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We characterize the family of nonexpansive mappings which are invariant under renormings and we also compare the families of
nonexpansive mappings under two equivalent norms.

1. Introduction

A Banach space (𝑋, ‖ ⋅ ‖) satisfies the fixed point property
(FPP) if every nonexpansive mapping 𝑇 : 𝐶 → 𝐶 has a
fixed point, where 𝐶 is a closed convex bounded subset of𝑋. For a long time, it was an open problem if the fixed point
property could be equivalent to the reflexivity. It was until
2008, when Lin [1] proved that there exists a nonreflexive
Banach space with the FPP. Actually, Lin used a renorming‖ ⋅ ‖𝐿 of the space ℓ1 such that (ℓ1, ‖ ⋅ ‖𝐿) has the FPP. One
year later, Domı́nguez-Benavides proved that every reflexive
Banach space can be renormed to have the FPP [2]. After
these two articles, the Fixed Point Property and Renorming
Theory were clearly connected. However, not all nonreflexive
Banach spaces can be renormed to have the FPP as it was
proved in [3]; in this work it is proved that ℓ∞ and ℓ1(Γ)whereΓ is an uncountable set cannot be renormed to have the FPP.
Recently, many works have appeared to be looking for new
examples of nonreflexive Banach spaces enjoying the FPP or
trying to find some structure on families of equivalent norms
with the FPP. In the first sense theworks should bementioned
[4–7]. In the second way the works are remarkable [8, 9].
After Lin’s result, the question remains open: does reflexivity
implies FPP? In this setting the relevant paper is [10].The FPP
under a renorming also has been studied for other kinds of
mappings; for example, see [11, 12].

From the papers cited in the previous paragraph the
FPP is not an isomorphic property. Moreover, the family of
nonexpansive mappings could be changed after a renorming.
For this reason, the aimof this paper is to say something about
the following question.

What happened with the family of nonexpansive map-
pings with another equivalent norm?

In order to do that, we make the following assumptions.
Let (𝑋, ‖ ⋅ ‖) be a normed space and 𝐶 a nonempty subset of𝑋; then for each ‖ ⋅ ‖-Lipschitz function𝑇 : 𝐶 → 𝐶we denote
by𝐾(𝑇, ‖ ⋅ ‖) its Lipschitz constant with respect to ‖ ⋅ ‖ and by
N(𝑋) the collection of equivalent norms on𝑋. For each ‖ ⋅ ‖0
norm on𝑋 we define

𝑁𝐸(𝐶, ‖⋅‖0) = {𝑆 : 𝐶 󳨀→ 𝐶 | 𝐾 (𝑆, ‖⋅‖0) ≤ 1} . (1)

2. The Family of Nonexpansive Mappings over
Every Renorming

In this section we will study some families of nonexpansive
mappings over every renorming and we will characterize
them. The first approximation is to characterize the set
S󸀠(𝐶) = ⋂‖⋅‖∈N(𝑋)𝑁𝐸(𝐶, ‖ ⋅ ‖), when 𝐶 is a convex, closed,
and bounded set in 𝑋. It is worthwhile to mention that we
prove that at least there are many elements in 𝑁𝐸(𝐶, ‖ ⋅ ‖)
as elements in 𝑁𝐸([0, 1], | ⋅ |). Moreover, we show that their
structure is similar.
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For each 𝑥 ∈ 𝐶 we call 𝑓𝑥 : 𝐶 → 𝐶 the constant function𝑥 and we denote by 𝐼 : 𝐶 → 𝐶 the identity map. We define

S (𝐶) = conv ({𝑓𝑥 | 𝑥 ∈ 𝐶} ∪ {𝐼}) . (2)

Remark 1. It is clear that, for each norm ‖ ⋅ ‖ on 𝑋, 𝑇 ∈𝑁𝐸(𝐶, ‖ ⋅ ‖) for all 𝑇 ∈ S(𝐶). It is easy to prove that each
element 𝑇 ∈ S(𝐶) is of the form 𝑇 = 𝑦 + 𝛼𝐼, for some 𝑦 ∈ 𝑋
and 0 ≤ 𝛼 ≤ 1.

In the rest of this paper we will denote by F the scalar
field R or C, associated with the normed space. In order to
characterize the setS󸀠(𝐶)we will give the following theorem.

Theorem 2. Let 𝐶 be a nonempty subset of a normed space𝑋
and 𝑇 : 𝐶 → 𝐶; then the next statements are equivalent.

(1) For each norm ‖ ⋅ ‖ on𝑋 one has that 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖).
(2) For each ‖ ⋅ ‖ ∈ N(𝑋) one has that 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖).
(3) ‖ ⋅ ‖0 ∈ N(𝑋) exists such that 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖0) and for

each 𝑥, 𝑦 ∈ 𝐶, 𝑇𝑥 − 𝑇𝑦 ∈ span{𝑥 − 𝑦} holds.
(4) For each 𝑥, 𝑦 ∈ 𝐶𝛼 ∈ F exists with |𝛼| ≤ 1 such that𝛼(𝑥 − 𝑦) = 𝑇𝑥 − 𝑇𝑦.

Proof. It is straightforward that (1) implies (2).
We are going to prove that (2) implies (3); in order to

do this we proceed by contraposition. We may suppose that‖ ⋅ ‖0 ∈ N(𝑋) exist such that 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖0) and 𝑥, 𝑦 ∈ 𝐶
such that 𝑇𝑥 − 𝑇𝑦 ∉ span{𝑥 − 𝑦}.

Since𝑇𝑥−𝑇𝑦 ∉ span{𝑥−𝑦} then𝑌 = span{𝑥−𝑦, 𝑇𝑥−𝑇𝑦}
has dimension 2 and then a projection 𝑃 from 𝑋 to 𝑌 exists
that is ‖⋅‖0-bounded. Since𝑌 is finite and dimensional and the
set {𝑥−𝑦, 𝑇𝑥−𝑇𝑦} is linear and independent, we can construct
a norm ‖ ⋅ ‖1 in 𝑌 such that ‖𝑥 − 𝑦‖1 < ‖𝑇𝑥 − 𝑇𝑦‖1; note that‖𝑇𝑥−𝑇𝑦‖1−‖𝑥−𝑦‖1 could be as large aswe desire.We consider
the function ‖ ⋅ ‖2 defined in𝑋 by ‖𝑥‖2 = ‖𝑃𝑥‖1 +‖(𝐼−𝑃)𝑥‖0;
it is easy to check that ‖ ⋅‖2 is a norm on𝑋. Nowwe will prove
that ‖⋅‖2 is equivalent to ‖⋅‖0. Since ‖⋅‖0 and ‖⋅‖1 are equivalent
in 𝑌 then 0 < 𝑙 ≤ 𝑢 the optimal constants exist such that

𝑙 ‖𝑎‖0 ≤ ‖𝑎‖1 ≤ 𝑢 ‖𝑎‖0 for each 𝑎 ∈ 𝑌. (3)

Since 𝑃 is ‖ ⋅ ‖0-bounded, we have for each 𝑧 ∈ 𝑋
‖𝑧‖2 = ‖𝑃𝑧‖1 + ‖(𝐼 − 𝑃) 𝑧‖0 ≤ 𝑢 ‖𝑃𝑧‖0 + ‖(𝐼 − 𝑃) 𝑧‖0

≤ (𝑢 ‖𝑃‖ + ‖𝐼 − 𝑃‖) ‖𝑧‖0 . (4)

On the other hand we have

‖𝑧‖2 = ‖𝑃𝑧‖1 + ‖(𝐼 − 𝑃) 𝑧‖0 ≥ 𝑙 ‖𝑃𝑧‖0 + ‖(𝐼 − 𝑃) 𝑧‖0 . (5)

There are two possibilities, 𝑙 ≥ 1 or 𝑙 < 1. If 𝑙 ≥ 1 then
‖𝑧‖2 ≥ ‖𝑃𝑧‖0 + ‖(𝐼 − 𝑃) 𝑧‖0 ≥ ‖𝑧‖0 . (6)

If 𝑙 < 1 then
‖𝑧‖2 ≥ 𝑙 ‖𝑃𝑧‖0 + 𝑙 ‖(𝐼 − 𝑃) 𝑧‖0

= 𝑙 (‖𝑃𝑧‖0 + ‖(𝐼 − 𝑃) 𝑧‖0) ≥ 𝑙 ‖𝑧‖0 ; (7)

thus ‖ ⋅ ‖2 is equivalent to ‖ ⋅ ‖0.

