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Abstract

In this paper we define a pair of faithful functors that map isomorphic and
isotopic finite-dimensional algebras over finite fields to isomorphic graphs.
These functors reduce the cost of computation that is usually required
to determine whether two algebras are isomorphic. In order to illustrate
their efficiency, we determine explicitly the classification of two- and three-
dimensional partial quasigroup rings.
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1. Introduction

Graph invariants constitute an interesting tool in Chemistry, Commu-
nication or Engineering [8, 16, 19]. In Mathematics, one of the topics for
which graph invariants have revealed to play an important role is the classi-
cal problem of deciding whether two algebras are isomorphic. This problem
is usually dealt with by computing the reduced Gröbner basis of the system
of polynomial equations that is uniquely related to the structure constants of
both algebras. This computation is, however, very sensitive to the number
of variables [12] and gives rise to distinct problems of computation time and
memory usage even for low-dimensional algebras [9, 13]. This paper deals
with Graph Theory in order to reduce this cost of computation.
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Graph invariants have been proposed in the last years as an efficient
alternative to study isomorphisms of distinct types of algebras [2, 4, 15].
Nevertheless, the problem of identifying a functor that relates the category
of algebras with that of graphs remains still open. Based on a proposal of
McKay et al. [17] for identifying isotopisms of Latin squares with isomor-
phisms of vertex-colored graphs, we describe in Section 3 a pair of graphs
that enable us to find faithful functors between finite-dimensional algebras
over finite fields and these types of graphs. These functors map isomor-
phic and isotopic algebras to isomorphic graphs. Reciprocally, any pair of
isomorphic graphs is uniquely related to a pair of algebras so that there
exists a multiplicative map between them. The main advantage of our pro-
posal, apart from the reduction of the mentioned cost of computation, is the
feasibility of studying the possible isomorphism between two given finite-
dimensional algebras defined over the same field, whatever the types of both
algebras are. As an illustrative example, we focus in Section 4 on the classi-
fication of partial quasigroup rings according to the known isotopism classes
of partial Latin squares on which they are based.

2. Preliminaries

In this section we expose some basic concepts and results on Graph
Theory, isotopisms of algebras, partial Latin squares and Computational
Algebraic Geometry that we use throughout the paper. For more details
about these topics we refer, respectively, to the manuscripts [14, 1, 7, 5].

2.1. Graph Theory

A graph is a pair G = (V,E) formed by a set V of vertices and a set E
of 2-subsets of V called edges. Two vertices defining an edge are said to be
adjacent. The degree of a vertex v is the number d(v) of edges containing v.
The graph G is vertex-colored if there exists a partition of V into color sets.
The color of a vertex v is denoted as color(v). An isomorphism between two
vertex-colored graphs G and G′ is any bijective map f between their sets of
vertices that preserves collinearity and color sets, that is, such that it maps
edges to edges and color(f(v)) = color(v), for all vertex v in G.

2.2. Isotopisms of algebras

Two algebras A and A′ over a field K are said to be isotopic if there
exist three non-singular linear transformations f , g and h from A to A′ such
that f(u)g(v) = h(uv), for all u, v ∈ A. The triple (f, g, h) is an isotopism
between A and A′. If f = g = h, then this constitutes an isomorphism.
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The structure constants of an n-dimensional algebra A over a field K

of basis {e1, . . . , en} are the numbers ckij ∈ K such that eiej =
∑n

k=1 c
k
ijek,

for all i, j ≤ n. If all of them are zeros, then A is abelian. In particular,
the n-dimensional abelian algebra is not isotopic to any other n-dimensional
algebra.

The left annihilator of a vector subspace S of the algebra A is the set
AnnA−(S) = {u ∈ A | uv = 0, for all v ∈ S}. Its right annihilator is the
set AnnA+(S) = {u ∈ A | vu = 0, for all v ∈ S}. The intersection of both
sets is the annihilator AnnA(S).

Lemma 1. Let (f, g, h) be an isotopism between two n-dimensional algebras
A and A′, and let S be a vector subspace of A. Then,

a) f(AnnA−(S)) = AnnA′−(g(S)).

b) g(AnnA+(S)) = AnnA′+(f(S)).

c) f(AnnA−(S)) ∩ g(AnnA+(S)) = AnnA′(f(S) ∩ g(S)).

Proof. Let us prove assertion (a). Assertion (b) follows similarly and asser-
tion (c) is a consequence of (a) and (b). Let u ∈ g(S) and v ∈ f(AnnA−(S)).
Then, vu = f(f−1(v))g(g−1(u)) = h(f−1(v)g−1(u)) = h(0) = 0, because
g−1(u) ∈ S and f−1(v) ∈ AnnA−(S). Hence, f(AnnA−(S)) ⊆ AnnA′−(g(S)).
Now, let u ∈ AnnA′−(g(S)) and v ∈ S. From the regularity of f , we have
that h(f−1(u)v) = ug(v) = 0. The regularity of h involves that f−1(u)v = 0.
Thus, u ∈ f(AnnA−(S)) and hence, AnnA′−(g(S)) ⊆ f(AnnA−(S)).

