STRUCTURE ON A SLANT SUBMANIFOLD OF A CONTACT MANIFOLD

J. L. CABRERIZO, A. CARRIAZO, L. M. FERNÁNDEZ AND M. FERNÁNDEZ (Sevilla)*

Departamento de Geometría y Topología, Facultad de Matemáticas. Universidad de Sevilla Apartado de Correos 1160, 41080-Sevilla, Spain e-mail: acarri@cica.es

(Received 30 June 1999; accepted 6 January 2000)

In this paper, we study the possibility of obtaining an induced contact metric structure on a slant submanifold of a contact metric manifold. We also give a characterization theorem for three-dimensional slant submanifolds.

Key Words: Contact Manifold; Sasakian Manifold; Slant Submanifold

INTRODUCTION

Slant immersions in complex geometry were defined by Chen as a natural generalization of both holomorphic immersions and totally real immersions³. In a recent paper⁴, A. Lotta has introduced the notion of slant immersion of a Riemannian manifold into an almost contact metric manifold. We have studied and characterized slant submanifolds in K-contact and Sasakian manifolds and we have given several examples of such immersions in [2].

The purpose of the present paper is to study the possibility of defining an induced contact metric structure on a slant submanifold. The tools used will allow to give a characterization result when the submanifold has dimension 3.

In Section 1 we review basic formulas and definitions for almost contact metric manifolds and their submanifolds, which we shall use later. We also review some definitions and properties given in [2, 4]. In Section 2, we prove the main theorem of this paper. This result states that there are no non-invariant slant immersions from a three-dimensional contact metric manifold in another contact metric manifold, with compatible structure vector fields.

1. Preliminaries

Let (\tilde{M}, g) be an odd-dimensional Riemannian manifold and denote by $T\tilde{M}$ the Lie algebra of vector fields in \tilde{M} . Then \tilde{M} is said to be an almost contact metric manifold if there exists on \tilde{M} a tensor ϕ of type (1, 1) and a global vector field ξ (structure vector field) such that, if η is the dual 1-form of ξ , then

^{*}The authors are partially supported by the PAI project (Junta de Andalucía, Spain 1998).

$$\phi^2 X = -X + \eta(X)\xi, g(X, \xi) = \eta(X),$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y),$$

for any $X, Y \in T\tilde{M}$. In this case,

$$g(\phi X, Y) + g(X, \phi Y) = 0,$$

for any $X, Y \in T\widetilde{M}$. Let Φ denote the 2-form in \widetilde{M} given by $\Phi(X, Y) = g(X, \phi Y)$ for all $X, Y \in T\widetilde{M}$. The 2-form Φ is called the fundamental 2-form in M and the manifold is said to be a contact metric manifold if $\Phi = d\eta$. If ξ is a Killing vector field with respect to g, the contact metric structure is called a K-contact structure. It is easy to prove that a contact metric manifold is K-contact if and only if $\nabla_X \xi = -\phi X$, for any $X \in T\widetilde{M}$, where ∇ denotes the Levi-Civita connection of \widetilde{M} .

The almost contact structure of \tilde{M} is said to be normal if $[\phi, \phi] + 2d\eta \otimes \xi = 0$, where $[\phi, \phi]$ is the Nijenhuis torsion of ϕ . A Sasakian manifold is a normal contact metric manifold. Every Sasakian manifold is a K-contact manifold. It is easy to show that an almost contact metric manifold is a Sasakian manifold if and only if

$$(\nabla_X \phi)Y = g(X, Y)\xi - \eta(Y)X,$$

for any $X, Y \in T\tilde{M}$.

Now, let M be a submanifold immersed in \widetilde{M} . We also denote by g the induced metric on M. Let TM be the Lie algebra of vector fields in M and $T^{\perp}M$ the set of all vector fields normal to M. Denote by ∇ the Levi-Civita connection of M.

For any $X \in TM$, we write

$$\phi X = TX + NX$$
,

where TX is the tangential components of ϕX and NX is the normal component of ϕX . Then T is an endomorphism of the tangent bundle and N is a normal-bundle valued 1-form on the tangent bundle.

The submanifold M is said to be invariant if N is identically zero, that is, $\phi X \in TM$, for any $X \in TM$. On the other hand, M is said to be an anti-invariant submanifold if T is identically zero, that is, $\phi X \in T^{\perp}M$, for any $X \in TM$.

