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In this paper, we study the possibility of obtaining an induced contact metric structure on a slant submanifold
of a contact metric manifold. We also give a characterization theorem for three-dimensional slant submanifolds.
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INTRODUCTION

Slant immersions in complex geometry were defined by Chen as a natural generalization of both
holomorphic immersions and totally real immersions>. In a recent paper4, A. Lotta has introduced
the notion of slant immersion of a Riemannian manifold into an almost contact metric manifold. We
have studied and characterized slant submanifolds in K-contact and Sasakian manifolds and we have
given several examples of such immersions in [2].

The purpose of the present paper is to study the possibility of defining an induced contact
metric structure on a slant submanifold. The tools used will allow to give a characterization result
when the submanifold has dimension 3.

In Section 1 we review basic formulas and definitions for almost contact metric manifolds
and their submanifolds, which we shall use later. We also review some definitions and properties
given in [2, 4]. In Section 2, we prove the main theorem of this paper. This result states that there
are no non-invariant slant immersions from a three-dimensional contact metric manifold in another
contact metric manifold, with compatible structure vector fields.

1. PRELIMINARIES

Let (M, g) be an odd-dimensional Riemannian manifold and denote by TAf the Lie algebra of vector
fields in M@ . Then M is said to be an almost contact metric manifo]d1 if there exists on M a tensor

¢ of type (1, 1) and a global vector field & (structure vector field) such that, if 77 is the dual 1-form
of & then
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6™ X = - X + n(XE, g(X, & = (),

g(¢X, oY) = g(X, ) - n(X) n(Y),
for any X, Ye TM. In this case,

g(¢X, V) + g(X, 6Y) =0,

for any X,Ye TM. Let @ denote the 2-form in M given by &X, Y)=g(X, ¢Y) for all X, Ye TH.
The 2-form @ is called the fundamental 2-form in M and the manifold is said to be a contact metric
manifold if @ = dn. If £ is a Killing vector field with respect to g, the contact metric structure is
called a K-contact structure. It is easy to prove that a contact metric manifold is K-contact if and
only if Vy&=-¢X, for any X e TH, where V denotes the Levi-Civita connection of }.

The almost contact structure of Af is said to be normal if [@, ¢]+2dn® & = 0, where
[#, ¢] is the Nijenhuis torsion of ¢. A Sasakian manifold is a normal contact metric manifold. Every
Sasakian manifold is a K-contact manifold. It is easy to show that an almost contact metric manifold
is a Sasakian manifold if and only if

(Vy ®Y=gX, NE-n(NX,

for any X,Ye TM.

Now, let M be a submanifold immersed in }7. We also denote by g the induced metric on
M. Let TM be the Lie algebra of vector fields in M and T*M the set of all vector fields normal
to M. Denote by V the Levi-Civita connection of M.

For any X e TM, we write
¢X =TX + NX,

where TX is the tangential components of ¢X and NX is the normal component of ¢X. Then T is
an endomorphism of the tangent bundle and N is a normal-bundle valued 1-form on the tangent
bundle.

The submanifold M is said to be invariant if N is identically zero, that is, ¢X e TM, for
any Xe TM. On the other hand, M is said to be an anti-invariant submanifold if T is identically
zero, that is, ¢X € TM, for any X e TM.

From now on, we suppose that the structure vector field is tangent to M. Hence, if we
denote by D the orthogonal distribution to & in TM, we can consider the orthogonal direct
decomposition TM = D@ ( &).

For each nonzero vector X tangént to M at x, such that X is not proportional to éx, we
denote by &X) the Wiritinger angle of X, that is, the angle between ¢X and T M.

Hence, according Lotta’s definition, M is slant if the Writinger angle &(X) is a constant,
which is independent of the choice of xe M and Xe TM (& ) (see [4]). The Wiritinger angle

0 of a slant immersion is called the slant angle of the immersion. Invariant and anti-invariant
immersions are slant immersions with slant angle 6 equal to O and 7/2 respectively. A slant
immersion which is not invariant nor anti-invariant is called a proper slant immersion.