The derived algebra of A is the subalgebra A2 = {uv | u, v ∈ A} ⊆ A.

Lemma 2. Let (f, g, h) be an isotopism between two n-dimensional algebras
A and A′. Then, h(A2) = A′2.

Proof. The regularity of f and g involves that f(A) = g(A) = A′ and hence,
A′2 = f(A)g(A) = h(A2).

Let · be a partial binary operation over the set [n] = {1, . . . , n}. The
pair ([n], ·) is called a partial magma of order n. It is isotopic to a partial
magma ([n], ◦) if there exist three permutations α, β and γ in the symmetric
group Sn such that α(i) ◦β(j) = γ(i · j), for all i, j ≤ n such that i · j exists.
If α = β = γ, then the partial magmas are said to be isomorphic. The triple
(α, β, γ) is an isotopism of partial magmas (an isomorphism if α = β = γ).
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A partial magma algebra A· based on a partial magma ([n], ·) is an n-
dimensional algebra over a field K such that there exists a basis {e1, . . . , en}
satisfying that, if i · j exists for some pair of elements i, j ≤ n, then eiej =
cijei·j for some non-zero structure constant cij ∈ K\{0}. If all the structure
constants are equal to 1, then this is called a partial magma ring.

Lemma 3. Two partial magma rings are isotopic (isomorphic, respectively)
if their respective partial magmas on which they are based are isotopic (iso-
morphic, respectively).

Proof. Let A· and A◦ be two partial magma rings based, respectively, on two
isotopic partial magmas ([n], ·) and ([n], ◦). Let {e1, . . . , en} and {e′1, . . . , e

′
n}

be the respective bases of these two algebras and let (f, g, h) be an isotopism
between their corresponding partial magmas. For each α ∈ {f, g, h}, let us
define the map α(ei) = e′

α(i). Then, f(ei)g(ej) = e′
f(i)e

′
g(j) = e′

f(i)◦g(j) =

e′
h(i·j) = h(ei·j) = h(eiej). From linearity, the triple (f , g, h) determines
an isotopism between A· and A◦. If f = g = h, then this constitutes an
isomorphism.

The reciprocal of Lemma 3 is not true in general. Thus, for instance,
the two partial magmas ([2], ·) and ([2], ◦) that are respectively described
by the non-zero products 1 · 1 = 1 and 1 ◦ 1 = 1 = 2 ◦ 1 are not isotopic.
Nevertheless, the partial magma rings A· and A◦, with respective bases
{e1, e2} and {e′1, e

′
2}, are isotopic by means of the isotopism (f, Id, Id), where

the linear transformation f is described by f(e1) = e′1 and f(e2) = e′2 − e′1.

2.3. Partial Latin squares

A partial quasigroup is a partial magma ([n], ·) such that if the equations
ix = j and yi = j, with i, j ∈ [n], have solutions for x and y in [n], then
these solutions are unique. The concepts of partial quasigroup algebras and
partial quasigroup rings arise similarly to those of partial magma algebras
and rings. Lemma 3 also holds analogously for partial quasigroup rings.
Every partial quasigroup of order n constitutes the multiplication table of
a partial Latin square of order n, that is, an n× n array in which each cell
is either empty or contains one element chosen from the set [n], such that
each symbol occurs at most once in each row and in each column. Every
isotopism of a partial quasigroup is uniquely related to a permutation of
the rows, columns and symbols of the corresponding partial Latin square.
The distribution of partial Latin squares into isotopism classes is known
for order up six [10, 11]. In this paper we make use of graph invariants to
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study which ones of the known non-isotopic classes of partial Latin squares
of order n ≤ 3 give rise to isotopic classes of partial quasigroup rings over
the finite fields F2 and F3. In this regard, it is straightforwardly verified that
there exists only two one-dimensional partial quasigroup rings: the abelian
and that one described by the product e1e1 = e1. They constitute distinct
isotopism classes.

Let L = (lij) be a partial Latin square of order n without empty cells
(that is, a Latin square). McKay et al. [17] defined the vertex-colored graph
G(L) with n2 + 3n vertices {ri | i ≤ n} ∪ {ci | i ≤ n} ∪ {si | i ≤ n} ∪ {tij |
i, j ≤ n}, where each of the four subsets (related to the rows (ri), columns
(ci), symbols (si) and cells (tij) of the Latin square L) has a different color,
and 3n2 edges {ritij, cjtij, slij tij | i, j ≤ n}} (see Figure 1, where we have
used distinct styles (◦, N, ◮, ◭ and •) to represent the colors of the vertices).
Two Latin squares L1 and L2 of the same order are isotopic if and only if
the graphs G(L1) and G(L2) are isomorphic (see Theorem 6 in [17]).