From now on, we suppose that the structure vector field is tangent to M. Hence, if we denote by \mathcal{D} the orthogonal distribution to ξ in TM, we can consider the orthogonal direct decomposition $TM = \mathcal{D} \oplus \langle \xi \rangle$.

For each nonzero vector X tangent to M at x, such that X is not proportional to ξ_x , we denote by $\theta(X)$ the Wiritinger angle of X, that is, the angle between ϕX and $T_x M$.

Hence, according Lotta's definition, M is slant if the Writinger angle $\theta(X)$ is a constant, which is independent of the choice of $x \in M$ and $X \in T_x M - \langle \xi_x \rangle$ (see [4]). The Wiritinger angle θ of a slant immersion is called the slant angle of the immersion. Invariant and anti-invariant immersions are slant immersions with slant angle θ equal to 0 and $\pi/2$ respectively. A slant immersion which is not invariant nor anti-invariant is called a proper slant immersion.

In [2], we have shown the following results:

Theorem 1.1 — Let M be a submanifold of an almost contact metric manifold \widetilde{M} such that $\xi \in TM$. Then, M is slant if and only if there exists a constant $\lambda \in [0, 1]$ such that :

$$T^2 = -\lambda I + \lambda \eta \otimes \xi. \qquad \dots (1.1)$$

Furthermore, in such a case, if θ is the slant angle of M, $\lambda = \cos^2 \theta$.

Corollary 1.2 — Let M be a slant submanifold of an almost contact metric manifold \tilde{M} , with slant angle θ . Then, for any $X, Y \in TM$, we have :

$$g(TX, TY) = \cos^2 \theta(g(X, Y) - \eta(X)\eta(Y)),$$
 ... (1.2)

and

$$g(NX, NY) = \sin^2 \theta(g(X, Y) - \eta(X)\eta(Y)).$$
 ... (1.3)

Set $Q = T^2$. We also need the following results, given in [2]:

Proposition 1.3 — Let M be a slant submanifold of a K-contact manifold \tilde{M} . Denote by θ the slant angle of M. Then, we have

$$(\nabla_X Q)Y = \cos^2 \theta(g(X, TY) \xi - \eta(Y)TX),$$

for any $X, Y \in TM$.

Proposition 1.4 — Let M be a manifold of an almost contact metric manifold \widetilde{M} such that $\xi \in TM$. If there exists a function λ such that $(\nabla_X T)Y = \lambda(g(X,Y)\xi - \eta(Y)X)$ for any $X,Y \in TM$, then $(\nabla_X Q)Y = \lambda(g(X,TY)\xi - \eta(Y)TX)$ for any $X,Y \in TM$.

2. STRUCTURE ON A SLANT SUBMANIFOLD

Let M be a submanifold of a Sasakian manifold \widetilde{M} such that $\xi \in TM$. It is well known that, if M is an invariant submanifold, then the structure of \widetilde{M} induces by a natural way a Sasakian structure over M. In this case, the submanifold is usually called a Sasakian submanifold. The purpose of this paper is to study if we can obtain an induced Sasakian structure on a non-invariant slant submanifold.

This problem is suggested by the similar situation on slant submanifolds of a Kaehlerian manifold. In [3], Chen gives the notion of a Kaehlerian slant submanifold of an almost Hermitian manifold (\tilde{M}, J, g) as a proper slant submanifold such that the tangential component P of the almost complex structure J is parallel, that is, $\nabla P = 0$. It is easy to show that a Kaehlerian slant submanifold is a Kaehlerian manifold with respect to the induced metric and with the almost complex structure given by $\overline{J} = (\sec \theta)P$, where θ denotes the slant angle.

In the almost contact case, we can first give the following lemma:

Lemma 2.1 — Let M be a non-anti-invariant slant submanifold of an almost contact metric manifold \widetilde{M} . The, M is an almost contact metric manifold with respect to the induced metric, with structure vector field ξ and with the almost contact structure given by $\overline{\phi} = (\sec \theta)T$, where θ denotes the slant angle of M.

PROOF: By virtue of (1.1) and (1.2), it is easy to show that $\overline{\phi}^2 X = -X + \eta(X)\xi$ and $g(\overline{\phi}X, \overline{\phi}Y) = g(X, Y) - \eta(X) \eta(Y)$, for any $X, Y \in TM$.

In particular, if $\theta = 0$, then the induced structure on the invariant submanifold M is the usual one.

Therefore, we want to find an appropriate condition on ∇T in order for it to be possible to induce a Sasakian structure on M.

