Mathware & Soft Computing 3 (1996) 425-434

Automatic Synthesis of Fuzzy Logic Controllers

A. Barriga, S. Sanchez-Solano, C.J. Jiménez,
D. Galan and D.R. Lépez
Centro Nacional de Microelectrénica. Dpt. de Diseno Analégico.
Avda. Reina Mercedes s/n Edif. CICA.
41012-Sevilla. Spain.

Abstract
This paper describes a design environment for the hardware realizations
of fuzzy controllers which includes a set of CAD tools to ease the descrip-
tion, verification and synthesis of this kind of systems. Special emphasis is
focused on the use of a standard hardware description language (VHDL) and
compatibility with other integrated circuits design tools.

1 Introduction

Fuzzy inference techniques are becoming an attractive approach to solving con-
trol and decision-making problems. This is mainly due to their inherent ability to
describe a complex system by means of a simple set of intuitive and ambiguous be-
havioral rules. The application of fuzzy technologies to real-time control problems
demands the development of new processing structures which allow efficient hard-
ware implementations of fuzzy inference mechanisms. In addition, adequate CAD
tools are required in order to ease design tasks, and guarantee correct functionality
of the final product.

Three different levels may be considered in the design flow of fuzzy logic con-
trollers: algorithmic, architectural and circuit. The algorithmic level specifies the
functional behavior of the controller, defining the shape of the membership func-
tions, the implication mechanism, the defuzzification method, etc. Concerning the
physical realization, a particular architecture must be selected, and the required
building blocks must be identified. Finally, these building blocks will be imple-
mented as an integrated circuit according to the implementation technique more
suitable to the specific application. The design tasks at each level are supported
by different CAD tools. Traditionally, specific fuzzy tools are used to simulate at
the algorithmic level, while architectural and circuit simulations are embedded in
conventional circuit design environments.

In this paper we describe a set of CAD tools which provide a unified frame-
work for fuzzy logic controllers design. By means of using a standard hardware
description language, this design environment permits verification and automatic
synthesis of fuzzy hardware. In section 2, some topics concerning the hardware

425



426 A. Barriga, S. Sanchez-Solano, C.J. Jiménez, D. Gdlan & D.R. Ldpez

realization of fuzzy controllers are discussed and the architectural aspects of fuzzy
circuits are introduced. Section 3 presents a general overview of the design envi-
ronment, while the different design levels are described in sections 4 to 6. Finally,
an example to illustrate the whole approach is presented in section 7.

2 Hardware Realizations of Fuzzy Systems

In an inference system based on fuzzy logic, the knowledge base is structured as a
group of IF-THEN rules:

IF X is A7 and X» is A5 and... X, is A) THEN Y} is By (1)

where X1,..., X}, and Y}, represent the system inputs and output, and A7, ..., A7
and Bj are linguistic labels defined by means of fuzzy sets. These fuzzy sets
are characterized by membership functions which may assume different shapes de-
pending on the problem, though in practice, the use of piecewise linear functions is
usually sufficient. The controller output is obtained by applying an inference mech-
anism defined by the connectives used to link the rule antecedents, the implication
function chosen, and the rule aggregation operator. The Min operator is usually
adopted as the connective for antecedents in fuzzy rules. Concerning implication
functions and aggregation operators, the common options are T-norms (Min or
Product) and T-conorms (Max or Sum), respectively. A set of well known infer-
ence mechanisms are obtained by combining these operators (Min-Max, Dot-Sum,
etc.).

The result given by the inference process is a fuzzy set. In control applications,
a defuzzifier stage is used to obtain a crisp value characterizing the output fuzzy
set. The most commonly used defuzzification methods, Center of Gravity (COG)
and Mean of Maxima (MOM) [1], must sweep the whole universe of discourse to
provide a solution. From a hardware point of view, this implies the use of massively
parallel architectures (which means high area realizations) or sequential techniques
(which imply slow system operation).