1 2

2 1
≡

Figure 1: Graph related to a Latin square of order 2.

2.4. Computational Algebraic Geometry

Let K[X] be a multivariate polynomial ring over a field K. The algebraic
set defined by an ideal I of K[X] is the set V(I) of common zeros of all the
polynomials in I. If this set is finite, then the ideal I is zero-dimensional.
This is radical if every polynomial f ∈ K[X] belongs to I whenever there
exists a natural number m such that fm ∈ I. The largest monomial of a
polynomial in I with respect to a given monomial term ordering is its leading
monomial. The ideal generated by all the leading monomials of I is its initial
ideal. A standard monomial of I is any monomial that is not contained in
its initial ideal. Regardless of the monomial term ordering, if the ideal I
is zero-dimensional and radical, then the number of standard monomials in
I coincides with the Krull dimension of the quotient ring K[X]/I and with
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the number of points of the algebraic set V(I). This is computed from the
reduced Gröbner basis of the ideal. Specifically, a Gröbner basis of the ideal
I is any subset G of polynomials in I whose leading monomials generate
its initial ideal. This is reduced if all its polynomials are monic and no
monomial of a polynomial in G is generated by the leading monomials of
the rest of polynomials in the basis. There exists only one reduced Gröbner
basis, which can always be computed from Buchberger’s algorithm [3]. The
computation that is required to this end is extremely sensitive to the number
of variables.

Theorem 1 ([12], Proposition 4.1.1). Let Fq be a finite field, with q a power
prime. The complexity time that Buchberger’s algorithm requires to compute
the reduced Gröbner bases of an ideal 〈 p1, . . . , pm, pq1 − p1, . . . , p

q
m− pm 〉 de-

fined over a polynomial ring Fq[x1, . . . , xn], where p1, . . . , pm are polynomi-
als given in sparse form and have longest length l, is qO(n) +O(m2l). Here,
sparsity refers to the number of monomials.

Gröbner bases can be used to determine the isomorphisms and isotopisms
between two n-dimensional algebras A and A′ over a finite field Fq, with q a
prime power, respective basis {e1, . . . , en} and {e′1, . . . , e

′
n}, and respective

structure constants ckij and c′kij . To this end, let us define the sets of variables
Fn = {fij | i, j ≤ n}, Gn = {gij | i, j ≤ n} and Hn = {hij | i, j ≤ n}.
These variables play the respective role of the entries in the regular matrices
related to a possible isotopism (f, g, h) between the algebras A and A′. Here,
α(ei) =

∑n
j=1 αije

′
j , for each α ∈ {f, g, h}. From the coefficients of each basis

vector em in the expression f(ei)g(ej) = h(eiej), we have that

n
∑

k,l=1

fikgjlc
′m
kl =

n
∑

s=1

csijhsm, for all i, j,m ≤ n.

Theorem 2. The next two assertions hold.

a) The isotopism group between the algebras A and A′ is identified with the
algebraic set of the ideal IIsotA,A′ of Fq[Fn ∪Gn ∪ Hn], which is defined as

〈
n
∑

k,l=1

fikgjlc
′m

kl −
n
∑

s=1

csijhsm | i, j,m ≤ n 〉+ 〈det(M)q−1 − 1 | M ∈ {F,G,H} 〉,

where F , G and H denote, respectively, the matrices of entries in Fn, Gn

and Hn. Besides, |V(IIsotA,A′)| = dimFq(Fq[Fn ∪Gn ∪Hn]/I
Isot
A,A′).
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b) The isomorphism group between the algebras A and A′ is identified with
the algebraic set of the ideal IIsomA,A′ of Fq[Fn], which is defined as

〈

n
∑

k,l=1

fikfjlc
′m
kl −

n
∑

s=1

csijfsm | i, j,m ≤ n 〉+ 〈det(F )q−1 − 1 〉,

where F denotes the matrix of entries in Fn. Besides, |V(IIsomA,A′ )| =

dimFq(Fq[Fn]/I
Isom
A,A′ ).

Proof. Let us prove the second assertion, being analogous the reasoning for
assertion (a). The generators of the ideal IIsomA,A′ involve each zero (f11, . . . ,
fnn) of its algebraic set to constitute the entries of the regular matrix of an
isomorphism f between the algebras A and A′. The result follows from the
fact of being this ideal zero-dimensional and radical. Particularly, the ideal
IIsomA,A′ is zero-dimensional because its algebraic set is a finite subset of Fn2

q .
Besides, from Proposition 2.7 of [5], the ideal I is also radical, because, for
each i, j ≤ n, the unique monic generator of I ∩ Fq[fij ] is the polynomial
(fij)

q − fij, which is intrinsically included in each ideal of Fq[Fn] and is
square-free.

