 € L'(w) such that
Fo(- &+ pn) — Fu(-,6) =9 weakly in L' (w), (2.33)

where 9 satisfies
0] < C(W" + AP+ B + (1+ (A7) |pP) 7 (aD)or|p|  ace. inw.  (2.34)

o Ifp> N—1 and the sequence {p,} converges strongly to p in C°(@)™*¥  then
there exist a subsequence of n and a function 9 € L (w) such that

Fo( ot pn) = A+ 9A i (),

where ¥ satisfies
] < COA+R+ A+ 2+ [pP) 7 |p| A-ace inw. (2.35)
2.2.3 Examples

In this section we give three examples of functionals .%,, satisfying the assumptions
(2.3) to (2.8) of Theorem 2.3.

1. The first example illuminates the Lipschitz estimate (2.7). It is also based on
a functional coercivity of type (2.3) rather than a pointwise coercivity.

2. The second example deals with the Saint Venant-Kirchhoff hyper-elastic energy
(see, e.g., [18] Chapter 4).

3. The third example deals with an Ogden’s type hyper-elastic energy (see, e.g.,
[18] Chapter 4).

Let Q be a bounded set of RN, N > 2. We denote for any function v : Q — RY,

e(u) =3 (Du+Du"), E(u):=1(Du+ Du” + Du"Du),

: (2.36)
C(u) == (Ix + Du)" (I + Du).
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Example 1

Let p € (1,00), and let A,, be a sequence of symmetric tensor-valued functions in
L (Q; L (RN*N )) We consider the energy density function defined by

Fo(2,8) = |Ay(2)€° 1 €]* ae. z€Q, VEe RV,
We assume that there exists o > 0 such that
Ap(x)E: €> alé)?, ae 2€Q, VE€ RV, (2.37)

and that
|A,|% is bounded in L"(Q) with r defined by (2.6). (2.38)

Then, the density F), and the associated functional
F(u) = / | Ane(u) : e(w)|*dz for u e WEP(Q)Y,
Q
satisfy the conditions (2.3) to (2.8) of Theorem 2.3.

Proof. Using successively (2.37) and the Korn inequality in W01 P(Q)N for p > 1 (see,
e.g., [34]), we have for any u € Wy*(Q)V,

Z(w) :/Q‘Ane(u):e(u)|§dx2oz/g|e(u)|pdx20zC'/Q|Du|pdx,

which implies (2.3). Conditions (3.14) and (2.8) are immediate. It remains to prove
condition (2.7) with estimate (2.6). Taking into account that

|DeFu(, )] = p|(An(2)€" : €)% Ay (2)°]
<p|An(@)e: €T |A )|, VEERYN ae zeq,

then using the mean value theorem and Holder’s inequality, we get

[Fufw, &) ~ Fulen)] <o (A8 €05 + (A -n)2) ALl —

(r-1)?

< p2 " (Fulw, &) + Fule,m) 7 A3 IE — 1,

for every £,n € RV*N and a.e. x € Q. This implies estimate (2.7) with h,, = 0 and
an = |Ay|% bounded in L(Q). O

The two next examples belong to the class of hyper-elastic materials (see, e.g.,
[18], Chapter 4).
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Example 2
For N = 3, we consider the Saint Venant-Kirchhoff energy density defined by

E,(x,8) := A”T(x) [tr(B(©))]” + pal2) |EE)|", ae. xeQ, VEER™,  (2.39)

where E(€) := % (§ +&7 4 §T§), and \,, i, are the Lamé coefficients.
We assume that there exists a constant C' > 1 such that

Ans i, > 0 ace. in Q, essg—zinf (An + ) > C71, /(/\n + pin) dx < C. (2.40)
Q0

Then, the density F,, and the associated functional (see definition (2.36))

Fn(u) = /Q (% [tr(E(u)”2 + fn, ‘E(u)|2) dz  for u € Wy *(Q)?, (2.41)

satisfy the conditions (2.3) to (2.8) of Theorem 2.3.

Proof. There exists a constant C' > 1 such that we have for a.e. x € Q and any
f c R3><37

Cil()‘n + fin) |f‘4 —C (At ) < Fo(z,8) < C (A + pn) ’5‘4 +C (A + fin). (2.42)
Hence, we deduce that for a.e. x € Q and any &,n € R3*3,

|Fn(l’,£) - Fn<l’,77>‘

< OOt i) (L4 €2+ )2 1€ =l

C (O )5 + Ot ) 31EP + Q)3 0P) O+ 1)l = )
< C (M4 + Foz, &) + Fn(:v,n))%(kn + )T 1€ = 1,

which implies estimate (2.7) with p = 4 and h,, = a, = A\, + p,, while (2.5) and
(2.6) are a straightforward consequence of (2.40). Moreover, by the first inequality of
(2.42) combined with (2.40) we get that the functional (2.41) satisfies the coercivity
condition (2.3). Condition (3.14) is immediate. Finally, since we have

(IS

Ao+ 1) € — 1)

D=

< O (O + ) + Fu(2,6)% + Fu(,n)

[tr(EQO)]* + |[EQ)* <c(1+eY), VYAeo,1], VEe R,

condition (2.8) follows from the first inequality of (2.42), which concludes the proof
of the second example. O]

Remark 2.12. The default of the Saint Venant-Kirchhoff model is that the function
F.(z,-) of (2.39) is not polyconvex (see [31]). Hence, we do not know if it is
quasiconvex, or equivalently, if the functional F, of (2.41) is lower semi-continuous
for the weak topology of W14(Q)3 (see, e.g. [20], Chapter 4, for the notions of
polyconvezity and quasiconvezity).
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Example 3
For N =3 and p € [2,00), we consider the Ogden’s type energy density defined by

Fo(x,&) = a,(z) [tr(é’(f)% - IS):|+ ae. x €, V&R, (2.43)

where C(€) := (Is + &)T (I3 + €), and t* := max (¢,0) for t € R. We assume that
there exists a constant C' > 1 such that
r>1, ifp=2

ess-infa, > C~' and / ar dr < C  with (2.44)
Q Q r=1, if p> 2.

Then, the density F,, and the associated functional (see definition (2.36))
» -
Fn(u) = / an(x) [tr(C’(u)i — 13)} dr for u € WyP(Q)3, (2.45)
Q

satisfy the conditions (2.3) to (2.8) of Theorem 2.3.

Proof. There exists a constant C' > 1 such that we have for a.e. x € Q and any
f c R3><3
Cla, |€P — Ca, < Fy(x,€) < Cay, € + Cay,. (2.46)

This combined with the fact that the (well-ordered) eigenvalues of a symmetric
matrix are Lipschitz functions (see, e.g., [19], Theorem 2.3-2), implies that for a.e.
r € Q and any &, € RY, we have

|Fn(x7€> - Fn(xan)| S Can(l + ‘5’ + ’U‘)piwf - 77‘

p—1 1
< C(an+ anlé” + anlnl?) * ak |€ —n)
.

< C (an + Ful(e,€) + Fu(a,m) 7 al 1€ — 1),

which implies estimate (2.7) with h,, = a,, while (2.5) and (2.6) are a straightfor-
ward consequence of (2.44). Moreover, by the first inequality of (2.46) combined
with (2.44) we get that the functional (2.45) satisfies the coercivity condition (2.3).
Condition (3.14) is immediate. Finally, since we have

tr(C(A)5) < C(1+[€P), VA€0,1], VE € RP,

condition (2.8) follows from the first inequality of (2.46), which concludes the proof
of the third example. O

Remark 2.13. Contrary to Ezample 2, the function F,(x,-) of (2.43) is polyconvex
since it is the composition of the Ogden density energy defined for a.e. x € ), by

Wi(x,€) = a,(z) [tr(é(g)g — 1_3)]+ for € € R, (2.47)

which is known to be polyconver (see [1]), by the non-decreasing convex function t —
t*. However, in contrast with (2.47) the function (2.43) does attain its minimum at
& =0, namely in the absence of strain.
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2.3 Proof of the results

2.3.1 Proof of the main results

Proof of Theorem 2.3. The proof is divided into two steps. In the first step we
construct the limit functional F' and we prove the properties (2.13), (2.14), (2.15)
satisfied by the function F. The second step is devoted to convergence (2.18).

First step: Construction of F'.
Let Z, : WhP(Q)M — [0, 00] be the functional defined by

Fn(v) = / F,(z,Dv)dx for v e WP(Q)M.
Q

By the compactness I'-convergence theorem (see e.g. [21], Theorem 8.5), there
exists a subsequence of n, still denoted by n, such that .%#, I'-converges for the
strong topology of LP(2)M to a functional .Z# : WhP(Q)M — [0, oc] with domain
D(F).

Let ¢ be a matrix of a countable dense subset D of RM*Y with 0 € D. Since the
linear function x — &z belongs to Z(.%#) by (2.10), up to the extraction of a new
subsequence, for any £ € D there exists a recovery sequence w$, in WH?(Q)M which
converges strongly to £z in LP(Q)M and such that

E,(-,Duwd) > p* and |Dwi|P = o5 in .#Z(Q).

In particular, since F,(-,0) = 0 we have u° = 0. Moreover, by estimates (2.23) and
(2.31) we have for any £,n € D,

CIEP + [P (AL)r + h+ €+ AF) ae. inw, ifl<p< N—1
5<{ (|§| |£’< ) H ) P> (2.48)

C’(|§|pA+h+,u§—|—A) A-a.e. in w, ifp>N-—1,

[t — | <

[ (R ()4 () (o) (") (14 (aF)
-(AL)#E—H] a.e. in

C(1+h*+ ()" + (W)™ + () + () + € — n)lp)% '
[ -AlE—n| A-ae inQ

Hence, by a continuity argument we can define a function F' : Q x RM*N — [0, c0)
satisfying (2.13), (2.15) and such that

F(,¢), ifl<p<N-1
pt = &) P VEeD, (2.50)
F('7£)A7 ifp>N-1,

where the property (2.14) is deduced from (2.48), (2.49).
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Second step: Proof of convergence (2.18).

Let w be an open set of €, let {u,} be a sequence fulfilling (2.17), which converges
weakly in WP (w)M to a function u satisfying (2.16), and let £ € D. Since Fy,(-, Du,)
is bounded in L'(£2), there exists a subsequence of n, still denoted by n, such that

Fo.(-,Du,) = p and |Du,|P = o in.Z(Q). (2.51)
Applying Corollary 2.10 to the sequences u,, and v, = wé, we have

= pf] <
(C(hE + P+ (1) + 0" + (65)F + (1 + (A%)

1 if 1<p<N-1,
~(AF)|Du— €] ae. inw

C(L+ 1+ it + (1) + ¢* + (¢) + | Du— ) 7

if p>N-—1.
“AlDu—¢| A-ae inw

\

Using (2.48), (2.50) and the continuity of F'(x, &) with respect to &, we get that

F(-,Du), ifl<p<N-1
M:{ (-, Du) (2.52)

F(-,Du) A, ifp>N-1.

Note that since the limit p is completely determined by F', the first convergence of
(2.51) holds for the whole sequence, which concludes the proof. U

Proof of Theorem 2.4. The proof is divided into two steps.

First step: The case where V = {a} + Wy (w)™.
Fix a function @ satisfying (2.27), and define the set V := {a} + W, (w)™. Let
u € V such that

WET ()M, if1<p< N—1
u €
cHw)M, if p>N—1.

which is extended by @ in Q \ w, and consider a recovery sequence {u,} for %)
of limit w. There exists a subsequence of n, still denoted by n, such that the first
convergences of (2.28) and (2.29) hold. By Theorem 2.3 convergences (2.18) are
satisfied in w, which implies (2.52). Now, applying the estimate (2.26) of Lemma 2.7
with u,, and v, = u, it follows that

p<vinw with F,(-,Dv,) > v in (),

where the convergence holds up to a subsequence. Then, using estimate (2.7) with
n = 0 and Hoélder’s inequality, we have for any ¢ € L™ (Q; 0, 1]) with compact
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support in 2,

;

S
SN
-

(/ %) (hn + F,(z, Du) + |Du|p) dx>
Q

) r d pr D %d rp—rl
(fpecar)” (erpuar

(/Q ¢ (hn + Fo(z, Du) + |Dul?) d:c)

1
P
. (/ @ ap, dl’) ||DU||Loo(Q)M
\ Q

which implies that v is absolutely continuous with respect to the Lebesgue meas-
ure if 1 < p < N—1, and absolutely continuous with respect to measure A if p > N—1.
Due to condition (2.21) in both cases the equality v(0w) = 0 holds, so does with p.
This combined with (2.18) and (2.52) yields

if 1<p<N-—1,

i
N

/ o F(x, Du)dx <
Q

p

if p>N-—1,

/F(:B,Du)dx, ifl<p<N-1
n—roo
v /F(x,Du)dA, ifp>N-—1,

which concludes the first step.

Second step: The general case.
Let V be a subset of WP (w)™ satisfying (2.19). Let u be a function such that

VAWM, ifl<p< N—1
u < _
VoM, if p> N—1,
and define the set V = {u} + W, ?(w)™. Consider a recovery sequence {u,} for

ZY given by (2.20) of limit u, and a recovery sequence {a,} for ZY of limit u.
By virtue of Theorem 2.3 the convergences (2.18) hold for both sequences {u, } and
{t,,}. Hence, since w is an open set, and F),(x, Du,) is non-negative, we have

ifl<p< N-—1, /F(:C,Du)dx
« < liminf/Fn(x,Dun) dzx. (2.53)

n—o0

ifp>N-—1, /F(:c,Du)dA

Moreover, since i, — u, — 0 in Wy?(w)M, @, € V by property (2.19) and be-
cause {u,} is a recovery sequence for .7, {u,} is an admissible sequence for the
minimization problem (2.17), which implies that

3 lim [ F,(z, Du,)dz < lim inf/ F,(x, Duy,) dz. (2.54)

n—oo w n—o0
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On the other hand, by the first step applied with & = u and the set V, we have

/F(:B,Du)da:, ifl<p<N-1

lim [ F,(x, Du,)dx = (2.55)
n—oo
v /F(x,Du)dA, ifp>N-—1.
Therefore, combining (2.53), (2.54), (2.55), for the sequence n obtained in The-
orem 2.3, the sequence {JV} [-converges to some functional .#" satisfying (2.22)
with v = u, which concludes the proof of Theorem 2.4. 0]

2.3.2 Proof of the lemmas
Proof of Lemma 2.11. Assume that 1 < p < N—1. Using (2.9), we have

Fo(z, 80 + pn)
<(p—Dhy+2p —1)Fo(z,6)+(p — 1)(|€n + pul” + |€n|p)+an|pn|p a.e. in w.

From this we deduce that {F,(-,&, + pn)} is bounded in L'(w). Moreover, by (2.7),
we have

p—1 1
< (hn + Fo(, 80+ pn) + Fu(2,&) + & + pul? + 16]P) 7 ak]pn| ae. inw,

where, thanks to the strong convergence of {p, } in L7 (w)M*N  we can show that

the right-hand side is bounded in L'(w) and equi-integrable. Indeed, taking into
account

p—1 1 r—1

—t—+

p pr pr

we have the boundedness in L'(w) of the right- hand side, while the strong conver-
gence of {p,} in L71 (w)™*N implies that {|p,|71} is equi-integrable and therefore,
the equi-integrability of the right-hand side. By the Dunford-Pettis theorem, ex-
tracting a subsequence if necessary, we conclude (2.33), which, together with (2.32),

in particular implies

=1

Y

Moreover, for any ball B C w, we have

/B(h + B, & + pn) + Fu(,60) + &0 + pal” + |€al” ) ? an’pn|daj

([t h

Fu(,60 4 pu) + Fula,£) + Cleal? + Clonl?) dx) ”
( adx)p</|pnr1dx> ;
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which, passing to the limit, implies

r—1

/|19|dx< <(h+2A+19+C_ +0/ |p|pdx> ' </ o] 1d:c) "

and then, dividing by |B|, the measures differentiation theorem shows that

0] < (W™ + 208 + 0 + CE+ Clpl) 7 (AM)%[p|  ace. inw. (2.56)

Using Young’s inequality in (2.56)
-1 1 1
|Y| e (R + 2A" + 9+ CE" 4+ C|plP) + =(A")7|p|? a.e. inw,
p p

and then 1
W] < C(R" + A" +EF 4+ (14 (a%)7)[pl)  ae. inw,

which substituted in (2.56) shows (2.34).

Assume now that p > N—1. Again, using (2.9) we deduce that {F,(-,&, + pn)}
is bounded in L'(w), and thanks to (2.7) we get

(h + Fo(2, & + pn) + Fu(2, &) + & + pul” + &) Plan|pn| a.e. in w.

Consequently, the sequence {F,(-,&, + pn) — F,(+,&,)} is bounded in L'(w). Ex-
tracting a subsequence if necessary, the sequence {F, (-, &, +pn) — Fu(+, &) } weakly-x
converges in . (w) to a measure O, which, together with (2.32), implies

Furthermore, if F is a measurable subset of w, then, using Holder’s inequality, we
have

/ |Fo(@, & + pn) — Fu(2,&)| da

/E(h + Fo(z, & + pn) + Fu(2, &) + & + pul” + &0 P) Plan|pn|d:1:

p—1

= (C ln 1o ypen + [E (hn + Fu(@, & + pu) + Fu(@, &) + Cléal”) d;n)

1
. </ andl’) ||pn||L°°(w)M><N7
E

which, passing to the limit, shows that © is absolutely continuous with respect to
A. By the Radon-Nikodym theorem, there exists ¢ € L} (w) such that

© =9A in A (w).
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From the previous expression and using the measures differentiation theorem, we
get (2.35). ([l

Proof of Lemma 2.6. Let zg € w and two numbers 0 < R; < Ry with B(z, Ry) C
w. Lemma 2.6 in [12] gives the existence of a sequence of closed sets

1
U, C [Rl,RQ], with |Un‘ > §(R2 — Rl),
such that defining
Un(r,z) = up(xo +12), u(r,z) =u(zg+rz), re€(0,Ry), z€ Sy,

we have
[tn — il oo, x) — 0, (2.57)

where X is the space defined by

L5 (Sn)M, with 1 < s < §VN_;1_>§, ifl<p<N-—1,
X =< L(Sy)M, with 1 < s < o0, ifp=N-—1,

CO(SNfl)M, 1fp> N-—1.