Now we have

󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑃 (𝑥 − 𝑦)󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩(𝐼 − 𝑃) (𝑥 − 𝑦)󵄩󵄩󵄩󵄩0
= 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩1 < 󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩1
= 󵄩󵄩󵄩󵄩𝑃 (𝑇𝑥 − 𝑇𝑦)󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩(𝐼 − 𝑃) (𝑇𝑥 − 𝑇𝑦)󵄩󵄩󵄩󵄩0
= 󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩2 ;

(8)

that is, 𝑇 ∉ 𝑁𝐸(𝐶, ‖ ⋅ ‖2).
Nowweprove that (3) implies (4). Let𝑥, 𝑦 ∈ 𝐶; if𝑇𝑥 = 𝑇𝑦

the proof is over because 𝛼 = 0 is the required constant; then
without loss of generality wemay assume that𝑇𝑥 ̸= 𝑇𝑦; hence𝑥 ̸= 𝑦 and since 𝑇𝑥 − 𝑇𝑦 ∈ span{𝑥 − 𝑦} then 𝛼 ∈ F exist such
that 𝛼(𝑥 − 𝑦) = 𝑇𝑥 − 𝑇𝑦; thus

󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩0 ≥ 󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩0 = |𝛼| 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩0 . (9)

Therefore |𝛼| ≤ 1.
Now we show that (4) implies (1). Let ‖ ⋅ ‖ be a norm on𝑋 and 𝑥, 𝑦 ∈ 𝐶; then 𝛼 ∈ F exists with |𝛼| ≤ 1 such that𝛼(𝑥 − 𝑦) = 𝑇𝑥 − 𝑇𝑦; therefore

󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ≥ |𝛼| 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 . (10)

Thus 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖).
Remark 3. Note that𝐾(𝑇, ‖⋅‖2) could be arbitrary large, since
in the proof of (2) implying (3) in the previous theorem we
can take ‖𝑇𝑥 − 𝑇𝑦‖1 − ‖𝑥 − 𝑦‖1 as large as we want.
Lemma 4. Let 𝐶 be a nonempty subset of a normed space, 𝑇 :𝐶 → 𝐶, and 𝑥, 𝑦, 𝑧 ∈ 𝐶 are distinct such that, for each 𝛼 ∈ F ,
and 𝑧 ̸= 𝛼𝑥 + (1 − 𝛼)𝑦, 𝛼𝑥,𝑦, 𝛼𝑥,𝑧, 𝛼𝑦,𝑧 ∈ F exist with

𝛼𝑥,𝑦 (𝑥 − 𝑦) = 𝑇𝑥 − 𝑇𝑦,
𝛼𝑥,𝑧 (𝑥 − 𝑧) = 𝑇𝑥 − 𝑇𝑧,
𝛼𝑦,𝑧 (𝑦 − 𝑧) = 𝑇𝑦 − 𝑇𝑧;

(11)

then 𝛼𝑥,𝑦 = 𝛼𝑥,𝑧 = 𝛼𝑦,𝑧.
Proof. From (11) it follows that

𝛼𝑦,𝑧 (𝑦 − 𝑧) = 𝛼𝑥,𝑧 (𝑥 − 𝑧) − 𝛼𝑥,𝑦 (𝑥 − 𝑦) . (12)

Let spanR{𝑥 − 𝑦, 𝑥 − 𝑧} = {𝑟1(𝑥 − 𝑦) + 𝑟2(𝑥 − 𝑧) | 𝑟1, 𝑟2 ∈ R}.
Since the set {𝑥−𝑦, 𝑥−𝑧} is linearly independent, then we can
define the operator𝑅 : span{𝑥−𝑦, 𝑥−𝑧} → spanR{𝑥−𝑦, 𝑥−𝑧}
by 𝑅(𝛼(𝑥 − 𝑦) + 𝛽(𝑥 − 𝑧)) = Re(𝛼)(𝑥 − 𝑦) + Re(𝛽)(𝑥 − 𝑧) for
each 𝛼, 𝛽 ∈ F . It is clear that 𝑅 is a real linear projection,

𝑅 (𝛼𝑤) = Re (𝛼) 𝑅 (𝑤) ,
for each 𝛼 ∈ F , 𝑤 ∈ spanR {𝑥 − 𝑦, 𝑥 − 𝑧} , (13)
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and 𝑦 − 𝑧 ∈ spanR{𝑥 − 𝑦, 𝑥 − 𝑧}. For this and (12) we have

Re (𝛼𝑦,𝑧) (𝑦 − 𝑧) = Re (𝛼𝑦,𝑧) 𝑅 (𝑦 − 𝑧)
= 𝑅 (𝛼𝑦,𝑧 (𝑦 − 𝑧))
= 𝑅 (𝛼𝑥,𝑧 (𝑥 − 𝑧) − 𝛼𝑥,𝑦 (𝑥 − 𝑦))
= Re (𝛼𝑥,𝑧) (𝑥 − 𝑧)

− Re (𝛼𝑥,𝑦) (𝑥 − 𝑦) .

(14)

We define the linear operator 𝜙 : spanR{𝑥 − 𝑦, 𝑥 − 𝑧} → R2

by 𝜙(𝑥 − 𝑦) = (1, 0) = 𝑒1 and 𝜙(𝑥 − 𝑧) = (0, 1) = 𝑒2; then
Re (𝛼𝑥,𝑦) 𝑒1 = 𝜙 (Re (𝛼𝑥,𝑦) (𝑥 − 𝑦)) ,
Re (𝛼𝑥,𝑧) 𝑒2 = 𝜙 (Re (𝛼𝑥,𝑧) (𝑥 − 𝑧)) ; (15)

thus

Re (𝛼𝑥,𝑧) 𝑒2 − Re (𝛼𝑥,𝑦) 𝑒1
= 𝜙 (Re (𝛼𝑥,𝑧) (𝑥 − 𝑧) − Re (𝛼𝑥,𝑦) (𝑥 − 𝑦))
= 𝜙 (Re (𝛼𝑦,𝑧) (𝑦 − 𝑧))
= 𝜙 (Re (𝛼𝑦,𝑧) [(𝑥 − 𝑧) − (𝑥 − 𝑦)])
= Re (𝛼𝑦,𝑧) (𝑒2 − 𝑒1) .

(16)

We consider the triangles in R2:

△0𝑒1𝑒2,
△0Re (𝛼𝑥,𝑦) 𝑒1 Re (𝛼𝑥,𝑧) 𝑒2. (17)

Since

Re (𝛼𝑥,𝑦) 𝑒1 ∈ spanR {𝑒1} ,
Re (𝛼𝑥,𝑧) 𝑒2 ∈ spanR {𝑒2} ,

Re (𝛼𝑥,𝑧) 𝑒2 − Re (𝛼𝑥,𝑦) 𝑒1 ∈ span {𝑒2 − 𝑒1} ,
(18)

then the triangles are similar; thus

Re (𝛼𝑥,𝑦) = Re (𝛼𝑥,𝑧) = Re (𝛼𝑦,𝑧) . (19)

In a similar way we prove that Im(𝛼𝑥,𝑦) = Im(𝛼𝑥,𝑧) =
Im(𝛼𝑦,𝑧), by considering the operator𝑅(𝛼(𝑥−𝑦)+𝛽(𝑥−𝑧)) =
Im(𝛼)(𝑥 − 𝑦) + Im(𝛽)(𝑥 − 𝑧).

Then 𝛼𝑥,𝑦 = 𝛼𝑥,𝑧 = 𝛼𝑦,𝑧.
Theorem 5. Under assumptions of Theorem 2 and if 𝐶 has at
most two elements or for each distinct 𝑥, 𝑦 ∈ 𝐶 𝑧 ∈ 𝐶 exists
such that, for each 𝛼 ∈ F , 𝑧 ̸= 𝛼𝑥+(1−𝛼)𝑦, then the statement,

(A) 𝑇 = 𝑦 + 𝛼𝐼 for some 𝛼 ∈ F with |𝛼| ≤ 1 and 𝑦 ∈ 𝑋,

is equivalent to each statement in that theorem.

Proof. The statement (A) implies that (1) in Theorem 2 is
obvious.

Nowwe show that (4) ofTheorem2 implies (A). If𝐶 = {𝑥}
then 𝑇𝑥 = 0 + 1𝐼𝑥; if 𝐶 = {𝑥, 𝑦} with 𝑥 ̸= 𝑦 and 𝛼 is such that𝛼(𝑥 − 𝑦) = 𝑇𝑥 − 𝑇𝑦 then 𝑇𝑧 = 𝑤 + 𝛼𝐼𝑧 with 𝑤 = 𝑇𝑦 − 𝛼𝑦 for
each 𝑧 ∈ 𝐶. We suppose that for each distinct 𝑥, 𝑦 ∈ 𝐶𝑧 ∈ 𝐶
exists such that, for each 𝛼 ∈ F , 𝑧 ̸= 𝛼𝑥 + (1 − 𝛼)𝑦. For each𝑥, 𝑦 ∈ 𝐶 let 𝛼𝑥,𝑦 ∈ F such that

𝛼𝑥,𝑦 (𝑥 − 𝑦) = 𝑇𝑥 − 𝑇𝑦. (20)

It is clear that𝛼𝑥,𝑦 = 𝛼𝑦,𝑥. Let𝑥, 𝑦 ∈ 𝐶with𝑥 ̸= 𝑦. It is enough
to prove that, for each distinct 𝑧1, 𝑧2 ∈ 𝐶, 𝛼𝑧1 ,𝑧2 = 𝛼𝑥,𝑦. Let𝑧1, 𝑧2 ∈ 𝐶; we may suppose without loss of generality that the
following cases are exhaustive.