In contact geometry, the similar notion to Kaehlerian slant submanifolds is given by proper θ -slant submanifolds satisfying

$$(\nabla_X T)Y = \cos^2 \theta(g(X, Y)\xi - \eta(Y)X), \qquad \dots (2.1)$$

for any tangent fields X, Y, as we have shown in [2]. But, in this case, the almost contact metric structure given by $\overline{\phi}$ is not a Sasakian structure, since, from (2.1), it is easy to see that $(\nabla_X \overline{\phi})Y = \cos \theta(g(X, Y)\xi - \eta(Y)X)$, for any $X, Y \in TM$. However, we can modify the condition (2.1) to obtain a Sasakian structure on M. It can be proved that if

$$(\nabla_X T)Y = \cos \theta(g(X, Y)\xi - \eta(Y)X), \qquad \dots (2.2)$$

for any $X, Y \in TM$, then M has an induced Sasakian structure given by $\overline{\phi}$. Nevertheless, we have the following result:

Proposition 2.2 — There are no proper slant submanifolds M of a K-contact manifold satisfying eq. (2.2).

In fact, it is easy to see that, if M is a proper slant submanifold, then the structure induced by $\vec{\phi}$ is not a contact metric structure, because

$$\overline{\Phi}(X, Y) = g(X, \overline{\Phi}Y) = \sec \theta g(X, TY) = \sec \theta d\eta(X, Y),$$

for any $X, Y \in TM$, since \tilde{M} is a Sasakian manifold, and so, a contact metric manifold⁴.

However, we can now wonder if it is possible to induce a Sasakian structure from another way, by choosing the appropriate conditions. We have the following intrinsic characterization of slant immersions in *K*-contact manifolds:

Theorem 2.3 — ⁴ Let M be a submanifold of a K-contact manifold \widetilde{M} , such that $\xi \in TM$. Let $\theta \in [0, \pi/2]$. The following statements are equivalent:

- (i) M is slant in \widetilde{M} , with slant angle θ .
- (ii) For any $x \in M$, the sectional curvature of any 2-plane of T_xM containing ξ_x equals $\cos^2 \theta$.

Then, we can state the following corollary:

Corollary 2.4 — Let M be a slant submanifold of a K-contact manifold \tilde{M} . Then, M is K-contact if and only if M is an invariant sub manifold.

PROOF: The direct implication follows directly from Theorem 2.3. The converse is a well-known result.

Hence, it is not possible to have neither a Sasakian nor a K-contact induced structure on a non-invariant slant submanifold of a Sasakian manifold.

Nevertheless, we can still wonder if it would be possible to induce a contact metric structure. We are now going to use a different method.

Let

$$\varphi: (M, \overline{\phi}, \xi, \overline{\eta}, \overline{g}) \to (\widetilde{M}, \phi, \xi, \eta, g)$$

be an immersion between two almost contact metric manifolds. Suppose this immersion to be isometric, i.e, $\overline{g} = \varphi^* g$, and such that $\varphi_{*x} \xi_x = \xi_{\varphi(x)}$ for any $x \in M$. In particular, it means that $\xi \in TM$.

Let Φ and Φ be the fundamental 2-forms of M and \tilde{M} respectively. We consider on M the 2-form $\phi^*\Phi$ given by

$$\varphi^* \Phi(X, Y) = \Phi(\varphi_* X, \varphi_* Y) = g(\varphi_* X, \varphi \varphi_* Y),$$

for any $X, Y \in \chi(M)$. From now on, we are identifying X and φ_*X for any $X \in \chi(M)$.

If dim M=3 and φ is a slant immersion, with slant angle θ , then we can find the following relation between $\overline{\Phi}$ and $\varphi^*\Phi$.

Proposition 2.5 — In the above conditions, $\varphi^*\Phi = \pm (\cos\theta) \overline{\Phi}$.

PROOF: If the immersion is anti-invariant, then the result is obvious since $\varphi^*\Phi = 0$. We can then suppose that φ is a non-anti-invariant slant immersion.

