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Abstract 

 

The aim of this Project was to design a verification testbench using the Universal Verification Methodology 

standardized by Accellera. The HDL design I chose to verify was an OFDM transceiver written in VHDL 

according to the PRIME alliance specifications. The tools used were EDA proprietary software for hardware 

verification working in conjunction with Matlab.  

The strategy to develop the final testbench was based on a series of UVM testbenches, focusing on adding 

more UVM and verification functionality than the previous version. The final testbench was fully integrated 

with Matlab, which worked as a Golden model.  

The results of the project successfully prove that the UVM is a very scalable verification methodology, has the 

possibility to implement the most advanced verification measures and is simple to integrate with most modern 

technologies.  
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1 INTRODUCTION 

 

This chapter contains a brief summary of the whole document. The principal aspects of the thesis are covered. 

For a deeper understanding the reader will need to go chapter by chapter where everything will be explained in 

detail. 

1.1 Verification necessities 

 

Unfortunately, verification is not a topic well covered in the university background.  This makes the study of 

verification challenging, but also very rewarding. Engineering schools teach briefly how to test either analog 

or digital electronic designs. After graduating, an electronic engineer is only able to accomplish simple tests, 

which are not enough in an industrial environment where everything has to be tested before being sold. 

Directed testing is not enough to test a design and should only be used as a strategy to reach those “countable” 

corners which are harder to verify using constrained random verification.  

Verification has evolved rapidly in ASIC designs, however it took longer for engineers to realize how 

important verification also is in FPGAs. In general, it could be said the electronic engineer community did not 

care about verification in programmable devices. This was due to the fact of being able to program the device 

again if it did not work the first time. However, semiconductor professionals working with ASICs were much 

more aware of the importance of verification, considering that errors in a chip mask are irreversible and can 

cause huge economic losses for a company. Verification is a process that saves two of the most important 

aspects in an engineering project: time and money. It is a common practice in companies that need to rent 

electronic equipment to test the designs. When bugs are not detected before reaching the lab, they prolong the 

use of electronic equipment. This causes problems for other engineers who also need access to the equipment, 

as well as the company that needs to pay more for the rental. Most of these problems could be solved using a 

good verification strategy. 

In addition, it is also worth mentioning the increase of transistors per area that Gordon Moore predicted in his 

empiric law. Even though Moore’s law is more than 50 years old, it has still been accurate in predicting 

development in recent years. Although this prediction is reaching its limit, EDA companies are searching for 

new ways of increasing the number of transistors such as 3D ICs [1]. The vast number of transistors makes 

debugging a horrific if not impossible task to achieve in real time. The first CPLDs had fewer logic gates 

which made it “possible” to test directly in the lab. Because of the increased number of logic gates, modern 

engineers should avoid testing FPGAs in the lab if they have not planned a proper verification strategy in 

advance. 

Besides what is depicted in Fig.1 [2] , the same law applies for FPGAs. Even though the graph shows only 

until the year 2000 this trend can be extended to the present with bigger and faster electronic devices. 

 

I think of code coverage the way I think of a roof. How much of 

a roof is enough? If your roof is 95% waterproof would you be 

pleased with the results? The same is true with code coverage.  

- Ray Salemi - 
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Figure 1. Moore’s law graph (Source: [3]) 

 

In theory, verification complexity grows exponentially with increasingly complex designs. This is called The 

Verification Gap: the difference between verification productivity and design productivity [4]. Nowadays our 

ability to verify is lower than our ability to design. This gap could be due to the importance that electronics 

engineers ascribe to design. There are more design engineers than verification engineers, and verification 

engineers need to have an understanding of many more skills that were not needed before such as 

SystemVerilog, C/C++, Perl, TCL, Python, assertions, functional coverage, etc. 

 

 

 

Figure 2 – Languages used by verification, design and system engineers. (Source: [5]) 
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In the past, EDA companies insisted on having their own verification languages, and therefore it was very hard 

to learn them. Eventually, as depicted in the image below it was possible to merge and standardize them to 

reach the UVM. The committee who standardized it was Accellera. The UVM will be explained in more detail 

later on in chapter 3. 

 

Figure 3 – Verification languages evolution (Source:  [6])  

 

It is important to note that all of the industry software needed to learn hardware verification languages (HVL) 

currently belongs to companies such as Cadence, Mentor Graphics, and Synopsis. At the moment, there is not 

any free software which allows students to properly learn verification languages, although there is a webpage 

which provides some tools and free simulations of several languages which has very limited usage [7]. It also 

allows users to share the code with others using URLs. This lack of access to verification education should 

concern universities, as students should have a wider and deeper skill set in order to be prepared to face the 

industrial market. 

The tools used to tackle this verification project were Questa using mixed VHDL-SystemVerilog (UVM), 

Matlab for the checker object, TCL (“.do” scripts) and Doxygen for documentation. 

 

1.2 PRIME alliance based transceiver 

 

It is a must to briefly describe the PRIME alliance [8] specification because the transceiver which has been 

verified in this project was designed according to those guidelines.  

PRIME alliance is a specification for narrow band power line communications. The transmission lines are the 

powerlines themselves. As a communication protocol it defines its proper layers. However, the transceiver 

only works in the lower layer, or the physical layer. It is based on an OFDM and differential phase shift keying 

as the carrier modulation (BPSK, DQPSK and D8PSK). It uses the CENELEC A band (42-89KHz) and data 

rates from 5.4Kbpps to 128.6Kbps. In the last specification (version 1.4) more frequency bands were added. 

The next chapter will include a description of the transceiver itself. 
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2 DESIGN UNDER VERIFICATION 

 

 

In this chapter the functional requirements and the transmitter architecture at block level will be described. The 

transmitter was implemented in a Spartan-3 FPGA using VHDL as the HDL language following partially the 

PRIME alliance specification. The original transmitter would have a CRC block preceding the Convolutional 

Encoder. 

The system architecture of the physical layer is as shown in the diagram below [9]: 

 

 

Figure 4 – System overview (Source: [9])  

 

It is worth noting the system from the PRIME alliance is slightly different. It had a CRC block before the 

convolutional encoder. The DUT has a ROM memory as the first part of the system behind the convolutional 

encoder. This memory contained the first and last name of the students that wrote the HDL. It has an 8-bit 

width and a depth long enough to be filled with different names. The whole system fed itself with N-bit long 

PPDUs. These bits were provided by the ROM memory in a bit-to-bit stream. The last useful element of the 

memory that was information (in other words; the bits of the last letter) was followed by a carriage return 

character which helped the system to recognize when the input data finished.  

 

2.1 Functional requirements of the Convolutional Encoder 

 

The bit stream has to be coded and therefore may go through convolutional coding. This convolutional 

encoder is a bit to bit encoder with a 
1

2
 rate, which means it outputs two bits per input bit. It is a 7-bit register 

with upper and lower polynomials 1111001 and 1011011 [9] (Fig.5). 

“We, in the semiconductor industry, know that only the 

paranoid survive.”   

- Andy Grove - 
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Figure 5 – Encoder’s behaviour diagram (Source: [9]) 

 

At the end of the PPDU 6 bits set to zero need to be inserted to establish the Convolutional encoder in its 

original state.  

