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Abstract. We prove that if α (E (0, and Τ is an infinite order differential operator there 

exists a dense linear manifold M. of entire functions such that 

for every f e M and any plane strip S. Moreover, every non-null function in M exhibits 

some translation-universality property with respect to Τ and its growth index with respect 

to any prefixed sequence of non-constant entire functions is infinite. 
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1 Introduction 

Throughout the last decades several authors have given "counterexamples" to the well-

known Liouville's theorem. For instance, there exists a non-null entire function which tends 

to zero on every line (see [11, 15, 16]) or such that it and even all its derivatives have also 

vanishing integrals on every line (see [2, 19]). In 1997 Bernal [5] (see also [4]) got many 

functions which not only "violated" Liouville's theorem in both senses but also possessed 

an extremely fast growth and "sharp" asymptotic behaviour at infinite. In order to specify 

exactly this result, and with it the framework of this paper, let us introduce some notation. 

The symbol Σ will stand for the family consisting of all strips in C (i.e., plane regions 

between two parallel straight lines) and all sectors 

'The author has been partially supported by DGES Grant BFM2000-0514, DGES Grant BFM2001-2717 
and the Junta de' Andalucía. 

lim exp( |z | a)T/(z) = 0 

s0:={z: 0 < arg 2 < β} (/? <Ξ (0, 2ττ)) 
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58 Calderón 

and L will stand for the family of all straight lines. We denote by H(C) the space of all 
entire functions endowed with the compact-open topology, so H{C) is a separable Fréchet 
space. If r > 0 and / G H(C) we denote Mf(r) := max{|/(z)| : |z| = r } and for any 
non-constant function h G H(C) the relative growth order of / with respect to h, (see [3]) is 
defined as 

. . . log M^(Mf(r)) 
ph(f) = hrnsup , 

r—»oo log r 
Given any sequence Τ = {/ΐ·η}ϊ° of non-constant entire functions, the growth index of / with 
respect to Τ is ip(f) = min{rc G Ν : phn{î) < °°}· We set ip(f) = oo if Phn(f) = 00 f°r 

η. Observe that these concepts extend the older one of relative growth order [18]. 
With this in mind, Bemal's result [5, Theorem 3] reads as follows: 

THEOREM 1.1. (Bernal [5] j Assume that a e (0,1/2) and that φ : [0, +oo) (0, +oo) 
is a continuous function which is integrable on (l,+oo). Assum.e, in addition, that F = 
{Λ.η}^ is a sequence of nonconstant entire functions. Then there is a linear manifold Λ4 = 
Λ4(α, ψ, Τ) C H(C) satisfying the following seven properties: 

(a) M is dense in H{C). 

(b) lim exp(|z|3/V(z))/(z) = 0 for all S 6 Σ and all f e M. 
z€S 

(c) lim exp(|z|a)/ü)(2) = 0 for all S e Σ, all f e M and all j > 0. 
z€S 

(d) fW is bounded on S for all S G Σ, all f e Μ and all j > 0. 

(e) ftt) is integrable on S with, respect to the plane Lebesgue measure, for all S G Σ, all 
f e M and all j > 0. 

( f ) f ^ integrable on S with respect to the length measure for all l G L, all f e M and 
all j > 0 . 

(g) = 0 f°r al1 le L, all f £ M and all j > 1. 

(h.) ijr(f) = oo for all f G M\ {0}. 

Our aim in this paper is to show that not only the derivative operator of order j, D3 f = 
can be replaced by infinite order differential operators in the seven above properties, 

but also that we can provide an eighth property whose feature is totally different from the 
others, namely, a property about wild behaviour near the infinity point. 

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated

Download Date | 1/4/17 9:12 AM



Universal functions with fast growth 59 

2 Definitions and statement of the main result 

An entire function φ(ζ) = akZk is s a id to be of exponential type if there are constants 

A,B>0 such that \φ(ζ)\ < AeB'2' for all ζ (E C. The function φ is of subexponential 

type if given ε > 0, then there is a constant A = Α(ε) > 0 such that \φ{ζ)\ < Aee^ 

for all ζ e C. This happens if and only if l imsup^^fcllafcl)1 /* = 0 (see, e.g., [8, 2.2.9-

11]). Each entire function of subexponential type is also of exponential type and every 

entire function φ of exponential type defines a (linear, continuous) infinite order differential 

operator φ{Ό) = Σ,Ζ,ο0·^ o n # ( c ) > w h i c h i s o n t o ( s e e [10, 14]). Here D° = I = the 

identity operator. 

