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In this paper, the notion of &-conformally flat on a contact metric structure is
introduced and it is proved that any K-contact metric manifold is &-conformally flat
if and only if it is an n-Einstein Sasakian manifold. Finally, some applications are
given.

INTRODUCTION

Let M be a Riemannian manifold with metric g and let T(M) be the Lie Algebra of
differentiable vector fields in M. The Ricci operator Q of (M, g) is defined by g(OX.
Y) = S(X, Y), where S denotes the Ricci tensor of type (0, 2) on M and X, Y
€ T(M). Weyl’® constructed a generalized curvature tensor on a Riemannian manifold
which vanishes whenever the metric is (locally) conformally equivalent to a flat
metric; for this reason he called it the conformal curvature tensor of the metric. The
Wey! conformal curvature tensor is defined as a map

C : T(M) x T(M) x T(M) — T(M)

such that

CX, NZ=RX,VZ- ﬁ (&(QY, D)X + g(Y, 2)QX - g(QX, )Y

- 8X, QY] + e(Y, D)X - g(X, Z)Y],

- r
(m-1)(m-2)

for any X, Y, Z € T(M), where R, r are denoting the Riemann curvature tensor and
the scalar curvature of M, respectively.
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In the case of contact metric manifolds, to characterize them via Weyl conformal
curvature tensor, Okumura® proved that a conformally flat Sasakian manifold is
locally isometric to the unit sphere. Later, Miyazzawa and Yamagushi® proved that
a conformally symmetric Sasakian manifold is also locally isometric to the unit
sphere. Chaki and Taraflar® obtained the same result for a Sasakian manifold
satisfying the condition R(X, Y)C = 0, for any X, Ye T(M).

On the other hand, it is well known that any Sasakian manifold is a K-contact
metric manifold, but the converse holds only if the manifold is 3-dimensional.
K-contact metric manifolds are not too well known, because there is not such a
simple expression for the curvature tensor as in the case of Sasakian manifold. In
this paper we continue to investigate them.

If ¢ and & denote the (1, 1)-structure tensor and the contact vector field of a
contact metric manifold M, respectively, then T(M) can be decomposed into the direct
sum T(M) = &(T(M)) & L, where L is the 1-dimensional distribution generated by
€. Thus, we have a map :

C: T(M) x TM) x T(M) — &(T(M)) ® L.

The case of being the projection of the image of C in ¢(T,(M)) zero was studied
by the first author Zhen*, proving that M is locally isometric to the unit sphere. In
this paper, we study the case of being the projection of the image of C in L zero,
introducing &-conformally flat contact metric manifolds. At last, we prove the main
theorem : "A K-contact metric manifold is &-conformally flat if and only if it is an
N-Einstein Sasakian manifold" and we give some applications. In particular, if the
manifold M is of dimension 3, a K-contact metric structure is &-conformally flat and
Sasakian and, therefore, it is m-Einstein, which was obtained by Blair, Koufogiorgos
and Sharma?.

1. K-CONTACT METRIC MANIFOLDS

A contact manifold is a (2n + 1)-dimensional differentiable manifold M*'*! equipped
with a global 1-form m such that 1} A (dn)" # 0 everywhere on M**!, Given a contact
form 7, there exists an unique vector field & on M2 *! that satisfies N(§) = 1 and
(&, X) = 0, for any vector field X on M?'*', Furthermore, given the contact form
1N, there exist a tensor field ¢ of type (I, 1) and a Riemannian metric g such that
g(X,0Y) = dn(X,Y), n(X)=g(X,&) and ¢*=-T+7m @&, for any vector fields X, Y
on M>+!, The structure (¢, &, M, g) on M?*! is called a contact metric structure and
M>+! equipped with this structure is said to be a contact metric manifold. If & is
a Killing vector field, then (M?"*!, ¢,&,m, g) is called a K-contact metric manifold.
We refer the reader to Blair' and Yano and Kon® for the backgrounds of contact
structures.