(i) 𝛼1, 𝛼2 ∈ F exist such that

𝑧1 = 𝛼1𝑥 + (1 − 𝛼1) 𝑦,
𝑧2 = 𝛼2𝑥 + (1 − 𝛼2) 𝑦. (21)

(ii) 𝛼1 ∈ F exists such that

𝑧1 = 𝛼1𝑥 + (1 − 𝛼1) 𝑦, (22)

and for each 𝛼2 ∈ F

𝑧2 ̸= 𝛼2𝑥 + (1 − 𝛼2) 𝑦. (23)

(iii) For each 𝛼1, 𝛼2 ∈ F

𝑧1 ̸= 𝛼1𝑥 + (1 − 𝛼1) 𝑦,
𝑧2 ̸= 𝛼2𝑥 + (1 − 𝛼2) 𝑦. (24)

We assume (i) and 𝑧1 ̸= 𝑥; then by hypothesis 𝑧 ∈ 𝐶 exist
such that for each 𝛼 ∈ F

𝑧 ̸= 𝛼𝑥 + (1 − 𝛼) 𝑦,
𝑧 ̸= 𝛼𝑥 + (1 − 𝛼) 𝑧1,
𝑧 ̸= 𝛼𝑧1 + (1 − 𝛼) 𝑧2;

(25)

then by Lemma 4

𝛼𝑥,𝑦 = 𝛼𝑥,𝑧 = 𝛼𝑧,𝑦,
𝛼𝑥,𝑧1 = 𝛼𝑥,𝑧 = 𝛼𝑧,𝑧1 ,
𝛼𝑧1 ,𝑧2 = 𝛼𝑧1,𝑧 = 𝛼𝑧,𝑧2 .

(26)

Thus 𝛼𝑥,𝑦 = 𝛼𝑥,𝑧 = 𝛼𝑧,𝑧1 = 𝛼𝑧1 ,𝑧2 .
We suppose (ii), 𝑧1 ̸= 𝑥, and 𝑧1 ̸= 𝑦; then for each 𝛼 ∈ F

𝑧2 ̸= 𝛼𝑥 + (1 − 𝛼) 𝑧1; (27)

thus by Lemma 4

𝛼𝑥,𝑦 = 𝛼𝑥,𝑧2 = 𝛼𝑧2 ,𝑦,
𝛼𝑥,𝑧1 = 𝛼𝑥,𝑧2 = 𝛼𝑧2 ,𝑧1 .

(28)

Then 𝛼𝑧1,𝑧2 = 𝛼𝑥,𝑦.
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We suppose (iii) and we may assume that for each 𝛼 ∈ F

𝑥 ̸= 𝛼𝑧1 + (1 − 𝛼) 𝑧2; (29)

then by Lemma 4

𝛼𝑥,𝑦 = 𝛼𝑥,𝑧1 = 𝛼𝑧1 ,𝑦,
𝛼𝑧1 ,𝑧2 = 𝛼𝑧1 ,𝑥 = 𝛼𝑥,𝑧2 .

(30)

Then 𝛼𝑧1,𝑧2 = 𝛼𝑥,𝑧1 = 𝛼𝑥,𝑦; hence 𝛼𝑧1 ,𝑧2 = 𝛼𝑥,𝑦 for each distinct𝑧1, 𝑧2 ∈ 𝐶.
Remark 6. If 𝐶 is a nonempty subset of a normed space (𝑋,‖ ⋅ ‖), in such a way that it lies inside a one-dimensional affine
subspace of 𝑋, then 𝐷 ⊂ F and a surjective isometry 𝜙 : (𝐶,‖ ⋅ ‖) → (𝐷, | ⋅ |) exist. If,additionally, 𝐶 is convex, then 𝜙 can
be affine. To prove this, we may suppose that 𝐶 has at least
two points. Let 𝑥, 𝑦 ∈ 𝐶 with 𝑥 ̸= 𝑦 and 𝑠 = ‖𝑥 − 𝑦‖; then
we define 𝜙 : (𝐶, ‖ ⋅ ‖) → (F , | ⋅ |) by 𝜙(𝑧) = 𝛼𝑧𝑠 where 𝛼𝑧
is the unique element in F such that 𝑧 = 𝛼𝑧𝑥 + (1 − 𝛼𝑧)𝑦; it
is not hard to check that 𝜙 is a surjective isometry from 𝐶 to𝐷 = 𝜙(𝐶), and if 𝐶 is convex, then 𝜙 is affine.

It is not hard to prove that the set 𝐷 and the isometry 𝜙
can be constructed independent of the norm in𝐶; for this it is
sufficient to consider the renorming 𝑟|⋅| on F with 𝑟 = ‖𝑥−𝑦‖,𝜙 : 𝐶 → F defined by 𝜙(𝑧) = 𝛼𝑧, and𝐷 = 𝜙(𝐶).
Theorem 7. Under assumptions of Theorem 2 and if 𝑥, 𝑦 ∈ 𝐶
exist such that for each 𝑧 ∈ 𝐶 𝛼 ∈ F exists with 𝑧 = 𝛼𝑥 + (1 −𝛼)𝑦, then (1) to (4) in Theorem 2 are equivalent to each of the
following statements.

(B) For each norm ‖ ⋅ ‖ on 𝑋, 𝐷 ⊂ F , 𝑓 ∈ 𝑁𝐸(F , | ⋅ |), and
a surjective isometry 𝜙 : (𝐶, ‖ ⋅ ‖) → (𝐷, | ⋅ |) exist with𝑇 = 𝜙−1𝑓|𝐷𝜙.

(C) 𝐷 ⊂ F , a surjective function 𝜙 : 𝐶 → 𝐷, and 𝑓 ∈𝑁𝐸(F , | ⋅ |) exist with 𝑇 = 𝜙−1𝑓|𝐷𝜙, and for each norm‖ ⋅ ‖ on 𝑋, 𝑟| ⋅ | ∈ N(F) exist such that 𝜙 is a ‖ ⋅ ‖ to𝑟| ⋅ |-isometry.

Proof. First we prove that (B) implies (1) ofTheorem2. Let ‖⋅‖
be a norm on𝑋; then𝐷 ⊂ F , 𝑓 ∈ 𝑁𝐸(F , | ⋅ |), and a surjective
isometry 𝜙 : (𝐶, ‖ ⋅ ‖) → (𝐷, | ⋅ |) exist with 𝑇 = 𝜙−1𝑓|𝐷𝜙
and 𝑓|𝐷 = 𝜙𝑇𝜙−1; it is not hard to prove that 𝑇 is a ‖ ⋅ ‖-
Lipschitz function with 𝐾(𝑇, ‖ ⋅ ‖) ≤ 𝐾(𝑓, | ⋅ |) ≤ 1; therefore𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖).

Now we prove that (1) of Theorem 2 implies (B). Let ‖ ⋅ ‖
be a norm on 𝑋 and 𝑥, 𝑦 ∈ 𝐶 such that for each 𝑧 ∈ 𝐶𝛼𝑧 ∈ F

exist with 𝑧 = 𝛼𝑧𝑥 + (1 − 𝛼𝑧)𝑦; by Remark 6 𝐷 ⊂ F and a
surjective isometry 𝜙 : (𝐶, ‖ ⋅ ‖) → (𝐷, | ⋅ |) exist; we define𝑔 = 𝜙𝑇𝜙−1; thus𝐾(𝑔, |⋅|) = 𝐾(𝑇, ‖⋅‖) ≤ 1 and by Kirszbraun’s
Theorem [13, 14], an extension𝑓 : (F , | ⋅ |) → (F , | ⋅ |) of 𝑔 exists
such that𝐾(𝑓, | ⋅ |) = 𝐾(𝑔, | ⋅ |) ≤ 1.

We prove that (B) implies (C). By Remark 6 𝐷 ⊂ F and
a surjective 𝜙 : 𝐶 → 𝐷 exist such that, for each norm ‖ ⋅ ‖
on 𝑋, 𝑟| ⋅ | ∈ N(F) exists so that 𝜙 : (𝐶, ‖ ⋅ ‖) → (𝐷, 𝑟| ⋅ |)
is an isometry. We define 𝑔 = 𝜙𝑇𝜙−1; by (A) we have that𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖); thus 𝑔 ∈ 𝑁𝐸(𝐷, 𝑟| ⋅ |). Since the Lipschitz
constant of a function defined from a subset of F to itself is

independent of the norm on F , then 𝑔 ∈ 𝑁𝐸(𝐷, | ⋅ |). Hence
again by Kirszbraun’s Theorem, an extension 𝑓 : (F , | ⋅ |) →(F , | ⋅ |) exists with 𝐾(𝑓, | ⋅ |) = 𝐾(𝑔, | ⋅ |) ≤ 1.