A considerable reduction in both the inference time and the area of the fuzzy
controller can be achieved when using simplified defuzzification methods, where the
information provided by the consequents is codified by means of crisp parameters.
The overall action of a ruleset is obtained, in this case, by calculating the average
of the different conclusions weighted by their grades of activation. Different meth-
ods based in this strategy have been proposed in the literature. For the sake of
simplicity we will only consider in this paper those methods whose output is given
by the general expression:

r r
gj:Zai-wi-ci/Zai-wi (2)
i=1 i=1

Several defuzzification methods emerge depending on the choice of w; in (2). If
w; = 1, we obtain the method denominated Fuzzy Mean (FM), its main drawback
being that it does not consider the area and support of the output fuzzy set. If



Automatic Synthesis of Fuzzy Logic Controllers 427

Figure 1: Block diagram for the fuzzy controller architecture.

each w; represents the area of a consequent fuzzy set the result is the same as
in the Center of Sums method (COS). Weighted Fuzzy Mean (WFM) uses weight
parameters proportional to consequent supports. On the contrary, the Quality
Method (QM) uses parameters inversely proportional to consequent supports to
give more importance to crisper, rather than fuzzier, consequents [1].

Defuzzification strategies producing expressions similar to (2) can be imple-
mented using simple arithmetic blocks (two multipliers, a divider, and several
adders). In addition, the sumatory in (1) is extended to the number of rules. Tak-
ing into account that only the active rules (those with «; # 0) will contribute to
the solution, the inference time can be drastically reduced if we impose an a priori
limitation on the degree of overlapping of the antecedent membership functions.

By adequately combining the above two concepts and introducing pipeline
stages an efficient realization of fuzzy controllers can be generated, using the active
rule driven architecture shown in Fig. 1 [2]. The membership function circuits
(MFC) provide for each input value as many pairs (label, activation level), as the
degree of overlapping fixed for the system. Since a fixed degree of overlapping
implies restricting the maximum number of active rules, the next step is to sequen-
tially process each of these rules; a counter-controller multiplexer array is used for
this. In each counter cycle, the membership degrees are combined through the MIN
operator to calculate the activation level of the rule, while the antecedent labels
address the memory position containing parameters which define their correspond-
ing consequent. Finally, an arithmetic unit (defuzzifier in the figure) performs the
operations of equation (2).

3 Design Enviroment for Fuzzy Controllers

The general scheme of the design environment is shown in Fig. 2. This figure
shows also the design flow based on a top-down methodology [3]. The algorithmic
description for the controller is made using a formal language called “Xfuzzy De-
scription Language” (XFL), as well as through the graphics facilities of Xfuzzy .



428 A. Barriga, S. Sanchez-Solano, C.J. Jiménez, D. Gdlan & D.R. Ldpez

Figure 2: General scheme of the tool.

The activities associated to this design stage include choosing the inference mech-
anism, and defining and tuning the knowledge base (rules, membership functions
of antecedents and consequents, etc).

In the next stage the XFL description of the controller is translated into the
standard hardware description language VHDL. One advantage of using VHDL
is that it is supported by many integrated circuit verification and synthesis tools.
The translation process generates the controller circuit structure based on the ar-
chitecture described in section 2.

After the selection of the architectural parameters and the simulation using the
high level data abstraction, a lower level VHDL description is generated. This new
description uses the parameterized blocks provided by a cell library. The circuit
level VHDL description can be furthermore used as input to (potentially different)
tools for automatic hardware synthesis. Depending on the application different
integrated circuit implementation techniques such as ASICs, FPGAs, etc. can be



Automatic Synthesis of Fuzzy Logic Controllers 429

applied.

As shown in Fig. 2, each different description level provides simulation stages
for verifying the correctness of the design process. At the algorithmic level, a
description of the system under control is linked to the controlled specification to
validate its behavior. Using Xfuzzy, this description of the system can be done
by means of C code, a series of numerical values for the system variables, another
fuzzy specification or any combination of these three methods. At the architectural
level VHDL itself is used, following the test-bench approach common to the design
tools based on the language.

4 Algorithmic Level

Xfuzzy 2.0 is a tool for the development of fuzzy systems. It provides, through a
graphical user interface based on X-windows, facilities for the symbolic and graphic
specification of fuzzy systems, their set-up by means of simulation and automated
learning and a set of different output formats, suitable for both hardware and
software implementations.