Corollary 1. The complexity times that Buchberger’s algorithm requires to
compute the reduced Gröbner bases of the ideals IIsotA,A′ and IIsomA,A′ in Theorem

2 are, respectively, qO(3n2) +O(n6n!) and qO(n2) +O(n6n!).

Proof. We prove the result for the second ideal, being analogous the reason-
ing for the first one. The result follows straightforwardly from Theorem 1
once we observe that all the generators of the ideal in Theorem 2 are sparse
in Fq[Fn]. More specifically, the number of variables is n2, the number of
generators of the ideal under consideration that are not of the form (fij)

q−fij
is n3 + 1 and the maximal length of these generators is n!.

Theorem 2 has been implemented as a procedure called isoAlg in the
open computer algebra system for polynomial computations Singular [6].
This has been included in the library GraphAlg.lib, which is available online
at http://personales.us.es/raufalgan/LS/GraphAlg.lib. Let us illus-
trate the use of this procedure with an example related to the distribution
of the set P2(F2) of two-dimensional partial quasigroup rings over the finite
field F2 into isotopism and isomorphism classes. All the computations that
are exposed throughout this paper are implemented in a system with an
Intel Core i7-2600, with a 3.4 GHz processor and 16 GB of RAM.
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Example 1. Let us consider the pair of partial quasigroup rings in P2(F2)
that are respectively related to the partial Latin squares

1 2

2
and

1 2

2 1

These two partial Latin squares are not isotopic because isotopisms preserve
the number of filled cells. Nevertheless, their related partial quasigroup rings
over F2, with respective bases {e1, e2} and {e′1, e

′
2}, and which are respectively

described by the products

{

e1e1 = e1,

e1e2 = e2 = e2e1.
and

{

e′1e
′
1 = e′1 = e′2e

′
2,

e′1e
′
2 = e′2 = e′2e

′
1.

are isotopic. Specifically, by implementing the procedure isoAlg, our system
computes in 0 seconds the existence of four isotopisms between these two
partial quasigroup rings. One of this isotopisms is, for instance, the isomor-
phism f such that f(e1) = e′1 and f(e2) = e′1 + e′2. The procedure isoAlg
also ensures us the existence of f as the unique possible isomorphism. ⊳

In practice, in those cases in which the run time required for the com-
putations involved in Theorem 2 becomes excessive, it is recommendable
to eliminate the generators of the corresponding ideal that are referred to
the determinants of the matrices F , G and H. This reduces the complexity
time in Corollary 1 to qO(3n2) +O(n8) and qO(n2)+O(n8), respectively, and
gives enough information to analyze a case study on which base the possible
isomorphisms and isotopisms between two given algebras, whatever the base
field is. The next example illustrates this fact by focusing on the possible
isotopisms that there exist over any field between the two partial quasigroup
rings that appear in Example 1.

Example 2. The implementation of the procedure isoAlg enables us to en-
sure that, whatever the base field is, the reduced Gröbner basis of the ideal
IIsotA,A′ in Theorem 2 related to the isotopism group between the two partial

quasigroup rings of Example 1 holds that 2h322 = 0 and h221 + h222 = 0. If
the characteristic of the base field is not two, then h21 = h22 = 0. This in-
volves H to be singular and hence, these two partial quasigroup rings are not
isotopic. Otherwise, it is straightforwardly verified that the linear transfor-
mation f that is indicated in Example 1 constitutes an isomorphism between
both rings for every base field of characteristic two. ⊳
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3. Description of faithful functors between algebras and graphs

Based on the proposal of McKay et al. [17] for Latin squares, we describe
now a pair of graphs that are uniquely related to a finite-dimensional algebra
A over a finite field K. Firstly, we define the vertex-colored graph G1(A)
with four maximal monochromatic subsets RA = {ru | u ∈ A \AnnA−(A)},
CA = {cu | u ∈ A \ AnnA+(A)}, SA = {su | u ∈ A2 \ {0}} and TA = {tu,v |
u, v ∈ A, uv 6= 0}, and edges {rutu,v, cvtu,v, suvtu,v | u, v ∈ A, uv 6= 0}. From
this graph we also define the vertex-colored graph G2(A) by adding the edges
{rucu, | u ∈ A \ AnnA(A)} ∪ {cusu | u ∈ A2 \ AnnA+(A)} ∪ {rusu | u ∈
A2 \AnnA−(A)}. As an illustrative example, Figure 2 shows the two graphs
that are related to any n-dimensional algebra over the finite field F2, with
basis {e1, . . . , en}, that is described as e1e2 = e2e1 = e1.

G1 G2

Figure 2: Graphs related to the algebra e1e2 = e2e1 = e1 over F2.