Now we prove that (C) implies (B). Let ‖ ⋅ ‖ be a norm
on 𝑋; then 𝑟| ⋅ | ∈ N(F) exist such that 𝜙 is a ‖ ⋅ ‖ to 𝑟| ⋅ |-
isometry. We define 𝐷󸀠 = 𝑟𝐷, 𝜓 = 𝑟𝜙, and 𝑔 = 𝜓𝑇𝜓−1; it
is clear that 𝜓 : (𝐶, ‖ ⋅ ‖) → (𝐷󸀠, | ⋅ |) is an isometry; thus𝐾(𝑔, |⋅|) = 𝐾(𝑇, ‖⋅‖) ≤ 1; then again by Kirszbraun’sTheorem
the conclusion follows.

Corollary 8. Let (𝑋, ‖ ⋅ ‖) be a normed space and 𝐶 a
nonempty, convex, closed, and bounded subset of𝑋; then

(1) if 𝑥, 𝑦 ∈ 𝐶 exist such that for each 𝑧 ∈ 𝐶𝛼 ∈ F exists
with 𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦, then 𝐷 ⊂ F and a surjective
isometry 𝜙 : (𝐶, ‖ ⋅ ‖) → (𝐷, | ⋅ |) exist in such a way
that for each 𝑇 ∈ S󸀠(𝐶)𝑓 ∈ 𝑁𝐸(𝐷, | ⋅ |) exist with𝐾(𝑓, | ⋅ |) = 𝐾(𝑇, ‖ ⋅ ‖) and 𝑇 = 𝜙−1𝑓𝜙;

(2) if for each 𝑥, 𝑦 ∈ 𝐶𝑧 ∈ 𝐶 exists such that, for each𝛼 ∈ F , 𝑧 ̸= 𝛼𝑥 + (1 − 𝛼𝑦), then S󸀠(𝐶) = {𝑇 : 𝐶 → 𝐶 |𝑇 = 𝑦 + 𝛼𝐼 for some 𝑦 ∈ 𝑋 and |𝛼| ≤ 1}.
In general S󸀠(𝐶) is not equal to S(𝐶); for instance we

take 𝐶 = [−1, 1] with the absolute value norm and 𝑇 :[−1, 1] → [−1, 1] the operator defined by 𝑇𝑥 = −𝑥; then by
Remark 1 𝑇 ∉ S(𝐶) and by Corollary 8 𝑇 ∈ S󸀠(𝐶).
Remark 9. It is important to note that if 𝐶 is convex, closed,
and bounded, then each element in S󸀠(𝐶) has a fixed point;
to check this we consider the following two cases.

(1) If 𝐶 lies inside a one-dimensional affine subspace of𝑋, then by Schauder’sTheorem the conclusion is clear.
(2) We suppose that for each 𝑥, 𝑦 ∈ 𝐶𝑧 ∈ 𝐶 exists such

that, for each 𝛼 ∈ F , 𝑧 ̸= 𝛼𝑥+ (1−𝛼)𝑦. Let 𝑇 ∈ S󸀠(𝐶);
then byTheorem 5 𝑇𝑥 = 𝑦 + 𝛼𝑥 for some 𝛼 ∈ F with|𝛼| ≤ 1 and 𝑦 ∈ 𝑋; then 𝑧 ∈ 𝐶 exists such that {𝑧, 𝑦}
is linearly independent; let 𝑌 = span{𝑧, 𝑦} and 𝐶1 =𝑌 ∩ 𝐶; it is not hard to prove that 𝑇(𝐶1) ⊂ 𝐶1; thus
again by Schauder’s Theorem, 𝑇|𝐶1 has a fixed point.

Corollary 10. Let (𝑋, ‖ ⋅ ‖) be a normed space and 𝐶 a
nonempty, convex, closed, and bounded subset of 𝑋 such that
for each 𝑥, 𝑦 ∈ 𝐶𝑧 ∈ 𝐶 exist with 𝑧 ̸= 𝛼𝑥 + (1 − 𝛼)𝑦; then
for each 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖) \ 𝑆󸀠(𝐶), ‖ ⋅ ‖1 ∈ N(𝑋) exists with𝑇 ∉ 𝑁𝐸(𝐶, ‖ ⋅ ‖1).

In particular if 𝑇 is a nonlinear operator or an operator
without fixed points, then a renorming ‖ ⋅ ‖1 of 𝑋 exists in
such a way that 𝑇 is not a ‖ ⋅ ‖1-nonexpansive operator and
by Remark 3, 𝐾(𝑇, ‖ ⋅ ‖1) is large as one desires.
Theorem 11. Under assumptions of Theorem 2, the following
statements are equivalent to each statement in that theorem.

(D) For each of the norms ‖ ⋅ ‖ and ‖ ⋅ ‖1 on𝑋,𝐾(𝑇, ‖ ⋅ ‖) =𝐾(𝑇, ‖ ⋅ ‖1) ≤ 1.
(E) For each ‖⋅‖, ‖⋅‖1 ∈ N(𝑋),𝐾(𝑇, ‖⋅‖) = 𝐾(𝑇, ‖⋅‖1) ≤ 1.

Proof. It is clear that (D) implies (E); now we prove that(E) implies (3) of Theorem 2. For this we proceed by
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contraposition; hence we may suppose that ‖ ⋅ ‖ ∈ N(𝑋)
exist with 𝐾(𝑇, ‖ ⋅ ‖) ≤ 1 and 𝑥, 𝑦 ∈ 𝐶 such that 𝑇𝑥 − 𝑇𝑦 ∉
span{𝑥 − 𝑦}; there exists ‖ ⋅ ‖1 ∈ N(𝑋) with 𝐾(𝑇, ‖ ⋅ ‖1) > 1,
by using Remark 3 and similar arguments of the proof of (2)
implying (3) in Theorem 2.

We prove that (3) of Theorem 2 implies (D). We have the
following two cases.

(i) For each 𝑥, 𝑦 ∈ 𝐶𝑧 ∈ 𝐶 exist such that, for each 𝛼 ∈ F ,𝑧 ̸= 𝛼𝑥 + (1 − 𝛼)𝑦.
(ii) 𝑥, 𝑦 ∈ 𝐶 exist such that for each 𝑧 ∈ 𝐶𝛼 ∈ F exist with𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦.

We suppose (i); then byTheorem 5,𝑇 = 𝑦+𝛼𝐼 for some𝑦 ∈ 𝑋
and |𝛼| ≤ 1; thus for each norm the Lipschitz constant of 𝑇 is|𝛼|.

Nowwe assume (ii); then by (C) inTheorem 7 and the fact
that the Lipschitz constant of functions defined from subsets
of F to itself is independent of the norm on F , we have 𝐾(𝑇,‖ ⋅ ‖) = 𝐾(𝑇, ‖ ⋅ ‖1) ≤ 1 for each of the norms ‖ ⋅ ‖ and ‖ ⋅ ‖1 on𝑋.

3. Comparing Families of
Nonexpansive Mappings

Now, we will compare the families of nonexpansivemappings
by given conditions in which the families are different. Before
that, to prove the two theorems in this section we need to
prove two technical lemmas.

Definition 12. Let 𝑋 be vectorial space endowed with two
norms ‖ ⋅ ‖1 and ‖ ⋅ ‖2 and 𝐶 a subset of 𝑋. One will say that‖ ⋅ ‖1 is collinear to ‖ ⋅ ‖2 in 𝐶, if there exists 𝜆 > 0 such that‖𝑥‖1 = 𝜆‖𝑥‖2 for all 𝑥 ∈ 𝐶. We can omit the subset 𝐶 if the
context is clear.

Remark 13. It is clear that the collinearity between norms is
an equivalent relation. Let 𝑇 : 𝐶 → 𝐶; note that𝐾(𝑇, ‖ ⋅ ‖1) =𝐾(𝑇, ‖ ⋅ ‖2) if ‖ ⋅ ‖1 is collinear to ‖ ⋅ ‖2 in 𝐶 − 𝐶.
Lemma 14. Let 𝑋 be a normed space. If 𝐶 is a nontrivial
convex subset of𝑋with 0 ∈ 𝐶 and ‖⋅‖1 and ‖⋅‖2 are two norms
over𝑋 such that they are not collinear in 𝐶, then 𝑥, 𝑦 ∈ 𝐶 \ {0}
exist such that ‖𝑥‖1 = ‖𝑦‖1 and ‖𝑦‖2 > ‖𝑥‖2.
Proof. Since ‖⋅‖1 and ‖⋅‖2 are not collinear in𝐶, then it is false
that 𝜆 > 0 exists such that for all 𝑧 ∈ 𝐶 we have ‖𝑧‖1 = 𝜆‖𝑧‖2;
that is, the function𝑓(𝑧) = ‖𝑧‖1/‖𝑧‖2 defined on𝐶\{0} is not
constant; thus 𝑥󸀠, 𝑦󸀠 ∈ 𝐶 \ {0} exist such that ‖𝑥󸀠‖1/‖𝑥󸀠‖2 >‖𝑦󸀠‖1/‖𝑦󸀠‖2.