 

2.2 Functional requirements of the Scrambler  

 

The scrambler block randomizes the input stream. By doing this, reduces the crest factor at the IFFT’s output 

due to a long ones or zeros stream. It carries out the XOR of the input by a pseudo random cyclic sequence.  

 

Figure 6 – LFSR behaviour diagram (Source: [9]) 

The shift register has to be set to all ones at the start of every PPDU.  

2.3 Functional requirements of the Interleaver  

 

What is known by frequency fadings occur in narrowband communication. The OFDM subcarriers are likely 

to be received at different amplitudes. As a consequence, not all the subcarriers will be equally reliable, and 

burst errors may occur. To avoid this the bit stream is shuffled. The interleaver’s task is to ensure adjacent bits 

are not mapped into nonadjacent data. The interleaver formula is described as:  

 w((NBPS /s) × (k mod s) + floor(k/s) ) = v(k)   

 · NBPS = 96×NBPC ; where NBPC can be 1, 2 or 3 depending on the constellation. 

  · K = 0, 1, … NCBPS-1; bit stream coded at interleaver’s input.  

 · mod; refers to the module operator.   
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 · S = 8×(1+floor(NBPC /2)).  

 

Depending on the constellation there are different permutation tables shown below:  

 

 
 

12 11 10 9 8 7 6 5 4 3 2 1 

24 23 22 21 20 19 18 17 16 15 14 13 

36 35 34 33 32 31 30 29 28 27 26 25 

48 47 46 45 44 43 42 41 40 39 38 37 

60 59 58 57 56 55 54 53 52 51 50 49 

72 71 70 69 68 67 66 65 64 63 62 61 

84 83 82 81 80 79 78 77 76 75 74 73 

96 95 94 93 92 91 90 89 88 87 86 85 

Table 1 - DBPSK Interleaving matrix (Source: [9]) 

 

 

 

 

 

12 11 10 9 8 7 6 5 4 3 2 1 

24 23 22 21 20 19 18 17 16 15 14 13 

36 35 34 33 32 31 30 29 28 27 26 25 

48 47 46 45 44 43 42 41 40 39 38 37 

60 59 58 57 56 55 54 53 52 51 50 49 

72 71 70 69 68 67 66 65 64 63 62 61 

84 83 82 81 80 79 78 77 76 75 74 73 

96 95 94 93 92 91 90 89 88 87 86 85 

108 107 106 105 104 103 102 101 100 99 98 97 

120 119 118 117 116 115 114 113 112 111 110 109 

132 131 130 129 128 127 126 125 124 123 122 121 

144 143 142 141 140 139 138 137 136 135 134 133 

156 155 154 153 152 151 150 149 148 147 146 145 

168 167 166 165 164 163 162 161 160 159 158 157 

180 179 178 177 176 175 174 173 172 171 170 169 

192 191 190 189 188 187 186 185 184 183 182 181 

Table 2 - DQPSK Interleaving matrix (Source: [9]) 
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18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 

54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 

72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 

90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 

108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 

126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 

144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 

162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 

180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 

198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 

216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 

234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 

252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235 

270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253 

288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 

Table 3 - D8PSK Interleaving matrix (Source: [9]) 

 

These matrixes were created in hardware using a dual port RAM memory. By doing this the convolutional 

encoder writes to a port, and the mapper reads from the other port. 

2.4 Functional requirements of the Mapper  

 

Each carrier is modulated as differential Phase Shift Keying. Depending on the modulation: DBPSK, DQPSK, 

D8PSK 1,2 or 3 bits will be transmitted per carrier. 

 

Figure 17 shows the DBPSK, DQPSK and D8PSK mapping [9]:  

 

 

Figure 7 – DBPSK, DQPSK, and D8PSK mapping (Source: [9]) 
 

The following equation defines the constellation of the different modulations: 

𝑆𝑘 = 𝐴𝑒𝑗𝜃𝑘  
Where: 
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 k is the frequency index that represents each subcarrier within an OFDM symbol. k =1 corresponds to the 

phase reference (0º). 

 𝑆𝑘 is the mapper output for each subcarrier. 

 𝜃𝑘 is the carrier phase, defined by: 𝜃𝑘 = (𝜃𝑘−1 + (
2𝜋

𝑀
) ∆𝑏𝑘) mod 2𝜋 .  

o ∆𝑏𝑘 represent the data coded in each modulation. ∆𝑏𝑘 ∈ {0,1, … , 𝑀 − 1} 

o M = 2,4 or 8 for DBPSK, DQPSK, D8PSK respectively.  

o A represents the power in each carrier and also the ring radius from the center of the 

constellation. 

 

2.5 Functional requirements of the IFFT and CRC 

 

The modulator output consists of 97 carriers per OFDM symbol. The OFDM modulation is made up of an 

IFFT with 128 points. As a consequence, there are 31 unused carriers at the lower and higher frequencies. This 

is done in order to avoid interferences with adjacent channels. 

The input stream originating from the mapper is inserted from the 16th untill the 112th carrier (both included). 

Once the data has passed the IFFT, the data is in the time domain, the CRC copies the last 12 IFFT samples 

and inserts them at the beginning of the IFFT output. This is done to allow the receptor to detect accidental 

changes in the data. In total the CRC output contains 144 samples.  

 

 

Figure 8 – IFFT + CRC Diagram 
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3 THE UNIVERSAL VERIFICATION 

METHODOLOGY (UVM) 

 

3.1 Introduction 

 

The UVM is very comprehensive, and this chapter does not go into extensive detail into it. Instead this chapter 

will cover briefly the main features of a UVM testbench. The interested reader can find the official 

documentation in [10]. There are also free online courses and very good cookbook in the Verification 

Academy website [11]. 

The Universal Verification Methodology was standardized in 2009 by Accellera, a standards organization in 

the EDA and IC areas. The UVM is a methodology for verifying integrated circuit designs. It is the combined 

effort of designers and tool vendors based on the VMM and the OVM (which is based in e). The UVM is not a 

verification language, but rather an open source SystemVerilog class library. It is designed to enable the 

creation of robust, reusable, interoperable verification IP and testbench components [12].  

The main caracteristics of the UVM are the powerful testbenches that use constrained random stimulus 

generation and functional coverage methodologies. Unfortunately, (or fortunately) the UVM is not yet a total 

methodology of how to approach every step in verification. However, even though there are discrepancies on 

how to follow certain aspects of it, it is a great guide to the main paths in verification. Furthermore, it is in its 

popularity and most knowledgable engineers agree that is the future verification methodology. At the moment 

the UVM is endorsed by all the major simulator vendors.  

 

A typical block level UVM testbench is shown in Fig.9 [13]. Later in this chapter all the blocks in the figure 

below will be explained.  

 

 

Figure 9 – Example of a Block Level UVM testbench for a DUT with SPI and APB interfaces (Source: [14]) 

Times change, and we change with them 

- Latin proverb - 
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3.2 UVM components 

 

UVM testbenches are built by components. Components are objects that extend from uvm_object. When one 

creates a component object, it stays in the testbench architecture for the duration of the simulation. This is 

different from the uvm sequence branch (depicted in Fig.10) where objects are transient -- created at first, used 

and then deleted by the garbage collector once they are no longer referenced [12]. 