Lemma 4. The next assertions hold.

a) If the algebra A is abelian, then G1(A) and G2(A) have no vertices.

b) The graph G1(A) does not contain triangles.

c) In both graphs G1(A) and G2(A),

• The number of vertices is

|A \AnnA−(A)|+ |A \AnnA+(A)|+ |A2|+ |{(u, v) ∈ A×A | uv 6= 0}|− 1.

• The degree of the vertex tu,v is

d(tu,v) = 3, for all u, v ∈ A such that uv 6= 0.

9



d) In the graph G1(A),

• d(ru) = |A \AnnA+({u})|, for all u 6∈ AnnA−(A).

• d(cu) = |A \ AnnA−({u})|, for all u 6∈ AnnA+(A).

• d(su) =
∑

v∈A |ad−1
v (u)|, for all u ∈ A2\{0}, where adv : A → A2 is

the adjoint action of v in A such that adv(w) = vw, for all w ∈ A.

e) Let 1 denotes the characteristic function. Then, in the graph G2(A),

• d(ru) = |A \ AnnA+({u})| + 1A\Ann
A+ (A)(u) + 1A2(u), for all u 6∈

AnnA−(A).

• d(cu) = |A \ AnnA−({u})| + 1A\Ann
A− (A)(u) + 1A2(u), for all u 6∈

AnnA+(A).

• d(su) = 1A\Ann
A− (A)(u)+ 1A\Ann

A+ (A)(u) +
∑

v∈A |ad−1
v (u)|, for all

u ∈ A2 \ {0}.

Proof. The result follows straightforwardly from the definition of the graphs
G1(A) and G2(A).

Proposition 1. The next assertions hold.

a) The number of edges of the graph G1(A) is
∑

u 6∈Ann
A−(A) |A\AnnA+({u})|

+
∑

u 6∈Ann
A+ (A) |A \ AnnA−({u})| +

∑

u∈A2\{0}

∑

v∈A |ad−1
v (u)|.

b) The number of edges of the graph G2(A) coincides with those of G1(A)
plus |A \AnnA(A)| + |A2 \AnnA−(A)|+ |A2 \ AnnA+(A)|.

Proof. The result follows from the first theorem of Graph Theory [14], which
enables us to ensure that the number of edges of a graph is the half of the
summation of degrees of its vertices. Now, for each pair of vectors u, v ∈ A
such that uv 6= 0, the vertex tu,v ∈ TA is the only vertex in TA that is
adjacent to the vertices ru ∈ RA, cv ∈ CA and suv ∈ SA. They constitute
indeed the three vertices related to the degree of tu,v that is indicated in
assertion (c) of Lemma 4. As a consequence, the summation of degrees of all
the vertices in TA coincides with

∑

u∈RA
d(ru)+

∑

u∈CA
d(cu)+

∑

u∈SA
d(su).

The result follows then from assertions (d) and (e) in Lemma 4.

Theorem 3. Let A and A′ be two finite-dimensional algebras over a finite
field K. Then,

10



a) If both algebras are isotopic, then their corresponding graphs G1(A) and
G1(A

′) are isomorphic. Reciprocally, if the graphs G1(A) and G1(A
′) are

isomorphic, then there exist three bijective maps f , g and h between A
and A′ such that f(u)g(v) = h(uv).

b) If both algebras are isomorphic, then their corresponding graphs G2(A)
and G2(A

′) are also isomorphic. Reciprocally, if the graphs G2(A) and
G2(A

′) are isomorphic, then there exists a multiplicative bijective map
between the algebras A and A′, that is, a bijective map f : A → A′ so
that f(u)f(v) = f(uv), for all u, v ∈ A.

Proof. Let (f, g, h) be an isotopism between the algebras A and A′. We
define the map α between G1(A) and G1(A

′) such that






















α(ru) = rf(u), for all u ∈ A \AnnA−(A),

α(cu) = cg(u), for all u ∈ A \ AnnA+(A),

α(su) = sh(u), for all u ∈ A2 \ {0},

α(tu,v) = tf(u),g(v), for all u, v ∈ A such that uv 6= 0.

The description of G1(A) and G1(A
′), together with Lemmas 1 and 2,

and the regularity of f , g and h, involves α to be an isomorphism between
these two graphs. The same map α constitutes an isomorphism between the
graphs G2(A) and G2(A

′) in case of being f = g = h, that is, if the algebras
A and A′ are isomorphic. Reciprocally, let α be an isomorphism between
the graphs G1(A) and G1(A

′). Collinearity involves this isomorphism to be
uniquely determined by its restriction to RA ∪ CA ∪ SA. Specifically, the
image of each vertex tu,v ∈ TA by means of α is uniquely determined by
the corresponding images of ru, cv and suv. Let β and β′ be the respective
bases of the algebras A and A′ and let π : A → A′ be the natural map
that preserves the components of each vector with respect to the mentioned
bases. That is, π((u1, . . . , un)β) = (u1, . . . , un)β′ , for all u1, . . . , un ∈ K. Let
us define three maps f , g and h from A to A′ such that

f(u) =

{

π(u), for all u ∈ AnnA−(A),

v, otherwise, where v ∈ A is such that α(ru) = rv.

g(u) =

{

π(u), for all u ∈ AnnA+(A),

v, otherwise, where v ∈ A is such that α(cu) = cv .

h(u) =

{

π(u), for all u ∈ (A \A2) ∪ {0},

v, otherwise, where v ∈ A is such that α(su) = sv.