For the rest of the prove we assume 1 < p < N —1 because the case p > N—1 is
quite similar.

We define @, € WH>(0, 00) by

1, if 0 <r < Ry,
1 [P
2l = / xv.ds, if Ry <r < R, (2.58)
0, if Ry < T,

and
en(®) = @n(lz — 20).
Applying the coercivity inequality (2.3) to the sequence ¢, (u, — u) and using
F.(-,0) =0, ¢, =1in B(zg, Ry), we get
a/ |Du,, — Du|P dzx < a/ |D(¢n(un —w)))|" da
B(Io,Rl) B(Io,Rg)

< L(z07R2)Fn (z, D(p(un — u))) dx

= / E, (a:, onDuy — opDu+ (u, — u) ® Vgpn) dx.
B(zo,R2)
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By the convergence (2.33) with &, := ¢, Du,, pn := —@,Du+ (u,, — u) ® Vg, and
by estimate (2.8) we obtain up to a subsequence

lim E, (%, onDuy, — @ Du + (u, — u) @ Vip,) da
n—oo B(Z‘O,RQ)
< lim F, (:L‘, onDuy,) dx + / ¥ dx

=0 JB(z0,Rz) B(xo,R2)

< C(h+ p)(B(wo, Ry)) +/ Vdz,
B(:E(),RQ)

with

1 p=1
r

)| Dul?) (AL)?IT]Du\ a.e. in w.
Indeed, thanks to (2.57) the sequence (u, — u) ® Vi, converges strongly to 0 in
L%(w)M *N taking into account the inequality

(N=Dp _ pr
N—-1-p  r—-1

W] < C(h" +p" + 0" + (1+ (ah)

Hence, we deduce from the previous estimates that

o(B(zo, R1)) < C’(h+u)(§(m0,R2))+C’/ | DulP dx
B(wo,Rl)

p—1

+C/ ((hL+uL+gL+(1+(AL)%)|Duyp) v (AL)%r|Du|) dz.
B(zo,R2)

Taking R, such that

(h+ p)({lz — wo| = Ra}) =0,
which holds true except for a countable set E,, C (O, dist(zo, Bw)), and making Ry
tend to Ry, we get that

o(B(zo, Ry)) < C’(h+u)(B(:v0,R2))+C’/ | DulP dx
B(wo,Rz)

p—1

+C/ ((hL+uL+gL+(1+(AL)%)|Duyp) v (AL)%r|Du|) dr,
B(zo,R2)

for any R, € (0, dist(zo, 0w)) \ Ey,. Then, by the measures differentiation theorem
it follows that
1 p—1 a1
o< C(|DufP +h+p)+C ((hL + pF + o' + (1 + (A%)7)|DufP) » ) (AL)or | Dul.

Finally, the Young inequality yields the desired estimate (2.23).

Now consider {u,} and {v,} as in the statement of the lemma. Let 27 € w and
0 < Ry < Ry < Ry with B(xg, R2) C w. Again using Lemma 2.6 in [12] there exist
two sequences of closed sets

Vn C [Ro, Rl]a Un C [R17R2]7



94 2.3. Proof of the results

with . X
|Vn| = §<R1 - RO); |Un| > §(R2 - Rl),

such that defining

ﬁn(TJ ’Z) = uTL(xO + TZ), @n(r; Z) = Un(xo + 7‘2), rc (O7R2)7 YRS SN717
a(r,z) = u(zo +r2), o(r,z) = v(xg +12), r € (0,Ry), z € Sy,
we have
[t — tllcow,;x) = 0, [[0n — llco,:x) — 0.

Then, consider the function @,, defined by (2.58) and the function v, € W1*°(0, 00)
defined by

1, if 0 <r < Ry,
_ 1 Ry
l/fn(T) = m/ XVndS, if RO <r< Rl,
0, if Ry <.

From these sequences we define w,, € W (w) by
with i
on() = Enllz —zol),  Yu(z) = Pn(z — 20l),

1.€.
v, — U+ u, if | — x0| < Ro,

(v, —v) + u, if Ry < |z —zo| < Ry,
ontt + (1 — pp)uy,, if Ry < |x —x9| < Ry,
Up, if Ry < |x — 20|, € w.

(2.59)

Wy =

It is clear that, for a subsequence, w, converges a.e. to u. Using then that
W, — Uy is in WP (w)™ and that, thanks to ¢,, ¥, bounded in Wh(Q), w, is
bounded in W1P(w)M, we get

w, — u, — 0 weakly in W, (w).
Thus, from (2.24) we deduce

/ Fo(z, Duy) da

/ n(x, Dw,) dz + O,

D(v, —v+u))dz + / F,.(x, Du,) dx

{Ra<|z—20|}Nw

B(zo,Ro)

+ / Eo (2, nD (v, — v) + Du+ (v, — v) @ Vipy,) da
{Ro<|1’ :E0|<R1}

+ / F, (a:, onDu+ (1 — @) Duy, + (4 — uy) ® V(pn) dr + O,,,
{Ri1<|z—z0|<R2}
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what implies, in particular

/ F,(x, Du,) dx
B(zo,R2)

g/ F, (a:, D(v, — v+ u)) dx
B(m(),R())
+ / Ey (2, D (v, — v) + Du+ (v, — v) @ Vipy,) da
{R0<|x—m0|<R1}

+ / F, (x, onDu+ (1 — @) Duy, + (4 — uy) ® Vgon) dx + O,,.
{Ri1<|z—z0|<R2}

(2.60)

To estimate the first term on the right-hand side of this inequality, we use Lemma
2.11 with &, = Dv,, p, = D(—v + u), which take into account (2.25), gives

/ E,(z, D(v,—v+u)) dx
B(z0,Ro)

S V(E(l’o, Ro))

+C/ (W4 4w+ (14(A5) )| D(u—0)P) 7 (A%) 7| D(u—v)| dz + O,.
B(zo,Ro)

(2.61)
For the second term, we use again Lemma 2.11 with &, = ¢, Dv,, and p,, = —¢,, Dv+
Du + (v, —v) ® V1),,. Therefore, up to subsequence it holds

/ E, (2, ¥nD(v, — v) + Du+ (v, — v) @ V) da
{Ro<|z—z0|<R1}

< C(h+v+w@)({Ro < |z — 0| < Ri}) (2.62)

p—1

—I—C'/ (hL—i-VL—i-wL—i—(1+(AL)%)(|DU|p+|Du\p)) P
{Ro<|z—z0|<R1}

()

Du| + |Dv|) dz + O,,.

The third term is analogously estimated by Lemma 2.11 with &, = (1 — ¢, )Du,, and
pn = enDu+ (u — u,) ® Vy,. Extracting a subsequence if necessary, it yields

/ F, (2, onDu+ (1 — ¢n)Duy, + (u — u,) ® Vi) da
{R1<|;tfz0\<R2}

< Clh+p+ o) ({Ri < |z — x| < Ro})

1 p—1
s

)|Dul?) 7 (A%)3r | Duldz + O,,.

(2.63)

+C (R +p" + 0" + (1 + (a")
{R1<‘x—x0|<R2}
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From (3.52), (2.61), (2.62) and (2.63) we deduce that
11(B(zo, Ra))
< V(E(LC(), R(]))

1 p—l
T

)| D(u —v)[P) 7 (a%)or

—|—C’/ (h" +v" + @+ (1+ (a") D(u —v)|dx
B(zo,Ro)

+C(h+v+@)({Ro < v — 0] < R1})

1 p—1
s

o (" 0" "+ (L4 (AP ) (1Del + [Dup)) 7
{Ro<|x—a)o‘<R1}

- (A% (| Dul + | Do) da

+ C(h+ p+ o) ({R1 < |z — z0| < Rs})

p—1

+O/ (R* + 1" + 0" + (1 + (A%)")|DulP) # (A%)7 | Duldz.
{R1<|z—m0|<R2}

(2.64)
Taking R, such that

(h+v+w+p+0)({lxr— 2ol = Ro}) =0,

which holds true except for a countable set E,, C (O,dist(xo,é?w)), and making
Ry, Ry tend to Ry, from (2.64) we deduce that

M(B(xo, Ro))
S I/(B(QT(), RO))

1 p—1
T

+ C'/ (hL +vt 4ol + (1+ (AL) )| D(u — v)|p) P (AL)ITI’”|D(U —v)|dx,
B(zo,Ro0)

for any Ry € (0, dist(z, 0w)) \ E, (observe that the right term in the integral is well
defined as an element of L!'(w)). Therefore, the measures differentiation theorem
shows (2.26).

O

Proof of Lemma 2.7. The proof is the same as the proof of Lemma 2.6 choosing
any point zg in €2 rather than w, extending the functions w,, v, by w in Q \ w, and
then noting that the function w,, defined by (2.59) in € is also equal to v in Q2 \ w.
O

Proof of Corollary 2.10. Assume that 1 < p < N—1. Applying Lemma 2.6 with
w = w; (see also Remark 2.8 about the subsets of w) we obtain

1 p—1
r

p<v+Ch + v+ @+ (1+ (AL D —v)) 7 (AY)7|D(u—v)| inw Nw,.
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Analogously with w = wq, we get

1
T

—1

v <k C(RE + b+ o + (14 (A1) D) D(w — 0)?]) 7 (AL D — )] in w; Nws.
These two expressions prove the first estimate of (2.31). The proof of the second
estimate is similar. O
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Abstract.

We study the asymptotic behavior of the solutions of the linear elasticity system
in a thin beam of thickness € > 0, when ¢ tends to zero. The elasticity tensor also
varies with €, and it is assumed to be uniformly elliptic but non-uniformly bounded.
Namely, we just impose that its norm in L* is an infinitesimal of 1/¢ and its norm
in L' is bounded. We obtain an homogenized problem corresponding to a linear
system in one dimension. It gives an approximation of the solution of the problem
in the thin beam which consists in the sum of a Bernouilli-Navier’s deformation
plus a torsion term. This limit system provides a general asymptotic model for
the behavior of an elastic beam composed by the mixture, at a mesoscopic level,
of several materials, and therefore, which does not satisfy any homogeneity and/or
isotropy conditions.
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3.1 Introduction

Obtaining an asymptotic model for the behavior of an elastic beam of thickness
e > 0 is a very classical problem due to its huge interest in engineering. The idea is
to approximate the deformation by the solution of a differential system in dimension
one, which is much simpler to deal with from a numerical point of view. Such an
ordinary differential system is usually composed by two uncoupled linear equations
of fourth order, which describe the asymptotic behavior of the deformations in the
orthogonal directions to the axis of the beam. From a mathematical point of view
this system can be obtained by passing to the limit when ¢ tends to zero in the
elasticity system (see e.g. [19], [29])

{ —div (A trace(e(u.))I + 2pe(u.)) = f- in (0,1) x (sw),
(

(3.1)
Atrace(e(u:))I 4+ 2pe(u.))y =0 on (0,1) x (edw),

where w is a smooth, connected, bounded domain in RN~ (usually N = 2,3), v is
the unitary outward normal vector to w on dw, A\, u > 0 are the Lamé constans, u.
is the deformation of the beam, e(u.) := (Du + Du”)/2 is the strain tensor and f.
is the exterior force which is usually supposed of the form

fealw) = fi(x),  foj(x) = efi(z), je{2,--- N} (3.2)

By also adding certain boundaries conditions on the extremities of the beam (de-
pending for example on whether the corresponding base is fixed or not) the classical
model provides the following approximation for the deformation on the orthogonal
directions to the axis of the beam:

ueg0) ~ Zus(e), G € {2, N, 3:3)

with u; solution to the ordinary differential equation

2u(AN +2)  dhu
AN —1)+2u™’ d:lc1

= f; in (0,1), (3.4)

where I; is the inertial momentum of w in the j-th direction divided by |w]| (it is
assumed that the center of mass of w is zero and that the axes are inertial). These
equations are usually known as the beam equations. It is also possible to get the
following approximation for the deformation in the direction 1,

=

du
U () ~ uy (1) —— (3.5)

dx,

with u; solution to

2u(AN +2p) d*u :
TAN 1) +2u -5 =h in(01). (3.6)
1
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We see that, with assumption (3.2), the deformation is of order one in the direction
x1, whereas it is of order 1/¢ in the other ones. For this reason just equations for
uj, 2 < j < N, are taken as the beam equations. A deformation of the type

is usually known as a Bernouill-Navier’s deformation.

More generally, in reference [23], it has been considered the case where the elasti-
city tensor does not satisfy any homogeneity and/or isotropy conditions. Namely,
the authors replace in (3.1) the tensor & € RY*N s Xtrace(§) I + 2ué € RN
(RY*N the space of symmetric matrices of dimension N x N) by a general tensor
function & — A(xy,2'/e)€ with A € L>°(Q; LRY*Y)) uniformly elliptic. A more
general right-hand side is also considered. In this case, it is obtained an approxim-
ation of u. more intricate than (3.3), (3.5), which is given by

/

du; T z
U&l(l') ~ 'LL1(£C1) — Z d_aji<x1)_J + ez (1'1, g) y

3

where we are denoting r = (x1,2') € R x R¥~! and where the matrix function
Z = (Zj;) is skew-symmetric. The functions on the right-hand side are solutions of
a system in (0, 1) X w, i.e. in the macroscopic variable y; = z; and in the microscopic
variables y; = x;/e. From this problem, one can obtain a one-dimensional linear
system for the functions u and Z. Contrary to (3.4), (3.6), the system is no longer
uncoupled in the different variables. The deformation (0, Z (:1:’1)%) is known as the
torsion term and corresponds to a (linearized) rotation around the axis of the beam.
It does not appear in the classical case when only isotropic materials are considered.
In [23] only the case N = 3 is considered. The general expression (3.7) can be
obtained from the results in [10].

In the present paper we are interested in obtaining an approximation of the
solutions of the linear elasticity system in a beam of thickness €, when the tensor
coefficient also depend on €. Namely, we consider the problem

{ —div(Ace(u.)) = f. in (0,1) x (sw),

(3.8)
Ace(us)v =0 on (0,1) x (e0w),

where A. is a sequence in L'((0,1) x (cw); L(RY*N)) and where, as in (3.1), it
would be necessary to add some boundary conditions on {0,1} x (ew) in order to
have uniqueness of solution.

The study of the asymptotic behavior of elliptic problems in a thin domain
where the coefficients also vary has been considered by other authors. We refer for
example to [2], [9], [26] for the case where the coefficients vary periodically with a
small period.
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When no periodicity is assumed we give the following references. For the case
of a linear diffusion equation in a plate in dimension 3, (the case of a beam would
be very similar) the problem has been considered in [15] by assuming the sequence
of coefficients matrices uniformly elliptic and bounded. The authors show that
the solutions can be approximated by those of a partial differential equation in
dimension 2. Some expressions for this limit equation have been obtained in [17]
under special assumptions on the coefficients. An extension to non-linear diffusion
equations has been obtained in [13]. The case of a nonlinear monotone equation in
a beam (0,1) x (ew), where the coefficients also depend on ¢, has been considered in
[12], assuming the coefficients uniformly elliptic and bounded. In [12]a right-hand
side of the form f.(z) = f(x1,2'/e) + div G(xy, 2’ /¢) is considered, and due to the
presence of the function G, the limit problem is no more a one-dimensional problem.

For the linear elasticity system, the problem has been considered in [14] for a
plate w X (—¢,¢) in dimension 3 (here w is a smooth, connected, bounded domain in
R?), assuming certain isotropy conditions of the coefficients and also that they are
uniformly elliptic and bounded. Thanks to these isotropy conditions, the authors
show that the deformation of the plate along the directions of the plane x3 = 0
can be approximated by the solution of a fourth order equation in dimension two.
This is similar to the case of an isotropic beam described at the beginning of the
introduction. The problem has also been studied in [18] without assuming isotropic
conditions but supposing that the coefficients only depend on the variable z3. Now,
the approximation of the solutions is of the form

x x
Ua,1(96) ~ U1($1, $2) - aa:luzs(%, $2)?37 Ua,2($) ~ U2($17$2) - 8@163(%1@2)?3,

1
ue 3() ~ gUg([El, T3).

A deformation with the form of this approximation is called a Kirchhoff-Love de-
formation. It is the analogous for a plate to the Bernouilli-Navier deformation for
a beam. Now the authors find a linear system for wy,us,us, which is no longer
uncoupled as in [14].

In our case our aim is to obtain a limit system in dimension one which approx-
imates the solutions of (3.8) without imposing any isotropy and/or homogeneity
conditions on the tensor function A.. We assume the ellipticity condition (3.16)
below but for the upper bound we just assume that the norm in L* of A, is an
infinitesimal with respect to 1/¢, (3.15), and that the coefficients are bounded in L!,
(3.14). However, in our knowledge the results are new even in the case of uniformly
bounded coefficients. We obtain an approximation of the solutions similar to (3.7),
but eliminating the term corresponding to the function z, which is of order . The
functions v and Z are the solutions to a linear system in dimension one.

As it is well known (see e.g. [1], [28]) the interest of taking A. depending on e
(homogenization problem) is to describe the behavior of beams composed by mix-
tures of different materials at a microscopic (or more exactly mesoscopic) level. The
homogenization process gives an approximation of these mixtures by a generalized
material represented by the homogenized tensor. In our case, the coefficient tensor
corresponding to the limit system in dimension one. Therefore, our results provide a
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general model for the behavior of a beam composed by a general mixture of mater-
ials. It can be used to study optimal design problems in a beam. The fact that the
coefficients are not uniformly bounded means that we are considering high-contrast
homogenization problems. We recall that if there is not reduction of dimension,
then, contrary to our result, by assuming the coefficients just bounded in L! we get
non-local terms in the limit problem for N > 3, [3], [16] (but not for N < 2, see
e.g. [4], [5], [25]). Some local homogenization results where there is not reduction
of dimension, but assuming the coefficients bounded in a certain L” with p > 1 are
obtained in [6], [7], [8].

To finish we also observe that although no equi-integrability for the coefficients
is assumed, the limit tensor we find is in L', i.e. it does not contain any measure
supported on sets with null Lebesgue measure.