 

 

Figure 10 – UVM simplified inheritance diagram (Source: [14]) 

 

 

The uvm_component inherits the infrastructure needed to use the UVM messaging from the 

uvm_report_object. It is necessary to populate the UVM phases explicitly, since each Component has virtual 

methods for the UVM phases. The UVM phases will be explained in the section “The Standard UVM phases”.  

UVM components are registered with the UVM Factory to support swapping between different version of 

components using Factory Override.  
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Class Description 
Contains sub-

components? 

uvm_driver Adds sequence communication sub-components, used with the uvm_sequencer Yes 

uvm_sequencer Adds sequence communication sub-components, used with the uvm_driver Yes 

uvm_subscriber A wrapper around a uvm_analysis_export Yes 

uvm_env 
Container for the verification components surrounding a DUT, or other envs surrounding a 

(sub)system 
No 

uvm_test Used for the top level test class No 

uvm_monitor Used for monitors No 

uvm_scoreboard Used for scoreboards No 

uvm_agent Used as the agent container class No 

Table 4 – UVM components (Source: [15]) 

 

In the UVM the components could be separated in three groups: 

 Container components. 

 Stimulus layer. 

 Analysis layer. 

3.3 UVM Transactions 

 

In verification of digital designs, Transactions could be described as a class which groups data and the 

necessary operations that can be done to that data. UVM Transactions are used to separate relevant data from 

pin activity. For a VHDL user a transaction could be seen as a record data type, only that transactions are 

relative to the class-based objects world. Transactions are used to share data between different components. 

The life of a Transaction is generally related to its use; when the testbench no longer references it, it is 

collected by the garbage collector. 

Because the type uvm_transaction is deprecated, verification engineers use its subtype: uvm_sequence_item. 

The Sequencer and Monitor Components send Transactions, while the Driver, Scoreboard and Coverage 

Components receive them. 

 

3.4 The BFM 

 

BFM stands for Bus Functional Model and consists of an abstraction to interact with the DUV. It encapsulates 

all the signals of the DUV so the rest of the testbench can be separated from the static module-based world.  

How complex a BFM is will vary from design to design depending on the bus protocol. BFMs are usually 

implemented within a SystemVerilog interface and perform the BFM model by using tasks and functions. 
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3.5 Container Components 

 

The two container Components in a testbench are the Environment and the Agent.  

 

3.5.1 The Env Component 

 

In general, the Env could be defined as the component that groups the rest of the testbench. This may change 

from design to design, and sometimes there is a top level Env with other Envs inside. In order to use the UVM 

Env methods, a class may need to extend the UVM component uvm_env. 

3.5.2 The Agent Component 

 

The Agent is a component that is placed inside the Env. It can be thought of as a verification component kit for 

a specific logical interface [16]. In order to use the UVM Agent methods, a class may need to extend the UVM 

component uvm_agent. The Agent acts as a container for lower classes from the analysis and stimulus layers. 

It is also a partial top level with respect to classes within the Agent. 

 

The Agent has an “external” analysis port which is used to connect external analysis components to the agent 

without knowing anything about its design.  

 

 

Figure 11 – Typical topology of an active/passive Agent (Source: [14]) 

 

 

An Analysis Port can be understood as a pipe that drives transactions into the Analysis Export of analysis 

components. Therefore, the AP is a transaction transmitter, and the AE is the transaction receiver. 

The Agent configuration object determines the topology that the Agent constructs, retrieves a handle for the 

virtual interface and determines the behavior of the Agent. To extend the uvm_agent class, the Agent has a 

variable which defines whether the Agent is active or Passive. This variable (UVM_ACTIVE_PASSIVE) is 

used to determine if the stimulus layer is created or not.  
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3.6 Components of the Stimulus layer 

 

The components of the stimulus layer are those which provide stimuli to the DUV. In other words, these 

components are in charge of driving the DUT. 

 

 

Figure 12 – Stimulus layer (Source: [14]) 

 

 

3.6.1 UVM Sequencer 

 

A Sequencer is a class that controls Transaction flow. It controls the flow of uvm_sequence_item objects sent 

to the driver.  

 

 

Figure 13 – Sequence Item flow (Source: [14]) 

 

 

The Sequencer class takes the Sequence Items from the Sequence and passes them to a Driver. 
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3.6.2 UVM Driver 

 

A Driver is the object that interacts with the BFM. It is declared as a specific Sequence Item consumer. The 

uvm_driver class eases the connection between the Sequencer and the Driver, removing the need to declare a 

TLM_FIFO to store the data.  

The Driver will pull Transactions from the Sequencer and use the BFM to modify the signals with the DUT. A 

Driver may also send information from the signal level interface back to the Sequencer [17]. 

 

3.6.3 UVM Sequences 

 

A Sequence is a class that primarily generates Sequence Items. It inherits from uvm_sequence. After the 

Sequence generates the transactions, the Sequencer sends them to the Driver. Once the body of the Sequence is 

executed, the Sequence is discarded. It is possible to embed several Sequences within a Sequence body, thus 

making it easier to define new test cases by executing a combination of Sequences. Because Sequences are not 

Components, they need the Sequencer to access the testbench hierarchy.  

 

3.7 Components of the Analysis layer 

 

The components of the analysis layer are those which provide analysis capabilities to the testbench. The 

Analysis Components examine the input that drives the DUT and the output that the DUV drives. It is in the 

Analysis Layer where the verification is performed. 

 

Analysis Layer

Coverage

Scoreboard

Input 
Monitor

Output 
Monitor

Analysis_export

BFM BFM

Predictor

 

Figure 14 – Analysis layer 

Note: The diagram of Figure 12 is only a simplified example and it will vary from design to design.  
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The Analysis Layer of a testbench contains Components that observe the DUV behavior and determine 

whether the design fulfills the specifications.  

 

3.7.1 The Monitor 

 

The first task that needs to be done in the Analysis Layer is monitoring the DUV activity. Monitors are 

simililar to Drivers in that both translate between signals of the design and classes in the objects world. The 

main difference is that while a Driver is active, Monitors are always passive. In other words, they are a “read-

only” component when interacting with the DUV [18]. Monitors are the only figure that remains in the 

hierarchy even when the Agent is passive.  

Monitors communicate with the DUT through the virtual interface to the BFM. BFM stands for Bus 

Functional Model, which refers to the interface that connects the verification part with the actual hardware of 

the design via buses. 

The Monitor detects signal toggles and translates them into transactions. Sometimes they are known as 

Protocol Monitors because they recognize a certain pattern. Depending on the design and the number of 

transactions that a certain Monitor needs to distribute, the Monitor may behave in different ways. If the 

number of transactions is not too much it is highly recommended to adopt the copy-on-write policy. Classes in 

SystemVerilog are like a pointer. When a Monitor writes a Transaction in its analysis port, its reference is sent. 

It may occur that when a transaction reaches a subscriber, the subscriber needs to modify the transaction. Thus, 

the Transaction that the rest of the subscribers see would not be the original Transaction. 