11



From Lemmas 1 and 2, these three maps are bijective. Let u, v ∈ A. If
u ∈ AnnA−(A) or v ∈ AnnA+(A), then there does not exist the vertex tu,v
in the graph G1(A). Since α preserves collinearity, there does not exist the
vertex tf(u),g(v) in the graph G1(A

′), which means that f(u) ∈ AnnA′−(A′)
or g(v) ∈ AnnA′+(A′). In any case, we have that f(u)g(v) = 0 = h(uv).
Finally, if u 6∈ AnnA−(A) and v 6∈ AnnA+(A), then the vertex tu,v connects
the vertices ru, cv and suv in the graph G1(A). Now, the isomorphism α
maps this vertex tu,v in G1(A) to a vertex tu′,v′ in G2(A) that is connected
to the vertices ru′ , cv′ and su′v′ . Again, since α preserves collinearity, it is
f(u) = u′, g(v) = v′ and, finally, h(uv) = f(u)g(v).

In case of being α an isomorphism between the graphs G2(A) and G2(A
′)

it is enough to consider f = g = h in the previous description. This is well-
defined because of the new edges that are included to the graphs G1(A) and
G1(A

′) in order to define, respectively, the graphs G2(A) and G2(A
′). These

edges involve the multiplicative character of the bijective map f , that is,
f(u)g(v) = h(uv), for all u, v ∈ A.

Theorem 3 enables us to ensure that graph invariants reduce the cost of
computation that is required to distribute a set of finite-dimensional algebras
over finite fields into isotopism and isomorphism classes. It is only necessary
to compute those reduced Gröbner bases in Theorem 2 that are related to
a pair of algebras whose associated graphs have equal invariants. The com-
plexity to compute these invariants is always much less than that related to
the calculus of a reduced Gröbner basis. Thus, for instance, the complex-
ity to compute the number of vertices, edges and triangles of the graphs
related to any n-dimensional algebra over the finite field Fq is qO(2n). This
corresponds to the computation of the adjacency matrices of both graphs by
means of all the possible products among the qn distinct vectors of any such
an algebra. This enables us in particular to implement the formulas exposed
in Lemma 4 and Proposition 1. Besides, recall that the trace of the adja-
cency matrix of a graph raised to the third power coincides with the number
of triangles of such a graph. All this computation has been implemented in
the procedure isoGraph, which has been included in the mentioned library
GraphAlg.lib. In order to illustrate the efficiency of these invariants, we
focus on the set Ln(Fq) of n-dimensional Lie algebras over the finite field
Fq, with q a power prime. Recall that a Lie algebra is an anti-commutative
algebra A that holds the Jacobi identity u(vw) + v(wu) +w(uv) = 0, for all
u, v, w ∈ A. For n = 3, it is known [9, 13, 18] that there are 32 distinct Lie
algebras in L3(F2), which are distributed into four isotopism classes and six
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isomorphism classes, and 123 Lie algebras in L3(F3), which are distributed
into four isotopism classes and seven isomorphism classes. Table 1 shows the
run time and memory usage that our computer system requires to determine
the mentioned classification depending on whether graph invariants are con-
sidered (Graph) or not (Alg). Further, Tables 2 and 3 show, respectively,
the invariants of the graphs G1 and G2 related to the isomorphism classes
of L3(Fq), for q ∈ {2, 3}. The components of the 4-tuples that are indicated
in the corresponding columns of vertices in both tables refer, respectively,
to the number of vertices in RA, CA, SA and TA.

Graph Alg
Isomorphisms Isotopisms

q Run time Memory usage Run time Memory usage Run time Memory usage

2 1 s 0 Mb 1 s 0 Mb 34 s 384 Mb
3 47 s 3 Mb 4 s 6 Mb Run out of memory

Table 1: Cost of computation to distribute L3(Fq) into isotopism and isomorphism classes.