Notations

e We denote by ey, --- , ey the usual basis in RY.

e For any vector u € R, we will use the following decomposition

Uy
U= o)

where u; € R and v/ € RV~ We will also denote by «’ a vector in RY whose
first component vanishes. In this way, the above decomposition can be also
written as u = uye; + .

e For any matrix M, we denote by M7 the transposed matrix of M.

e : denotes the euclidean inner product in RV ie. M : My = trace(M] M,).
o RYXN denotes the space of symmetric matrices of dimension N x N.

° R?,QXN denotes the space of skew-symmetric matrices of dimension N x N.

o RN*Y denotes the space of matrices M € RV*Y such that

Mll‘:MZ‘17 forizl,...,N,
Mi':_Mji> fori,sz,...,N.

e c(v) denotes the symmetric part of the derivative of a function v, i.e.
1 T
e(v) = §(Dv + Dv").

e For a set U C RY, M(U) denotes the space of Radon measures on U with
bounded total variation. If U is bounded and open, it agrees with the dual
space of CJ(U). If U is compact, it agrees with the dual space of C°(U).
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e For any measure a € M(U), we define a® € L}(U) as the derivative of a with
respect to the Lebesgue measure.

e For a Lipschitz open set O C RY and a set F' C 90O, we denote by H%(O) the
space of functions in H*(O), such that their derivatives of order less or equal
than k£ — 1 vanish on F.

e We denote by C' a generic constant which can change from line to line.

e We denote by O. an arbitrary sequence of real numbers which tends to zero
when ¢ tends to zero. It can change from line to line.

3.2 The homogenization result

Let w C RY~! be a Lipschitz connected bounded open set, with N > 2. Then, for
e > 0 we define the thin beam 2. by

Q. =(0,1) x (ew). (3.9)
The extremities of 2. are denoted by I, i.e.
. ={0,1} x (ew). (3.10)

When ¢ = 1, we will just write (2 and I' instead of {2; and I'; respectively.

The coordinate system is chosen in such way that the origin is the center of mass
of w and the coordinates axes in the z’ variables coincide with the inertial axes of
w, i.e. such that w satisfies

/y’dy’ =0, (3.11)

/yiyj dy =0, 2<ij<N, i#]. (3.12)

We define the diagonal matrix Z (it corresponds to the inertia matrix of w divided
by |w[) by

I,
1
T = , With]i:m/y?dy'7 2 <¢<N. (3.13)
w w
In

In the domain €2, we will consider a linear elastic problem where the coefficients
also depend on . Our purpose is to approximate its solutions for those of a one-
dimensional problem.

We will assume that the coefficients of the elasticity system are given by a se-
quence of tensors A, € L®(Q; L(RY*N)) which satisfies the following three prop-

erties:
1

62|

/ |A.|da < C, (3.14)
Qe
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Ja >0, AL:&>al¢)?, VEERYN ae in Q.. (3.16)

Then, we will deal with a sequence u. € H'(2.)", which satisfies the linear elasticity
system

{ ~div(Ace(u.)) = h. in Q, (3.17)

Ace(uz)ve =0 on 09 \ I'..

Here v. denotes the unit outward normal to Q. on 0. and h. = (h. 1, h.) is defined
by
x’ x! x!
hea(x) = fen (xl, —) , ho(x) =¢ef! <x17 —) +g. (:L‘l, —) , ae x €, (3.18)
5 € €

with f. € L*(Q)N and ¢, € L*(Q)V~! such that

/g;dy' =0, ae. y €(0,1), (3.19)
3f e L2 Q)N with f. — f in L*(Q)V, (3.20)
3¢ € L* ()N with ¢/ — ¢ in L2(Q)N 1. (3.21)

Since we have not imposed any boundary condition on I';, we will also need to
assume some bounds for u. = (u.1,u.). Namely, we suppose there exists C' > 0

such that )

— [ Ace(ue) : e(u.) dr < C, (3.22)
2] Jo.

1 1
min < || (w1, €ul) || L2 ({a) xew) + ||Ue — — ul da’ <Clewlz.
ag[0,1] |5w| {a}xew L2({a} xew)N -1

(3.23)

Our main result is given by Theorem 3.1 below. Before stating it, we introduce the

following notation:
For u = (uy, ') € H(0,1) x H2(0,1)¥ ! and Z € H'(0,1; RY V"1 we denote

duy (dzu’)T
dr; \ da?
eo(u, Z) = df/ 2 € L2(0,1; RV, (3.24)
u
da? dxy

Theorem 3.1. Let A. be a sequence of tensor functions in L (Qe; LRY*N)) which
satisfy (3.14), (3.15) and (3.16). Then there exist 5 > 0, which only depends on w,
a constant v, which only depends on o and w, a subsequence of ¢, still denoted by
g, a € M(0,1) and A € L*(0,1; LRYN ) with

s1sk’

1 *
m/ Alde’ = a in M(0,1), (3.25)
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AE| < B(AE: B)*(a")?, VE RV, ae in(0,1), (3.26)
|E>? <yAE:E, VEeR)SY, ae in(0,1), (3.27)

such that the following homogenization result holds:
Let h. be a sequence given by (3.18) with f. € L*(Q)N, ¢/ € L2(Q)N~! satis-

fying (3.19), (3.20) and (3.21). If u. € HY(Q.)N satisfies (3.17), (5.22) and
(3.23), then, for a subsequence of €, there exist u € H(0,1) x H?(0,1)V~! and
Z € HH0, ;RGN0 it

1
/ Aeg(u, Z) : eg(u, Z) dry < o0, (3.28)
0

which satisfy the variational equation

AAeo(u,Z) eg(u Z dyl |/ <f1( —d_ﬂ/ y)—i—f’ﬂ’—l—g/(zyl)) dyu

v(a, Z) € Hy(0,1) x Hg (0, 1)N_1 x HX(0, 1;R(§€V 1) (N-D)

S )

\

1
with / Aeg(, Z) = eg(tt, Z) day < o0,
0
(3.29)

and provide the following approximation of u.

I 1
EI—% |Q_€| Qe

du' |2

day

1 '
u, — — [ uldd — Z—
lew] Jew 3

+ el — " +

/
Ue — €0y, u, —

U
dl’l

+eDyul — Z +

2
)dx:().

(3.30)
Remark 3.2. Theorem 3.1 provides the approximation of u.
d / / 1 /
Ueq () ~ug () — dgl : xg’ ul(x) ~ EUI(xl) + Z(xl)%, a.e. in €.,

in the sense that (3.30) holds. The right-hand side is the sum of the two deformations
(u; — 57“; -2 Ly and (0, Z‘%’) The first one corresponds to a Bernouilli-Navier’s
deformation, which usually appears in the asymptotic description of the deformation
of a beam. The second one is known as the torsion term and corresponds to an
infinitesimal rotation around the axis of the beam.

Statement (3.30) can be improved by adding some weak convergences in Sobolev
spaces which are interesting for example in order to deduce boundary conditions
for the functions u and Z. However, to do this we need to write the corresponding
convergences in a fired domain. As usual this can be carried out by using the changes

of variables y; = x1, y = a'/e. Namely, for the sequence u. in Theorem 3.1, we

define U. € HY(Q)N as

U-(y) = uc(y1,ey’) a.e. ye.
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Then, we have

Usi—up in HI(Q),

/ o 1 N-1
eU. = in H(Q)" 7, (3.31)

Ul — ||/U/TAZy in H'(Q)N 1,
w

Remark 3.3. In the proof of Theorem 3.1 (see (3.68) and (3.89)), we will also
prove that if u. is in the conditions of the theorem and u. is another sequence which

satisfies
1

— e(t.)|?dr < C,
o QSI( )|

and (3.30) with u and Z replaced by some other functions a, Z then

1
Ase(us):e(as)wdx:/ Aeg(u, Z) eo(it, Z) pdxy, Yo e CX(0,1).
0

(3.32)
In this assertion, we have used that (3.22) and (3.30) also imply (3.23), which is
easy to check by using Theorem 3.9 below. In particular, we can take t. = u. to get
the convergence of the energies.

e—0 ’Q | Q.

Remark 3.4. We observe that although (5.14) only provides an estimate for A, in
L (it just implies (3.25)), the coefficient tensor A in the limit problem (3.29) is
in L', i.e. it does not contain any measure which is not absolutely continuous with
respect to the Lebesgue measure. Indeed, inequality (3.26) provides the estimate

Al < g% a.e. in (0,1).
In particular, if a¥ belongs to L>(0,1), we have that A is in L>(0, 1; E(Ré\[?g))

Remark 3.5. Variational equation (3.29) can be written as the partial differential
system

(
_%{Aeo(u Z /f1dy in (0,1),
1
d2
o [Aeo(u, Z)} ‘/ fiy; + ;) dy' in (0,1), Vje{2,--- N},
d /o .. .
\_d_xl[Aeo(u Z)]zj M/w(giyj _gjyi) dy' in (0,1), Vi,j € {2,--- N}, i<y,

(3.33)
where we recall that eo(u, Z) contains derivatives of first orden in uy and Z and
derivatives of second order in u'.

It is worth comparing system (3.33) to the classical system for a beam, which is
composed by N — 1 ordinary differential equations of fourth order (see e.g. ([29]).
Indeed, it corresponds to taking

A€ = Mtrace(6)] +2ug, V&€ RV, (3.34)
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where X\ and p are two positive constants (the Lamé constants). In this case, we can
prove that system (3.33) reduces to

( d*u
—F— dy 0,1
dxl o [y in .,
d*u
ET — / iy + fdy in (0,1), (3.35)
dxl |w|
d*Z IRy -yeg :
B2 — dy' 0,1
= |w|/ . Y in (0,1),
where E 1s the Young modulus
B 2U(AN + 2p)
SN 1) 2

and B is an elliptic tensor in ,C(Rig_l)xw_l)) which depends on «, B and w. In

particular, in this case, system (3.33) is uncoupled in the variables uy, v’ and Z.
Taking the functions fi and g as the null functions and choosing appropriate bound-
ary conditions on {0,1} in (3.35), we have that the first and third equation just give
uy =0, Z =0 and then we recupemte the classical equation for a beam

Bzl = i [ 1w

where usually f' is also chosen independent of the variable y'. However, we remark
that even if the tensor functions A. are taken independent of €, the limit problem
written in the variables u and Z has the general form provided by (3.33). This result
can be deduced from [23], where it is studied the asymptotic behavior of a beam with
fixed coefficients but without assuming any homogeneity or isotropy condition.

Remark 3.6. System (3.33) implies that the elements [Aeo(u,Z)] ,, and [Aeo(u,Z)Lj
with 1,7 € {2,---,N}, i < j are in H'(0,1) while the elements [Aeg(u, Z)Lj,
with j € {2,---, N} are in H*(0,1). Taking into account (3.27), this also proves
that eo(u, Z) is in L=(0,1;RY %) and then that (u,Z) belongs to W>(0,1) x
o _ 0 Cm(N=1)x(N—1
W20, 1)N-1 x Whee(0, RGNV,
In Theorem 3.1 we have not assumed any symmetry condition for the tensor
matrices A.. However, from the physical point of view it is known that in order to

have the conservation of the angular momentum, it is necessary to have A, symmet-
ric, i.e. such that

A.E,: By =AEy: E\, VE, E,c RV,

In this case it is possible to show that the tensor A which appears in Theorem 3.1
also satisfies the symmetry condition

AE, : By = AE, : Ey, VEy, Ey e RV,

s1sk’

More generally, we have the following result.
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Proposition 3.7. Let A. be in the conditions of Theorem 3.1 and consider the
subsequence of € and the functions A, a which appear in the thesis of the theorem.
Then, Theorem 3.1 also holds by replacing A. by AT and A by AT.

In Theorem 3.1 we have preferred to not impose any boundary condition on I'; to
show that the equation satisfied by the functions u and Z does not depend on them.
As a consequence, it is now possible to get a homogenization result for different
boundary conditions such as Dirichlet, Neumann or Robin conditions on I'.. As an
example we state in the following corollary a result corresponding to homogeneous
Dirichlet boundary conditions.

Corollary 3.8. Let A, be in the conditions of Theorem 3.1 and consider the sub-
sequence of € and the functions A, a which appear in the thesis of the theorem. Then,
for every sequence h. given by (3.18) with f. € L*(Q)N, ¢. € L*(Q)N ™! satisfying
(3.19), (3.20) and (3.21), the unique solution u. to

—div(Ace(ue)) = he in Q.
Ace(us)v. =0 on 09, \ I, (3.36)

u. =0 onl,,

satisfies (3.30) with (u, Z) the unique solution to the variational problem

(((u,Z) € HY0,1) x H2(0,1)N! x HL (0, 1;R§ﬁ;})XW—1>)7
1
with / Ae()(U, Z) : €0<U, Z) d.fl')l < 00
0

1 3 1 dit! .
/ Aeo(u,Z):eo(ﬂ,Z)dyl——/ <f1 (ﬁl——u'y/) +f/'71/+9/'(Zyl>> dy,
0 wl Ja dy,

(@, Z) € Hy(0,1) x H3(0,1)N" x Hy(0, ;R X1y

s1sk’

1
with / Aey(ii, Z) - eo(i, Z) day < oc.
0
(3.37)

3.3 Proof of the results

The present section is devoted to proving the different results stated in the previous
one. An important result to do this is the following theorem. It is a particular case
of a decomposition result for a sequence of deformations in a thin domain, which
has been proved in [11].

Theorem 3.9. We consider a Lipschitz connected bounded open set w C RN~
and define Q. by (3.9), then, there exists a constant C' > 0 independent of €, such
that for every u. € HY(Q.)N there erist . € RY, Q. € RN, v € H?(0,1)V 1,
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Z. € HY(0, 1;R(g71)X(N71)) and w, € H* ()N, satisfying

S

Ue = Ge + Qe + = < b ) + dxy x +w. n ), (338)
g —
: 0 Z .
with

1021 20,1y 1 Zell g1 g 1 ey —0xv-my + [[we |l 71 (v < —%He(ue) | 1200 mN %My -

€2 |
(3.39)

Theorem 3.9 is an improvement of Korn’s inequality in a thin beam. It provides
a decomposition of u. as the sum of a “linearized” rigid movement given by the two
first terms on the right-hand side of (3.38), a sequence w. whose norm in H'(Q.)"
is bounded by the norm of e(u.) in L?(€; RY*N) and a term (sum of the third and
fourth terms in (3.38)) whose norm in H'(€.)" is bounded by the norm of e(u.) in
L2(Q; RY*N) divided by e, which has a very particular structure. Clearly it implies
the following classical estimate from Korn’s inequality in a beam.

1
2|2

Corollary 3.10. We consider a Lipschitz connected bounded open set w C RN,
and define Q2. by (3.9), then, there exists C' > 0 independent of €, such that for every
u. € HY(Q)N there exist ¢. € RN and Q. € RY*N | which satisfy

C
lte = ¢e = Qeall oy < Zlle(ue)l 2o,z (3.40)

As usual, since every sequence u. of the form u, = ¢. + Q.x, with ¢. € RY and
Q. € RY*Y satisfies that e(u.) = 0, Theorem 3.9 and Corollary 3.10 do not provide
any bound for the corresponding “linearized” rigid movement. In order to eliminate
this term we need to get some extra information about u.. In this way, we have the
following result.

Theorem 3.11. We consider a Lipschitz connected bounded open set w C RN!
which satisfies (3.11) and (3.12), and define Q. by (3.9), then, there exists a con-
stant C > 0 independent of €, such that for every u. € HY(Q.)N there exist

V. e H*(0,1)N"! Z. € H*(0, 1;R$_1)X(N_1)) and w. € H* ()N, satisfying

U = — + dxy o | Fwe in Q. (3.41)
3 i
0 Z. -

with

1
161 20y + 12 1 o, -0y + WH%HHI(QE)N <
(>

(He(us)HB(QE;R?XN)

ul — — ul dx’
: ‘€w| {a}xew §

a€(0,1]

L2({a}xew)N -1 }>

(3.42)

+ min {H(u‘g,l, €U/€)||L2({a}><ew)N+
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Moreover, the following Korn’s type inequality holds

lueallz2 @ + ellucll iz + el Duell 2oy < C(H (te) | L2 (v v

/
L2({a}xew)N -1 }>

(3.43)

/ /
u, — u, dx

+ min {H(ue,h€UQ)||L2({a}xew)N +

a€(0,1] lew {a} xew

Proof. Tt is enough to prove (3.42) because (3.43) follows immediately from it.
Applying Theorem 3.9, we can find ¢. € RV, Q. € RMN i ¢ H?(0,1)N 1,
Z. € Hl(O,l,ng Dx(N- 1)) and w. € H'(Q.)", such that (3.38) and (3.39) hold
with q., Q., b, Z. and w, replaced by ¢, Q., l;’e, Z. and 1, respectively. In partic-
ular, taking into account properties (3.11) and (3.12) of w, for every a € [0, 1], we
have

1
Ge1 = (ua,l - we,l) dZ/a a.e in €2,
|€w’ {a}xew
1 1-
+ (Qee1)'a ul — =b. —wl ) d2';, a.ein Q,
’6("')' {a} xew €
- 1 €T di)’ .
e(Qo )il = — Ueq — We) —2da’ “(a)l;, Vje{2,---,N},
(Q )1J J ‘EW| {a}xew< )1 71) A dﬂfl ( ) J J { }
3 1 3
e(Qeej)'l; = — (u. —wl) Y da! — Z.(a)e;I;, Vje{2,--- N}
|€OJ‘ {a}xew €

Recalling here that Q. is skew-symmetric (and then (Q.)i; = —(Q.);1) and using

1
/ @xjdx':/ o—— pdz' ) xjde’, Vjie{2,--- N},
{a}xew {a}xew |5w’ {a}xew

1
/ pdr'| <
{a}xew

we easily deduce the result by taking

lelman, Ve HQ)

]

b/g = 5@; + 8(@661)/$1 + 5/57 Ze = 5@; + Zs> We = (js,lel + We.

We also recall the following result.