If ‖𝑥󸀠‖1 = ‖𝑦󸀠‖1 then we concluded the proof. Else, we call𝑥 the element in {𝑥󸀠, 𝑦󸀠} such that ‖𝑥‖1 = min{‖𝑥󸀠‖1, ‖𝑦󸀠‖1};
if 𝑥 = 𝑥󸀠 then we take 𝑦 = (‖𝑥‖1/‖𝑦󸀠‖1)𝑦󸀠, so ‖𝑦‖1 = ‖𝑥‖1;
since 𝐶 is convex and 0 ∈ 𝐶 we have that 𝑦 ∈ 𝐶. Therefore‖𝑥‖1 = ‖𝑦‖1 and ‖𝑦‖1/‖𝑦‖2 = ‖𝑦󸀠‖1/‖𝑦󸀠‖2; thus ‖𝑥‖2 < ‖𝑦‖2.

If 𝑥 = 𝑦󸀠 the proof is similar.

Lemma 15. Let𝑋 be a normed space, 𝐶 a nonempty subset of𝑋, ‖ ⋅ ‖1 and ‖ ⋅ ‖2 norms over𝑋; then the following statements
are equivalent.

(1) ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are collinear in 𝐶 − 𝐶.
(2) For each 𝑦 ∈ 𝐶 the norms ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are collinear

in 𝐶 − 𝑦.
Proof. It is clear that (1) implies (2); thus we are going to
show that (2) implies (1). We may suppose without loss of
generality that 𝐶 have at least two elements. For each 𝑦 ∈ 𝐶
we define 𝜆𝑦 > 0 as the scalar such that

󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩1 = 𝜆𝑦 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 ∀𝑥 ∈ 𝐶. (31)

Let 𝑦0 ∈ 𝐶; then for all 𝑥 ∈ 𝐶 we have that ‖𝑥 − 𝑦0‖1 =𝜆𝑦0‖𝑥 − 𝑦0‖2 and ‖𝑥 − 𝑦0‖1 = 𝜆𝑥‖𝑥 − 𝑦0‖2; since 𝐶 has more
than one element we have 𝜆𝑥 = 𝜆𝑦0 for all 𝑥 ∈ 𝐶; that is‖𝑥−𝑦‖1 = 𝜆𝑦0‖𝑥−𝑦‖2 for all 𝑥, 𝑦 ∈ 𝐶 and then ‖ ⋅ ‖1 and ‖ ⋅ ‖2
which conclude the proof.

Definition 16. Given normed spaces 𝑋1, 𝑋2, 𝑌1, and 𝑌2 and
for 𝑖 = 1, 2, 𝐶𝑖 ⊂ 𝑋𝑖, and 𝐷𝑖 ⊂ 𝑌𝑖 being convex, one calls
that 𝑇 : 𝐶1 → 𝐶2 and 𝑆 : 𝐷1 → 𝐷2 are isometrically affine
equivalent, in symbols 𝑇 ≃ 𝑆, if affine surjective isometries𝜙𝑖 : 𝐶1 → 𝐷𝑖 for 𝑖 = 1, 2 exist, such that 𝑇 = 𝜙−12 𝑆𝜙1 and𝑆 = 𝜙2𝑇𝜙−11 .

The intuition is that two operators are isometrically affine
equivalent if they have essentially the same transformation.

D1 D2S

T
C1 C2

𝜙1 𝜙2
(32)

The following lemma summarizes some properties of the
isometrically affine relation.

Lemma 17. Let 𝑇 ≃ 𝑆; then one has the following.

(1) 𝑇 is continuous if and only if 𝑆 is continuous; moreover𝑇 and 𝑆 have the same modulus of continuity 𝜔(𝑡);
hence the affine isometry relation preserves uniform
continuity and the Lipschitzian property with the same
Lipschitz constant.

(2) 𝑇 is affine if and only if 𝑆 is affine.

The previous lemma allows us to translate properties of
real functions to functions defined between arbitrary Banach
spaces; this provides us with elements to ensure the existence
of operators with desired properties.

Theorem 18. Let (𝑋, ‖⋅‖) be a normed space,𝐶 be a nontrivial
convex subset of 𝑋, and 𝑓 be a function; then we have the
following.

(1) If 𝑓 ≃ 𝑔 with 𝑔 : ([0, 1], | ⋅ |) → ([0, 1], | ⋅ |) is
Lipschitzian and 𝑥, 𝑦 ∈ 𝐶 and 𝑥 ̸= 𝑦, then 𝑇 : 𝐶 → 𝐶
exists as Lipschitzian such that 𝐾(𝑇, ‖ ⋅ ‖) = 𝐾(𝑓, | ⋅ |)
and 𝑇|[𝑥,𝑦] ≃ 𝑓.
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(2) If 𝑓 ≃ 𝑔with 𝑔 : ([0, 1], | ⋅ |) → (R, | ⋅ |) is Lipschitzian,
then 𝑥, 𝑦 ∈ 𝐶, 𝑥 ̸= 𝑦, and 𝑇 : 𝐶 → 𝐶 exist as
Lipschitzian such that 𝐾(𝑇, ‖ ⋅ ‖) = 𝐾(𝑓, | ⋅ |) and𝑇|[𝑥,𝑦] ≃ 𝑓.

Proof. We suppose the hypothesis of (1). Since 𝐶 is convex,
then [𝑥, 𝑦] ⊂ 𝐶, and since all norms in R are collinear, then
the Lipschitz constant 𝑘 of 𝑔 is independent of the norm in
R.

We consider the operator 𝜙 : [0, 1] → [𝑥, 𝑦] defined by𝜙𝑟 = 𝑟𝑥 + (1 − 𝑟)𝑦 for each 𝑟 ∈ [0, 1] and we provide the
metric space [0, 1] with the norm |𝑟|0 = ‖𝑥 − 𝑦‖|𝑟| for each𝑟 ∈ [0, 1]. It is concluded fromdefinition that ([0, 1], |⋅|0) is 𝜙-
isometric to the space ([𝑥, 𝑦], ‖⋅‖). It is known that ([0, 1], |⋅|0)
is a metric space with the binary intersection property and
metrically convex; then ([𝑥, 𝑦], ‖⋅‖) have the same properties.

We call ℎ : [𝑥, 𝑦] → [𝑥, 𝑦] the operator defined by ℎ =𝜙𝑔𝜙−1; hence ℎ ≃ 𝑔 and 𝑔 ≃ 𝑓; thus by Lemma 17 we have𝐾(ℎ, ‖ ⋅ ‖) = 𝑘; then by Definition 1.3 and Proposition 1.4
of [15], an extension 𝑇 : 𝐶 → [𝑥, 𝑦] ⊂ 𝐶 of ℎ exists with𝐾(𝑇, ‖ ⋅ ‖) = 𝐾(ℎ, ‖ ⋅ ‖); then 𝑇|[𝑥,𝑦] ≃ 𝑓 and for Lemma 17 𝑇
and 𝑓 have the same Lipschitz constant.

Now we are going to prove (2). Let 𝑓 be a function such
that 𝑔 exists as above; then optimal 𝑟, 𝑠 ∈ R exist such that𝑔([0, 1]) ⊂ [𝑟, 𝑠] ⊂ R. There are two possibilities:

𝑠 − 𝑟 ≤ 1
or 𝑠 − 𝑟 > 1. (33)

If 𝑠 − 𝑟 ≤ 1 then we can choose 𝑟󸀠 ≤ 𝑟 ≤ 𝑠 ≤ 𝑠󸀠 such that𝑠󸀠 − 𝑟󸀠 = 1; thus [𝑟, 𝑠] ⊂ [𝑟󸀠, 𝑠󸀠]; we define the operator 𝜙 :([0, 1], | ⋅ |) → ([𝑟󸀠, 𝑠󸀠], | ⋅ |) by 𝜙𝑡 = 𝑡𝑟󸀠+(1−𝑡)𝑠󸀠; it is clear that𝜙 is an isometry; then the operator ℎ = 𝜙−1𝑔 = 𝜙−1𝑔𝐼𝑑[0,1] is
Lipschitzian and satisfies ℎ ≃ 𝑔 ≃ 𝑓 which is the hypothesis
of (1); thus without loss of generality, we may suppose that𝑠 − 𝑟 > 1.