Let (M?"+1, ¢,E,m,g) be a K-contact metric manifold. Then we have :
(X, Y)=g(X, ¢Y) . (L1

£(0X, ¢Y) = g(X, Y) -n(X) n(Y), - (12)
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gX, VE) +8(Y, Vi) = (Leg) X, 1) = 0 . (1.3)
and RX, E)Y=V,VE-V,YE . (1.4)
Then, (1.1) and (1.3) imply
ViE=—0X; Ve§ = 0. . (1.5)
Now, from (1.3) and (1.4) we also have
(Vxd)Y =- R(X, E)Y . (1.6)
and (VWY + &V, )Y = - g(0X, N)E —1(Y) OX. e (LT)
Thus,
OR(X, E)Y + R(X, EXY = g(¥, 6X0E +n(Y) 6X . (1.8)
and, in particular,
RX, B =X-n(X¥ .. (1.9)
and 8(Q&, &) =2n, w (1.10)

where Q is the Ricci operator, defined by OX = X, R(X, e¢;) e;, for any local orthonor-
mal basis of vector fields in M, {e,},<.<2..1. Notice that if we take this local basis
in such a way that e,,,, =&, then {¢e, £}, <;<,, is another local orthonc mal basis.

To study K-contact metric manifolds, we need the following lemmas.
Lemma 1.1 — Let (M?"+1 ¢,& 1, g) a K-contact metric manifold. Then

8((Ve@)X — (Vx0)5 - 300X, §) = 0,

for any vector field X € T(M).
PROOF : Derivating (1.9) and using (1.5) we get :

(ViR) (X, £)5 = R(X, O1)E + R(X, EY + (X, OY)E + n(X) ¢Y.

Let {e;};<i<am+1 be any local orthonormal basis of vector fields in M. Then,

Y (V. R (X.EX e)= D, g(0R(e; E)X + R(X, E)be;, €)

= Y gOREE)X e)+ THRX,E), - (L1D

where TroR(X, Y) =X, g(dR(X, Y)e, €;), for any vector fields X, ¥ € T(M). From (1.8)
we have :

Y s@R(e, E)X, ) = - Y., g(R(e;, EXOX, &) = — g(Q9X,E). - (1.12)

From the second Bianchi identity, we see that :
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g(Ve Q)X ~ (VXK. E)=— . &((V. R) (X, B, ). - (1.13)

But (1.11), (1.12) and (}.13) give :
g(Ved)X - (V0. £) = g(Q0X, £) - TroR(X, &). . (1.14)

On the other hand,” if we choose the local orthonormal basis such that
ey, +1=E, thus, since {0e;, £} <<, iS another local orthonormal basis and using

(1.8), (1.9) and the first Bianchi identity, we have :

2n

2n
gOX.E)= Y g(R(be, X)E, be)= 3, g(R(de; E)X, e;) +2m(X)

i=1 i=1

2n
= Y g(R(e;, E)OX, de) + TroR($X, E) + 2nm(X).
i=1
But, from (1.8) again, we see that
2n
Y. a(Ree;, E)OX. de;) = 2mm(X) — g(QX, &).
i=1
So we obtain :

TroR($X, &) = 2g(QX, &) - 4m(X). - (L15)

Replacing X by ¢X in (1.15), we have TroR(X, §) =-2g(00X, £). This equation
and (1.14) show that the lemma holds.

Lemma 12 — Let M***! be a K-contact metric manifold. If there exists on
M?>*! a function u such that
8(Q0X, oY) = ug(¢X, ¢Y), - (1.16)

for any vector fields X, Y e T(M), then

n—1
Q& =2nk + —En— oVr,

. (L.17)

where Vr is the gradient field of scalar curvature r.

PROOF : Taking a local orthonormal basis for vector fields in M, {e, &} <i<2m
since {de;, &} <;<2, is also a local orthonormal basis, the scalar curvature is given
by :

r=g(QE, &)+ 3, g(Qbe; de)).

Now, from (1.10) and (1.16), we obtain
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u=_1+§ . (1.18)

and, replacing X by ¢X in (1.16) we have :

g(QX, 0Y) = ug(X, $Y) + n(X) g(QL, ¢Y). w (1.19)
Derivating (1.16) and then using (1.19), we get :

g((VZQ)0X. OY) = (Zu) g(9X, oY)
- 8((V0)X, §) 8(QE, 0Y) - g((V0)Y, £) g(QF, 0X). ... (1.20)

Next, replacing (1.6) and (1.9) into (1.20), we obtain

Y, 8((Voe, Q) bei, 01) = Voyu + g(QE, §7). - (121

H

Now, a straightforward computation gives
5 Vo= 2 8V, 0= 3, 8(Vor @) 92, 01) + 8(VQE, 0,

and so, from (1.18) and (1.21), we have :

EE_rT1 Vorr = g((Q97 + (V:0)9)Y. E). .. (1.22)

On the other hand, (1.5) and (1.10) show that g((V,Q)E, &) =2g(00Y, &), so,
Lemma 1.1 implies :

g((VeQ)Y, &) = 5g(Q¢Y, £). . (1.23)
Finally, replacing (1.23) into (1.22) we get (1.17).