Lemma 3.12. Let w. be a sequence in H'(S).) such that there exists C' > 0 which
satisfies

/ (Jw:]* + |Vw. ) dz < C, Ve > 0. (3.44)

£

62|
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Then, there exist a subsequence of €, still denoted by €, w € H'(0,1) and z €
L?(0,1; H'(w)) such that the sequence . € H' () defined by

W-(y) = we(y1,€y’), a.e. ye€Q, (3.45)
satisfies
1
W, —w in H(Q), =V, — V,z in L*(Q)N (3.46)
£

Proof. The result is proved in [22], but not explicitly stated, it has also been used in
other works such as [12]. Therefore, we just give a sketch of the proof. It is enough
to use the decomposition w, = w, + z., with

1
We(x) = m/we(xl,z’) dz' ae. x €,
EW

and z. = w. — w., where we observe that by Poincaré-Wirtinger’s inequality, the
second term satisfies
|z 2dx < 052/ |V ow, 2.
Qe Qe
Then use the change of variables y; = x1, ¥ = 2’/e which transforms . in Q and
take the weak limit in H'(Q) and L?*(0,1; H'(w)) respectively, of each of the two
sequences (which exist for a subsequence of ¢). ]

We are now in position to prove Theorem 3.1. The proof is an adaptation of
the classical proof of the Murat-Tartar H-convergence theorem ([20], [28]) combined
with decomposition (3.41).

Proof of Theorem 3.1. Let us divide the proof into several steps. Step 1 is devoted
to proving (3.30) and obtaining a convergence result for A.e(u.). In Step 2 we show
that the weak limit of A.e(u.) satisfies a limit differential problem. In particular this
is used in Step 3 to prove that it satisfies better smoothness properties. Following
the ideas of the proof of the classical H-convergence compactness result, in Step 4
we adapt the div-curl lemma to our problem. In Steps 5, 6 we introduce the tensor
A and prove estimates (3.26) and (3.27), whereas in Step 7 we conclude that the
limit problem can be formulated as (3.29).

Step 1. We consider a sequence h. € L*(€.)" defined through (3.18), with f. €
L)Y and ¢/ € L*(Q)V~! satisfying (3.19), (3.20) and (3.21). Then, we take a
sequence u., which satisfies (3.17), (3.22) and (3.23).

By Theorem 3.11, there exist b, € H2(0,1)N=1, Z. € H'(0, ;R VN1 and
w. € H' (Q)V, satlsfymg (3.41), with

[0 rz00 + 12l g -y + =y < €. (3.47)

€22

Then, taklng into account Lemma 3.12 for the third term, we deduce the exist-
ence of u' € H*(0,1)N"! Z € Hl(O,l,Rsk XNy e HY0,1)N and z €
L*(0,1; HY(w))" such that defining . by (3. 45) we have

b, — ' weakly in H*(0, 1)1 (3.48)
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Z. — Z weakly in H'(0, 1;RI™D*N=Dy (3.49)
W, — w weakly in H'(Q)Y, (3.50)
1
=Dyt — Dz weakly in L*(Q)V*V=1), (3.51)
£
We will denote
Uy = wy. (3.52)

Let us prove that these convergences imply (3.30). Using the change of variables

x/

yi=x1, Y= P (3.53)

and denoting U, (y) = u:(y1,€y’), a.e. y € Q, we can write (3.41) as

db’ 1
Uep = _dyj Y ey, Ul= gblg + Zy + a.e. in €.

From (3.48), (3.49), (3.50), (3.51) and the fact that w only depends on the first
variable, we deduce (3.31). Then, thanks to the Rellich-Kondrachov’s compactness
theorem, we have the following strong convergences

du’

Uer — o Y +uy in LA(Q), U/ = in H(Q)N,
Y1
1
D, Ul — Z in L2(Q)W-DxN=D " pr o Uy, ) dr — Zy' in L*(Q)N 1.
w w

Using again the change of variables (3.53) to return to €2, we get (3.30).
To finish this step, let us also get a convergence result for A.e(u.). Using

1
2] Jo. 2% Ja.

< (i | 8A€e<ug>:e<ug>dx)é (a1 | Adds)"

and taking into account (3.14) and (3.22), we have

|Ace(us)|dx <

(Aee(ug) : e(ua)) 3 |A€|%dx

N[

1

— [ |Ace(u.)|dz < C. (3.54)
‘Qg, Qe
Using the change of variables (3.53), this implies that o. € L2(£; RY*Y) defined by

o-(y) = (Ace(u.)) (y1,ey'), ae. y€Q, (3.55)

is bounded in L!(Q; RY*N) and therefore we can also take the subsequence of € such
that there exists o € M(Q; RY*N) satisfying

0. = o weakly-* in M((0,1) x @; RY*N), (3.56)
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(the dual of C3(0, 1; C%(@; RY*N))). Moreover, taking into account (3.15) and (3.22),
we also have

2
. 2.
e /QE |Ace(us)|“dx = 0. (3.57)
Step 2. Let us obtain a first differential equation for the functlon g defined by
(3.56). For this purpose, given & € C3°(0,1)N, Z € COO(QLRSk DX(N=Dy and

Z e C5(0,1;C®(w))N, we define (. € Hf ()Y as

~ du’ ' ~ '

Ca(x) =ay(zq) — y (x1) - — + €% (wl, —) ,
T € €

a.e. x € Q.. (3.58)

) = L) + 2% e (0, D).

We observe that we can write

Cen = Ur(z1) —

where
I7ell oo ey + HREHLW(Qg;wa) < Ce.

Taking (. as test function in (3.17), dividing by [Q2|, using the change of variables
(3.53), recalling the definition (3.55) of 0., and taking into account (3.19), we get

T
di, d*a’ , 1 dZ
1 T 5<V“l+d—1y>
— - d
ahe iz
s\ Ver oy ey (2)
it (e (= v) #1020 e

Thanks to (3.56), (3.20) and (3.21), we can pass to the limit in ¢ in this equality to

Y
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deduce

- T
du,  d*u 1 az
Sy 3 (Vyfsl + —y’>
1d

/ dyl dy;
‘W‘ ( A )

) | (3.59)

1 ~ du’ / 1~ ! 7 !

By density, this equality holds for every @' € C2(0,1)N-', Ze C}(0, 1; Rgg_l)x(]v_l)),
a1 € C}(0,1) and z € CQ(0,1; CY(w))N.
Step 3. Let us use (3.59) to get some differential equations for the components of
0. They will be used in particular to get some regularity results for o.

Taking in (3.59) @ = 2 = 0, and recalling that ¢ is symmetric and Z skew-
symmetric, we get

dZ 1
|/ </ygd01z) d >y, = U Z / ij (/Qi?/jdy/) dyi,

2<4 ]<N 2<4,j<N

for every Z € C2(0, LRY VDY "which proves

1 d .
— ——/ (yjdor; — yidoy;) / giy; — g;yi)dy’ in (0,1), Vi, j € {2,--- ,N}.
wl dyr Js
(3.60)
In particular
1
Rij = m/ (yzdalj - yjdo-ji) S Hl(oa 1)7 \V/'L,j S {Qa T 7N}7 (361)
and therefore, in (3.59) we can take Z € Wy (0, 1;]1%22[71)”]\771)).
Analogously, taking 4; =0, 2 =0, Z =0 in (3.59), we get
d2
~ y'doy = —/ fiy)dy' + / f'dy" in (0,1), (3.62)
1Jao
which implies that
1
q = —m/y’dan c H'(0, 1)V, (3.63)

and then that (3.59) holds true with @ € W'(0,1)¥1. Finally, taking @ = 0,
Z=0,7Z=0, we get

—i/dan:/f1 dy in (0,1), (3.64)
dyl ) w

which proves

1
pi= ol / doy € HY(0,1), (3.65)
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and then that (3.59) holds true with @, just in W;"'(0,1). From now on, we denote

1
p §(QI)T
A= € H'(0, R, (3.66)
- /
SR

With this notation, taking into account definitions (3.61), (3.63) and (3.65) of R, ¢
and p, we can write (3.59) as

1 s \T
1A 5 Y .
eo(l, Z) dyy + 1 do
0 ~ ~1

§Vy/zl ey (2) (3.67)

|w|/<1(~ d—al y’)+f’~ﬂ’+g"(2y’)>dy,

for every @y € Wo(0,1), @ € W2N0,1)¥1, Z € Wr'(0, LRY DNy and

z e 00,1, CY(w))N.

Step 4. Let us now obtain the analogous of the div-curl lemma for our framework:
We consider another sequence . which satisfies

1 N
o /Q|e(u€)|2 dr < C,

and (3.23) (but it is not necessarily the solution of any differential system) and it
is such that there exist @ € H'(0,1) x H2(0,1)¥~! and Z € H*(0, 1; R (V=1
which satisfy (3.30) with u and Z replaced by @ and Z respectively. Let us prove
that we have

1 ! .
lim —/ Ace(ue) :e(t.) pdr = / Aceo(a, Z)pdry, Ve e CE(0,1). (3.68)
=0 Q| Jo. 0

_ Reasoning as in Step 1, we know that 7. satisfy (3.41) for certain functions l;;,
Z. and w.. Extracting a subsequence if necessary, and defining

v

We(y) = We(y1,€y), (3.69)

(it is the analogous to (3.45)), we also know that there exist @ € H?(0,1)V~!
Z € H'(0,1; RNy " ¢ HY(0,1)Y and 7 € L2(0,1; H'(w))Y, such that
the analogous to (3.48), (3.49), (3.50), (3.51) and (3.52) are satisfied. We denote
fbl = ’(I)l.

For ¢ € C3°(0,1), we define 4. € Hf_(Q:)N by

. d , 5\ o _
Ue = —d—xl(@b/g) s + PWe 1,

~) ~/
ue - QDUE,

a.e. in (..
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We observe

6<ﬂ6> = @6(@6) + S€7 (370)
with

do . dp db' d*p- x lde (5 o  _ r
LWy — 2 —= 4+ L |- — - Z.— !
Wet ( dxy dxq + dx? ¢ € 5 + W

ldp (-~ o

—— | Z.— + . 0

2dx, ( ‘e +w5>
Let us study the asymptotic behavior of S.. For this purpose, we use the change of
variables (3.53), namely, we introduce 2. € L?(Q; RY*N) by

Z(y) = S=(y1,e¥'),

which can be decomposed as
= =1y =2
e = o, 2,

with (see (3.69) for the definition of 0.)

dp 1 [ do db.  d%p- 1 dp < 1 T
L ey dy = (2= = | (2 ’+—/wgd'
dyr o] L, (dy1 dy - dyte) " 2ay T T el L

1dp ( - 1
——¢<5y’+— U“Jédn’) 0

1 T
= ws,ldn') (w;—— / wgdn')
( Tl Wl /.
1
>
)

| —

._8—
n

1
Wl Ju

For =1, we use (3.48), (3.49), (3.50), @ depending only on the first variable, and the
compact embedding of H'(0,1) into C°([0, 1]) to prove

d do di'  d? 1 ~ T
dy _(2_¢_u+_¢ﬂ/).yf _d_¢<ny+w/>

=l =l dy dyy dyy  dy? 2 dy,
- - 1 dgo ’
7 ) 0

(3.71)
in CQ(0,1;C%@)). For Z%, we use Poincaré-Wirtinger’s inequality which gives

v 1 v /2 C o2 52 ~ |12
e—m W, dn dygm Q|Dy/w€| dy:C'|Q| A | Dy |“d,

and then, thanks to (3.47), we get

120 ooy < Ce. (3.72)
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Now, we take 4. as test function in (3.17), we divide by |€2| and then we use
the change of variables (3.53). Taking into account (3.70), (3.56), (3.57), (3.71) and
(3.72), we can then pass to the limit in ¢ to get

lim ’5 | QEA ce(u:) e(u.) pdr = ’/(fl <—d—y1(s0U) y'+ sofn) +90f’-ﬁ’) dy

+—/wg’-(2y’)dy’——/51
w| Jo w| Ja

In the first and second terms of this equality, we use (3.59) with @ replaced by ¢,
Z1 replaced by —‘ﬁw -y, Z replaced by »Z and Z’ replaced by the null function.
This gives

Y

T
di, % y (dZ y,)
1 1 dyy  dy? 2\ dy,
li_r)r(l) m/ Ace(ug):e(t:) pdr = m[go h h h :do

1dZ
—— 0
2 dyl

which, using the definitions (4.1) and (3.24) of A and the operator e, is equivalent
o0 (3.68).

Step 5. Let us now obtain some estimates for A.
For every ¢ € C§°(0,1), ¢ > 0, recalling the definition (3.25) of a and (3.68), we
have

o e
< (& [ (et <u5>)<yl,ay'>wdy)é (&[] |AE|<y1,ay’)sody’dyl)é
_ (ﬁ [ (Age(ug):e(ug))%?dx)l (|e | / | 1a. |sodxdx1)l
([ 3w ziean) ([ ea) +o.

and therefore, using the definition (3.56) of o, we get

1 1 3 1 i
m/ggpd|0‘|§(/o AZEO(U,Z)QOCZZL’;[) (/0 gpda) , V@GCSO(O’D’ SOZO,

which using definitions (3.61), (3.63) and (3.65) of the compontents R, ¢ and p of A
also proves the existence of a constant $ which only depends on w such that

1 1 3 1 3
/ |A|p dxy SB(/ A:eo(u,Z)godx1> (/ gpda) , YeoeCr0,1), p>0.
0 0 0
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Using the measures derivation theorem and recalling that the components of A
belong to H'(0,1) we get

Al < B(A:eo(u, 2))? (aF)?, ae. in (0,1). (3.73)
On the other hand, using (3.16) combined with (3.68), we have

1
limﬁ/ le(ue)|?p dr < / Aceg(u, Z)pdry, Ve Cy(0,1), ¢ >0,
€ Q.

e—0 0

which taking into account (3.41), (3.48), (3.49), (3.50), (3.51), and using the semi-
continuity properties of the weak convergence, implies

b (

_/ Ace(u, Z)pdry, YeeCie(0,1), >0,

0

2

d 1
! ! +—‘V/z1+

az y
Y
do, dxl

2 dz 1

2
+ |€y/(2’)|2> e dy

which gives

al (

The first term on the left-hand side satisfies, thanks to (3.11), (3.12) and definition
(3.13) of Z,

2
dU1 2

dr, d:cl
<A:ep(u,Z), ae. in (0,1).

/
~ |V, -~
+2 z1+d1y

1‘ dz

* lew ()] ) W (3.74)

2 2 2

du1 2

dr, dxl

20 .
d*u;

2
dzy

ay = ‘%

/

Y

N
+Y I

=2

o (3.75)

le

For the second term, we take a function ¢ € C§°(w) such that

/wzpdy’zl.

(N Dx(N-1)

Then, we observe that thanks to Z valued in R; , we have

dZ; dz , / : ;
2 [0yt ) b er-tue) dy acin 01, Wike 2, N)
1 w 1

2

dy', ae.in (0,1), Vi,ke{2,--- ,N}. (3.76)

which proves the existence of a constant C' depending only on w such that
dZ; dz
‘ b Vyz1 + — Y

2
<
dl’l _C/w d1

Using (3.75) and (3.76) in (3.74) and recalling the definition (3.24) of the operator
eo, we then deduce the existence of a constant v depending only on o and w such
that

leo(u, Z)[> < v(A: eo(u, Z)), ae. in (0,1). (3.77)
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Recalling that A belongs to H'(0,1;R2 %)), we deduce from this inequality that
eo(u, Z) € L>(0,1; RV, (3.78)

s18k’

Step 6. We consider F € Riv :k]y which we decompose as

e By (EDT |
E FE

with £, € R, B} e RN-L E' ¢ Rg],j—l)xw_l). For m € N, we define uf™ as the
unique solution to
(

/
_diV(Aee( )) +m < — Ellxl + ZL‘lE i ) €1

A\ Xy .
EL) 2ay = =0 in Q.
rswrz/ ( - ) T m

uf™ =0 on {0} x ew, Ace(ul™v. =0 on 90\ ({0} x cw).

\ 3 3

A\

(3.79)
The existence and uniqueness of solution for this equation is a simple application of
Lax-Milgram’s theorem combined with Korn’s inequality.
In order to obtain a previous estimate for u™ we multiply the equation by

/ 2 /

Em y X m Il / ' L
u.y — Eyxy +x B - e1 + ——F - B— ).
<s,1 1141 141 g) 1 (( ) % 1 1 6)

Thanks to (3.11), we get
2
dx

/
Ace(ulf™) : e(uf™) dz +m — Enay + o By - xg

Qe Qe

2
( Em _xEln)@dn/
g

Ey — Ei . il 1 (E/£/>T
= ng Ace(ul™) e 2 c dx

/
1 _,x

i g 0
2 €

which, using Young’s inequality, gives

dxl

Y

712

1
5/ Ace(u™) :e(uf™) dv +m — Epx + i EY - % dx
£ Q€
2
( — xlE'n ) Z dn'| dz,
/ 1 N\ T / 1 ANA
En-E.-Z - (pt En-E-Z S (pl
e 2 € ] e 2 € A
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Taking into account (3.14), we then deduce

712
Em r L

1 / B E m
—— [ Ace(u™) re(u™)dr + —
g Jo, et ) et

|Qa| Qe
N 1
—I—mZ/
1=2 Y0

2
dlEl S O|E|2

1 E.m\/ /71/ m,
- my g g ) My
e | (0 —nm ) Ly

(3.80)
In particular, uf™ satifies (3.22) and since it vanishes on x; = 0, it also satisfies
(3.23). This allows us to decompose uZ™ as in (3.41), with b., w. and Z. replaced by
(bEmY wE™ and ZP™. Up to a subsequence of ¢, still denoted by €, we can assume
the existence of (uf™)' ZEm wEm zEm and o™ such that the analogous to

(3.48), (3.49), (3.50), (3.51) hold. As above, we will denote w; ™ as u} ™. Moreover,
by linearity we can take the subsequence of € independent of E.
Using the decomposition of uZ™ and taking into account (3.11), (3.12) and

3

(3.13), we observe that the sequence uZ™ satisfies (3.17), with h. replaced by hZ™
defined by

/ /
) = 25 (e D)o 0E) = @) (2 2)),
with

E.m d(bf’m)/ / / E,m /
foi'(y) =—m|( - d—y1 —B )y w " (yey) — Euy | oae y €9,

and

N N
1
(7™ (y) = —mz ((ZE™) = E)eldy, — mz Tew] / (wf’m>/ % dn'y,
1=2 ew

=2

which, taking into account (3.11) and Poincaré-Wirtinger’s inequality, imply
m\! T m\/ 1 m\/ m

[ wEmy a| = | [ (s = [ sy ) o
EW € EW €

lew| Jew
< Cg? (/
EW

Dy (wEm)/

)

2 3
dn’ )

Em Em d(uE,m)/ / / Em . 2
fei = i = mm| - d—yl_ylEl Y +u™ = By ) in L(Q),

Thus, we have

N
(gZ™y = —m > ((Z25™) =y E ey, in LX)V

=2

This allows us to apply Steps 3 and 4 to u™ and, taking into account the boundary
conditions imposed to u™ to deduce that the corresponding function A®™ &
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HY(0, 1;RY I given by (4.1) with pP™ (¢®™) and R¥™ given by (3.65), (3.63)

s18k’

and (3.61) respectively, satisfies
AP < BAP™ :eg(u™™, Z™))2 (a")?, ae. in (0,1), (3.81)
leo(uPm, ZEm)|* <y (AP : eo(u™, ZBm)), ae. in (0,1), (3.82)

1 1
/ AE’m . 60('L~l,, Z) dl’l + m/ <U1E7m — Enl’l) ’llldl'l
0 0

;

1 d(uEmy di’ 1 5
+m/ 7 (ﬁ - xlEg) e+ m/ (Z5m — E'))T) : Zdy, = 0,
0 dl’l d.ﬁL’l 0

0, )N1, Z e Whi(o,1; RNy,

~/ 2,1
(0,1), ' € W, (0}

- 1,1

{0}
(3.83)

Moreover, passing to the limit in (3.80), thanks to (3.68), we have

2

1/1AEm ( Em ZEm)d +m/ E.m E d(uE7m)/ El / d
2 J, seplu 21 BIA Uy 11491 dyr Y1 y|ay
N 11 2
—i—mZ/ m/ (Z5™ — 2By yidy'| dxy < C|E)?,
1= J0 ¥l Jw
which taking into account (3.11) and (3.12) can also be written as
1 1 9 L d(yBmy 2
/AE’m:eo(uE’m,ZE’m) dwl—i—m/ U1E7m—E11.T1 dl‘1+m/ %—Eiﬂfl dl’l
0 0 0 21
1
+m/ |25 — 2 E|* dey < C|EP.
0
(3.84)
From (3.82) and (3.84), taking m converging to oo, we deduce
UlE’m — Ellxl Weakly in H{QO}(O, 1),
1
(u®my — §E;x§ weakly in H{y, (0,1)¥1, (3.85)

ZEm By, weakly in H{lo}((), 1; R(g_l)X(N_l)).