In {2], we have shown the following resuits:

Theorem 1.1 — Let M be a submanifold of an almost contact metric manifold M such that
Ee TM. Then, M is slant if and only if there exists a constant A€ [0, 1] such that :
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T=—M+A®E . (L1

Furthermore, in such a case, if 0 is the slant angle of M, A= cos? 6.

Corollary 1.2 — Let M be a slant submanifold of an almost contact metric manifold 7,
with slant angle 0. Then, for any X, Ye TM, we have :

g(TX, TY) = cos® B(g(X, V) - n(X)n(Y)), - (12)

and

g(NX, NY) =sin’ &(g(X, Y) - n(X)1()). . (13)

Set Q=T2. We also need the following results, given in [2]:

Proposition 13 — Let M be a slant submanifold of a K-contact manifold M. Denote by
0 the slant angle of M. Then, we have

(Vy Q) = cos” B(g(X, TY) & - n(NTX),

for any X, Ye TM.

Proposition 1.4 — Let M be a manifold of an almost contact metric manifold M such that
&€ TM. If there exists a function L such that (V)Y =Mg(X,Y) &~ n(V)X) for any X,Y e TM, then

(Vy Q)Y =Mg(X, THE - n(NTX) for any X,Ye TM.

2. STRUCTURE ON A SLANT SUBMANIFOLD

Let M be a submanifold of a Sasakian manifold # such that £e TM. It is well known that, if M
is an invariant submanifold, then the structure of A induces by a natural way a Sasakian structure
over M. In this case, the submanifold is usually called a Sasakian submanifold. The purpose of this
paper is to study if we can obtain an induced Sasakian structure on a non-invariant slant submanifold.

This problem is suggested by the similar situation on slant submanifolds of a Kaehlerian
manifold. In [3], Chen gives the notion of a Kaehlerian slant submanifold of an almost Hermitian
manifold (M, J, g) as a proper slant submanifold such that the tangential component P of the almost
complex structur> J is parallel, that is, VP =0. It is easy to show that a Kaehlerian slant submanifold
is a Kaehlerian manifold with respect to the induced metric and with the almost complex structure
given by J=(sec O)P, where 6 denotes the slant angle.

In the almost contact case, we can first give the following lemma:

Lemma 2.1 — Let M be a non-anti-invariant slant submanifold of an almost contact metric
manifold 3. The, M is an almost contact metric manifold with respect to the induced metric, with
structure vector field § and with the almost contact structure given by ¢ = (sec 6)7, where 6 denotes

the slant angle of M.
PROOF : By virtue of (1.1) and (1.2), it is easy to show that ¢ X=-X+n(X)E and
g(@X, V) = g(X, Y) - n(X) n(Y), for any X,Ye TM. O
In particular, if @ = 0, then the induced structure on the invariant submanifold M is the
usual one.

Therefore, we want to find an appropriate condition on VT in order for it to be possible to
induce a Sasakian structure on M.
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In contact geometry, the similar notion to Kaehlerian slant submanifolds is given by proper
G-slant submanifolds satisfying

(VyD)Y =cos” &(g(X, )& - n(NX), @D

for any tangent fields X, Y, as we have shown in [2]. But, in this case, the almost contact metric
stgucture given by ¢ is not a Sasakian structure, since, from (2.1), it is easy to see that
(Vy @)Y =cos 8(g(X, N)§-n(¥)X), for any X,Ye TM. However, we can modify the condition (2.1)

to obtain a Sasakian structure on M. It can be proved that if
(Vy T)Y = cos 6(g(X, NE - n(1)X), . (22)

for any X,Ye TM, then M has an induced Sasakian structure given by @. Nevertheless, we have
the following result:

Proposition 2.2 — There are no proper slant submanifolds M of a K-contact manifold
satisfying eq. (2.2).
PROOF : It follows directly from Proposition 1.4, Proposition 1.3 and (2.2). J

In fact, it is easy to see that, if M is a proper slant submanifold, then the structure induced
by @ is not a contact metric structure, because

DX, V)=g(X, dY)=sec Og(X, TY) = sec 8dn(X, Y),

for any X, Y e TM, since M is a Sasakian manifold, and so, a contact metric manifold®.