On the other hand, given a continuous selfmapping Τ on H(C), we say that an entire 

function / is T-universal whenever for each g € H(C) there exists a sequence (a,n) C C 

satisfying 

(Tf)(z + an)^g(z) (n —> oo) in H(C). 

Now, we are able to establish the main result, which will be proved in the next section. 

T H E O R E M 2.1. Let be given an α e (0, a continuous function ψ : [0, +oo) (0, +oo) 
which, is integrable on (1, +oo) and a sequence. Τ = {h.n}f of non-constant, entire functions. 
Assume, in addition, that, {ipi,m(z)}m=o fi ~ 1,2^ are two sequences of entire functions of 
subexponential type. Then there is a linear manifold Μ = Μ(α,φ,^,(φι:τη),(·ψ2,τη)) of 
entire functions satisfying the following properties: 

(a) M is dense in H(C). 

(b) lim exp(\z\3/2<p(z))f{z) = 0 for all S e Σ and all f e M. 

(c) lim exp(\z\a)(rphm(D)f)(z) = 0 for all S 6 Σ, all f e M and all m. > 0. 

(d) Ψ\,m(D)f /s bounded on S for all S 6 Σ, all f (ï M and ali m > 0. 

(e) iPi,m{D)f is integrable on S with, respect to the plane Lebesgue measure for all S e Σ, 

all f € A4 and all m > 0. 

( f ) i>l,m(D)f is integrable on S with respect to the length. m.easure for all l G L, all f e M 

and all m, > 0. 

(9) ΙίΨιΑ0) = 0, then j^l¡m{D)fds = 0 for all I. € L and all f e M. 

(h) i A f ) = 00 for all f e M \ {0}. 
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60 Calderón 

(i) Every non-null function in M is ip2,m{D)-universal for all m > 0. 

Observe that any polynomial p(z) is an entire function of subexponential type. In par-

ticular, taking tpi¡m(z) = zm for all m > 0, we obtain the conditions (a)-(h) of Theorem 1.1 

together with an additional universal property for a sequence of infinite order differential 

operators. It is noteworthy the case in which also ip2,m{z) = zm for all τη > 0. Then Theorem 

2.1 provides a linear dense manifold of entire functions such tha t each of them and all its 

derivatives are universal functions in Birkhoff's sense [7] (see also [6, 12, 13] for the related 

concept of holomorphic monster in C) with growth conditions. 

Finally, we mention tha t in 2000 A. Bonilla [9] studied an analogous problem in the space 

of harmonic functions in R N , providing similar conditions (c)-(f) for any derivative operator 

Da and the universal condition (i) for the identity operator. 

3 An auxiliary result and proof of the main result 

We will use the following theorem about tangential approximation due to Arakelian [1, 

p. 1189], From now on C ^ is the extended plane. If F C C is a closed set, then A(F) is the 

space of all continuous functions on F which are holomorphic in the interior of F. A closed 

subset F C C is said to be an Arakelian set [17] whenever Coo \ F is both connected and 

locally connected a t infinity. 

T H E O R E M 3.1. ( 'Arakel ian [1],) Assume that F C C is an Arakelian set, and that e(t) 

is continuous and positive for t > 0. In addition, suppose that 

/

oo 

r 3 / 2 l o g £ ( i ) d i > - 0 0 . (1) 

Then for every g € A(K) there exists an entire function f such, that, |/(*)-ί,(ζ)|<ε(|ζ|) (ζ e F). 

The statement does not remain valid for every F is (1) is violated. 

Proof, (of Theorem 2.1) Suppose tha t α, φ, Τ = and 
oo 

= (i = 1,2) 
k=0 

are as in the hypotheses. Thus for each m > 0, i = 1,2, there exists a positive constant Ai¡m 

such tha t 

Ι&ΓΙ < a J ^ - (Vfc > 0). (2) 
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Universal functions with fast growth 61 

Fix a sequence {pn )S=i which is dense in H(C) and a number β e (α, For every η € Ν, 

the function 

e(t) = e „ ( t ) := m i n j i · γ ^ , β χ ρ ( - Í 3 / V M - * " ) } 

is positive and continuous for t > 0 and satisfies (1). Let Ρ be the parabolic curve 

Ρ = {x- ix1'2 : a; > 0}. 