Let e_1 be a unit local field, tangent to M and perpendicular to ξ . If we put $e_2 = (\sec \theta)Te_1$, by virtue of Corollary 1.2, we know that $\{e_1, e_2, \xi\}$ is a local orthonormal frame of TM. Then, it is clear that $\overline{\phi}e_1 = g(\overline{\phi}e_1, e_2)e_2$, and so $g(\overline{\phi}e_1, \overline{\phi}e_1) = g^2(\overline{\phi}e_1, e_2)$. Now then, it is easy to see that $g(\overline{\phi}e_1, \overline{\phi}e_1) = 1$, from which we have:

$$\overline{\phi}e_1 = \pm e_2, \ \overline{\phi}e_2 = \overline{+} e_1.$$
 ... (2.3)

Let $X = X^1 e_1 + X^2 e_2 + \eta(X)\xi$, $Y = Y^1 e_1 + Y^2 e_2 + \eta(Y)\xi$ be two local tangent fields. Then, from (2.3), it results:

$$\overline{\Phi}(X, Y) = g(X, \overline{\Phi}Y) = \frac{1}{2} X^{1} Y^{2} \pm X^{2} Y^{1}.$$
... (2.4)

On the other hand,

$$\varphi^* \Phi(X, Y) = \Phi(\varphi_* X, \varphi_* Y) = g(X, \phi Y) =$$

$$= g(X, TY) = -\cos \theta X^1 Y^2 + \cos \theta X^2 Y^1, \qquad \dots (2.5)$$

since $TY = -\cos \theta Y^2 e_1 + \cos \theta Y^1 e_2$. Hence, the result follows from eqs. (2.4) and (2.5).

Now, by using Proposition 2.5, we obtain the main result of this paper:

Theorem 2.6 — There are no non-invariant slant immersions $\varphi: M \to \widetilde{M}$ from a contact metric manifold $(M, \overline{\phi}, \xi, \overline{\eta}, \overline{g})$, with dim M = 3, in another contact metric manifold $(\widetilde{M}, \phi, \xi, \eta, g)$ such that $\varphi_* \xi = \xi$.

PROOF: Suppose that there is a non-invariant slant immersion $\varphi: M \to \widetilde{M}$ in the above conditions and denote by θ the slant angle of this immersion. Then, since φ is an isometric immersion and $\varphi_*\xi = \xi$, we have $\varphi^*\eta = \overline{\eta}$, and so

$$d(\varphi^*\eta) = d\overline{\eta} = \overline{\Phi}, \qquad \dots \tag{2.6}$$

because M is a contact metric manifold. Now, from Proposition 2.5, as \widetilde{M} is a contact metric manifold too, we get:

$$d(\varphi^*\eta) = \varphi^*d\eta = \varphi^*\Phi = \pm (\cos\theta)\overline{\Phi}. \tag{2.7}$$

But, if $\theta \neq 0$, then a contradiction follows from (2.6) and (2.7), and so, the result is proved.

The following corollary gives an answer to our problem for three-dimensional slant submanifolds.

Corollary 2.7 — Let M be a three-dimensional slant submanifold of a Sasakian manifold \tilde{M} . Then, the Sasakian structure of \tilde{M} induces a contact metric structure on M if and only if M is an invariant manifold.

PROOF: The direct implication follows directly from Theorem 2.6. The converse is well-known.

Nevertheless, we can consider slant immersions between almost contact metric manifolds. In fact, it is enough to choose a local orthonormal frame $\{e_1, e_2, \xi\}$ and define $\overline{\phi}$ such that $\overline{\phi}e_1 = e_2$ and $\overline{\phi}e_2 = -e_1$ to obtain an almost contact structure on a three-dimensional slant submanifold.

Now, let

$$\varphi: (M, \overline{g}) \to (\widetilde{M}, \phi, \xi, \eta, g)$$

be an isometric immersion from a Riemannian manifold in an almost contact metric manifold such that $\xi \in TM$.

Lemma 2.8 — In the above conditions, suppose that dim M=m+1 and let $\{e_1, ..., e_m, \xi\}$ be a local orthonormal frame of TM. Then, the immersion φ is slant if and only if there exists a constant $\lambda \in [0, 1]$ such that

$$\sum_{i=1}^{m} g(\phi e_{j}, e_{i}) g(\phi e_{k}, e_{i}) = \lambda \delta_{jk}, \qquad ... (2.8)$$

for any j, k = 1, ..., m. Moreover, in this case, $\lambda = \cos^2 \theta$, where θ denotes the slant angle of the immersion.