However, we can now wonder if it is possible to induce a Sasakian structure from another
way, by choosing the appropriate conditions. We have the following intrinsic characterization of slant
immersions in K-contact manifolds:

Theorem 2.3 — 4 Let M be a submanifold of a K-contact manifold M, such that &€ TM.
Let 8¢ [0, n/2]. The following statements are equivalent :

() M is slant in M, with slant angle 6.
(ify For any xe€ M, the sectional curvature of any 2-plane of T M containing &, equals
ol
cos” 6.
Then, we can state the following corollary:
Corollary 24 — Let M be a slant submanifold of a K-contact manifold Af. Then, M is

K-contact if and only if M is an invariant sub manifold.

PROOF : The direct implication follows directly from Theorem 2.3. The converse is a
well-known result. Il

Hence, it is not possible to have neither a Sasakian nor a K-contact induced structure on a

non-invariant slant submanifold of a Sasakian manifold.

Nevertheless, we can still wonder if it would be possible to induce a contact metric structure.
We are now going to use a different method.

Let

0: (M, 6,57,8— (M 6818
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be an immersion between two almost contact metric manifolds. Suppose this immersion to be
. . . - * . .

isometric, ie, g=¢ g, and such that ¢, Eng(p(x) for any xe M. In particular, it means that
Ee T™M. '

Let @ and @ be the fundamental 2-forms of M and M respectively. We consider on M the
2-form @*@ given by

o DX, V)= DX, 0,Y)=g(0,X. p0.Y),

for any X, Y e x(M). From now on, we are identifying X and ¢, X for any X € y(M).

If dim M = 3 and ¢ is a slant immersion, with slant angle 6, then we can find the following
relation between @ and ¢@*®.

Proposition 2.5 — In the above conditions, ¢*® =1 (cos8) P.

PROOF : If the immersion is anti-invariant, then the result is obvious since ¢*®=0. We can
then suppose that ¢ is a non-anti-invariant slant immersion.

Let e; be a unit local field, tangent to M and perpendicular to & If we put
e, = (sec O)Te|, by virtue of Corollary 1.2, we know that {e|, e,, £} is a local orthonormal frame of
TM. Then, it is clear that e, = g(@e|, e;)e,, and so g(&iel,@e])=g2($el,e2). Now then, it is easy
to see that g(@e,, §e;) =1, from which we have:

Fe =te, e, = + €. . (23)

Let X=Xle +X2e, + NX)E, Y = Y1 e, +Y2e, + n(Y)§ be two local tangent fields. Then, from
(2.3), it results:
BX, V) =g(X,PY) = + X'V £ XY . (2.4)
On the other hand,
¢ BX, )= DX, 0.Y)=g(X, 91) =
= g(X, TY)=—cos 8 X'Y? + cos OX?Y', . (25)
since TY =-cos 9Y2e] + cos 9Y1e2. Hence, the result follows from eqgs. (2.4) and (2.5). O

Now, by using Proposition 2.5, we obtain the main result of this paper:

Theorem 2.6 — There are no non-invariant slant immersions @ :M — M from a contact
metric manifold (M, $,%,7,g), with dim M = 3, in another contact metric manifold (M, ¢. £, 11, 8)
such that ¢,T=¢.

PROOF : Suppose that there is a non-invariant slant immersion @:M— M in the above
conditions and denote by 6 the slant angle of this immersion. Then, since ¢ is an isometric immersion
and ¢,E=¢&, we have ¢*n=71, and so

dl'm=dn="7>, . (2.6)

because M is a contact metric manifold. Now, from Proposition 2.5, as #7 is a contact metric manifold
too, we get:
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d(¢'n) = ¢'dn = ¢* ®=* (cos O)P. .27

But, if 6= 0, then a contradiction follows from (2.6) and (2.7), and so, the result is proved.
L]

The following corollary gives an answer to our problem for three-dimensional slant
submanifolds.