F2 F3

A Vertices Edges Vertices Edges

Abelian (0,0,0,0) 0 (0,0,0,0) 0
e1e2 = e3 (6,6,1,24) 72 (24,24,2,432) 1296
e1e2 = e1 (6,6,1,24) 72 (24,24,2,432) 1296

e1e2 = e3, e1e3 = −e2 - - (26,26,8,576) 1728
e1e2 = e3, e1e3 = e2 (7,7,3,36) 108 (26,26,8,576) 1728
e1e2 = e2, e1e3 = e3 (7,7,3,36) 108 (26,26,8,576) 1728

e1e2 = e2, e1e3 = −e3, e2e3 = −e1 (7,7,7,42) 126 - -
e1e2 = e2, e1e3 = −e3, e2e3 = 2e1 - - (26,26,26,624) 1872

Table 2: Invariants of the graph G1 related to L3(Fq), for q ∈ {2, 3}.

F2 F3

A Vertices Edges Triangles Vertices Edges Triangles

Abelian (0,0,0,0) 0 0 (0,0,0,0) 0 0
e1e2 = e3 (6,6,1,24) 78 0 (24,24,2,432) 1320 0
e1e2 = e1 (6,6,1,24) 80 9 (24,24,2,432) 1324 38

e1e2 = e3, e1e3 = −e2 - - - (26,26,8,576) 1770 8
e1e2 = e3, e1e3 = e2 (7,7,3,36) 121 11 (26,26,8,576) 1770 80
e1e2 = e2, e1e3 = e3 (7,7,3,36) 121 27 (26,26,8,576) 1770 152

e1e2 = e2, e1e3 = −e3, e2e3 = −e1 (7,7,7,42) 147 19 - - -
e1e2 = e2, e1e3 = −e3, e2e3 = 2e1 - - - (26,26,26,624) 1950 74

Table 3: Invariants of the graph G2 related to L3(Fq), for q ∈ {2, 3}.
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4. Graphs and partial quasigroup rings

Let us finish with an illustrative example that focuses on those graphs
G1 and G2 related to the set Pn(K) of n-dimensional partial quasigroup
rings over a finite field K that are based on the known distribution of partial
Latin squares of order n ≤ 3 into isotopism classes. In this regard, Table 4
shows several graph invariants that are related to the isotopism classes of
P2(Fq), for q ∈ {2, 3}. Partial Latin squares are written row after row in a
single line, with empty cells represented by zeros.

F2 F3

G1 &G2 G1 G2 G1 &G2 G1 G2

Partial Latin square Vertices Edges Edges Triangles Vertices Edges Edges Triangles

00 00 (0,0,0,0) 0 0 0 (0,0,0,0) 0 0 0
10 00 (2,2,1,4) 12 16 7 (6,6,2,36) 108 118 20
10 01 (3,3,1,6) 18 23 7 (8,8,2,48) 144 156 22
10 02 (3,3,3,7) 21 30 16 (8,8,8,56) 168 192 48
10 20 (3,2,3,6) 18 25 12 (8,6,8,48) 144 164 42
12 00 (2,3,3,6) 18 25 12 (6,8,8,48) 144 164 42
12 20 (3,3,3,8) 24 33 13 (8,8,8,60) 180 204 38
12 21 (3,3,3,8) 24 33 13 (8,8,8,56) 168 192 48

Table 4: Invariants of the graphs G1 and G2 related to P2(Fq), for q ∈ {2, 3}.

Theorem 4. The set P2(K) is distributed into seven isotopism classes,
whatever the base field is.

Proof. A computational case study based on a similar reasoning to that
exposed in Example 2 enables us to ensure the result. If the characteristic
of the base field is distinct from two, then the seven isotopism classes under
consideration are those related to the next partial Latin squares of order 2

1 1

1

1

2

1 2 1 2

2

1 2

2 1

Otherwise, if the characteristic of the base field is two, then the isotopism
classes related to the last two partial Latin squares coincide. In this case,
the next partial Latin square corresponds to the seventh isotopism class

1

2

If the characteristic of the base field is distinct from two, the partial
quasigroup ring related to this partial Latin square is isotopic to that related
to the unique Latin square of the previous list.
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It is known [10] that there are 2, 8 and 81 distinct isotopism classes
of partial Latin squares of respective orders 1 to 3. In order to determine
those distinct isotopism classes that give rise to isotopic partial quasigroup
rings over the finite field F2, we have implemented the procedure isoAlg in
our previously mentioned computer system. With a total run time of 761
seconds, we have obtained that there exist 2, 7 and 72 distinct isotopism
classes of partial quasigroup rings of respective dimensions 1 to 3. Particu-
larly, the existence of two classes for the one-dimensional case agrees with
that exposed in Subsection 2.3. Besides, the seven isotopism classes for the
two-dimensional case agrees with Theorem 4. For the three-dimensional
case, the next nine pairs of non-isotopic partial Latin squares give rise to
isotopic partial quasigroup rings

1 2
2 and

1 2
2 1 ,

1 2
2

1
and

1 2
2 1

1
,

1 2
2

3
and

1 2
2 1

3

1 2
1

3
and

1 2
2 1
3

,

1 2
1 3 and

1 2 3
2 1 ,

1 2
1

3 2
and

1 2
2 1
3 1

1 2
2 3

1
and

1 2
2 1 3

1
,

1 2
1 3

3
and

1 2
2 1 3
3

,

1 2
1 3

3 2
and

1 2 3
2 1
3 1

The run time of 761 seconds that are required to determine the men-
tioned distribution of partial quasigroup rings reduces to only 30 seconds
in the same computer system if the invariants that we have just exposed in
Table 4 and those exposed in Table 5 are previously computed. The new
run time includes indeed the extra 9 seconds of computation that is required
for computing such invariants.