To avoid overwriting this object, the handle shared by the Monitor should point to a copy of the original 

transaction. This could be fixed by creating a new transaction everytime the Monitor writes in the analysis port 

by reusing the same transaction, but cloning the object before writing the transaction in the analysis port.  

There is a solution to avoid copying transactions, although it is not always possible to implement. It is known 

as MOOCOW (Mandatory Obligatory Object Copy on Write) [19]. It means that one could share the original 

transaction reference as long as the subscribers do not modify the data received. If the subscribers need to 

modify the data, they have to make a copy of it.  

 

3.7.2 The Scoreboard 

 

The Scoreboard is the component that judges whether the DUV is working properly. The scoreboard could be 

seen as two pieces working together. The first determines the correct results for a certain input data. When the 

Scoreboard has predicted the actual output it checks if the DUV output is correct. This is done by the 

comparer, checker or evaluator.  

The implementation of the Scoreboard will depend on the user necessities, but sometimes it is useful to create 

the Scoreboard class as a child of uvm_subscriber rather than just a uvm_component child. 
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Figure 15 – Scoreboard block diagram (Source: [14]) 

 

 

Because the UVM is intended to create modular and reusable designs, it is highly recommended to separate 

the prediction part from the evaluation part. This eases future changes in the evaluation model. 

  

3.7.3 Predictor 

 

The Predictor is a Component which is placed inside the scoreboard and represents a Golden model of the 

DUV functionality [20]. It is fed by the input signals converted into transactions and produces an expected 

output response according to the design specifications. It is not an obligation to place a Predictor class inside 

the Scoreboard, but the latter will always contain some piece of code that serves as a Golden model of the 

DUV.  

 

CHECKERCHECKERPREDICTORPREDICTOR

Actual 
input

Expected 
output

Real Output

Reporting 
Macros

Reporting 
Macros

 

Figure 16 – Predictor class 

 

 

It is worth mentioning that in verification teams a predictor can be quite useful. It can also be used to describe 

the DUT when verification engineers do not yet have the HDL design ready. By doing this verification 

engineers could work on their verification tasks in pararel to design engineers and would not have to wait for 

design engineers to finish the DUT.  
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3.7.4 Coverage objects 

 

Coverage objects perform functional coverage, and their design and distribution around the testbench will vary 

from design to design. The Coverage objects’ task is to determine whether all the possible stimuli has been 

applied to the system. A design is not considered fully tested until all functional coverage has been done, even 

if the design has 100% code coverage. 

Functional coverage features are  [21]: 

 Coverage of variables and expressions and also cross coverage. 

 Coverage bins. 

 Filtering conditions. 

 Events and sequences to trigger coverage sampling.  

The verification progress can be seen as a relation between code coverage and functional coverage progress. 

3.8 The UVM Factory 

 

The UVM Factory creates components. There is only one instance of the factory per simulation. The intent of 

the factory is to permit the substitution of a parent object with a child one without changing the testbench 

structure or changing the code. 

This functionality is very convenient for changing the functionality of the sequence or swapping one version of 

a component for another version without modifying the code.  To use the factory there are a few rules to 

follow [22]: 

 Registration: a component needs to have a registration code, which is comprised of a static function to 

get the type_id, and a function to get the type name. The registration code is generated using one of 

the four different declaration macros depending on if it is an object or a class, and whether it is 

parametrizable. 

 Constructor default: the uvm_component and uvm_object are virtual methods and therefore the users 

need to follow their prototype template. The factory constructor should contain default arguments for 

the constructor. 

 Component and object creation: components are created in the build phase; objects are created when 

required.  

 

3.9 Configuration of a UVM testbench environment 

 

To make testbenches reusable, it is necessary to make them as configurable as possible. By configuring the 

testbench and the blocks surrounding the DUT, it is easier to reuse them and also quicker to modify them. 

In a testbench there are a number of variables, normally written as literals. In SystemVerilog those values can 

be represented as variables, which can be set and modified at runtime, or as parameters, which need to be set at 

compile time. There is more flexibility when the variables are organized as configuration objects and accessed 

using the uvm_config_db if possible. The uvm_config_db is the method that allows access to resources in the 

database. 

Ideally, in a typical testbench there are several configuration objects. Each of them binded to a class (as a 

subclass) which groups all the parameters together. There are global configuration objects as well.  
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Basically, all Components that require configuration follow the same flow. Immediately after being 

configured, the internal structure and behavior is created based on that configuration. Finally, they configure 

all children at lower levels. Configuration objects can be retrieved and inserted from/into the database using 

the uvm_config_db API through the methods uvm_config_db #(…)::get(…) and uvm_config_db #(…)::set  

respectively. The uvm_config_db method is parametrizable to be able to retrieve and insert different 

configuration objects. 

 

It is worth mentioning that configuration objects can also be nested [23]. By doing this, the parent component 

nests the configuration component of its child. If nested configuration objects are used it will eventually show 

a structure parallel to the testbench architecture.  

 

 

 

Figure 17 – Example of Nesting configuration objects for a verification environment for a DUT with two 

interfaces (APB and SPI) (Source: [14]) 

 

 

Every layer in the hierarchy requires the get method in the UVM database to retrieve its corresponding 

configuration component and the set method to insert the component relative to its child in the UVM database. 

Readers interested in a deeper understanding of configuration objects and the UVM database may read a paper 

written by Synopsys [24]. 

 

3.10 The Standard UVM phases 

 

The UVM uses phases to allow a consistent testbench execution flow and to order the major steps that occur in 

simulation.    

There are three different groups of phases executed in the following order [25]:  

1. Build phases: where the testbench is configured and constructed. 

2. Run-Time phases: where time is consumed in running the testcase. 

3. Clean-up phases: where the results of the testcase are collected and reported. 

 

The verification engineer decides which phases are called from each component.  
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UVM testbenches are comprised of two pieces, the dynamic and the static parts: 

 Static part: it is arguably the top level module of the testbench which is module-based. The DUT is 

connected to the interface within this module. This interface will bridge the data coming in and out of 

the DUT to the dynamic part. 

 Dynamic part: the dynamic part corresponds to the class-based object world. Simulations vary 

regarding which objects are created.  

Calling the run_test() method from the static testbench part (SystemVerilog module) starts a UVM testbench. 

This is usually done inside an initial SystemVerilog block. 

  

The run_test() constructs the UVM root component and starts the UVM phasing. It is possible to call the 

run_test() by passing the test name as an argument, however it is more flexible to send this parameter from the 

command line argument. The specific way of passing the test name depends on the simulator.  

 

 

 

Figure 18 – The UVM Phases (Source: [14]) 
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The following is a brief description of the main phases in a simulation: 

 

 Build phases: 

The build phases are executed at the start of simulation to construct, configure and connect the 

testbench topology. These phases are SystemVerilog functions and therefore are not time consuming.  

o build_phase: when the root component has been constructed, (also know as the UVM test 

component), the build phase starts. The testbench hierarchy is built from the top to the 

bottom. Each component in a lower layer can be configured by the component immediately 

above it. For instance: in Figure 9 the test has to build the env, the env has to build the agent 

and so on.  

o connect_phase: this phase makes connections between different components or assigns 

handles to a testbench object.  

o End_of_elaboration_phase: this phase is intended to make the necessary adjustments to the 

structure after being constructed and connected before the simulation starts. This phase is 

executed from the bottom to the top.         