2. E-CONFORMALLY FLAT CONTACT MANIFOLDS

Let (M*+',¢,E,1, g) be a contact metric manifold. Then,

NOTM)) =dn(, T(M)) = 0.

Conversely, if N(X) = 0, then X = — ¢2 X € ¢T(M). The Weyl conformal curvature
tensor with respect to the metric g is the tensor field of type (I, 3) defined by :

CX, NZ=R(X, V)2~ 5 (5(QY, 2X +4(Y, D)X

,
- 8(QX, Z)Y - g(X, 2)QY} + Znzn— 1) (&% DX - X, 27},

- {2
for any X, Y, Ze T(M).
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On the other hand, the Lie algebra T(M) can be décomposed in a direct sum
T(M)=9¢T(M) ® L,

where L is the l-dimensional distribution on M generated by the structure vector
field &.

Definition 2.1 — A contact metric manifold (M**1,¢,&, 1, g) is said to be
&-conformally flat if the linear operator C(X, Y) is an endomorphism of ¢T(M), that
is, if :

CX, Y) 9T(M) < ¢T(M).

Equivalently, &-conformally flat means that the projection of C(X, Y) ¢T(M) onto

L is zero.

We can see that any 3-dimensional contact metric manifold is &-conformally flat.

One can prove that if C(X, WZe L, for any X, Y, Z, then C = (. In this case, a
K-contact metric manifold is locally isometric to the unit sphere®.

It is easy to prove the following proposition.

Proposition 2.2 — On a contact metric manifold (M?7+1, ¢, &, 1, g), the following
conditions are equivalent :

(i) M is &-conformally flat;
i) MCX, NZ)=0;
(i) ®2CX, V)Z=-C(X, V)Z;
and (iv) C(X,V)E = 0,
where X, Y, Ze T(M).

From (iv) in Proposition 2.2 we see that a contact metric manifold is
&-conformally flat if and only if :

ROX, D& =51 (g(QY, EIX + (NQX - (X, &)Y

- - r . (2.2)
nxer} + 2m(2n - 1)
Proposition 2.3 — Let M*™*! be an n-Einstein Sasakian manifold. Then

M2 +1 s E-conformally flat”

PROOF : It is well known that the structure (¢, &, 7, g) is a Sasakian structure if
and only if the curvature tensor R satisfies

MY -n(NX}.

RX, V)E=n()X -nX)Y . (2.3)
and so, we have
Q& =2nk, . (2.4)

Since (¢, &, N, g) is n-Einstein, there exist functions a and b such that

g(QX, Y) = ag(X, ¥) + bn(X) (). . (2.5)
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But, from (2.4) and (2.5) we also have
a+ b =2n .. (2.6)
On the other hand, the scalar curvature satisfies :
r=Tr(Q) = 2n + )a + b. . (2.7)
Now, if we replace (2.3), (2.4), (2.5), (2.6) and (2.7) in formula (2.1), we
get :

C(X, V)& =R(X, Y)ﬁ———(ZCHb— )(T\(Y)X nxyy)

= RXX, )& -M(DX-nXOY) = 0,
and this completes the proof.

Lemma 2.4 — Let C be the Weyl conformal curvature tensor on a Riemannian
manifold (M™, g), m > 3 and let V be a vector field on M™. If C(X, )V = 0, for
any vector fields X, Y e T(M), then

1 - (2.8)
30m T &V, VT = g(V. X)),

PROOF : Equation C(X, )V = 0 is equivalent to

g(VxQ)V - (ViQ)X, V) =

R, V=L (g(QY, V)X + g(V, NOX ~ g(@X, WY

r

- g(v9 X)QY} - (m_l)(m_z)

{g(Y9 V)X - g(Xv V)Y}'

. (2.9)

Using the properties of the curvature tensor R and symmetry of Q with respect
to g, we aiso have

R(X, V)Y=,“n—1_—2 {8(QV. X + gV, NOX - 2(QX, NV

- gX, HEV} - {g(V, X - gX, NV},

- r
(m—-1)(m-2)

. (2.10)
for any X, Y e T(M). Replacing Y by V in (2.9), derivating this equation and taking
account of (2.9) and (2.10), we get :

(VuR) X, VIV=—"= {g((VWQ)V, V)X + (V. V) (VW)X

- 8((VwQ)X, V)V - g(V, X) (VwQ)V}

Wr

T moDmoz) BV VX - X WV}
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Therefore

T, 8B (e VIV, 0 =—= (8(V4Q)V - (VyQ)X, V)

m-3
* 2m-2)(m-1) {s(V, V)Xr — g(X, V)Vr}.
. (2.11)
On the other hand, from the second Bianchi identity, we know :
g(VxQIV - (VyQ)X, V)= Y, g((V. R) (X, V)V, ). . (2.12)

Thus, (2.11) and (2.12) yield equation (2.8).