The different main components of Xfuzzy are shown in Fig. 3a. The core
of the system is made up of the XFL library and a simulation shell. Through
the services offered by the library, which stores fuzzy specifications in terms of
an abstract syntax tree, the definition of the fuzzy system can be manipulated
and an implementation suitable for the application domain can be obtained. The
simulation shell allows the connection of the fuzzy system under development to
one or more modules defining the behavior of the system under control (plant),
thus closing the feedback loop.

Fig. 3b shows the set of first-level windows that Xfuzzy offers to the user. The
shell is able to integrate data from different sources when performing the controller-
plant simulation: C code, numerical series or even a fuzzy specification can be used
to model the plant behavior. Each simulation run can be stopped by different
end conditions and results can be displayed and/or saved in several (graphical or
not) formats. At its current stage, Xfuzzy incorporates a learning module based in
backpropagation for the tuning of parameters in membership functions.

During this design phase the user can iterate the cycle, modifying the rulebase
or the membership functions to explore the design space. At the end of this phase,
the XFL description of the controller stored in the internal representation can be
used to generate a functional VHDL description of the system.

5 Architectural Level

The use of VHDL for modeling and simulation is especially appealing since it
provides a formal description of the system and allows the use of specific description
styles to cover the different abstraction levels employed in the design (architectural,
register transfer and logic level) [4].

To extend the capabilities of VHDL towards supporting the description and



430 A. Barriga, S. Sanchez-Solano, C.J. Jiménez, D. Gdlan & D.R. Ldpez

Figure 3: Structure and components of Xfuzzy.

simulation of fuzzy logic controllers, the authors have developed a “VHDL package”
which includes definitions of data structures that store fuzzy information, and
several functions to describe fuzzy inference algorithms [5]. The different elements
are defined for integer and real types, allowing the modelling of digital and analog
controller realizations.

Basic data structures have been defined to store the values of the controller input
and output variables, the membership function descriptions, and the activation
degrees of the different rules. Using these types, the package includes another set
of more complex definitions which enable the grouping of the data corresponding
to the different linguistic variables used by the linguistic rules.

Several functions have also been defined to describe the system database and to
carry out the inference mechanism. Several defuzzification methods are provided
by means of the “defuzzifier” function which provides a single crisp value. De-
fuzzification strategies considered in this VHDL package include both conventional
and simplified methods discussed in section 2.

6 Circuit Level Implementation.

The functional VHDL description of the controller needs to be translated into
synthesizable VHDL. In this translation process the user can choose between dif-
ferent alternatives. These alternatives are the antecedent membership function
generation mode (either using memory or an arithmetic circuit), the rulebase defi-
nition (either using RAM/ROM or a combinational circuit), and the defuzzification
method used (currently it is possible to select one among four different methods,
or a programmable defuzzifier which implements all of them).

The synthesis process uses a cell library containing the VHDL description for
the basic building blocks. These blocks are based on generic parameters chosen by
the user. There are two kinds of blocks: data path building blocks (implementing



Automatic Synthesis of Fuzzy Logic Controllers 431

Figure 4: a) Graphic description. b) Rulebase. ¢) Membership function definition.

the inference algorithm) and control blocks (controlling the memory write/read
operations, and the signals that control operation scheduling).

The implementation techniques used, as well as the different design options
to be selected, depend, fundamentally, on the application domain of the fuzzy
controller and the number of circuits to be produced. There are a wide range
of solutions, some of them are: 1) realization of general purpose systems with
programmable membership functions and rulebase using RAM, and the use of pro-
grammable defuzzifier; 2) development of FPGA prototypes with a fixed knowledge
base and defuzzification method; and 3) implementation of a specific application
circuit (ASIC), with the knowledge database in ROM, or generated by a combina-
tional circuit, and a defuzzification method tailored to the application.