                                                                                .       

 

Figure 19 – Top to bottom build mechanism for a verification environment for a DUT with two interfaces 

(APB and SPI) (Source: [14]) 
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 Run phases:  

The testbench stimulus is generated and executed during the time consuming phases or tasks. This 

phase goes right after the build phase has finished. Everything within the run_phase() goes in parallel. 

The run phase generates and checks the stimuli.  

 Clean-up phases: 

These phases are used to extract the information of the scoreboard and functional coverage of the 

monitors, thus determining whether the test passed and the coverage goals were reached. Clean-up 

phases do not consume time and therefore are implemented as functions. These phases have a bottom 

to top approach.   

o extract_phase(): is used to retrieve and process information from analysis objects.  

o report_phase():is used to print the results of simulation. 

o final_phase(): is used to do any other task that was not done before. 

3.11  Testbench Construction 

 

As previously stated, the testbench starts with the build phase. The construction flow starts with the call to the 

run_test() method. Figure 10 shows the construction flow [23]. When the build phase finishes, the connect 

phase starts to ensure intercomponent connections. After this all the phases explained in the Stanrdard UVM 

phases section take place. 

 

env

test

$finish;

Connect, Run, Report, etc Phases 

Build Phase

Dynamic Component WorldStatic Component World

Calling run_test() causes
the selected test to be 
Constructed.

Build process starts
From the test and works 
top-down

test =  new ();

When all the UVM phases are complete control the 
UVM calls $finish, after which control returns to the test
bench module initial block

module top_tb;
//DUT, interfaces etc 
Initial begin.
     //Virtual Interface handling
Code
     run_test();

end
endmodule:    top_tb 

 

Figure 20 – Construction flow in a UVM testbench (Source: [14])  
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The call to build method in the build phase triggers the construction of the test class, which is the first object 

constructed. Thus the test class will determine the testbench architecture. The test class [23] : 

 Sets up factory overrides, thus creating the components or configuration objects as derived types. 

Factory overrides allow classes to be substituted by child classes. By using the factory override 

mechanism, it is possible to write more reusable testbenches, avoiding the need to change the 

component declaration for every case.  

 Creates and configures the configuration objects required by the subcomponents.  

 Assigns virtual interfaces. The recommended way of sharing the virtual interface handlers is by 

configuring the objects and the database. Before calling the run_test() method, it is necessary to 

connect the DUT with the interfaces. A handle to each interface should have been assigned to virtual 

interface handles and then passed to the UVM database. These virtual interface references will then be 

assigned to the BFM inside the relevant configuration object handles. They are used to drive or 

monitor DUT signals. Drivers and Monitors should not get the virtual interface handlers from the 

database and should use configuration objects to keep the testbench structure clean, reusable and 

modular. In the test class, virtual interfaces should be assigned to the corresponding components as 

part of their configuration objects.  

 Builds a level below in the testbench hierarchy as shown in Figure 13. 

 

The UVM is very flexible. More than one env can be built if required by the DUV complexity. The creation of 

additional Envs is conditional and depends on each testing situation.  

 

It is very common to have a similar test classes if they are not the same for each test. Due to this, it is highly 

recommended to create a virtual “base test” class which the rest of the test cases will extend from.  
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4 WORKFLOW 

 

4.1 Introduction 

 

This chapter explains my approach to learning how to create a UVM verification testbench for the OFDM 

transceiver, the tools I used and the verification capabilities I sought to add to the testbench. 

 

4.2 Tools 

 

The tools I had for this Project were: 

 QuestaSim: an HDL and VHDL simulator of Mentor Graphics. It was used to carry the mixed VHDL 

and SystemVerilog + UVM simulations.  

 Matlab: because of the compatibility with the Questa simulator, Matlab was the software used to 

accomplish the Golden Model. 

 Doxygen: a tool for generating documentation. It does not integrate SystemVerilog, but a Perl patch 

design by Christoph Suehnel allows it to integrate SystemVerilog.  

 Emacs: At the moment there are several text editors which are SystemVerilog compatible. I used 

Emacs because the HDL part of the project was written in VHDL, it has a great VHDL mode 

integrated in it, and it is SystemVerilog compatible.  

 

4.3 Process to learn the UVM 

 

Before starting this project, I did not know anything about the UVM. Therefore, I needed to decide on the best 

strategy to face the task. SystemVerilog has the same syntax as Verilog, but with Extended functions. 

SystemVerilog is both an HDL and HVL language. However, this project only used its HVL capabilities 

because the HDL was already written in VHDL. SystemVerilog is an Object Oriented Programming 

Language, of which I had no previous knowledge.  

I took several steps to adapt and improve my testbench. The first approach was to test only one block of the 

whole transceiver. I chose to test the scrambler because it is one of the simplest blocks. The steps I followed 

were the following: 

 

1. Conventional testbench: I coded a SystemVerilog testbench without using any OOP. All the code was 

If you don’t know where you are going, you might wind up 

someplace else. 

- Yogi Berra - 
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in the same file under the same SystemVerilog module. 

2. Interfaces and BFM: the files were separated in different SystemVerilog modules. There was a top 

SystemVerilog module where the rest of modules were instatiated. All the modules had access to the 

BFM. This test did not have functional coverage yet. 

3. First OOP testbench: This test had first two parts: the static and dynamic object worlds. It did not have 

any functional coverage at that time. 

4. Partial UVM test: this test began to have some UVM features. It was comprised of a test class that 

inherited the uvm_test component. It had a component which drived the DUV and another that 

checked if the behavior was correct. This test did not have coverage features yet. Its architecture can 

be seen in Figure 22. 

  

Random test extends uvm_testRandom test extends uvm_test

ScoreboardScoreboard

BFMBFM

TesterTester

BFMBFM

B
FMB
FM DUVDUV

 

Figure 21 – Diagram of the first testbench using some UVM features 

    

5. Testbench made by components: This test had the same topology as shown above, except that all of 

the classes were extending uvm_components. The Tester blocks functioned as a Sequencer and 

Driver.  

 

6. Integrating the Env in the testbench architecture: This test had two new features. The Env contained 

both the Scoreboard and the tester which was extending the base_tester to be able to run more than 

one test. 

 

extends base_testerextends base_tester

Random test extends uvm_testRandom test extends uvm_test

ScoreboardScoreboard

BFMBFM

 Random Tester Random Tester

BFMBFM

B
FMB
FM DUVDUV

extends uvm_componentextends uvm_component

env extends uvm_envenv extends uvm_env

 

Figure 22 – Env based testbench 
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7. First test with functional coverage: this test included the Coverage class. The Scrambler had a serial 

input so that the functional coverage was checking whether the input was zero or one. The topology 

was the same as the shown in Figure 23, adding the Coverage class which extended a 

uvm_component. 