We fix distinct 𝑥, 𝑦 ∈ 𝐶, for each 𝑡 ∈ [0, 1]; we call 𝑎𝑡 =𝑡𝑟 + (1 − 𝑡)𝑠 and define a norm on [𝑟, 𝑠] by |𝑎𝑡 − 𝑎𝑝|0 = ‖𝑥 −𝑦‖|𝑡 − 𝑝| for each 𝑡, 𝑝 ∈ [0, 1]; we chose 𝑎, 𝑏 ∈ [𝑟, 𝑠] such
that 𝑎 < 𝑏 and 𝑏 − 𝑎 = 1, and we define a norm on [0, 1] by|𝑡|1 = |𝑎 − 𝑏|0|𝑡| for each 𝑡 ∈ [0, 1]; we consider the operators𝜙2 : ([𝑟, 𝑠], | ⋅ |0) → ([𝑥, 𝑦], ‖ ⋅ ‖) defined by 𝜙2(𝑡𝑟 + (1 − 𝑡)𝑠) =𝑡𝑥 + (1 − 𝑡)𝑦 and 𝜙1 : ([0, 1], | ⋅ |1) → ([𝜙2(𝑎), 𝜙2(𝑏)], ‖ ⋅ ‖)
defined by 𝜙1(𝑡) = 𝑡𝜙2(𝑎) + (1 − 𝑡)𝜙2(𝑏) for each 𝑡 ∈ [0, 1]
which are surjective affine isometries.

Thus the operator ℎ = 𝜙2𝑔𝜙−11 satisfies ℎ : [𝜙2(𝑎),𝜙2(𝑏)] → [𝑥, 𝑦] and ℎ ≃ 𝑔 ≃ 𝑓; then by Lemma 17 ℎ and 𝑓
have the sameLipschitz constant 𝑘 and again byDefinition 1.3
and Proposition 1.4 of [15], an extension 𝑇 : 𝐶 → [𝑥, 𝑦] ⊂ 𝐶
of ℎ exists with the same Lipschitz constant.

Corollary 19. Let (𝑋, ‖ ⋅ ‖) be a normed space and 𝐶 ⊂ 𝑋 be
a nontrivial convex; then a nonaffine operator always exists in𝑁𝐸(𝐶, ‖ ⋅ ‖).
Proof. Let 𝑓 ∈ Lip([0, 1]) be a nonaffine function such that𝐾(𝑓, | ⋅ |) ≤ 1 and distinct 𝑥, 𝑦 ∈ 𝐶; then by Theorem 18, an

operator 𝑇 : 𝐶 → 𝐶 exists with𝐾(𝑇, ‖ ⋅ ‖) = 𝐾(𝑓, | ⋅ |) ≤ 1 and𝑇|[𝑥,𝑦] ≃ 𝑓; thus by Lemma 17 𝑇 is a nonaffine operator.

From Remark 13 given a nonempty subset 𝐶 of a normed
space 𝑋 and two collinear norms ‖ ⋅ ‖1 and ‖ ⋅ ‖2 in 𝐶 − 𝐶,
we have that𝑁𝐸(𝐶, ‖ ⋅ ‖1) = 𝑁𝐸(𝐶, ‖ ⋅ ‖2). Now, we prove the
reciprocal of the previous statement.

Remark 20. It is important to note that the collinearity of two
norms ‖ ⋅ ‖ and ‖ ⋅ ‖1 on 𝐶 does not necessarily imply that, for
each 𝑇 : 𝐶 → 𝐶, 𝐾(𝑇, ‖ ⋅ ‖) = 𝐾(𝑇, ‖ ⋅ ‖1).

Let ‖ ⋅ ‖2 and ‖ ⋅ ‖1 be, respectively, the euclidean and the
one norm on R2; then we define

󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩 = {{{
󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩2 , if sign (𝑥𝑦) = 1
󵄩󵄩󵄩󵄩(𝑥, 𝑦)󵄩󵄩󵄩󵄩1 , if sign (𝑥𝑦) = −1 (34)

for each (𝑥, 𝑦) ∈ R2, 𝐶 = {(𝑥, 𝑦) | ‖(𝑥, 𝑦)‖2 ≤ 1}, and 𝑆 the
rotation on R2 determined by the matrix ( cos(𝜋/2) − sin(𝜋/2)

sin(𝜋/2) cos(𝜋/2) ).
It is clear that 𝑆(𝐶) ⊂ 𝐶, 𝐾(𝑆, ‖ ⋅ ‖2) = 1, and 𝐾(𝑆, ‖ ⋅ ‖) > 1;
since ‖ ⋅ ‖2 and ‖ ⋅ ‖ are collinear in the first quadrant, then
they are collinear on 𝐶 + (1, 1). Let 𝑇 = 𝑆 + (1, 1); then 𝑇 :𝐶+(1, 1) → 𝐶+(1, 1)with ‖⋅‖2 and ‖⋅‖ collinear on𝐶+(1, 1),
but 𝐾(𝑇, ‖ ⋅ ‖2) = 𝐾(𝑆, ‖ ⋅ ‖2) ̸= 𝐾(𝑆, ‖ ⋅ ‖) = 𝐾(𝑇, ‖ ⋅ ‖).
Theorem 21. Let 𝑋 be a normed space and 𝐶 a nontrivial
convex subset of 𝑋. If ‖ ⋅ ‖1, ‖ ⋅ ‖2 ∈ N(𝑋), then the following
statements are equivalent.

(1) ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are not collinear in 𝐶 − 𝐶.
(2) 𝑁𝐸(𝐶, ‖ ⋅ ‖1) ̸= 𝑁𝐸(𝐶, ‖ ⋅ ‖2).
(3) 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖1) \𝑁𝐸(𝐶, ‖ ⋅ ‖2) and 𝑆 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖2) \𝑁𝐸(𝐶, ‖ ⋅ ‖1) exist.
(4) Nonaffine mappings 𝑇, 𝑆 with 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖1) \𝑁𝐸(𝐶, ‖ ⋅ ‖2) and 𝑆 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖2) \ 𝑁𝐸(𝐶, ‖ ⋅ ‖1)

exist.

Proof. It is clear that we only need to prove that (1) implies(4). We suppose (1); then by Lemma 15 𝑦 ∈ 𝐶 exists such that‖ ⋅ ‖1 and ‖ ⋅ ‖2 are not collinear in 𝐶 − 𝑦; thus without loss of
generality we may assume that 0 ∈ 𝐶.

Since ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are not collinear in𝐶 and 0 ∈ 𝐶, then
by Lemma 14 𝑥, 𝑦 ∈ 𝐶 \ {0} exist such that

‖𝑥‖1 = 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩1 ,
‖𝑥‖2 < 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2 .

(35)

Without loss of generality we may assume that ‖𝑥‖1 = ‖𝑦‖1 =1.
Let 𝛼0 ∈ (‖𝑥‖2/‖𝑦‖2, 1); then 𝑧 = 𝛼0𝑦 satisfies ‖𝑥‖2 <‖𝑧‖2 < ‖𝑦‖2; we define the operator 𝑓 : [0, 𝑥] → [0, 𝑦] by

𝑓 (𝛼𝑥) = {{{
𝛼𝑦, if 0 ≤ 𝛼 ≤ 𝛼0
𝑧, if 𝛼0 ≤ 𝛼 ≤ 1. (36)
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Since

𝑓 ((1 − 𝛼0) 0 + 𝛼0𝑥) = 𝑧 = 𝛼0𝑦 ̸= 𝛼0 (𝛼0𝑦)
= (1 − 𝛼0) 0 + 𝛼0𝑓 (𝑥)
= (1 − 𝛼0) 𝑓 (0) + 𝛼0𝑓 (𝑥) ,

(37)

then 𝑓 is nonaffine.
We affirm that 𝐾(𝑓, ‖ ⋅ ‖1) = 1; in fact, let 𝛼, 𝛽 ∈ [0, 1];

then by symmetry we only have the following three cases.

(i) 0 ≤ 𝛼, 𝛽 ≤ 𝛼0; then
󵄩󵄩󵄩󵄩𝑓 (𝛼𝑥) − 𝑓 (𝛽𝑥)󵄩󵄩󵄩󵄩1 = 󵄩󵄩󵄩󵄩𝛼𝑦 − 𝛽𝑦󵄩󵄩󵄩󵄩1 = 󵄨󵄨󵄨󵄨𝛼 − 𝛽󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩1

= 󵄨󵄨󵄨󵄨𝛼 − 𝛽󵄨󵄨󵄨󵄨 ‖𝑥‖1 = 󵄩󵄩󵄩󵄩𝛼𝑥 − 𝛽𝑥󵄩󵄩󵄩󵄩1 .
(38)

(ii) 𝛼0 ≤ 𝛼, 𝛽 ≤ 1, then ‖𝑓(𝛼𝑥) − 𝑓(𝛽𝑥)‖1 = ‖𝑧 − 𝑧‖1 =0 ≤ ‖𝛼𝑥 − 𝛽𝑥‖1.
(iii) 0 ≤ 𝛼 < 𝛼0 < 𝛽 ≤ 1; then
󵄩󵄩󵄩󵄩𝑓 (𝛼𝑥) − 𝑓 (𝛽𝑥)󵄩󵄩󵄩󵄩1 = 󵄩󵄩󵄩󵄩𝛼𝑦 − 𝑧󵄩󵄩󵄩󵄩1 = 󵄩󵄩󵄩󵄩𝛼𝑦 − 𝛼0𝑦󵄩󵄩󵄩󵄩1

= 󵄨󵄨󵄨󵄨𝛼 − 𝛼0󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩1 = 󵄨󵄨󵄨󵄨𝛼 − 𝛼0󵄨󵄨󵄨󵄨 ‖𝑥‖1
< 󵄨󵄨󵄨󵄨𝛼 − 𝛽󵄨󵄨󵄨󵄨 ‖𝑥‖1 = 󵄩󵄩󵄩󵄩𝛼𝑥 − 𝛽𝑦󵄩󵄩󵄩󵄩1 .