432 A. Barriga, S. Sanchez-Solano, C.J. Jiménez, D. Gdlan & D.R. Ldpez

7 Example

This section demonstrates the use of the design framework, applying it to a typical
example of fuzzy control found in the literature [6]. The purpose is to control the
trajectory of a truck as it backs to a loading dock (Fig. 4a). The aim is that
the truck arrives at the platform at a 90° angle and in such a manner that its
position locks into the space provided for that purpose. Let us assume that there
is sufficient distance in the Y-axis between the initial position of the truck and the
destination so as to neglect the Y coordinate, thus the truck movement depends
exclusively on its X-coordinate and the angle (PHI) that forms the longitudinal
axis of the truck with the horizontal axis. These two variables are the input to the
fuzzy controller which, according to the rules shown in Fig. 4b, supplies as output
the new direction which the truck wheels should assume (PSI). Fig. 4c shows the
membership functions used for antecedents and consequents. This information is
obtained by Xfuzzy using a test-and-error method. For more complex problems
Xfuzzy provides tools with learning capabilities for membership function tuning.

This example considers a very simple model of the controlled system. Assuming
that the truck moves a fixed distance “d” in each inference step, the new coordinates
are calculated as a function of the former coordinates and the angle determined by
the fuzzy controller output, according to the following equations:

phi, = phi,_; + psi
xy = x4—1 + d * cos(phi,)
Yyt = x¢—1 + d = sin(phi,)

There is a direct mapping from the algorithmic XFL definition of the controller
to the VHDL description of its architecture. The VHDL description contains a
process which describes the algorithm of the system operation. The specification
of the fuzzy logic controller architecture includes the following steps: 1) initial-
ization of membership functions and input and output variables; 2) description
of the rulebase and execution of the inference process; and 3) defuzzification and
assignment, of results to the output.

Figure 5: Simulation results at different levels: a) Xfuzzy; b) VHDL

The graphical results obtained from the Xfuzzy simulation of the system and
by the VHDL verification are shown in Fig. 5. While Xfuzzy provides mechanisms



Automatic Synthesis of Fuzzy Logic Controllers 433

for obtaining this graphical output, for the VHDL stage the inclusion of specific
sentences in the code modeling the plant is necessary to produce data suitable for
the graphical representation of the trajectory. The results shown in Fig. 5 indicate
that, for this example, the goal is always reached.

Finally, Fig. 6 shows the layout for a general purpose controller that can be
applied to the example discussed here. This circuit uses arithmetic evaluation
for the antecedents and contains a programmable defuzzifier. The rulebase and
the membership functions for the antecedents are stored in RAM, allowing the
controller to be adapted to different applications. The design is based on an 1.0
pm CMOS technology. The total silicon area is 17.40 mm?.

Figure 6: Fuzzy controller layout.

References

[1] H. Hellendoorn y C. Thomas, “Defuzzification in fuzzy controllers”, Jour.
of Intelligent and Fuzzy Systems, vol. 1, pp. 109-123, 1993.

[2] Jiménez, C.J., Sanchez-Solano, S. y Barriga, A.: “Hardware Implementation
of a General Purpose Fuzzy Controller”. Proc. 6th International Fuzzy
Systems Association World Congress (IFSA’95), Sao Paulo, July 1995.

[3] Jiménez, C.J., Galdn, D., Barriga, A. y Sanchez-Solano, S.: “Sintesis au-
tomatica de sistemas de control basados en logica difusa”. Proc. V Congreso
Espaiiol sobre Tecnologias y Légica Fuzzy (ESTYLF’95), pp. 263-268, Mur-
cia, Sept. 1995

[4] A. Zamfirescu, “Logic and Arithmetic in Hardware Description Languages”,
“Fundamentals and Standards in Hardware Description Languages” Edited
by Jean P. Mermet, NATO ASI Series, pp. 109-151, 1993.



434 A. Barriga, S. Sanchez-Solano, C.J. Jiménez, D. Gdlan & D.R. Ldpez

[5] D. Galdn, C.J. Jiménez, A. Barriga y S. Sanchez-Solano: “VHDL Package
for Description of Fuzzy Logic Controllers”. EURO-VHDL’95 Brighton, pp.
528-533, Sept. 1995.

[6] B. Kosko, “Neural Network and Fuzzy Systems”, Prentice Hall, 1992.