8. First test with internal functional coverage: The scrambler has a 7-bit shift register inside which had to 

be tested. The Questa simulator has a bind constructor which allows internal DUT signals to be 

checked [26]. 

 

extends base_testerextends base_tester

Random test extends uvm_testRandom test extends uvm_test

 Random Tester Random Tester
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env extends uvm_envenv extends uvm_env

CoverageCoverage
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extends uvm_componentextends uvm_component
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extends uvm_componentextends uvm_component
Covergroups and 
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Covergroups and 
bins

Binded_BFMBinded_BFM

 

Figure 23 – Binded BFM performing functional coverage 

 

9. Integrating the monitor in the structure: in the previous test both the Coverage and Scoreboard 

components had access to the BFM. This test was different in that the Coverage class was fed by a 

monitor. The Scoreboard class was still linked to the BFM because it needed access to the internal 

signals of the DUT to compute the Golden model of the shift register. This test does not use 

Transactions; it only used a variable sent throught the Analysis Port. 
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Figure 24 – UVM monitor in the testbench 

 

10. Integrating the UVM Reporting macros: All the previous testbenches had not used the UVM 

Reporting system. Instead they had been using SystemVerilog tasks such as “$display”, “$error” and 

“$final”. 

11. Integrating UVM Transactions: as mentioned above, when the monitor was integrated it did not use 

Transactions. In this testbench, both Coverage and Monitor Components were adapted to use 

Transactions. 
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12. Integrating the UVM Agent and Driver: This step added the Agent and the Driver to the testbench. 

The architecture connected the Tester and Driver using a UVM_TLM_FIFO. The UVM_TLM_FIFO 
is connected to allow ports into and out of the Tester and Driver, respectively. 
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Figure 25 – Integration of UVM Agent and Driver extending a component 

 

13. Integrating UVM Sequences: Apart from the Scoreboard, the rest of the UVM blocks were 

functioning in their respective roles. A Sequencer and a Driver were added. 
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Figure 26 – Integration of the full UVM stimulus layer: Sequencer and Driver 

 

14. Integrating the Scoreboard to a Monitor: The Scoreboard needs both input and output Transactions 

since it predicts whether the DUV is working properly. Therefore, it needs two Analysis Exports. The 

first inherits uvm_subscriber and the second was created using a uvm_tlm_analysis_fifo. It was 

possible to isolate the Scoreboard from the DUT signals using an appropriate monitor to read the pin-

level signals. The FIFO stores the input value, and everytime the DUT generates an output value it 

makes the LFSR shift and checks if the values are the same. 
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Figure 27 – Scoreboard ↔ Monitor Integration 

 

15. Integrating the Configuration Objects: the same principle explained in 3.7 has been applied here. The 

Test Component retrieves the handle to the BFM from the UVM database, fills a configuration object 

for the Env and inserts it in the database. Then, the Env gets the Configuration Object out of the 

database and fills the Agent Configuration Object. If the UVM_ACTIVE_PASSIVE variable were set 

to passive, the testbench would not have the Stimulus Layer.  
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5 MATLAB INTEGRATED IN THE SCRAMBLER 

TESTBENCH 

 

SystemVerilog is a programming language that can be very powerful to design Golden models. Although it is 

possible to design Golden models in SystemVerilog, I did not use one because I already had Matlab simulation 

models according to the transceiver specifications. By using Matlab instead of SystemVerilog to model the 

IFFT in the testbench, I avoided much of the difficulty in completing this time-consuming task.  

 

5.1 Matlab integration into Questasim 

  

Using Matlab source code during the verification process significantly reduced the time to develop a 

verification testbench. Existing Matlab functions can be used for both initial testbench development as a DUT 

before the RTL is available, as well as a Scoreboard to verify DUV functionality [27].  

There are three interesting ways to use Matlab together with VHDL, SystemVerilog or mixed testbenches: 

 Questa Simulator dedicated Matlab integration package: 

The Mentor Graphics Questa simulator has a package that permits setting up a connection between Matlab 

and VHDL/SystemVerilog more quickly. The main features are: 

 

1. VHDL/SV QMW API that allows sending integers, matrixes and vectors between the simulator 

and Matlab, and also permits sending commands. 

2. TCL layer that allows sending signals. Note: this feature would be very useful in case Matlab 

were used as a temporary DUT.  

3. Debugging of SV/Matlab code. 

 

 Matlab C API with SystemVerilog DPI.   

 Matlab function as VHDL entities:  

The input and output of the Matlab functions are the VHDL ports. This works internally and calls to other 

functions. It is necessary to make Matlab understand HDL signals which is not a trivial task, and there is 

also difficulty caused by Matlab’s inaccurate clock cycle. 

 

The choice to integrate Matlab with QuestaSim was the QMW API, since it eases the Matlab-Testbench 

communication. However, Matlab C API with SystemVerilog DPI could have also been used with a little extra 

If at first you don't succeed; call it version 1.0 

- Anonymous quote- 
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effort. 

 

5.2 Necessities to adapt the Matlab Script 

 

According to the PRIME alliance specifications, the scrambler can be modeled as a 7-bit LFSR, which is 

equivalent to XORing the input of the scrambler and a pseudo sequence given as: 

Pref0..126= 
{0,0,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,1,1,1,0,1,0,1,1,0,1,1,0,0,0,0

,0,1,1,0,0,1,1,0,1,0,1,0,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,1,0,0,0,1,1,0,1,1,1,0,

0,0,1,1,1,1,1,1,1} 

 

The Matlab script was designed originally to work with complete blocks of bits, and the original script would 

not work with the HDL scrambler because the RTL code had an FSM that Matlab could not follow.  

In order to adapt the Matlab script it was necessary to implement a variable that was not erased every time the 

SV predictor sent a new input bit. Most programming languages have a static variable type. Static variables are 

used in functions. When the function is called for the first time, the variable is declared and is stored in the 

memory. Matlab has a static type called persistent. By using static variables, it was possible to adapt the 

internal state of the FSM to the Matlab function.  

 

5.3 Topology of the Scrambler testbench. 

 

The testbench had the architecture shown in Fig. 28 with a few modifications to the Components. 

 

5.3.1 Merging I/O Monitors 

 

The topology depicted in Figure 28 is comprised of two Monitors. One of them sends the input data of the 

DUV while the other Monitor does the same for the output data. This setup can be simplified by merging both 

of the Monitors into one. This is possible because of the data flow within the scrambler. Merging the two 

Monitors also simplifies the work done by the Analysis Layer Components that receive all the data at once by 

avoiding the need for two Analysis Exports. 
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Figure 28 – Input and Output Monitors merged into one 

 

It is worth mentioning that in order to being able to modify the Monitor as explained above it is also necessary 

to modify the Transaction class. The Transactions previously were working as two separate transactions. There 

was an input and an output Transaction, which were combined into one Transaction class that contains all of 

the compacted data. 