5. Conclusion and further studies

We have described in this paper a pair of graphs that enable us to define
faithful functors between finite-dimensional algebras over finite fields and
these graphs. The computation of related graph invariants plays a remark-
able role in the distribution of distinct families of algebras into isotopism
and isomorphism classes. Some preliminary results have been exposed in
this regard, particularly on the distribution of partial quasigroup rings over
finite fields. Based on the known classification of partial Latin squares into
isotopism classes, further work is required to determine completely this dis-
tribution.
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Partial Latin square Vertices Edges Partial Latin square Vertices Edges Partial Latin square Vertices Edges

100 000 000 (4,4,1,16) 48 100 010 002 (7,7,3,34) 120 031 302 (7,7,7,42) 126
120 000 000 (4,6,3,24) 72 120 001 002 (7,7,3,36) 108 120 210 301 (7,7,7,42) 126
123 000 000 (4,7,7,28) 84 120 200 002 (7,7,3,36) 108 120 213 001 (7,7,7,42) 126
100 200 000 (6,4,3,24) 72 120 200 001 (7,7,3,38) 114 120 213 300 (7,7,7,42) 126
100 010 000 (6,6,1,24) 72 120 210 001 (7,7,3,38) 114 120 001 312 (7,7,7,43) 129
100 020 000 (6,6,3,28) 84 120 201 010 (7,7,3,40) 120 120 201 302 (7,7,7,43) 129
120 200 000 (6,6,3,32) 96 120 201 012 (7,7,3,40) 120 120 231 300 (7,7,7,43) 129
120 210 000 (6,6,3,32) 96 100 020 003 (7,7,7,37) 111 123 231 312 (7,7,7,43) 129
120 000 300 (6,6,6,32) 96 120 002 003 (7,7,7,38) 114 120 003 312 (7,7,7,44) 132
120 000 310 (6,6,6,36) 108 120 002 300 (7,7,7,38) 114 120 013 301 (7,7,7,44) 132
120 001 000 (6,7,3,32) 96 120 003 300 (7,7,7,38) 114 120 013 302 (7,7,7,44) 132
120 012 000 (6,7,3,36) 108 120 001 300 (7,7,7,39) 117 120 200 312 (7,7,7,44) 132
120 003 000 (6,7,7,34) 102 120 200 003 (7,7,7,40) 120 120 203 301 (7,7,7,44) 132
120 000 302 (6,7,7,36) 108 120 200 302 (7,7,7,40) 120 123 210 301 (7,7,7,44) 132
123 200 000 (6,7,7,36) 108 120 210 003 (7,7,7,40) 120 123 031 310 (7,7,7,45) 135
120 013 000 (6,7,7,38) 114 123 010 001 (7,7,7,40) 120 123 200 312 (7,7,7,45) 135
123 210 000 (6,7,7,38) 114 123 200 300 (7,7,7,40) 120 123 230 310 (7,7,7,45) 135
123 230 000 (6,7,7,40) 120 120 001 302 (7,7,7,41) 123 123 012 230 (7,7,7,46) 138
123 231 000 (6,7,7,40) 120 120 001 310 (7,7,7,41) 123 123 210 031 (7,7,7,46) 138
100 200 300 (7,4,7,28) 84 120 201 300 (7,7,7,41) 123 123 201 312 (7,7,7,46) 138
100 200 010 (7,6,3,32) 96 123 200 010 (7,7,7,41) 123
120 200 010 (7,6,3,36) 108 120 003 310 (7,7,7,42) 126
100 200 030 (7,6,7,34) 102 120 010 301 (7,7,7,42) 126
120 030 300 (7,6,7,36) 108 120 010 302 (7,7,7,42) 126
120 200 300 (7,6,7,36) 108 120 012 300 (7,7,7,42) 126
120 010 300 (7,6,7,38) 114 120 013 300 (7,7,7,42) 126
120 210 300 (7,6,7,38) 114 120 200 013 (7,7,7,42) 126
120 230 300 (7,6,7,40) 120 120 203 001 (7,7,7,42) 126
120 230 310 (7,6,7,40) 120 120 203 300 (7,7,7,42) 126
100 010 001 (7,7,1,28) 84 123 010 300 (7,7,7,42) 126

Table 5: Invariants of the graph G1 related to non-abelian partial algebras in P3(F2).
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