S

By (3.81), al € L'(0,1) and (3.84), we also deduce that A®™ is bounded in
L0, 1;]1%51[ %) and is equi-integrable. Therefore, by linearity, we can extract a
subsequence of m, still denoted by m, such that there exist A € L*(0,1; £(R§i §,j,v))
satisfying

AF™ ~ AE weakly in L*(0, ;RY*), vE e RV, (3.86)

s1sk’ s1sk’

Let us also show the inequality

1 1
limsup/ AE’m:eo(uE’m,ZE’m)gpdxlg/ AE:Epdxy, V¢ e C™(0,1]), ¢ >0.

m—00 0 0
(3.87)
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For this purpose, given ¢ € C*°([0,1]), ¢ > 0, we take as test function in (3.83)

up = @(Ufm - E11$1)>
1 d E.m\/
i = [t (5w - ) ar
; di
Z = p(Z5™ — E'zy).

We get
1 1
/ AE™ oo (uB™ Z5™) ¢ dy —/ AP™ B pdr
0 0

. d(uEmy T
UlE’ —Enxl ( ( ) — iiﬂl) dg@

! dx
+/ AE™ . ! . dxq
d ,m\/ 45
0 (u ) _ ixl ZE,m _ Elil?l

diL’l
1 2 1 d Em\/ d Em\/
+m/ (uf’m—EH(L’1> godxl—i—m/ v (b—l’lE{) ( (U ) —l’lEi) del
0 0 dzq dzq

1
+m/ (ZP™ — E'x)I) : (Z%™ — E'zy) dzy = 0.
0

Thanks to (3.85), (3.86) and the compact embedding of H'(0, 1) into C°([0, 1]), we
can pass to the limit in the first and second terms of this equality. By also using
that the three last terms are non-negative, we conclude(3.87).

By (3.86), (3.87), (3.81), (3.82) and the semicontiuity of the norm for the weak
convergence we deduce that A satisfies (3.26) and (3.27).

Step 7. Let us now finish the proof of the theorem by showing that if u. is a
sequence which satisfies (3.17) and (3.23), with h. € L?(€.)" defined by (3.18), and
f- € L*(Q)Y and ¢, € L*(Q)V~! satisfying (3.19), (3.20) and (3.21), then the matrix
function A defined by (4.1) is given by

A = Aey(u, Z),

with u, Z defined by (3.48), (3.49), (3.50) and (3.52), which combined with (3.67)
with Z = 0 shows that (u, Z) satisfies (3.37). For this purpose, we observe that by
linearity, for every E € RY ) and every m € N, the sequence u. —u¥, with u™¥
defined by (3.79), is also the solution to a problem similar to (3.17) and satisfies
properties (3.22) and (3.23). Applying then (3.73) to this sequence, we deduce the

inequality

D=

A — AP < c((A — AEMY s eg(u— uPm 7 — ZE’m)) (ab)3, ae. in (0,1).

Multiplying this inequality by ¢ € C*°([0,1]), ¢ > 0, integrating in (0, 1), using the
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Cauchy-Schwarz inequality and developing the factors, we get

1 1 3
/ ’A — AE’m’ pdr; < C </ aLgodxl)
0 0

1
(/ <A:eo(u,Z)—A:eo(uE’m,ZE’m) AE™eo(u, Z)+ AE’m:eO(uE’m,ZE’m))gpdxl)
0

(3.88)
Let us pass to the limit when m tends to infintiy, in the different terms of the last
factor. For the second term we use that A € H'(0, 1;RY:)) € L2(0,1;RY %)) and
(3.85), which imply

2

1 1
/ A eog(u®™ Z5 ™o dxy — / A:Epdx,.
0 0
In the third term we use (3.86) and (3.78) to get
1 1
/ AF™ e (u, Z)p dry — / (AE) : eo(u, Z) o dxy.
0 0

In the fourth term, we use (3.87). Therefore, using also the semicontinuity of the
norm for the weak convergence in L'(0,1) in the left-hand side of (3.88) we have
proved

1 1 3 1 3
/ |A — AE|pdx; < C (/ akp dx1> (/ (A= AE) : (eo(u, Z) — E)p dxl) ,
0 0 0

for all ¢ € C*°([0,1]), ¢ > 0, which implies

N

A— AE| < C(a%)? (A — AE) : (eo(u, Z) — E))?, YEeRYVY, ae in(0,1).

s18k’ )

This proves
A = Aey(u, Z), a.ein (0,1). (3.89)

O

Proof of Proposition 3.7. For every E € Ré\i :k]y ,m € N and € > 0, we consider the

function u™ defined by (3.79), which satisfies (3.30), with u, Z replaced by u®™,
ZEm_solution to (3.83), where thanks to (3.89), we now know that

AE™ = Aeg(uf™, ZE™) (3.90)

(and then (3.83) has a unique solution). On the other hand, we define @™ as the
solution to (3.79) when A. is replaced by A?. By applying Theorem 3.1 to AT

can also assume the existence of functions uE m zEm A which are the analogous
to u?™, ZE™ and A. By (3.32) applied to the two sequences uZ™ and uE ™ with
E, EE]RNXN m,m € N, we have

s1sk!

1 =~ ~ T~
/ Aeo(uf™, Z5™) < eo(aP™, Z5™) o dr = lim
0
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for every ¢ € C§°(0, 1), which proves
Aeo(u™, ZF™) : eo(a” g B ) = Aey(@ Eﬁ‘,ZEm) eo(ut™, ZE™) ae. in (0,1).

Taking into account Remark 3.6, we know that for every E € RN w and m € N,

the functions Aeg (@™, ZE™) and eo(a®™, ZE™) are in L=(0, 1; Rf?g) Therefore,

taking into account (3.85) and (3.86), applied to the sequence @™, combined with

(3.90) we can pass to the limit when m tends to infinity in the above equality to
deduce

AE : eo(@®, ZPF) = Aeo(@®™, Z5™) . E ace. in (0,1). (3.91)
Now, for K > 0 we take
AK = {1'1 S (0, 1) : |A($1)E| S K}

Using again (3.85) and (3.86) but now applied to @™, we can pass to the limit in
m in (3.91) restricted to Ax to deduce

AE :E=AFE:E ae. in Ag, YK >0,
and then, passing to the limit when K tends to infinity
AE:E=AFE:E ae in(0,1), VEFEe RN,

which gives - )
AE = ATE ae. in (0,1), VEe€ RNXN
and then proves the equality A = AT. O

Proof of Corollary 3.8. Since u. vanishes on x; = 0, the second term on the right-
hand side of (3.43) vanishes. Therefore, taking u. as test function in (3.36), we
get

1
Ace(ug) : e(u.) dx
%l o, (ue) : e(ue)

C '
2] (/< (‘)

1 , /01 %
C<|Qg|/gs (£:F+ 191 d ) (|95| et “f'dx) '

By (3.16), this proves

IN

e}

1
2] Jo.

Ace(u.) @ e(u:)dr < C,

which proves that wu. satisfies (3.22). Since u. vanishes on z; = 0, it also satisfies
(3.23). Therefore, u. is in the conditions of Theorem 3.1. Applying this theorem
and taking into account (3.31), which gives the boundary conditions for v and Z,
we conclude the thesis of the corollary. O]
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Abstract.

This paper deals with the homogenization through I'-convergence of weakly coercive
integral energies with the oscillating density L(xz/2)Vv : Vo in three-dimensional
elasticity. The energies are weakly coercive in the sense where the classical functional
coercivity satisfied by the periodic tensor L (using smooth test functions v with
compact support in R?) which reads as A(IL) > 0, is replaced by the relaxed condition
A(L) > 0. Surprisingly, we prove that contrary to the two-dimensional case of [2]
which seems a priori more constrained, the homogenized tensor L. remains strongly
elliptic, or equivalently A(L%) > 0, for any tensor . = L(y;) satisfying L(y)M :
M+ D : Cof(M) > 0, ae. y € R} VM € R3>3, for some matrix D € R3*3
(which implies A(IL) > 0), and the periodic functional coercivity (using smooth test

131



132 4.1. Introduction

functions v with periodic gradients) which reads as Ape (L) > 0. Moreover, we derive
the loss of strong ellipticity for the homogenized tensor using a rank-two lamination,
which justifies by I'-convergence the formal procedure of [8].

4.1 Introduction

In this paper, for a bounded domain  of R? and for a periodic symmetric tensor-
valued function L. = L(y), we study the homogenization of the elasticity energy

ve Hy(QR?) — / L(z/e)Vv-Vvdxr ase— 0, (4.1)
Q

especially when the tensor L is weakly coercive (see below). It is shown in [10, 4]
that for any periodic symmetric tensor-valued function L. = L(y) satisfying the
functional coercivity, i.e.

A(L) := inf {/ LV : Vody, v e CF(R*R?), / |Vo|? dy = 1} >0, (4.2)
RS RS
and for any f € H1(Q;R?), the elasticity system

{ —div(L(z/e)Vu) = f in Q (4.3)

u® =0 on 0f2,

H-converges as € — 0 in the sense of Murat-Tartar [3] to the elasticity system with
the so-called homogenized tensor L defined by

L°M: M :=inf {/ L(M + Vv): (M +Vv)dy, v e H;er(}g;R?’)} for M € R**3,
Y3

(4.4)
Equivalently, under the functional coercivity (4.2) the energy (4.1) I'-converges for
the weak topology of H}(Q;R?) (see Definition 4.2) to the functional

v € Hy(R?) / L°Vv : Vo da. (4.5)
Q

The functional coercivity (4.2), which is a nonlocal condition satisfied by the sym-
metric tensor L, is implied by the very strong ellipticity, i.e. the local condition

tyse(L) := ess-inf (min{L(y)M : M, M € R¥? |M|=1}) >0, (4.6)

yER3

and the converse is not true in general. Moreover, condition (4.2) implies the strong
ellipticity, .e.

tse(LL) := ess-inf (min{L(y)(a ®b) : (a®b), a,b € R?, |a| = |b] =1}) >0, (4.7)

yERS

but contrary to the scalar case, the converse is not true in general.



Chapter 4. Homogenization of weakly equicoercive integral functionals in
three-dimensional elasticity 133

Here, we focus on the case where the tensor L is weakly coercive, i.e. relaxing the
condition A(L) > 0 by A(L) > 0. In this case the homogenization of the elasticity
system (4.3) associated with the energy (4.1) is badly posed in general, since one
has no a priori L?>-bound on the stress tensor Vu® (assuming the existence of a
solution u® to the elasticity system (4.3)) due to the loss of coercivity. However, it
was shown by Geymonat et al. [7] that the previous I'-convergence result still holds
when A(L) > 0, under the extra condition of periodic functional coercivity, i.e.

Aper(L) := inf {/ LVuv: Vudy, v e H) (Y3 R?), \Vol*dy = 1} >0. (4.8)
Y3

Y3

Furthermore, using the Murat-Tartar 1*-convergence for tensors which depend only
on one direction (see [3] in the conductivity case, see [8, Section 3] and [2, Lemma 3.1]
in the elasticity case) Gutiérrez [8, Proposition 1| derived in two and three dimen-
sions a 1-periodic rank-one laminate with two isotropic phases whose tensor is

Li(y1) = x1(y1) Lo+ (1 — x(31)) Lo for s € R, (4.9)

which is strongly elliptic, i.e. ag(LL) > 0, and weakly coercive, i.e. A(L) > 0, but
such that the homogenized tensor LY (in fact the homogenized tensor induced by
1*-convergence which is shown to agree with L in the step 4 of the proof of The-
orem 4.14) is not strongly elliptic, i.e. g (IL°) = 0. However, the 1*-convergence
process used by Gutiérrez in [8] needs to have a priori L?-bounds for the sequence of
deformations, which is not compatible with the weak coercivity assumption. There-
fore, Gutiérrez’ approach is not a H-convergence process applied to the elasticity
system (4.3). Francfort and the first author [2] obtained in dimension two a similar
loss of ellipticity through a homogenization process using the I'-convergence ap-
proach of [7] from a more generic (with respect to (4.9)) 1-periodic isotropic tensor
L = L(y;) satisfying

AL) =0, Ape(L)>0 and a.(L’) =0. (4.10)

They also showed that Gutiérrez’ lamination is the only one among rank-one lam-
inates which implies such a loss of strong ellipticity.

The aim of the paper is to extend the result of [2] to dimension three, namely
justifying the loss of ellipticity of [8] by a homogenization process. The natural idea
is to find as in [2] a 1-periodic isotropic tensor I = L(y;) satisfying (4.10). Firstly, in
order to check the relaxed functional coercivity A(LL) > 0, we apply the translation
method used in [2], which consists in adding to the elastic energy density a suitable
null lagrangian such that the following pointwise inequality holds for some matrix
D e R3*3:

LM : M+ D: Cof(M) >0, VM eR>3 (4.11)

Note that in dimension two the translation method reduces to adding the term
d det(M) with one coefficient d, rather than a (3 x 3)-matrix D in dimension three.
But surprisingly, and contrary to the two-dimensional case of [2], we prove (see The-
orem 4.8) that for any 1-periodic tensor L = LL(y; ), condition (4.11) combined with



134 4.1. Introduction

Aper(L) > 0 actually implies that ag(L°) > 0, making impossible the loss of ellipt-
icity through homogenization. This specificity was already observed by Gutiérrez
[8] in the particular case of isotropic two-phase rank-one laminates (4.9), where cer-
tain regimes satisfied by the Lamé coefficients of the isotropic phases L, L, are not
compatible with the desired equality ag (L) = 0.

To overcome this difficulty Gutiérrez [8] considered a rank-two laminate obtained
by mixing in the direction ys the homogenized tensor I of IL;(y;) defined by (4.9),
with a very strongly elliptic isotropic tensor LL.. In the present context we derive
a similar loss of ellipticity by rank-two lamination, but justifying it through homo-
genization still using a I'-convergence procedure (see Theorem 4.14). However, the
proof is rather delicate, since we have to choose the isotropic materials a, b, ¢ so that
the 1-periodic rank-one laminate tensor Ly in the direction y, obtained after the
first rank-one lamination of L, L, in the direction y;, namely

Lo(y2) = x2(y2) L + (1 — x2(y2)) Le  for y» € R, (4.12)

satisfies
A(Ly) >0 and (L) =0, (4.13)

where ILJ is the homogenized tensor defined by formula (4.4) with I = LL,. Moreover,
the condition A(LLy) > 0 without Ape(Lg) > 0 (which seems very intricate to check)
needs to extend the I'-convergence result of [7, Theorem 3.1(i)]. However, Braides
and the first author have proved (see Theorem 4.5) that the I'-convergence result
for the energy (4.1) holds true under the sole condition A(LL) > 0.

The paper is divided in two sections. In the first section we prove the I'-
convergence result for (4.1) under the assumption A(L) > 0, and without the
condition Ay (L) > 0. The second section is devoted to the main results of the
paper: In Section 4.3.1 we prove the strong ellipticity of the homogenized tensor IL°
for any isotropic tensor IL = LL(y;) satisfying both the two conditions (4.11) (which
implies A(L) > 0) and Aper (L) > 0. In Section 4.3.2 we show the loss ellipticity by
homogenization using a suitable rank-two laminate tensor L, of type (4.12), and the
[-convergence result under the sole condition A(ILy) > 0. Finally, the Appendix is
devoted to the proof of Theorem 4.4.