 

Note: In all the testbench topologies the Monitor extended the uvm_component, but it was modified to extend 

uvm_monitor. In fact, this change was not necessary because the features of uvm_monitor are the same as 

uvm_component. However, the UVM guidelines suggest extending the proper component when possible. By 

doing so, if in the future such Components have any additional features, the migration would be easier, faster 

and less prone to error. 
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5.3.2 Scoreboard topology 

 

The Scoreboard functionality has been split between two additional Components: The Predictor and the 

Checker. The Predictor is the class which will work as the golden model while the Checker will test whether 

the DUV is working according to the specifications. 

 

Analysis LayerAnalysis Layer

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber
Scoreboard extends uvm_componentScoreboard extends uvm_component

I / O 
Monitor

I / O 
Monitor

BFMBFM

extends 
uvm_monitor

extends 
uvm_monitor

Legend:
Analysis export

Analysis port

Predictor extends uvm_subcriberPredictor extends uvm_subcriber

analysis_portanalysis_port

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

Expected valueExpected value

Actual valueActual value

Comparer extends uvm_componentComparer extends uvm_component

 

Figure 29 – Inside the Scoreboard 

 

In order to make the configuration shown in Figure 30 it was necessary to design two Components: 

 Predictor: the predictor task was to work as a golden model, and also was to send the predicted output 

to the comparer Component after calculating it. To accomplish that, it was necessary to implement an 

Analysis Port which could send the expected output. 

 Comparer: The Comparer Component works as a checker. It receives both the real RTL output and 

the ideal output and compares them. If the two values are unidentical it stops the simulation by using 

the uvm_fatal reporting macro. I chose to have two Analysis Ports which were connected to an 

Analysis FIFO. The purpose of adding an Analysis FIFO was that in case the Transactions were 

arriving faster than what the Checker could run, the extra Transactions would be stored. 

 

5.3.3 Predictor Factory override 

 

Until this point the whole testbench had been done uniquely using SystemVerilog code, but after this point 

Matlab is incorporated. The UVM Factory override method makes it possible to define a new test where one 

Component is substituted for another component. In this testbench, both of the Predictors could be simulated 

using different tests.  
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Figure 30 – Random test without Matlab Predictor 
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Figure 31 – Random test integrating Matlab Predictor overriding 

 

Because of the override method, we can extend a previously written test and modify only the necessary 

components by overriding.  
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To automatize the test execution a Makefile [28] was created. The Makefile had two targets, to compile and 

simulate the random test with the SV predictor, and to compile and simulate the random test using the Matlab 

predictor. 
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6 MATLAB INTEGRATED IN THE FINAL 

TESTBENCH 

 

This chapter will describe all the necessary steps to create the testbench for the complete transceiver. 

 

6.1 Compiling Xilinx IP Cores 

 

The transceiver originally had two Xilinx IPCores, a dual port RAM memory and an IFFT. To simulate those 

IPCores in the Questa simulator, it is necessary to compile them and link the compiled files to the Questa 

simulator so it can instantiate them into the RTL design. 

Xilinx provides a tool for compiling IPCores called Compxlib [29]. After compiling the IPs with Compxlib it 

is possible to link them. 

 

6.2 VHDL modification 

 

The original VHDL design had a ROM memory which inserted the 8-bit to 8-bit stream into the system. In 

order to provide verification, it was necessary to modify the input of the System, removing the ROM. In the 

RTL there was a small FSM that controlled the flow of the bit stream into the Convolutional Encoder.  

To accomplish this, I adapted the way the Driver inserted the data into the DUV. The easiest and least       

error-prone solution was to change the input Transaction that the Driver receives from the Sequencer into a 

Transaction with 8-bit data fields. Because the FSM that controlled the ROM stopped the transmission when it 

detected a carriage return character, in order to not modify the VHDL, the Sequence plan needed to have the 

carriage return as the last 8-bit data Transaction that the Driver toggled in the DUT interface. The VHDL top 

entity has a signal used by the driver called ask4byte, and when that signal goes high the Driver sends the 8-bit 

input. 

 

6.3 Binding internal signals 

 

In theory, verification engineers should not modify the design, but they sometimes need to access internal 

signals [30]. This is called white box, grey box or black box testing, depending on the degree to which a 

verification engineer has to go inside the RTL. 

All internal signals that interconnect RTL components have been binded using an interface per signal, making 

Success is nothing more than a few simple disciplines, practiced 

every day.  

- Jim Rohn- 
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them accessible at the top module, and connecting them to the BFM to ease future work.  The binded signals 

are: 

 Convolutional Encoder input. 

 Scrambler input. 

 Interleaver input. 

 Mapper input.  

It is not necessary to bind the IFFT output because it is a top level output. 

 

As explained in the Workflow chapter, the functional coverage of internal registers has been maintained so 

that binded interfaces perform functional coverage: 

 Shift register of the scrambler. 

 Shift Register of the Convolutional Encoder. 

 

6.4 Matlab Predictor modifications 

 

As explained in section 4.2, the original Matlab script was originally intended to work with bit vectors. By 

doing this it was possible to detect an error in an exact clock cycle. The goal of the predictor is to work at the 

lowest number of bits possible in order to identify any HDL error with the maximum timing accuracy possible. 

However, the actual Predictor was not designed with the same intended purpose. Since errors are now detected 

at OFDM symbol level.  

 

The design of this predictor was changed such that the SystemVerilog code does not call a function, but rather 

a Matlab script. Before the simulation starts, SystemVerilog sends a variable to Matlab in the build phase 

which indicates what modulation the transceiver is going to run. After that there are three main Matlab scripts: 

 

 A Configuration file. 

 The predictor script. 

 IFFT that checks the IFFT 

 

After sending the modulation, the Predictor sends a command to run a configuration script which will set all 

the variables to their initial values. The IFFT block works at OFDM symbol level, which means that if one 

wants to verify the complete system it has to work with those block of bits.  

Before running the Predictor Matlab script, SystemVerilog has to send all the variables that the script needs to 

work: the input, the output, and end of simulation. Once Matlab has all that information it is possible to run the 

Predictor script, as depicted in Figure 33. 
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Figure 32 – Matlab ↔ SystemVerilog communication 

 

In the Predictor script a few modifications have been made. The Scrambler golden model has been modified 

and no longer uses persistent variables. Instead, its internal state is first set by the configuration file. The state 

of the last position that the scrambler was XORing in the pseudorandom sequence is stored, and the Sequence 

is adapted to work in the next iteration as if the scrambler were in the previous state. The Convolutional 

Encoder is also a golden model that has a state. The case of the Convolutional Encoder is different, in that uses 

a Matlab ToolBox function. To accommodate this difference, the last six input bits were stored in a vector to 

set the state of the Convolutional Encoder for the upcoming OFDM symbol. 

Because Matlab accuracy is higher than SystemVerilog, the ideal and real outputs are compared in Matlab 

rather than in the SystemVerilog Predictor. Matlab receives the IFFT + CRC binary output, adapts it and then 

compares it with the ideal values it predicted. The script measures the relative error and the maximum and 

average error per symbol. 

After the comparison in Matlab, the SystemVerilog’s predictor retrieves the values. Because the QMW library 

only allows integers to be sent, it is necessary to scale the number and send the integer and decimal values 

separately and then cast it in SystemVerilog into a real (floating point data type).  