Corollary 2.7 — Let M be a three-dimensional slant submanifold of a Sasakian manifold
M. Then, the Sasakian structure of A induces a contact metric structure on M if and only if M is

an invariant manifold.

PROOF : The direct implication follows directly from Theorem 2.6. The converse is
well-known. O

Nevertheless, we can consider slant immersions between almost contact metric manifolds. In
fact, it is enough to choose a local orthonormal frame {e,, e,, £} and define @ such that @e, =e,

and @e,=—e, to obtain an almost contact structure on a three-dimensional slant submanifold.

Now, let

0: Mg > M 9,En 8
be an isometric immersion from a Riemannian manifold in an almost contact metric manifold such

that £€ TM.

Lemma 2.8 — In the above conditions, suppose that dim M = m + 1 and let
{eps e £} be a local orthonormal frame of TM. Then, the immersion ¢ is slant if and only if

there exists a constant A€ [0, 1] such that

m

D 8(9eje) ey, €)= A8, . (28)

i=1

. . . 2
for any j, k = 1, .., m. Moreover, in this case, A=cos” 6, where 8 denotes the slant angle of the
immersion.

PROOF : Suppose that ¢ is a slant immersion with angle 6. Then, for any unit tangent field
X in D, we have:

m

Y g%(¢X,e)=cos’ 6. . (29)

i=1
Hence, if we put X =e in (2.9), it follows

m

Y, g(gej e)=cos’ 6, . (2.10)

from where we obtain (2.8) in the case j = k with A= cos® 6. Now then, suppose that j# k. Then,
X=(1/2) (ej+ek) is a unit local field perpendicular to & from which, by using (2.9), we have:
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m m

m
2 1 2 ]
cos”O=5 D, &g e)+s X, gBepe)t 3, s(de,e)s(dee)
i=1 i=1 i=1
By virtue of (2.10), this implies (2.8) in the case j#k.
Conversely, by using (2.8) it is easy to see that ¢ is slant with slant angle cos~ ! VA. [

Remark 2.9 : The Kaehlerian version of Lemma 2.8 can be found in [5].

We can now consider an almost contact metric structure on M,

M, 9.2,71.8)

such that q)*_xz"_:ép(x) for any xe M. Denote by @ and @ the fundamental 2-forms of M and

M, respectively. We also consider on M the 2-form (p* @. We can prove the following theorem.

Theorem 2.10 — In the above conditions, suppose that there exists a constant ke [- 1, 1]
such that @spx®@=k®. Then, @ is slant with slant angle cos= 11kl

PROOF : Since M is an almost contact metric manifold, we can choose a @-basis in M given
by B = {ugs sy, éul,...,aum,f}, dim M = 2m + 1.

We want to evaluate

m m

D g(OX u)(dY, u)+ D g(¢X, u,) g(9Y, Puy), o (201)

=1 i=1

for any X,Ye B- {&}, in order to apply Lemma 2.8.

Now then, since ¢*@ =k ®, we have
g(oX, u) = kg(PX, u;) = - kg(X, gu)), . (2.12)
meanwhile

g(@X, u;) = kg(X, fu)) = kg(X, u,), o (2.13)

since M(u;) =0.
Hence, if we put (2.12) and (2.13) in (2.11), we get:

m m

K1Y e Pu) gV Bu)+ Y, g(X,u) g(Y, u) . (2.14)

i=1 i=1

By checking (2.14) according to the choise of X and Y in B, it is easy to see that Lemma
2.8 holds with A=k2. Hence, ¢ is a slant immersion with slant angle cos™!1kI. O

Corollary 2.11 — Suppose that dim M = 3. Then ¢ is slant if and only if there exists a
constant k€ [~ 1, 1] such that ¢*@®=k @. Moreover, in this case, | kI=cos 6, where 6 denotes the
slant angle of the immersion.

PROOF : It follows directly from Proposition 2.5 and Theorem 2.10. O
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