Theorem 1 — A K-contact metric manifold M?"+1 is E-conformally flat if and
only if it is an W-Einstein Sasakian manifold.

PROOF : We only have to prove that a E-conformally flat K-contact metric
manifold is an m-Einstein Sasakian manifold. The converse follows from
Proposition 2.3.

On a &-conformally flat K-contact metric manifold, (1.9) and (2.2) yield
ox = {2n—1—_g<QE.., §>+2—’n}x
+ { 8(QE, X)—(2n -1 +§rn—n(X) )} E+nX) QL .. (2.13)

for any vector field X. Since g(QE, &) =2n, we have

g(Q0X, oY) = [— 1+ ﬁ Jg(q)x, oY)

and so, Lemma 1.2 shows that :

_ n-1 .. 2.14)
QF =2nk + 2n oVr
Replacing (2.14) into (2.13) we get
_ n—1 n-1 ... (2.15)
QX—aX+{bn(X)+ T g(¢Vr,X)}§+—12n n&X) ¢Vvr,
r r
where a=—1+2n andb—2n+1—2n.

Now, if n = 1 then QX = aX + bn(X)E.

If n > 1, then ¢Vr = 0. In fact, since n > 1, we can use Lemma 2.4. From
Lemmas 1.1 and 1.2, for a &-conformally flat K-contact metric structure, we have :
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38(00X. §) = g(VOX - (V@ B) = 5~ (0 &r - Xr) = (X0~

.- (2.16)
Since ¢ =-¢, if we replace X by ¢X in (2.16), we obtain
80X, 8) =n(X) 8(05. &) + T~ (X
and, by using (1.2) and (1.10) :
- 217

QF = 2nk — 1—;; ovr.

Now, comparing (2.17) with (2.14), we have ¢Vr = 0 and then, (2.15) gives :
OX=aX+bmX)E&. .. (2.18)
So, equation (2.18) holds for n = 1 and hence (2.2) turns to
RX, VE=n(DX-nX)Y,

which means that the manifold is also a Sasakian manifold.

Corollary 2.6 — Let (M>*1 ¢, &, n, g) be a E-conformally flat K-contact metric
manifold. If there exist functions A and | on M?"*1 such that

(Vi)Y - (VX =AX + pY, .. (2.19)
then,
0X = 2nX.
PROOF : From Theorem 1 we have QX = aX + b, where a = — 1 + 2—';! and

b=2n+1-——r—.Thus,wehave:
2n

(VxQ)Y - (VyQ)X = (Xa)Y - (Ya)X + (Xb) N(Y)§
= (YD) (X)L ~ b{2g(¢X. Y)E +1(Y) ¢X - n(X) ¢(1)}.
- (220
Replacing X and Y by ¢X and ¢Y in (2.20) we get :
(Vox Q) 0Y — (Vor Q) 0X = (¢Xa) @r — (9Ya) 0X — 2bg(¢°X, V). ... (2.21)

From (2.19) and (2.21) we obtain (A + (¢pYa)) 60X + (L — (¢Xa))pY =-2bg(¢?X,
o, which implies — 2bg(¢2X, 6Y) = 0. But replacing here X by ¢Y, we obtain bg
(0Y, ¢Y) = 0 and hence b = 0.

From Corollary 2.6 we easily obtain the following applications :

Corollary 2.7 — Any conformally flat K-contact metric manifold is locally
isometric to the unit sphere.
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PROOF : It is well known that on a conformally flat Riemannian manifold the
following equation holds, for n > | (Weyl” §) :

(VxQ)Y - (VyQ)X =j41r; {(XnY ~ (YnX}.

Then, Corollary 2.6 shows that QX = 2nX and, therefore, equation C(X, Y)
X = 0 yields :

RX, NZ = g(Y, 2)X - g(X, Z)Y.

This completes the proof.

Corollary 2.8 — Let M*'+! be a &-conformally flat K-contact metric manifold.
If the curvature tensor is harmonic, then M?"+! is n-Einstein.
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