For each η € Ν, we define the sets 

En = {ze C : \z\>n+l and dist(z, Ρ) > 1 + |z|}, 

Bn = {z : Μ < η } · 

Consider a sequence of closed balls Dj = B(a,j, 1 + 2·') such that 

DjC{z : dist(z, Ρ) < 1 + |z|} \ Ρ 

and 

K l + 2J+2 < |oj+i| ( i > l ) . 

In particular the balls Dj are pajrwise disjoint and 

|z| > 2j (z € Dj). (3) 

Let H = {zk}kLi be a sequence of pairwise different complex numbers in Ρ with zk —» oo 

(k. —> oo). For each η e Ν we define 

Fn = Bn U En U H U ( ( J Dj J , 
\j> jo / 

where jo = jo(n) is the largest index such that Dj Π Bn+\ φ 0. Then Fn is an Arakelian set. 

Divide {ü j } into infinitely many disjoint subsequences {o.¿(m,/j)} by setting 

, [(m + l){m + I + 1) + 2j][(m + l)(m, + / + !) + 2 ( j + 1)] . 
i(m, i,j)— g + J 

for all m > 0, all / > 1 and all j > 1. Define inductively a sequence {/n}£Li of entire 

functions as follows. Denote rk = \zk\ for all k > 1 and for each m > 0 consider a sequence 

{lm,n}n °f entire functions such that 

1p2,m{D)qm,n = Pn ("· > 1)· 
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62 Calderón 

Recall that φ2,M(D) is an onto operator on H ( C ) . Let g\ : F\ —» C denote the function 

Pi(-z) { z e B , ) 
0 (2 G £1) 

51(2) = 1 + max^xfc M h j ( e x p r k ) ( z = z k and \zk\ > 1) 

q m , j ( z — 1i(m,lj)) ( Z e A(m,lj)) 

Then gj e and by Theorem 3.1 there exists an entire function fi such that 

\ f l ( z ) - g 1 ( z ) \ < £ l ( \ z \ ) { z € F i ) . 

Assume that rae { 2 , 3 , . . . } and that we have constructed 2 η — 2 functions / 1 , . . . , 

/„_ 1 in such a way that </¿ 6 A(FÌ), FI € # (C) and 

for all i 6 {1, 2 , . . . , η — 1}. Now, we define the function gn : Fn —» C by 

Pn(z) ( z € B n ) 

0 ( z e E n ) 

S n ( 2 ) = 1 + m a x i ^ - a M h j { e x p r k ) + fc^X"/ ( 2 = a n d M > "-) 

0 (z G A(m,ij) I ¿ η). 

Trivially g„ € A(Fn) and by Theorem 3.1 there exists an entire function fn such that 

\ f n ( z ) - g n ( z ) \ < e n ( \ z \ ) ( z e F n ) . 

Thus, for all η e Ν, 
\ f „ ( z ) - p n { z ) \ < - (ζ e ¿ U 

\ f n ( z ) \ < e x p ( - \ z \ V M z ) - \ z \ ß ) (ζ e EN), 

\ f n { z ) - (1 + max Mh ( e x p r k ) + S ( n , k ) ) \ < - < 1 
i < j < k η 

for all k such that \zk\ > n , where 5(1, k ) = 0 and 5(n, k ) = k ^ " j / M f i ( r k ) if η > 2, 

I f n ( z ) - q m , j ( z - Oi(m,nj))| < - · η 1 + \z\ 

for all z G A(m,nj), all j > 1 and all m > 0, and 

1/nWI < Γ 1 η 1 + 1*1 

(4) 

(5) 

(6) 

(7) 

( 8 ) 
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Universal functions with fast growth 63 

for all ζ e i3¿(m,¿j), all j > 1, all m > 0 and all I > 1 with Ι, φ η. Although we do not 
mention it explicitly, it is clear that we have (8) whenever D¿(m,í,;) ΠΒ„ = 0. 