PROOF: Suppose that φ is a slant immersion with angle θ . Then, for any unit tangent field X in \mathcal{D} , we have:

$$\sum_{i=1}^{m} g^{2}(\phi X, e_{i}) = \cos^{2} \theta. \tag{2.9}$$

Hence, if we put $X = e_i$ in (2.9), it follows

$$\sum_{i=1}^{m} g^{2}(\phi e_{j}, e_{i}) = \cos^{2} \theta, \qquad \dots (2.10)$$

from where we obtain (2.8) in the case j = k with $\lambda = \cos^2 \theta$. Now then, suppose that $j \neq k$. Then, $X = (1/\sqrt{2})(e_j + e_k)$ is a unit local field perpendicular to ξ , from which, by using (2.9), we have:

$$\cos^2 \theta = \frac{1}{2} \sum_{i=1}^m g^2(\phi e_i, e_i) + \frac{1}{2} \sum_{i=1}^m g^2(\phi e_k, e_i) + \sum_{i=1}^m g(\phi e_i, e_i) g(\phi e_k, e_i)$$

By virtue of (2.10), this implies (2.8) in the case $j \neq k$.

Conversely, by using (2.8) it is easy to see that φ is slant with slant angle $\cos^{-1} \sqrt{\lambda}$. \square Remark 2.9: The Kaehlerian version of Lemma 2.8 can be found in [5].

We can now consider an almost contact metric structure on M,

$$(M, \overline{\phi}, \xi, \overline{\eta}, \overline{g})$$

such that $\varphi_{*x} \overline{\xi}_x = \xi_{\varphi(x)}$ for any $x \in M$. Denote by $\overline{\Phi}$ and Φ the fundamental 2-forms of M and \overline{M} , respectively. We also consider on M the 2-form $\varphi^* \Phi$. We can prove the following theorem.

Theorem 2.10 — In the above conditions, suppose that there exists a constant $k \in [-1, 1]$ such that $\phi sp*\Phi = k\overline{\Phi}$. Then, ϕ is slant with slant angle $\cos^{-1}|k|$.

PROOF: Since M is an almost contact metric manifold, we can choose a $\overline{\phi}$ -basis in M given by $\mathcal{B} = \{u_1, ..., u_m, \overline{\phi}u_1, ..., \overline{\phi}u_m, \xi\}$, dim M = 2m + 1.

We want to evaluate

$$\sum_{i=1}^{m} g(\phi X, u_i) g(\phi Y, u_i) + \sum_{i=1}^{m} g(\phi X, \overline{\phi} u_i) g(\phi Y, \overline{\phi} u_i), \qquad \dots (2.11)$$

for any $X, Y \in \mathcal{B} - \{\xi\}$, in order to apply Lemma 2.8.

Now then, since $\varphi^* \Phi = k \overline{\Phi}$, we have

$$g(\phi X, u_i) = kg(\overline{\phi}X, u_i) = -kg(X, \overline{\phi}u_i), \qquad \dots (2.12)$$

meanwhile

$$g(\phi X, \overline{\phi}u_i) = kg(\overline{\phi}X, \overline{\phi}u_i) = kg(X, u_i), \qquad \dots (2.13)$$

since $\overline{\eta}(u_i) = 0$.

Hence, if we put (2.12) and (2.13) in (2.11), we get:

$$k^{2} \left(\sum_{i=1}^{m} g(X, \overline{\phi}u_{i}) g(Y, \overline{\phi}u_{i}) + \sum_{i=1}^{m} g(X, u_{i}) g(Y, u_{i}) \right) \dots (2.14)$$

By checking (2.14) according to the choise of X and Y in \mathcal{B} , it is easy to see that Lemma 2.8 holds with $\lambda = k^2$. Hence, φ is a slant immersion with slant angle $\cos^{-1} |k|$.

Corollary 2.11 — Suppose that dim M=3. Then φ is slant if and only if there exists a constant $k \in [-1, 1]$ such that $\varphi^* \Phi = k \overline{\Phi}$. Moreover, in this case, $|k| = \cos \theta$, where θ denotes the slant angle of the immersion.

PROOF: It follows directly from Proposition 2.5 and Theorem 2.10.

REFERENCES

- 1. D. E. Blair, Contact Manifolds in Riemannian Geometry, L. N. M. Vol. 509, Springer-Verlag, New York, 1976.
- 2. J. L. Cabrerizo, A. Carriazo, L. M. Fernández, Glasgow Math. J. 42 (2000), 125-38...
- 3. B. Y. CHen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
- 4. A. Lotta, Bull. Math. Soc. Roumanie, 39 (1996), 183-98.
- 5. S. Maeda, Y. Ohnita and S. Udagawa, Kodai Math. J., 16 (1993), 205-19.