Notations

e The space dimension is denoted by N > 2, but most of the time it will be
N =3.
o RY*N denotes the set of the symmetric matrices in RV*V,

e Iy denotes the identity matrix of RV*V,

e For any M € RV*N_ M7 denotes the transposed of M, and M* denotes the
symmetrized matrix of M.

e : denotes the Frobenius inner product in RN j.e. M : M’ := tr(MT M) for
M, M' € RV*N,
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o Z,(RN*N) denotes the space of the symmetric tensors I on RV*¥ satisfying
LM =LM* e RN and LM :M =LM':M, YM,M RV

In terms of the entries IL;;; of L, this is equivalent to L;ju = Ljix = Ly, for
any 4,7, k,l € {1,...,N}.

e I, denotes the unit tensor of .Z,(RY*¥) defined by I,M := M* for M € RV*V,
e M;; denotes the (i, j) entry of the matrix M € R¥*¥,

e M denotes the (N—1) x (N —1)-matrix resulting from deleting the i-th row
and the j-th column of the matrix M € R¥*¥ for 4,5 € {1,...,N}.

e Cof(M) denotes the cofactors matrix of M € RN*N " je. the matrix with
entries (Cof M);; = (—=1)"* det(MY) for i,5 € {1,...,N}.

e adj(M) denotes the adjugate matrix of M € RN*N j.e. adj(M) = (Cof M)T.
e Yy :=[0,1)" denotes the unit cube of RV,

e e(u) denotes the symmetric part of the gradient of u, Vu, for u€ WP (RY; RY).

Let L € L (YN;.,?S(]RN xN )) be a Yy-periodic symmetric tensor-valued function.

per
In the whole paper we will use the following ellipticity constants related to the tensor

L (see [7, Section 3] for further details):

e oy (L) denotes the best ellipticity constant for L, i.e.

(L) = ess-inf (min{L(y)(a ®b) : (a®b), a,b € RY, |a| = o] = 1}).

yeEYN

e o (LL) denotes the best constant of very strong ellipticity of L, i.e.

s (L) := ess-inf (min{L(y)M : M, M € RY"N |M| =1}).

yeEYN

e A(L) denotes the global functional coercivity constant for L, i.e.
A(L) := inf {/ LVv: Vudy, ve CPRY;RY), / |Vol? dy = 1} :
RN RN

o Aer(L) denotes the functional coercivity constant of I with respect to Y-
periodic deformations, .e.

Aper (L) := inf {/ LVv: Vody, v e H) (Y RY), /
Yn

Yn

Vol dy = 1} :

Remark 4.1.
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o The very strong ellipticity implies the strong ellipticity, i.e. for any tensor L,

yse(lL) > 0 = ag(L) > 0.

o According to [7, Theorem 3.3(i)], if ae(IL) > 0, then the following inequalities
hold:
A(L) < Aper(L) < age(L). (4.14)

e Using a Fourier transform we get that for any constant tensor Ly,

Oése(]Lo) >0 < A(Lo) > 0.

In the sequel will always assume the strong ellipticity of the tensor L, i.e. ag(L) > 0.
We conclude this section with the definition of I'-convergence of a sequence of
functionals (see, e.g., [6, 1]):

Definition 4.2. Let X be a reflexive Banach space endowed with the metrizable
weak topology on bounded sets of X, and let #° : X — R be a e-indexed sequence of
functionals. The sequence .F¢ is said to I'-converge to the functional F° : X — R

or the weak topology of X, and we denote — , if for any u € X,
for the weak topology of X, and we denote F& =< F° if X

o Vu, —u, F°u) < limiglf,?e(ue),
E—

e Ju. —~u, F°(u) = lir%ﬁs(ﬂg).
e—

Such a sequence u. is called a recovery sequence.

4.2 The ['-convergence results

It is stated in [10, Ch. 6, Sect. 11] that the first homogenization result in linear
elasticity can be found in the Duvaut work (unavailable reference). It claims that
if the tensor L is very strongly elliptic, i.e. (L) > 0, then the solution u® €
H}(2;R3) to the elasticity system (4.3) satisfies

uf —u  weakly in Hj(;R?),
LeVu® — L°Vu  weakly in L?(€; R**3), (4.15)
— div(L'Vu) = f,

where LY is given by

L'M:M = inf{/ L(M + Vv): (M + Vv)dy, vE H!
Y3

per<n,;R3>} for M € R¥,

(4.16)
which is attained when A,e (L) > 0. The previous homogenization result actually
holds under the weaker assumption of functional coercivity, i.e. A(IL) > 0, as shown

in [4].
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Otherwise, from the point of view of the elastic energy consider the functionals
FE(v) = /QL(ZL‘/E)VU : Vodz, (4.17)

FO(v) = /Q]LOVU : Vudr for v € HY(Q,R?). (4.18)

Then, the following homogenization result [7, Theorem 3.4(i)] through the I'-conver-

gence of energy (4.17), allows us to relax the very strong ellipticity of L.

Theorem 4.3 (Geymonat et al. [7]). Under the conditions
AL) >0 and Aye(L) >0,

one has
F—H(L(Q;RL?)

Jo‘;s yo,

for the weak topology of H}(Q2;R3), where L° is given by (4.16).

4.2.1 Generic examples of tensors satisfying A(L) > 0 and
Aper(IL) >0

Reference [2] provides a class of isotropic strongly elliptic tensors for which Theorem
4.3 applies. However, this work is restricted to dimension two. We are going to
extend the result [2, Theorem 2.2] to dimension three.

Let us assume that there exist p > 0 phases Z;, i = 1, ..., p satisfying

Z; is open, connected and Lipschitz for any i € {1,...,p},
ZinZ;=0 VYi#je{l,...,p}

p
v, =JZ
=1

such that the tensor L satisfies

(4.19)

L(y)M = Xy) tr(M)1Is 4 2u(y)M, Yy € Y3,V M € R,
My) =N, uly) =p;in Z;, Vie{l,...,p}, (4.20)
wi >0, 2u; + X >0, Vie{l,..., p}.

We further assume the existence of d > 0 such that

min {2p; + 3N} <d <4 min {p}. (4.21)
p i=1,...p

i=1,..., 1.,

Now, we define the following subsets of indexes

I={ie{l,...,p}: d=4u,},
J:={je{l,....,p}: 2u; +3\; = —d}, (4.22)
K:={1,...,p}\({UJ).
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Note that the three previous sets are disjoint. This is true, since we have 4p; >
—(2p; + 3X;) due to 2u; + A; > 0.

In this framework, we are able to prove the following theorem which is an easy
extension of the two-dimensional result of [2, Theorem 2.2]. For the reader conveni-
ence the proof is given in the Appendix.

Theorem 4.4. Let L be the tensor defined by (4.20) and (4.21). Then we have
A(L) > 0. We also have Aper(IL) > 0 provided that one of the two following condi-
tions is fulfilled by the sets defined in (4.22):

Case 1. For each j € J, there exist intervals (a;, a;-“), (05, bj) C [0, 1] such that

(aj,a]) x (b7,b) x {0,1} C 9Z;, or
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(aj‘,aj) x {0,1} x (bj_,bj) C 0Z;, or
{0,1} x (aj ,af) x (b ,b7) C 0Z;.

Case 2. For each j € J, there exists k € K with #*(0Z; N 9Zy) > 0, where >

denotes the 2-dimensional Hausdorff measure.

4.2.2 Relaxation of condition A, (L) >0

According to Theorem 4.3 the I'-convergence of the functional (4.17) holds true if
both A(L) > 0 and A (L) > 0. However, the following theorem due to Braides and
the first author shows that in N-dimensional elasticity for N > 2, the I'-convergence
result still holds under the sole assumption A(L) > 0.

Theorem 4.5 (Braides & Briane). Let ) be a bounded open subset of RY | and let L
be a bounded Yx-periodic symmetric tensor-valued function in Ly, (YN; O%S(RNXN))
such that

A(L) > 0. (4.23)

Then, we have
I—H}(RY)
AN

Fe FO (4.24)

for the weak toplogy of Hi(Q;RYN), where F° is given by (4.18) with the tensor 1L°
defined by (4.16).

Proof. For 6 > 0, set Ly := L + § I where I, is the unit symmetric tensor, and let
Z§ be the functional defined by (4.17) with Ls;. We claim that

A(Ls) > 0. (4.25)

To prove it consider v € C°(RY; RY) and take R > 0 such that suppv C B(0, R).
Then, by (4.23) we have

/ LsVv:Vudy = / LVv:Voudy + 5/ I,Vv:Vody > 5/ le(v)|? dy.
RN B(0,R) B(0,R) B(0,R)
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By Korn’s inequality there exists a constant @ > 0 which a priori depends on

B(0, R), such that
[ ewldyza [ (vl
B(0,R) B(0,R)

Nevertheless, the Korn constant « is known to be invariant by homothetic trans-
formations of the domain. Hence, the constant a actually does not depend on the
radius R. Therefore, the two previous inequalities imply that A(Ls) > da > 0.

Thanks to (4.25) we can apply Theorem 4.3 with the functional .%#§. Hence,
Fs EN Z) for the weak topology of HE(Q;RY), where

F(u) = /Q]LgVu :Vudr for u € HY(Q,RY),

and LY is given by (4.16) with L = L.

On the one hand, since H}(2;RY) is a separable metric space, up to subsequence
there exists the [-limit of .Z¢ for the weak topology of H}(;RY) as ¢ — 0. Fix
u € HY(Q;RY), and consider a recovery sequence u. for .#° (see Definition 4.2)
which converges weakly to u in H}(2;RY). Since u. is bounded in HJ (2, RY), we
have

< lim inf/ Ls(z/e)Vu. : Vu, dx
Q

< liminf/ L(z/e)Vue : Vu. dz + O(0)
Q
= ([-lim .#°)(u) + O(0),
which implies that #{(u) converges to .#°(u) as 6 — 0.

On the other hand, let IL° be given by (4.16). For n > 0 and for M € RN*V

consider a function ¢, in H} (Yy;R"Y) such that

| L)AL+ 965 (M + Vi) dy <100 M+,
YN

We then have
LOM : M <LIM: M

< /Y Ls(y)(M + Vigy) : (M + Vig,) dy

< [ LGOI+ Vi) (O + ) dy +0,(0)
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Hence, making ¢ tend to 0 for a fixed 7, we obtain
LM : M < liminf (LYM : M)
0—0

< limsup (L{M : M)
6—0

< [ LGOI+ Vi) (M + V) dy
Yn
<L°M: M+ 7.

Due to the arbitrariness of 1, we get that L{ converges to L.° as 6 — 0.

Therefore, by the Lebesgue dominated convergence theorem we conclude that
for any u € H}(Q;RY),

ZO(u) = lim F(u) = (lsin%/ L{Vu : Vudr = / L°Vu : Vudz.
—YJa Q

6—0

]

4.3 Loss of ellipticity in three-dimensional linear
elasticity through the homogenization of a lam-
inate

In this section we will construct an example of a three-dimensional strong elliptic
material L. which is weakly coercive, i.e. A(L) > 0, but for which the strong
ellipticity is lost through homogenization. Firstly, let us recall the following result
due to Gutiérrez [8].

Proposition 4.6 (Gutiérrez [8]). For any strongly, but not semi-very strongly el-
liptic isotropic material, referred to as material a, there are very strongly elliptic
isotropic materials such that if we laminate them with material a, in appropriately
chosen proportions and directions, we generate an effective elasticity tensor that is
not strongly elliptic.

Remark 4.7 (Isotropic tensors). The elasticity tensor L € L (Y3; £, (R¥%)) of an
1sotropic material is given by

L(y)M = Xy) tr(M) I3 + 2u(y)M, fory € Y3 and M € R**3,

where X\ and p are the Lamé coefficients of L.
As a consequence, we have

ase(IL) = ess-inf (min{u(y), 2u(y) + A»)}),

yeY3

tse (L) = ess-inf (min{u(y), 2u(y) + 3M(y)}).

yeY3
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Here is a summary of the proof of Proposition 4.6. Consider two isotropic,
homogeneous tensors L, and L, such that L, is strongly elliptic, 7.e.

Ao +20q >0, pg >0,
but not semi-very strongly elliptic, i.e.
3+ 2u, < 0.
and such that L, is very strongly elliptic, i.e.
3\ + 20, >0,y > 0.

Considering the rank-one laminate in the direction y; mixing L., with volume fraction
0, € (0,1) and L, with volume fraction (1—6, ), Gutiérrez [8] proved that the effective
tensor L} in the sense of Murat-Tartar 1*-convergence (see, e.g., [8, Section 3])
satisfies the following properties:

o If 0 < pg + Ay, then
ase (L) > 0.

o If —pyp < pig + Ag <0, then

=0 if gy = —pta — A,
e (L]) € >0 if — ptg — Ag < 5 < —3(2p0 + 3Na),
>0 if — (200 + 3N) < i

e The case j, + Ay < —p is disposed of, since L] does not even satisfy the
Legendre-Hadamard condition.

In the case where ag(L}) > 0, Gutiérrez (see [8, Section 5.2]) performed a second
lamination in the direction 3, mixing the anisotropic material generated by the first
lamination with volume fraction 6, € (0,1), and a suitable very strongly elliptic
isotropic material (L, pte, Ac) with volume fraction (1 — 65). In this way he derived
a rank-two laminate of effective tensor L} which is not strongly elliptic.

In this section we will try to find a general class of periodic laminates for which
the strong ellipticity is lost through homogenization. To this end we will extend
to dimension three the rank-one lamination approach of [2] performed in dimension
two. However, the outcome is surprisingly different from that of the two-dimensional
case of [2]. Indeed, we will prove in the first subsection that it is not possible to lose
strong ellipticity by a rank-one lamination through homogenization following the
two-dimensional approach of [2]. This is the reason why we will perform a second
lamination in the second part of the section.



4.3. Loss of ellipticity in three-dimensional linear elasticity through the
142 homogenization of a laminate

4.3.1 Rank-one lamination

In this subsection we are going to focus on the rank-one lamination. As noted
before, in the two-dimensional case of [2] it was proved a necessary and sufficient
condition for a general rank-one laminate to lose strong ellipticity. Mimicking the
same approach in dimension three we obtain the following quite different result.

Theorem 4.8. Let L € L3, (Y1; Zi(R>3)) be a Y;-periodic isotropic tensor-valued
function which is strongly elliptic, i.e. as(L) > 0. Assume that Ape;(L) > 0 and

that there ezists a constant matriz D € R®**3 such that
L(y )M : M + D : Cof(M) >0, a.e y €Y1, VMecR>. (4.26)

Then, the homogenized tensor IL° defined by (4.16) is strongly elliptic, i.e. ag(LL°) >
0.

Remark 4.9. In dimension two for any periodic function ¢ € ngr(Yg; R?), the only
null lagrangian (up to a multiplicative constant) is the determinant of V. Although
the two-dimensional case seems a priori more restrictive than the three-dimensional
case from an algebraic point of view, the two-dimensional Theorem 3.1 of [2] shows
that for a suitable isotropic tensor I = IL(y1), satisfying for some constant d € R,

the condition
L(y;)M : M +ddet(M) >0, a.e. inYy, VM € R*? (4.27)

it is possible to lose strong ellipticity through homogenization. On the contrary, the
three-dimensional Theorem 4.8 shows that it is not possible to lose strong ellipticity
under condition (4.26) which is the natural three-dimensional extension of (4.27).

Remark 4.10. Observe that condition (4.26) implies that L is weakly coercive, i.e.
A(L) > 0, but the converse is not true in general. Therefore, it might be possible
to find a weakly coercive, strongly elliptic isotropic tensor L. = L(yy) for which the
strong ellipticity 1s lost. However, we have not succeeded in deriving such a tensor.

Remark 4.11. In the proof of Proposition 4.6 Gutiérrez implicitly proved the result
of Theorem 4.8 when the matriz D has the form D = dlIs and 1L is of the type

L(y1) = x(y1) Lo + (1 = x(y1)) L.

Moreover, it is worth mentioning that the cases for which Guitiérrez obtained the
loss of ellipticity with a rank-one lamination do not contradict Theorem 4.8, since
in those cases condition (4.26) does not hold.

The rest of this subsection is devoted to the proof of Theorem 4.8. For any
Yy-periodic tensor-valued function L € L2, (Y3; %, (R¥*%)) which is strongly elliptic,

per

i.e. ag(LL) > 0, define for a.e. y; € Y7, the y;-dependent inner product

(&n) eR* X R® = L) ®er) - (n@ ex).
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It is indeed an inner product because age (L) > 0. The matrix-valued function

L) h2(y) hs(y)
L) = | lha(yr) lo(yr) ls(yn) | =
Ls(yr) las(y1)  Is(y1)
L(y)(e1®@e1):(e1®@er) L(y)(er®@er):(ea®er) Liyi)(er®er): (es®@e
L(y1)(e1 ®e1):(ea®e1) L(yr)(ea®er):(ea®er) L(yr)(ea ®eq) : (e3 ® eq
L(y1)(e1 ®e1):(es®@e1) Liyi)(ea®er):(es®er) L(ya)(es®er): (e3® 62

=S S — —

28)

is therefore symmetric positive definite.

Similarly to [2, Lemma 3.3] the next result provides an estimate which is a direct
consequence of condition (4.26) with a matrix of the type D = dI3. Observe that
for the moment we are not assuming that the tensor IL is isotropic.

Lemma 4.12. Let L € L2 (Y}; Z.(R3*3)) be a Yi-periodic bounded tensor-valued

per

function with Ape;(L) > 0. Assume the existence of a constant d € R such that L
satisfies condition (4.26) with D = dIs. Then, we have

Liy)M: M = Q(M),  a.e. inYy, VM € R, M rank-one, 429
where
QM) = ~
%{’Z;’) (]LM: (e3®ey) — §M13)2
S e ) i)
+ 2321((1;;3) (ILM: (61 ®e1) + gMg?, + gMQQ) (LM3 (e3®er) — ng?’)
B T )

Furthermore, if L° is the homogenized tensor of L, then ay(IL°) = 0 if and only
if there exists a rank-one matriz M such that

Ly )M : M =Q(M), a.e inYi, (4.30)
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together with

( /Y1 %(L[/))(t) (L(t)M a1 ®er) + gMZQ + gM%) dt

— /Y1 [%(ﬂ (L(t)M t(ea®eq) — ngz)

- GO (LM s ea e - SM)] .

/Yl det(L?) (]L(t)]\/[ ey @ er) + My + C_ngg) "

det(L) 2 2
= /Yl [%(t) (L(t)M D2 ®er) — ng) (4.31)
— %(LL))@) (L(t)M (63 X 61) - ng?))] dt,

/Yl %@) (]L(t)M (1@ er) + LMoy + C_ZM33) "

det(L) 2 2
= /Yl [%(ﬁ (L(t)M Hea®en) — ng)
det(L'?)