By (4), the sequence is dense in //(C). Let us define M. as the linear span of 

{/n}n- Evidently, M. is a linear dense manifold of //(C): this proves (a). In order to verify 
that (b), (c) hold for every / 6 ΛΊ, it suffices to check that both properties are satisfied for 
every function / = fn. Prom (5), 

exp(|z|3^(*))l/»(*)l < exp(-M") ( ζ ^ ο ο , ζ ε E n ) . 

For any sector or strip S G Σ, we have that S\En is a bounded set, thus 

eM\z\3/Mz))fn(z) - 0 (z^oo,zeS). 

This proves (b). 

Now, we define the set E* as 

E*n = {z e C : \z\>n + 2 and dist(z, P) > 2 + |z|}. 

Then, one uses the Cauchy estimates and (5) to infer that 

l/fMl^lmaxilAHl: \w - z\ = 1} < 

< fc!max{exp(-M") : |ω| > \z\ - 1} < fc!exp(-(|z| - i f ) 

for all ζ e E* and all k. > 0 (remember that ψ is positive). Hence, for each m. > 0, 

|exp {\z\a)^m{D)fn{z)\ = < 

< expdzD · Alim ¿ M . fc!exp(-(M - 1)") < 

< 2Ai¡mexp(|z|a - (\z\ - 1)") ^ 0 (z-*oo,z€ E*n). 

If S e Σ, we have again that S\E* is bounded, so 

limejcp(|2|e^,m(£>)/n(z)) = 0, 
VeS 

which proves (c). 
The proofs of (d)-(f) and (h) are analogous to those we may find in [5]. In order to prove 

(g), we fix / 6 M . Suppose that Vi.m(0) = 0, then φ1 ¡m(D)f = £ ( Σ Γ = ι ^ Ύ * " 1 ' ) . and by 
the fundamental calculus theorem 

/

OO 0 0 

(A,m(D)f)ds = l i m C ^ b ' r f ^ H b ) ) - l i m C £ b l ' m f ^ ( a ) ) . 
b~it k= 1 aZl k=1 
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6 4 Calderón 

Now we have only to observe that the same way followed to obtain (c) leads us to "(c)" for 

T.ZibkmDik~l)· 

It remains only to get (i). Let be / G M and fix τη, > 0. Since every non-zero scalar 

multiple of a ^2,m(ö)-universal function is again ^2,m(ß)-universal, we may suppose that 

/ = Σ]ζΐ a j f j with an = 1 and I = { j i , . . . , jT} finite. In order to prove that / is ip2,m(D)-

universal it is enough to check that 

lim ((Tp2,m{D)f)(z + <lj(mji,n)) ~ Pn(*)) = 0 (9) 

uniformly on compact subsets. 

Fix η 6 N. We have 

\ { Φ ί Α ϋ ) ! ) { ζ + Η^,ή,η)) ~PÁZ)\ = 

Σ otj • {rp2,m{D)fj){z + ai (.D)qm¡n(z) 
je/ 

< \ifo,m(D)(fh(z + ai(mJun)) - 9m,„(z))| + ^ \ a j \ \ f j ( z + ai{mJl¡n))\. 
iti 

ίΦή 

Now, for any ζ e ß ( 0 , 2 n ) C B{0,2¿(m^'n>) we have z + aiimj1¡n) e DiimJun), thus by (3) and 

( 8 ) , 

\ f j ( z + ai(m,jun))I < - · n p- < - ( 1 0 ) j (1 + |z + a i ( m j l i n ) | ) 2n 

for all j ξ. I with j φ . 

On the other hand, because of Cauchy's formula for derivatives applied to the curve 

7 ξ {|ω| = 2n + ì } , we have by (7) that 

1 
I ( / i , (2 + Ηη,ή,η)) - q m M ) W I < Μ - ΐ ρ ( k ^ ° ) · 

Therefore, by (2), 

life i D ) ( f j Áz + a (2))l < 

(1/2)* k l J _ = ' ^ n J _ 

k\ ' 'il2" j! 2n < ΣΜ,πι-
k—0 

(11) 

Joining (10) and (11) we obtain 

I(ip2,m(D)f)(z + a i { m J i ì n } ) - p n ( z ) \ < I ^ + 

/ 
2" 

ϊΦή 

for all ζ € B{0,2"). It is clear that this implies (9). Consequently, / is ^2 ,m(O) - u n i v e r s a l 

and we have (i). • 
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