(39)

Now we prove that𝐾(𝑓, ‖ ⋅ ‖2) > 1; for this we have
󵄩󵄩󵄩󵄩𝑓 (0) − 𝑓 (𝑥)󵄩󵄩󵄩󵄩2 = ‖0 − 𝑧‖2 = ‖𝑧‖2 > ‖𝑥‖2

= ‖0 − 𝑥‖2 . (40)

Since ‖𝑥‖1 = ‖𝑦‖1 = 1, then the sets [0, 𝑥] and [0, 𝑦] are affine‖ ⋅ ‖1-isometric; then by Remark 6, they are affine isometric
to ([0, 1], | ⋅ |) and 𝑔 : ([0, 1], | ⋅ |) → ([0, 1], | ⋅ |) exists with𝑓 ≃ 𝑔; thus by Theorem 18 an extension 𝑇 : 𝐶 → [0, 𝑦] ⊂ 𝐶
of 𝑓 exists, with the same ‖ ⋅ ‖1-Lipschitz constant that means𝐾(𝑇, ‖ ⋅ ‖1) = 1; thus 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖1), but 𝑇 is ‖ ⋅ ‖2-Lipschitz
and𝐾(𝑇, ‖ ⋅ ‖2) ≥ 𝐾(𝑓, ‖ ⋅ ‖2) > 1. Then 𝑇 ∉ 𝑁𝐸(𝐶, ‖ ⋅ ‖2).

In a similar way we prove the existence of 𝑆 ∈ 𝑁𝐸(𝐶,‖ ⋅ ‖2) \ 𝑁𝐸(𝐶, ‖ ⋅ ‖1), by exchanging the order of the norms
and applying Lemma 14.

Remark 22. We notice that given a convex subset 𝐶 that lies
inside a one-dimensional affine subspace of 𝑋, then for each
pair of norms ‖⋅‖1 and ‖⋅‖2 in𝑋 not necessarily equivalent, we
have that𝑁𝐸(𝐶, ‖⋅‖1) = 𝑁𝐸(𝐶, ‖⋅‖2); this is because𝐶 is affine
isometric to a closed convex subset of F for a norm, and all
norms in F are collinear; then by Theorem 21 the conclusion
follows.

Corollary 23. Let 𝑋 be a normed space and 𝐶 ⊂ 𝑋 such that𝑥, 𝑦 ∈ 𝐶 exist so that for each 𝑧 ∈ 𝐶𝛼 ∈ F exists with 𝑧 =𝛼𝑥+(1−𝛼)𝑦; then, for each norm ‖⋅‖ on𝑋,S󸀠(𝐶) = 𝑁𝐸(𝐶, ‖⋅‖).
Remark 24. From the last theorem we infer that it is not
possible to compare the families of nonexpansive map-
pings under noncollinear renormings with respect to the
contention relation because, under noncollinear renorming,
nonexpansive mappings always win and lose.

Corollary 25. Let𝑋 be a normed space, and 𝐶 ⊂ 𝑋 such that
for each 𝑥, 𝑦 ∈ 𝐶𝑧 ∈ 𝐶 exists with 𝑧 ̸= 𝛼𝑥 + (1 − 𝛼)𝑦 for each𝛼 ∈ F ; then for each norm ‖ ⋅ ‖ on 𝑋,𝑁𝐸(𝐶, ‖ ⋅ ‖) ̸= S󸀠(𝐶).
Corollary 26. The nonexpansive operators constructed in the
proof of Lemma 15 do not belong to S󸀠(𝐶).
4. Examples

In the present section we support the theoretical results of the
previous ones by providing some examples.

In general, given a Banach space 𝑋 and a convex subset𝐶 of 𝑋, it is hard to construct examples of nontrivial
nonexpansive operators from𝐶 to𝐶; by trivial we understand
the elements in the sets S(𝐶),S󸀠(𝐶) or more general affine
mappings from 𝐶 to itself. In this sense, when a new Banach
space is studied to know some of its geometric properties, for
instance, the FPP, then it is natural to ask for the existence
of some nontrivial nonexpansive operators defined in that
space. An example of last situation is the renorming ‖⋅‖𝐿 of ℓ1
studied by Lin [1], for which at the moment in the literature
only few examples of nonexpansive mappings exist.

Example 27. Let (ℓ1, ‖ ⋅ ‖1) be the Banach space of absolutely
summable series of real numbers endowed whit the norm‖(𝑥𝑛)‖1 = ∑∞𝑛=0 |𝑥𝑛|. It is well known that (ℓ1, ‖ ⋅ |‖1) does not
have the FPP; the classical example is the right-shift operator𝑅 defined from 𝐶 to 𝐶, where

𝐶 = conv {𝑒𝑛 | 𝑛 ∈ N}‖⋅‖1 ,
𝑅 (𝑥1, 𝑥2, . . .) = (0, 𝑥1, . . .) .

(41)

For each 𝑘 ∈ N let ]𝑘 be the seminorm in ℓ1 defined by
]𝑘((𝑥𝑛)) = ∑∞𝑛=𝑘 |𝑥𝑛|; thus the ‖ ⋅ ‖𝐿 norm in ℓ1 is defined by

󵄩󵄩󵄩󵄩(𝑥𝑛)󵄩󵄩󵄩󵄩𝐿 = sup
𝑘

𝛾𝑘]𝑘 ((𝑥𝑛)) where 𝛾𝑘 = 8𝑘
1 + 8𝑘 . (42)

Now we construct some examples of nontrivial ‖ ⋅ ‖𝐿-
nonexpansive operators defined from 𝐶 to itself such that
they are not ‖ ⋅ ‖1-nonexpansive and the opposite.

Let

𝑔1 = 𝑒1,
𝑔2 = (1 − 𝛾1𝛾2) 𝑒1 +

𝛾1𝛾2 𝑒2,

𝑔3 = (1 − 𝛾1𝛾2) 𝑒1 + (𝛾1𝛾2 −
𝛾1𝛾3) 𝑒2 +

𝛾1𝛾3 𝑒3;
(43)

then ‖𝑔1‖1 = ‖𝑔2‖1 = ‖𝑔3‖1 = 1 and 𝑔1, 𝑔2, 𝑔3 ∈ 𝐶.
As in Lemma 15, we consider the set 𝐶 − 𝑔2 and define

𝑥󸀠 = 𝑔1 − 𝑔2 = 𝛾1𝛾2 (𝑒1 − 𝑒2) ,
𝑦󸀠 = 𝑔3 − 𝑔2 = 𝛾1𝛾3 (𝑒3 − 𝑒2) ;

(44)
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then ‖𝑥󸀠‖1 = 2(𝛾1/𝛾2) and ‖𝑦󸀠‖1 = 2(𝛾1/𝛾3); since 2𝛾1 ≥𝛾2, 2𝛾2 ≥ 𝛾3 and 𝛾1 ̸= 𝛾2 we have
󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩𝐿 = 𝛾12𝛾1𝛾2 = 𝛾1 󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩1 ,
󵄩󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩󵄩𝐿 = max{𝛾12𝛾1𝛾3 , 𝛾22

𝛾1𝛾3 , 𝛾1} = 2𝛾1 𝛾2𝛾3 = 𝛾2 󵄩󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩󵄩1 ;
(45)

hence ‖ ⋅ ‖1 and ‖ ⋅ ‖𝐿 are not collinear in 𝐶 − 𝑔2; in fact, by
Lemma 15, they are not collinear in 𝐶 − 𝐶.

Now we make the construction of Lemma 14 in this
particular case. It is clear that

󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩1󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩𝐿 =
1
𝛾1 >

1
𝛾2 =

󵄩󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩󵄩1󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩𝐿 . (46)

Since 𝛾3 ≥ 𝛾2, then ‖𝑦󸀠‖1 ≤ ‖𝑥󸀠‖1; thus we define 𝑥 = 𝑦󸀠 and𝑦 = (‖𝑦󸀠‖1/‖𝑥󸀠‖1)𝑥󸀠; then by (46)

‖𝑥‖1 = 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩1 ,
󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝐿 =

󵄩󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩󵄩1󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩1
󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩𝐿 < 󵄩󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩󵄩𝐿 = ‖𝑥‖𝐿 .