K - W(t) (L(t)M t(es®eq) — %lM13>] dt.

Finally, we state a corollary of the previous result in the particular case of iso-
tropic tensors.
Lemma 4.13. LetIL € L2 (Y1; Z,(R**?)) be a Yi-periodic bounded isotropic tensor-
valued function with Ay, (L) > 0. Assume that there exists a constant d € R such
that the Lamé coefficients of L(yy) satisfy

max{0, —2u(y1) — 3A(y1)} < d < 4u(yy) for a.e. y; in Y. (4.32)
Then, the homogenized tensor IL° defined by (4.16) is strongly elliptic.

Thanks to the previous lemmas, we are now able to demonstrate the main result
of this section.

Proof of Theorem /.8. Firstly, assume that (4.26) is satisfied with the matrix D
being of the type D = dI3 for some d € R. This is equivalent to condition (4.32),
as it was proved by Gutiérrez in [8, Section 4.2]. By virtue of Lemma 4.13, .0 is
strongly elliptic, which concludes the proof in this case.
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In the sequel we will show that if there exists a constant matrix D € R3*3 such
that condition (4.26) is fulfilled, then there exists a constant d € R such that (4.26)
holds with D = dI3. This combined with Lemma 4.13 implies that L° is strongly
elliptic.

Assume that (4.26) holds for some matrix D € R**3, namely for any M € R3*3,
we have a.e. in Y7,

0< A (My; + My, + Msz)?

+2u (M121+M222+M§3+2

My + My ? Mg + Ms; ? Moz + Mo ?
2 + 2 + 2

+ D1y (MagMss— Moz Mso) — Dio( Moy Msg— MagMsy) + Dy3(May Msg— Moo M)
— Doy (Mg Ms3— MysMso) 4+ Dag(Myy Mss— My3Msy) — Das( My Mso— Mo Ms,)
+ D3y (Mo Moz — My3Mas) — Dso(Myy Mag— M3 May) + Dsg(Myy Mag— My May).

The previous condition is equivalent to the following matrix being positive semi-
definite a.e. in Y]

At2p A+Bs Ny B2 g 0 0 0 Dz _Da
A+ B N2 A+ B 0 o —Zn  Ds 0 0
A+ 22 A48 A2 B2 B2 0 0 0 0
0 T ks N U~
0 e M e s A 0o &
S L N R e =
L S U T T |
-5 0 o B0 N A
BE0 00 B B0 B

In particular, this implies that the following matrices are positive semi-definite a.e.
in Yi:

fori=1,2,3, (4.33)

Bi=[A+52 Xx+42u A+21|. (4.34)

Dis
2
A+Bz x4 Bn At2u
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Now, we will prove that there exists ¢ € {1,2,3} such that

— ess- 1nf{2,u(y1) +3X\y1)} < Dy < 4ess mf{u(yl)} (4.35)

Y1 €Y7

Note that we can assume

ess- 1nf{2,u(y1) + 3\ (1)} < 0. (4.36)

y1€Y]

Otherwise, since the matrix (4.33) is positive semi-definite, or equivalently

0 < D; <4dess-inf{u(y;)} fori=1,2,3, (4.37)
y1€EV]

condition (4.35) holds immediately.
We assume by contradiction that (4.35) is violated for any ¢ = 1,2, 3. Since the
matrix B defined by (4.34) is positive semi-definite, we get for any ¢ = 1,2, 3,

>0 a.e. in Y7,

A+ L X+ 2u

which is equivalent to

—4dess-inf{u(y;) + My1)} < Dy < 4dess-inf{u(y,)} fori=1,2,3.
Yy1€Y1 Yy1€Y]

Since by assumption (4.35) is not satisfied for any ¢ = 1,2, 3 and (4.37) holds, then
the previous condition yields

—4ess-inf{p(y1)+A (1)} < Dy < —ess-inf{2u(y1)+3A(y1)} fori=1,2,3. (4.38)
y1EY] y1EY

Set d := max;—123{D;;}. By (4.38) there exists ¢ > 0 such that

d+e < —ess- 1nf{2,u(y1) + 3X\(y1)} (4.39)

Y1 €Y7

Define the set P. C Y by
P. .= {xl €Yy 2u(zy) +3A (1) < ess- 1nf{2,u(y1) +3X (1)} + 5}

It is clear that |P.| > 0, and from (4.39) and the definition of P. we obtain

d+e < —ess- 1nf{2,u(y1) +3XMy1)} < —(2p(z1) + 3X(z1)) + € ae. x1 € P,

Y1€

which leads to

Az1) + g < —%(/\(xl) +2p(z1)) <0 ae. zp € P.. (4.40)
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Since the matrix B from (4.34) is positive semi-definite, then, its determinant is
non-negative a.e. in Y;. In particular we have

0 <det (B(z1))
= (A1) + 2(21))” + 2 (A(xl) + %) (A(:ﬁ) + 7) <)\(a;1) T 7)

— (AM(z1) + 2u(z1)) [(A(zl)jt%y + (A($1)+%)2 + ()\(xl)"i‘%)Z] ,

a.e. r1 € P.. Then, it follows that

det (B0)) < (a2 +2 (o) + ) =300+ 2e0) (M) + )

(4.42)
a.e. x1 € P.. To derive a contradiction let us show that the right-hand side of
inequality (4.42) is negative. By (4.40) we get

d 2
4 ()\(xl) + 5) > (A(z1) + 2u(x1))2 a.e. x1 € P,
which, multiplying by A(z1) 4+ 2u(z1) > 0, leads to

d

(/\(l'1> + 2#(1‘1))3 — 4()\(l‘1) + 2[1,(1'1)) <)\(I1) + 5) <0 a.e. xr1 € Pa-

Again using (4.40) we deduce that

2 ()\(azl) + g)g < —(A@) + 2p(x1)) ()\(xl) + 3)2 a.e. 11 € P..

Adding the two last inequalities we obtain

(M) 2(en))+ 2 (A(xl) " g) = 3(A21) + 2p(z1)) (A(wl) + g) <0,

a.e. 1 € P., which by (4.42) implies that det(B) < 0 in P., a contradiction with
(4.41).

Therefore, condition (4.35) is satisfied by D;; > 0 (due to (4.37)) for some i =
1,2,3. Hence, condition (4.32) holds with d = Dj;, or equivalently (4.26) is satisfied
by the matrix D;; I3, which concludes the proof. n

Now, let us prove the auxiliary results of the section.

Proof of Lemma 4.12. Let M € R3*3 be a rank-one matrix. Then, det(M) = 0, and
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adj; (M) = 0 for i = 1,2, 3. Therefore, we get

LM : M
—mind [ LI+ V) s (U + Vi) dy: p € Hio 05}

:min{/ (L(M+Vp): (M + Vo)+dl;: Cof(M+V):p € H] (Yg,;]R?’))dy} > 0.

per
(4.43)
Take ¢ = p(y1) = (@1, @2, 3) € CLo,(Y1;R?). Then, the matrix

Vo =¢' ®er=¢(er®er) + phlez ®er) + pl(es @ er),
is a rank-one (or the null) matrix. Also, note that
adj;; (M) = (—1)" det(M7").
Considering the previous expressions, from (4.26) it follows that

3
0 <L(M+ V) : (M+Ve)+d>_ adj,(M+ Vo)
i=1
=LM: M+2LM : (e; ®e1)p] +2LM : (e2 @ e1)ph
+2LM : (e3 ® e1)gly + Li(9))? + 2o ¢
+ 2l + 1a(3)” + 2las ey + 1a(05)°
+ d(Ms30) — Myl + Mospy — Miagh)
= LM : M +11(£1)% + 1a(05)” + I3(05) + 2l260) 05 + 2130 0 + 2lash el
[2LM : (e1 ® e2) + d(Mss + dMas)] )
+ [2LM : (es ® e1) — dMia] ¢y + [2LM : (e3 ® e1) — dMis] .

For the previous equalities we have used that
adj;(A+ B) = adj;(A) + adj;(B) + COf(Aii) . B".

The purpose is to rewrite the last expression as the sum of squares. With that in
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mind, one obtains

0<L(M+Vy): (M+ Vo) +dls: Cof(M + V)
— LM : M —Q(M)

I l 1 d d 2
+ ll |:S0/1 + %1290,2 + %13903 + — (LM : (61 X 61) —+ —M22 + —M33):|

ly 2 2
+$ (]LM t(ea®eq) — ngz)r
di%(il;i) ©h + %(ZLI;’) (]LM (e1 ®eqr) + %ZMQQ + %ZM33)
—% (ILM t(ea®eq) — ngg)
+%§j) (]LM t(es®eq) — ng)] 2-

(4.44)
Since ¢}, ¢, and @5 can be chosen arbitrarily, the three square brackets in the
previous equality can be equated to 0 at any Lebesgue point y; € Y] of L, and thus

(4.29) holds. Using a density argument the previous equality also holds a.e. in Y7,
for any ¢ € H! (Y1;R?).

per

Now, we are going to prove the second part of Lemma 4.12. Assume L is not

strongly elliptic. Then, there exists a rank-one matrix M such that LM : M = 0.

Taking into account expressions (4.43) the minimizer vy, associated with LOM : M
(see [2, Lemma 3.2]) satisfies vy = vps(y1) and

0=LM: M= [ LE)(M+vy,t)@e): (M+v),t) e )dt

b%1

= / [L(6)(M + Vop(t)) : (M + Vo (t)) + dls - Cof (M + V)] dt.

The first inequality in (4.44) implies that the integrand of the previous expression
must be pointwisely 0, and thus the inequality in (4.44) for ¢ = vy is actually an
equality. From this we deduce

LM : M = Q(M),
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and
( l [ 1 d d
0= i+ P20k + P20kl + 3 (LM 5 (e @ 0) + 50+ 5 )
1 1 1
det(L?) l1 d d
_ / / _ . _ _ P
= (Vi)2 + —det(i33) (vir)s —det(f}33) LM : (&g ®er) + 2M22 + 2Ms3
l
det(1[~/33) LM :(e2®e1) — §M12) ;
det(L'? d d
0= (U;W)g -+ ﬁ (LM . (61 & 61) + §M22 + §M33)
det(L? d
deE(L)) LM : (62 X 61) — §M12>
det(L3?) d
— | LM : — =M
| T (es ® e1) = 5 Mig

(4.45)

Since vy, is Yj-periodic, we have

/ (lU?\J)Z dyl =0 =123
Y1

Integrating the third equality in (4.45) we obtain the first equality in (4.31). Repla-
cing (v),)s in the second equality of (4.45), we end up getting the second equality
in (4.31). Finally, replacing (v},)2 and (v},)s in the first equality of (4.45) it yields
the last equality in (4.31).

Conversely, let us assume that equalities (4.30) and (4.31) hold. Considering the
first equation in (4.31), taking into account that the all the integrands belong to

L>(Y1), there exists a function @3 € W2°(Y1) such that, a.e. in Y1, it holds

det(L'3 d d det(L* d
0= QOé + w (]LM : (61 & 61) + §M22 + §M33> — w (LM . (62 (024 61) — §M12>

det(L) det(L)
det(L3?) . d
m (LM . (63 X 61) — §M13> .

Repeating the argument with the second and the third equation of (4.31), we get

the existence of functions ¢y and ¢y in W;;2°(Y1) respectively, such that

- det(L??)
72T et (199

12 d d I d
- - LM : — M. — M. —— (LM : — =M
P3 det(1%9) < (61 ®eq1) + 5 M2z + 5 33) + det(15%) ( (62 @ e1) oM

l l 1 d d
O+ 2 4+ 2o+ = (LM : (61 ® 1) + = Moy + =Msz | = 0.
I I I 2 2

These three equalities together with (4.30) imply the equality in (4.44), and thus by
(4.43) it follows that

0= / (L(M + V) : (M + V) + dl3 : Cof (M + Vp)) dy, > LM : M > 0,
Y1
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which shows that IL° is not strongly elliptic.
Finally, due to the equality LM : M = L°MT : MT, conditions (4.30) and
(4.31) are equivalent to the similar equalities replacing M by M7, O

Proof of Lemma 4.13. Since L is isotropic, condition (4.32) is equivalent to the con-

dition (4.26) with D = dI3. As a consequence, (4.32) implies A(L) > 0. By [7,

Corollary 3.5], we have ag(L?) > A(LL). Therefore, we get that a,.(IL°) > 0.
Assume that L% is not strongly elliptic, i.e. g (L%) = 0. Then, there exists a

rank-one matrix M := £ ®@n in R¥*3 with £, 7 € R?\ {0}, such that L°M : M = 0.
Since L is isotropic, the matrix L defined in (4.28) is

A+20 0 0
L= 0 pwo 0
0 0 u

Moreover, the following equalities hold

Mij = &’I]] Z,] - {1,2,3},
LM : (e1 ®er) = (A4 2u)&m + MEama + E3ms),
LM : (e2 ®er) = p(§amz + Eam),
LM : (e3®er) = pu(&in. + &m),
LM = M = (X + p) (€ :n)? + plénl*.

Because LM : M = 0, from equalities (4.30) and (4.31) in Lemma 4.12 we obtain
a.e. in Y

A+ p) (€ 0)? + ple)Pnl?

d 2
{()\ +20)&1 1 + A(Eama + E3ms) + 5(52772 + 53773)} (4.46)

:/\+2u
2

2
+ % [M(fﬂb +&m) — gfﬁh] + % [M(flﬁ:’u +&m) — g§1n3] )

together with

d
0=+ &am ~ 2 [ £ty (1.47)
vy M
d
0==&m+ &m — %/ —(t) dt, (4.48)
v M
0= e+ (e + o) [ L ()i (1.49)
=& 2712 3713 S . .
After some calculations, from (4.46) we get
(A +2p)° — (A +9)? d(p — 1)

(52772+53773)2+M(§2773—53772)2+T§%(77§+77§) =0, (4.50)

A+ 20

a.e. in Y7. Observe that, since LL is isotropic and (strictly) strongly elliptic in Y7,
we have
w>0, 2u+A>0 ae. in Y,
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which implies that
2\ 2
(A +2u)? — ()\+§) >0 a.e. inY).

Hence, taking into account assumption (4.32), equality (4.50) implies the following
three conditions:

2
(A +2u)% - ()\ + g) (Eama + &m3)®* =0 a.e. in Y7, (4.51)
€3 = 312, (4.52)

d (;z — izi) Ems+n) =0 ae inY. (4.53)

We will now prove by contradiction that we cannot have d = 4u a.e. in Yj.
Otherwise, equalities (4.47), (4.48) and (4.49) can be written as

0=&m3 — &,
0==¢&m —&m, (4-54)
0=&m + &anp + &ams.

Under these conditions, if 7, # 0, then the first and second equalities of (4.54) lead

to ¢ ¢
53:773—17 522772—1-
Ui m

Replacing & and &3 in the third equality in (4.54), we obtain

&G(np +m5 +m3) =0.

Since n # 0, we get & = 0. This implies that & = & = 0, a contradiction with £ # 0.
Therefore, we have necessarily 17, = 0. Moreover, using the two first equalities of
(4.54) and the fact that n # 0, we obtain & = 0. As a consequence, (4.54) reduces
to

Eama + E3ns = 0. (4.55)
If ny # 0, then using (4.52) we get

13
£3 = Q2
12

and replacing &3 in the previous equality, it yields

& +m3) = 0.

Again, since n # 0, we have £& = 0. Using (4.52) and the assumption 1y # 0, it
follows that £3 = 0, again a contradiction with £, # 0. Thus, we have necessarily
ne = 0. Taking into account that 7; = 1y, = 0 we have n3 # 0, hence from (4.55)
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we deduce that &5 = 0. Now (4.52) is written as &n3 = 0. However, recall that
& =& =mn =1y = 0. This implies that either ¢ = 0 or n = 0, a contradiction.

We have just shown that the set {d < 4u} has a positive Lebesgue measure.
Similarly, we can check that d > 0. Using (4.51) and (4.53) together with 0 < d <
4p, we deduce that

Exnp + Eans = &1 (3 +13) = O,
which combined with (4.49) also gives {111 = 0. As above, using the three previous

equalities, (4.47), (4.48) and (4.52), we get a contradiction with the fact that &, n # 0.
Therefore, we have proved that IL° is strongly elliptic if (4.32) holds for some d. [

4.3.2 Rank-two lamination

In the proof of Proposition 4.6 for dimension three [8, Section 5.2|, Gutiérrez per-
formed a rank-one laminate mixing a strongly elliptic but not semi-very strongly
isotropic material IL,, and a very strongly elliptic isotropic material IL,. However,
as it was noted at the beginning of the section, there are some cases for which the
strong ellipticity of the homogenized tensor is not lost after this first lamination.
In fact, our Theorem 4.8 shows that for a general rank-one laminate, it is not pos-
sible to lose the strong ellipticity through homogenization if there exists a matrix
D € R**3 satisfying condition (4.26). As done in [8], we need to perform a second
lamination with a third material L. which can be very strongly elliptic, in order to
lose the strong ellipticity in those cases.

Our purpose is to justify Gutiérrez’ approach using formally 1*-convergence (see
[8, Section 3]), by a homogenization procedure using the I'-convergence result of
Theorem 4.5.

Theorem 4.14. For any strongly elliptic but not semi-very strongly elliptic isotropic
tensor 1L, whose Lamé coefficients satisfy

Ao + 3N > 0, (4.56)

there exist two very strongly elliptic isotropic tensors Ly, L. and volume fractions
01,02 € (0,1) such that the tensor Ly obtained by laminating in the direction yo the
effective tensor L — firstly obtained by laminating in the direction y; the tensors L,
Ly with proportions 61, 1 — 6, — and the tensor L. with proportions 6y and 1 — 0
respectively, namely

Lo(ya) := xa2(y2) LT + (1 — x2(y2)) Le  for y» € Y1, (4.57)
satisfies
A(Ly) = 0, (4.58)
and o
/ Ly(z2/e)Vu : Vudx () /]LgVU : Vode, (4.59)
Q Q

where the homogenized tensor 1LY is not strongly elliptic, i.e.

ge(ILY) = 0. (4.60)



4.3. Loss of ellipticity in three-dimensional linear elasticity through the
154 homogenization of a laminate

Remark 4.15. Theorem 4.14 shows that for certain strongly elliptic but not very
strongly elliptic isotropic tensors, namely those whose Lamé parameters fulfil (4.56),
it 18 possible to find two very strongly elliptic isotropic tensors for which the homo-
genization process through I'-convergence using a rank-two lamination leads to the
loss of ellipticity of the effective tensor.