(47)

We get 𝛼0 ∈ (‖𝑦‖𝐿/‖𝑥‖𝐿, 1); thus 𝑧 = 𝛼0𝑥 ∈ [0, 𝑥] and ‖𝑦‖𝐿 <‖𝑧‖𝐿 < ‖𝑥‖𝐿. We consider the function 𝑓 : [0, 𝑦] → [0, 𝑥]
defined by

𝑓 (𝛼𝑦) = {{{
𝛼𝑥, if 0 ≤ 𝛼 ≤ 𝛼0,
𝑧, if 𝛼0 ≤ 𝛼 ≤ 1; (48)

then by the same argument of the proof of Theorem 21, the
existence of a nonaffine mapping 𝑇 ∈ 𝑁𝐸(𝐶, ‖ ⋅ ‖1) \ 𝑁𝐸(𝐶,‖ ⋅ ‖𝐿) follows.

Now we prove the existence of a nonaffine mapping 𝑆 ∈𝑁𝐸(𝐶, ‖ ⋅ ‖𝐿) \ 𝑁𝐸(𝐶, ‖ ⋅ ‖1). From (46) it follows that
󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩𝐿󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩1 = 𝛾1 < 𝛾2 =

󵄩󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩󵄩𝐿󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩1 . (49)

Since 𝛾1/𝛾2 ≤ 𝛾2/𝛾3, then ‖𝑥󸀠‖𝐿 ≤ ‖𝑦󸀠‖𝐿; hence we define𝑥 = 𝑥󸀠 and 𝑦 = (‖𝑥󸀠‖𝐿/‖𝑦󸀠‖𝐿)𝑦󸀠; thus by (49)
‖𝑥‖𝐿 = 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝐿 ,
󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩1 =

󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩𝐿󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩𝐿
󵄩󵄩󵄩󵄩󵄩𝑦󸀠󵄩󵄩󵄩󵄩󵄩1 < 󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩1 = ‖𝑥‖1 .

(50)

Let 𝜆0 ∈ (‖𝑦‖1/‖𝑥‖1, 1); hence 𝑤 = 𝜆0𝑥 satisfies ‖𝑦‖1 <‖𝑤‖1 < ‖𝑥‖1; we define the function 𝑔 : [0, 𝑦] → [0, 𝑥],

𝑔 (𝜆𝑦) = {{{
𝜆𝑥, if 0 ≤ 𝜆 ≤ 𝜆0,
𝑤, if 𝜆0 ≤ 𝜆 ≤ 1; (51)

then again by the same argument of the proof ofTheorem 21,
we ensure the existence of a nonaffine mapping 𝑆 ∈ 𝑁𝐸(𝐶,‖ ⋅ ‖𝐿) \ 𝑁𝐸(𝐶, ‖ ⋅ ‖1).

Remark 28. Let 𝛾 = (𝛾𝑘) be a nondecreasing sequence in(0, 1) such that 𝛾𝑘 → 1; then by [7], the renorming
󵄩󵄩󵄩󵄩(𝑥𝑛)󵄩󵄩󵄩󵄩𝛾 = sup

𝑘

𝛾𝑘]𝑘 ((𝑥𝑛)) (52)

of (ℓ1, ‖ ⋅ ‖1) has the FPP. Note that the previous example is
valid for each renorming ‖ ⋅ ‖𝛾 in which

(i) 𝛾1 ̸= 𝛾2,
(ii) 2𝛾1 ≥ 𝛾2 and 2𝛾2 ≥ 𝛾3,
(iii) 𝛾1/𝛾2 ≤ 𝛾2/𝛾3.

Example 29. Nowwe characterize the family of nonexpansive
mappings 𝑇 : 𝐶 → 𝐶 over any renorming, where 𝐶 is as in
Example 27; that is, we characterize the set S󸀠(𝐶). The next
calculations are effortless if we consider the equality

𝐶 = {(𝑥𝑛) ∈ ℓ1 | 𝑥𝑛 ≥ 0, ∑𝑥𝑛 = 1} . (53)

It is clear that 𝐶 does not lie inside a one-dimensional affine
subspace of ℓ1; then byCorollary 8, for each𝑇 ∈ S󸀠(𝐶), (𝑦𝑛) ∈ℓ1 and |𝜆| ≤ 1 exist such that 𝑇(𝑥𝑛) = (𝑦𝑛) + 𝜆(𝑥𝑛) for each(𝑥𝑛) ∈ 𝐶.

We affirm that each entry of (𝑦𝑛) is nonnegative and 0 ≤𝜆 ≤ 1; for this, if 𝑦𝑘 < 0 for some 𝑘 ∈ N then the 𝑘-entry
of 𝑇𝑒𝑘+1 is 𝑦𝑘; thus 𝑇𝑒𝑘 ∉ 𝐶; hence for each 𝑘 ∈ N we have𝑦𝑘 ≥ 0. If −1 ≤ 𝜆 < 0, let 𝑘 ∈ N such that 0 ≤ 𝑦𝑘 < −𝜆; then
the 𝑘-entry of 𝑇𝑒𝑘 is 𝑦𝑘 + 𝜆 < 0; hence 0 ≤ 𝜆 ≤ 1.

Let (𝑥𝑛) ∈ 𝐶; then
1 = 󵄩󵄩󵄩󵄩𝑇 (𝑥𝑛)󵄩󵄩󵄩󵄩1 = 󵄩󵄩󵄩󵄩(𝑦𝑛) + 𝜆 (𝑥𝑛)󵄩󵄩󵄩󵄩 = ∑ 󵄨󵄨󵄨󵄨𝑦𝑛 + 𝜆𝑥𝑛󵄨󵄨󵄨󵄨
= ∑𝑦𝑛 +∑𝜆𝑥𝑛 = ∑𝑦𝑛 + 𝜆; (54)

thus 0 ≤ 𝜆 ≤ 1 and (𝑦𝑛) ∈ (1 − 𝜆)𝐶, which agrees with
notation of Remark 1 S󸀠(𝐶) ⊂ {𝑇 = (𝑦𝑛) + 𝜆𝐼 | 0 ≤ 𝜆 ≤1 and (𝑦𝑛) ∈ (1 − 𝜆)𝐶}; the proof of the other contention is a
direct calculation; thus

S
󸀠 (𝐶)
= {𝑇 = (𝑦𝑛) + 𝜆𝐼 | 0 ≤ 𝜆 ≤ 1, (𝑦𝑛) ∈ (1 − 𝜆) 𝐶} . (55)

In this case S(𝐶) = S󸀠(𝐶); for this, let 0 ≤ 𝜆 ≤ 1 and (𝑦𝑛) ∈(1 − 𝜆)𝐶; thus (1 − 𝜆)−1(𝑦𝑛) ∈ 𝐶; then 𝑇 = (1 − 𝜆)[(1 −
𝜆)−1(𝑦𝑛)] + 𝜆𝐼 ∈ S(𝐶).
Example 30. Let (𝑋, ‖ ⋅ ‖) be a normed space and 𝐵 its unit
ball. We characterize the set S󸀠(𝐵). By Corollary 8, for each𝑇 ∈ S󸀠(𝐵), 𝑦 ∈ 𝑋 and |𝜆| ≤ 1 exist with 𝑇𝑥 = 𝑦+ 𝜆𝑥 for each𝑥 ∈ 𝐵; we affirm that |𝜆| ≤ 1 and 𝑦 ∈ (1 − |𝜆|)𝐵; in fact, let|𝜆| ≤ 1, 𝑦 ∈ (1 − |𝜆|)𝐵, and 𝑥 ∈ 𝐵; then

‖𝑇𝑥‖ = 󵄩󵄩󵄩󵄩𝑦 + 𝜆𝑥󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 + |𝜆| ‖𝑥‖ ≤ (1 − |𝜆|) + |𝜆|
= 1; (56)

hence, with notation of Remark 1, {𝑇 = 𝑦 + 𝜆𝐼 | |𝜆| ≤1 and 𝑦 ∈ (1 − |𝜆|)𝐵} ⊂ S󸀠(𝐵). Now we prove the other
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contention. Let |𝜆| ≤ 1 and 𝑦 ∉ (1 − |𝜆|)𝐵; then ‖𝑦‖ > 1 − |𝜆|;
we define 𝑥 = 𝜆−1(|𝜆|/‖𝑦‖)𝑦; thus 𝑥 ∈ 𝐵; since

󵄩󵄩󵄩󵄩𝑦 + 𝜆𝑥󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑦 +

|𝜆|󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 = (1 + |𝜆|󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 + |𝜆| > 1 − |𝜆| + |𝜆| = 1,

(57)

then 𝑦 + 𝜆𝑥 ∉ 𝐵; hence
S
󸀠 (𝐵) = {𝑇 = 𝑦 + 𝜆𝐼 | |𝜆| ≤ 1, 𝑦 ∈ (1 − |𝜆|) 𝐵} . (58)
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