Proof of Theorem 4.14. We divide the proof into four steps.

Step 1. Choice of IL,, 1Ly, 64, 0-.

Let L, be a strongly elliptic but not semi-very strongly elliptic isotropic tensor
satisfying (4.56). Our aim is to find two very strongly isotropic tensors Ly, L. and two
volume fractions 61, 6, such that the strong ellipticity is lost through homogenization
using a rank-two lamination.

Let x1,x2 : R = {0,1} be two 1-periodic characteristic functions such that

/Xl(yl)d91=91 and /X2(y2)dy2=92,
Yl Yl

where 61,0, € (0,1) will be chosen later.

The 1*-convergence procedure of [8, Section 5.2] applied to the tensor

Li(y1) == x1(y1) La + (1 — x1(31)) Ly for y1 € Y1, (4.61)

yields a non-isotropic effective tensor L}. The computations of [8, Section 5.2] lead
to an explicit expression of the tensor Lj whose non-zero entries are

1
L = —
(L)1 A’
* * * * B
(L) 1122 = (L7)2211 = (L) 1133 = (L])3311 = 1
1
(L1212 = (L7)1201 = (LY)2112 = (L2101 = ok
1
(L1313 = (L;f)wgl = (L})s113 = (L])3131 = ok (4.62)
B
(IL}) 2022 = o T 2(C+ D),
B2
(LY)2233 = (L) 3322 = I + 2D,

(}LT)2323 = (LT)2332 = (LT)3223 = (LT)3232 = C,
2

B
(ILT)3333 = ot 2(C+ D),
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where
s 0, N 1—06, |
20 + Ao 2+ Ny
i (1 =01\
C 2%+ A 2N
C=0pa+ (1 —01)p, (4.63)
_ 0110 Na n (1 —61) s
210 + A 20 + Ny
o 1=0
Ha Hb
Now, let us specify the choice of the two very strongly elliptic isotropic tensors
Ly, L., and the volume fractions 6y, #». For the Lamé parameters of material ¢ we

denote A\, = a.pi. as done in [8]. We assume that

1 La(21t + 3Aa)
(24 + 3N, < Hal2fa T 27a) 4.64
1 (e +30) < i < I (4.64)
203\
Ap > , 4.65
b ta(200a + 3Xa) — 31p g ( )
— A2t + Aa)
6, — : 4.66
YT 20 — o) (4.66)
-D
Cc > ) 4
“=C1D (4.67)
a.(C'+2D)
=0 T2 4.
He =D i o) (4.68)
and c
c D
0, — a:(C'+ D) (4.69)

T a.(C+D)-D2+a)

Observe that, thanks to the first inequality in (4.64), the tensor L given by (4.61)
satisfies A(L1) > 0 (see [8, Section 4.2]). Hence, by Theorem 4.8 the homogenized
tensor L} is strongly elliptic. This justifies the first lamination from the point of
view of homogenization through I'-convergence.

To conclude the first step, let us check that the previous conditions satisfy the
assumptions of Theorem 4.14. The tensor L, is strongly elliptic but not semi-very
strongly elliptic, i.e.

ta >0, 2u, + 3X <0,

which implies that g, > 0. The fact that necessarily A, < 0 together with (4.64)
implies that A\, > 0 thanks to (4.65), and thus L, is very strongly elliptic. The
volume fraction 6; clearly belongs to (0, 1), since (4.66) reads as

/\b<2ﬁba + /\a)

0, = .
NN 20+ Aa) — Aa(205 + N)
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The choice of #; implies that in (4.63)
B =0. (4.70)

In addition, C' + D > 0 as it was proved in [8, Appendix C| and C + 2D < 0 by

(4.64), (4.65) and (4.66). This also implies that D < 0. Thanks to the previous
inequalities we have 6, € (0,1), a, > 0 and p, > 0, which implies that L. is very
strongly elliptic.

Step 2. A(LLy) > 0.
To get A(Ly) > 0 we will prove that for

dp. 0 0
D=0 00],
0 00
we have
Lo(ys)M : M+ D : Cof (M) >0 a.e. yo €Yy, forall M € RV*Y, (4.71)

We need to prove that the previous inequality holds in each homogeneous phase of
]LQ.

Firstly, for the phase L. which is isotropic and very strongly elliptic, we get for
any M € R3*3,

LM : M+ D : Cof(M)

Mg+ Mo\ Myz+ Mz \? Mon+ Mao \ 2
= 2/, M121+M222+M§3+2(%) +2( 132 31) +2( 232 32)

+ Ae(Miyy + Moy + ]\433)2 + 4dpe(Maa Mz — Moz Mss)
= (Ae + 2pe) (M7) + M3, 4+ M3y) + 2X\o(Myy May + Myy Mss) + 2(A + 2p1c) Moy Mg
+ pte(Myz + M21)2 + pie(Msy + ]\413)2 + fre(Mas — M32)2-

This quantity is non-negative for any M € R3*3, since the following matrix is positive
semi-definite:

Ao+ 20 A Ao
Ac Ae+ 20 Ae+ 20 |,
Ae Ae + 20e A+ 24,

due to the strong ellipticity of L.. Therefore, the desired inequality holds for the
homogeneous phase L..

Secondly, we need to check the same inequality for the phase with L. By (4.62)
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we have for M € R3*3,
1 2

B
LiM : M+ D : Cof(M) = M}, + {7 +2(C+ D)] (M2, + M2)

B
+ QZ<MHM22 + My Mss)
BQ
+ 2 |:Z + 2D + 2MC:| (M22M33)

1 1
+ E(Mm + —Mm)2 + E(MB + ]\431)2

+ C(M3; + M3,) +2(C — 2puc) My Mss.

Since £ > 0, this quantity is non-negative for any M € R3*3 if the following two
matrices are positive semi-definite:

1 B B
A A A
B B oC+D) Z42D+2u, |, (4.72)
B B4 9D +2u, B4+ 2(C+ D)
C C —2u,
(4.73)
C — 2, C

Since C' > 0, the matrix (4.73) is positive semi-definite if and only if u. < C.
Taking into account that p. < C, we can check that the matrix (4.72) is positive
semi-definite if —(C' + 2D) < pu.. Therefore, the matrices (4.72) and (4.73) are
positive semi-definite if

—(C+2D) <p.<C. (4.74)

By the definition (4.68) of 1., we deduce that the first inequality of (4.74) holds if

and only if
a.C

——>1

—D(1+a,) =
which is satisfied due to inequality (4.67). For the second inequality of (4.74), we
need to check that (see (4.68))

a.(C+2D)
D1+a.) —
or equivalently,
D
C+D’

This is true since a, > 0 by (4.67) and CJFLD < 0. Therefore, condition (4.71) holds
true, and consequently

Qe >

A(Ls) > 0. (4.75)
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Step 3. 1Ly loses the strong ellipticity through homogenization.
On the one hand, due to A(Ly) > 0, by virtue of Theorem 4.5 the I'-convergence
(4.59) holds with the homogenized tensor LY which is given by the minimization
formula (4.16) replacing L by L.

On the other hand, following Gutiérrez’ 1*-convergence procedure we obtain a
homogenized tensor L} such that (see [8, Section 5.2] for the expression of LL})

G2
Li(es®es) : (es®e3) = I + —*,
Fy
where by (4.70),
14 a, C+2D
L =4(1— 2
! ( 92)2 ozc+ 9200+D’
. D
G1:(1—02) a +02

2+ o, C+D’
F £0.

It is not difficult to check that the choice of Ly, L., 81, 65 leads to I; = G; = 0,
which yields
Li(es ®e3) : (e3 ®e3) = 0. (4.76)

To conclude the proof it is enough to show that
L} =LJ. (4.77)

Indeed, thanks to Ly = LY equality (4.76) implies the loss of ellipticity (4.60), and
(4.60) implies A(Lp) < 0. This combined with (4.75) finally shows the desired loss
of functional coercivity (4.58).

Step 4. Ly = LY.

By formally using 1*-convergence in terms of [2, Lemma 3.1], Gutiérrez’s computa-
tions for the tensor L} in [8, Section 5.2] can be written as

= [ AL dt,

A L)L) it = / (A (Lo (1) (La)omua (1)),

(4.78)
(L3)ijkr — (L3 )igom Appn, (3] (IL5 ) 2
1
:/ (L )sjua () = (Lig)ijom (£) Apor, [Li2] () (L2 ) 20k (2))
\ 0
where in the present context, for any L € L2 (Y1; . Z,(R**?)), A[L] € L2 (Y1; R¥?)

is defined by

A[L](y2)€ = [L(y2)({ @ e2)]es for y, € Yy and € € R3.
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By focusing on the first equality of (4.78) we have
1
AL = [ A0 d = A7 L+ (- 09A7 L, (@)
0

where all the quantities are finite. Now, similarly to the proof of Theorem 4.5 we
consider the perturbation of Ly defined by

Ls:=Ls+4dI; foro > 0. (4.80)

On the one hand, due to A(ILs) > 0 (which by (4.14) implies 0 < Aper(Ls) < awe(LLs)),
thanks to [2, Lemma 3.2] the 1*-limit L} of Ls and the homogenized tensor LY of L
defined by (4.16) agree. Then, applying [2, Lemma 3.1] with Ls; we get that

ALY = /01 ATMLs](t)dt = O AT LY + 0L + (1 — 02) AL + 6 15). (4.81)

Observe that we have

A[LT + 61 > A[LT],

ALY + 01 — A[L}] asd — 0,
where the previous inequality must be understood in the sense of the quadratic
forms. This combined with the fact that both L} 4+ 6 I, and L} are strongly elliptic
tensors (which implies that the previous matrices are positive definite), yields

ATHL 461 < ATHLY,
and thus,
ATMLE 4+ 61 — ALY as 6 — 0.

Similarly, we have
AL, +61,] = AL, asd — 0.

Hence, from the two previous convergences and taking into account (4.79), (4.81),
we deduce that
ALY — ALY as d — 0.

On the other hand, following the proof of Theorem 4.5 we have
Li=L =1L asd— 0.
Therefore, we obtain the equality
ATHLI = ALY (4.82)
Using similar arguments, we can prove that L3 and L} satisfy for any 4, j, k,1 €
{1,2,3},
A L5 (L3) 2mi = Ajy [L3] (L3) 2, (4.83)
(L3)igi — (L3)ij2m A [IL3) (L3 )2 = (L)ijht — (L2)ijom A [Lo] (L3)2nke  (4.84)

Since the set of equalities (4.78) completely determine the tensor L3, equalities
(4.82), (4.83), (4.84) thus imply the desired equality (4.77), which concludes the
proof. O]
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Appendix

Proof of Theorem 4.4. We simply adapt the proof of [2, Theorem 2.2] to dimension
3.

Firstly, let us prove the first part of the theorem, i.e. A(L) > 0. The quasi-
affinity of the cofactors (see [5]) reads as

/ adj;(Vv)dy =0, Vv e CX(R*R?), Vie {1,2,3}. (4.85)
Y3
As a consequence, for any d € R, the definition of A(LL) can be rewritten as

A(L):inf{/R3

If we compute the integrand in the previous infimum, we obtain

Le(v) : e(v) +d Z adj; (Vv)

dy, v € CEO(R?’;]R‘%)} :

A(]L) = inf {/ [P(y§alvl7a2vz,a3v3) + Q(y;agv2,821)3)
R3

(4.86)

+ Q(y; O3v1, O1vs) + Q(y; Bavr, B1va) | dy, v € C?(R?’;R?’)},

where

( A2 A+3 A+2\ [fa

P(y;a,b,c)::(a b c) )\—l—%l A+ 2p /\+g b |,
A5 A+E A+2u) \c

| Qia.b) = (a b) (ﬂﬁg u;%) (Z)

We can check that condition (4.21) with d > 0 implies that the quadratic forms P
and ) are non negative. Hence, the integrand in (4.86) is pointwisely non-negative,
and thus A(L) > 0.

Now, let us prove that A, (L) > 0. By the definition of A, (L) and using the
same argument as before, we have

Aper(L) :inf{ /

Similar computations lead to

Le(v):e(v)+d Z adjii(Vv)] dy,ve H...(Y5;R?), [ |[Vo]*dy= 1}.

Y3

Aper(]L’> = inf { / [P(?J; 01v1, Oav2, a3U3) + Q(?ﬁ O30, 821)3)
Y3
(4.87)

+ Q(y; O3v1, 01v3) + Q(Oav1, 811)2)} dy}.
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Take y € Z;,7 € I. Then, using that 4u; = d, we have
P(y;a,b,¢) = (A +2u:) (a + b+ ¢)* > 0,

and
Q(y; a,b) = p;(a —b)* > 0.
For Yy € Z],] € J, using that 2:“] + 3)\] = —d’ we get

P(y;a,b,c) = (uj + %) [((a—0)*+ (a—c)*+ (b—1¢)?] >0,

and p
Qy;a,b) =d (uj + Z) > 0.

Finally, for y € Zy, k € K, since —(2u + 3A;) < d < 4py, it is easy to see that the
quadratic forms P and @) are positive semi-definite. Therefore, we have just proved
that there exists o > 0 such that

P(y;a,b,c) > ala+b+c)?, Qy;a,b) > ala—0b)?, y € Zyi€l, (4.88)
P(y;a,b.c) > af(a—b)*+(a — o)’ +(b— o)), Qyia,b) > ala® +b%), y € Z;,j € J,

(4.89)
P(y;a,b,c) > a(a® +b* +2), Q(y;a,b) > a(a* +b%), y € Zp,k € K, (4.90)

which implies that Ape (L) > 0.
Assume by contradiction that Aye (L) = 0. In this case there exists a sequence

v" € H! (Y3 R3) with
/ v"dy = 0,
Y3

per
IVu"|*dy =1, Vn€EN, (4.91)
Y3

such that

together with
/ L(y)e(v"™) : e(v™) dy — 0.
Y3

By the Poincaré-Wirtinger inequality v" is bounded in L?(Y3;R?). Moreover, by
(4.87) we have

J,

Take k € K. Using (4.90) we get

A

P(y; OyvY, Oavyy, 0505 ) + Z Q(y; 0;v7, 82-'0?)] dy — 0. (4.92)

i<j

P(y; 0107, Oovly, D3v%) + Z Q(y; 007, (?iv?)] dy >a [ |Vo"|*dy.

i<j Zk
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Then, using (4.92) and the fact that both P and @ are non negative, it follows that

Vo"|?dy — 0 VkeK,

Zy,

RILIEOZ/Z Z (Orvy (4.93)

keK k qr=1,2,3

Next, take j € J. By (4.89) we obtain
P(y; 01}, 005, 0305) + Y Q(y; Okvf', Ovp) | dy

/Z' i<k

> a/ Z — Opvp)? 4 (Op0})? + (0v1)?] dy.

Zj i<k

and therefore

Again using (4.92) and the non-negativity of P and @) we get

lim [ [(O0f — Owvp)® + (Opv])* + (O07)*] =0 for i,k € {1,2,3}, i < k.

(4.94)
From (4.94) and the continuity of the operator 0y : L*(Z;) — H~(Z;) we deduce
that

Do(01v]) = 01(0207) — 0 strongly in H'(Z;), (4.95)
O (O10}) = D1 (D1} — Oovly) + Oo(01vYy) — 0 strongly in H(Z;). '
By (4.91) we also have
Oy} is bounded in L*(Z;). (4.96)

However, thanks to Korn’s Lemma (see, e.g., [9]) the following norms are equivalent
in L*(Z;):

IV - llazms) + - a2z

- Nl z2z)).

Hence, from estimates (4.95), (4.96) and the compact embedding of L? into H™!, it
follows that
Oyv} is strongly convergent in L*(Z;).

Furthermore, by (4.95) and the fact that Z; is connected for all j, there exists ¢; € R
such that
O} — ¢ strongly in L*(Z;),

which combined with (4.94) yields
Vo™ — ¢;I3 strongly in L*(Z;)®.

Since v™ is bounded in L?(Y3;R?), we can conclude that there exists V; € R* such
that
V" — vi=cy+V; strongly in H1(Z;;RY). (4.97)
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In Case 1, by the periodicity of the limit c;y + Vj it is necessary to have ¢; = 0.

In Case 2, since Zj, is connected, by (4.93) there exists a constant ¢ such that
vy, converges to Xz, v + xz, ¢k strongly in H'(Z; U Z,). Hence, since the sets Z; and
Zy, are regular, the trace of v must be equal to ¢; a.e. on 0Z; N 0Zj. Therefore, the
only way for ¢;y+ V; to remain constant on a set of non-null .#’*-measure is to have
c; = 0.

In both cases this implies that Vo™ converges strongly to 0 in L*(Z;; R**3), and

thus
: n\2 o
nh_{rgo g /Z E (Oqv;)°dy = 0. (4.98)

jeJ Jrq=1,2,3

Finally, take ¢ € I. By (4.88) we have

/.

Oé/ [(811)? + 82213 + 837);)2‘}‘(821)? + 0103)2—#(831)? -+ 811}:?)2—1—(83@3 + 821)51)2} dy
Zi

P(y; 01v7, Oovly, O3v%) + Z Q(y; gy, @vg)] dy >

r<q

By virtue of (4.92) we also have

/ (010} + 0205 4 050%)* + (Do} + 0105 ) + (O3] + 0108 ) >+ (D505 + 005 )| dy — 0,
Z;

(4.99)
as n — oo. Limits (4.98), (4.93) combined with (4.85) yield

3
lim Z/ Zadjw(Vv”)dy = 0.
n—00 7.

el tr=1

Therefore, upon subtracting this quantity to the sum over i € I of (4.99) we conclude

that
3
lim » / > (0v7)?dy = 0. (4.100)
n—00 7.

el i r,g=1

Finally, limits (4.98), (4.93) and (4.100) contradict condition (4.91). The proof is
thus complete. O]
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