 

6.5 Final Testbench Architecture 

 

The testbench has followed the UVM testbench guidelines. However, some Components were added and 

modified from the final Scrambler testbench in order to effectively achieve verification goals.  
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Figure 33 – Final testbench topology 

 

6.5.1 The Sequencer and the Sequence 

 

The new Sequencer sends new Transactions to the Driver. By this time, the system input has been adapted to 

an 8-bit input. The Sequence creates the 8-bit random Transactions. The last Transaction the Sequence object 

generates to stop the DUV is given as 00001101b, which is the ASCII code for the carriage return. 

 

6.5.2 The Driver 

 

Now the workflow of the DUT is different, and therefore the Driver will need to toggle more signals using the 

BFM.  It sets the modulation and also sends the input data when the DUV requires it. It will print a `uvm_info 

in the report phase indicating the number of sequence_items that have been driven.  

 

6.5.3 Coverage Monitor and Coverage Component 

 

The Coverage Monitor reads the input data to the system in a bit to bit stream and connects the Coverage 

Component. The Coverage object performs a simple functional coverage. It consists of a single covergroup 

that contains two bins: one for the ones, and another for the zeros.  

 

6.5.4 Symbol to Symbol Monitors 

 

There are two monitors sending data to the Scoreboard: the input and the output Monitors. For this testbench, 

it was not possible to merge both of them together. This was due to the latency of the transceiver -- by the time 

the system produced the IFFT+CRC output, it was already being driven by a new input.  

As a consequence, two monitors were needed. Both of the actual monitors work at OFDM symbol level to 
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facilitate the Predictor task. 

 

6.5.5 Scoreboard Implementation 

 

The Scoreboard design in the final testbench is different compared to the Scrambler test. In the final testbench 

there is no Checker implementation. This task is performed by Matlab as explained in section 5.4. The reason 

for this was the difficulty of the synchronization job necessary between the Checker and the Predictor. In 

addition, sending variables to Matlab from two different Components imply modifying the Matlab workspace 

from two different angles, which is more complex to debug.  

Inside the Scoreboard there is the Predictor class, which actually works as both a Predictor and a checker. 

Even though it was not necessary to design the Scoreboard with subcomponents, it was implemented in that 

way because it allows changes to the Scoreboard content and future reuse. 

The Predictor needs to implement two TLM_FIFOs to avoid losing incoming Transactions. When retrieveing 

the FIFO data, the first position in both FIFOs will correspond to the same OFDM symbol. 

In the run phase, the Predictor prints the average relative error per real and imaginary parts using a `uvm_info 

message. Additionally, in the report phase it prints the maximum real and imaginary relative error in the whole 

simulation using another `uvm_info.  

 

At the moment the Predictor is purely informative. It does not stop the simulation since the computation it 

performs is just the relative error. Nevertheless, it would be very easy to add a `uvm_error or `uvm_fatal 

message according to a maximum tolerable error. 

 

6.5.6 Top module and BFM 

 

The top module contains the DUV and BFM instantiations and connections. In addition, all the intermediate 

signals between components have been linked to the BFM interface. Thus if in the future more functionality 

needs to be added to the testbench, it can easily be done.  

The internal signals have been accessed from the interfaces binded within the DUT using the SystemVerilog 

assign key word. 

 

6.6 Inheritance and relations between classes 

 

The Doxygen documentation generation tool generates online documentation as well as diagrams that show all 

of the relations between classes once all of the SystemVerilog code is commented according to its marking 

syntax. It gives very useful information because it is possible to see the position of every class and where 

classes extend from a simple picture. This is shown in Figure 35. 
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7 RESULTS AND CONCLUSIONS 

 

7.1 Results 

 

This project was accomplished creating a complete UVM testbench for an OFDM transceiver written in 

VHDL. In order to adopt the Universal Verification Methodology many testbenches have been set up until 

reaching the final version. The testbench now is comprised of the fundamentals of verification: 

 Code coverage. 

 Functional coverage. 

 Random Testing. 

 

7.2 Conclusions 

 

The UVM is a methodology used by electronic engineers in the semiconductor industry and therefore is very 

comprehensive.  It is usually used in conjunction with other verification technologies. For an engineering 

student it can be frustrating at first, especially because there are not many resources available and most of the 

resources are for engineers that work in the verification field. However, although it can seem impossible to 

learn at times, after finishing this project I have realized how powerful this methodology is. Once one starts 

coding the first testbenches, the rest only depends on being patient and continuing to learn.  

I strongly encourage other engineering students to learn the UVM.  I believe verification helps to open minds 

with respect to the way you design. Even if your goals are to work as a design engineer, going through the 

process of learning the UVM will help you to communicate effectively with your colleagues.  

 

 

 

 

 

 

 

 

 

 

However beautiful the strategy, you should occasionally look at 

the results.  

-Winston Churchill- 
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8 FUTURE WORK 

 

It is difficult to point to how this work could be expanded because testbenches can be so diverse and there can 

be so many variations. One possible improvement in the future may be to mix a series of random and directed 

testing until reaching 100% code coverage in the design. In addition, UVM testbenches are very modular, and 

it would be very interesting to study the efficiency of a testbench that, instead of using a single OFDM-Symbol 

level Scoreboard, also included Scoreboards (with their own Predictor and Checker) for each system module 

with Predictors less Matlab-based. In this more scalable testbench, there would exist several Agents in which 

each Agent performs the verification of one of the DUT blocks.  

Outside of the verification world, the OFDM transceiver was originally done as part of coursework. It would 

be extremely useful to integrate the testbench in a server where students could upload their HDL code, and the 

testbench would check whether the RTL of those students is working under the specifications. This would 

improve verification in student designs because the UVM can deliver messages using the reporting macros, 

that are very clock cycle accurate, which would help students to fix their RTL more rapidly.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I never think of the future - it comes soon enough.  

-Albert Einstein- 
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1 RESUMEN 

 

En el presente documento se explican de forma concisa los aspectos clave tratados en 

el Trabajo Fin de Grado.  

  

1.1 Introducción 

 

La verificación de diseños hardware no es un tema tratado en profundidad en el 

mundo de la academia. Esto convierte dicho estudio en un desafío. Tras graduarse, un 

alumno de ingeniería electrónica sólo tiene capacidad de llevar a cabo pruebas muy 

simples, que no son suficiente en un entorno industrial en el que cada paso que se da 

en un diseño tiene que probarse antes de llegar al mercado. 

 

En general, podría decirse que la comunidad de ingeniería electrónica no se ha 

preocupado sobre la verificación de dispositivos programables como las FPGAs o 

CPLDs.  En parte, esto está influenciado por la Ley de Moore, la cual indica que el 

número de transistores por área se duplica cada dos años.  

 

 

 

Figura 1 – Gráfica de la ley de Moore 
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Con el creciente número de transistores por densidad de área se dificulta 

enormemente la tarea de comprobar un funcionamiento correcto de los circuitos 

integrados. Es por ello que los ingenieros electrónicos modernos deberían evitar la 

depuración en el laboratio si previamente no han planificado una estrategía de 

verificación adecuada para el diseño. 

En teoría, la dificultad de verificación crece exponencialmente conforme aumenta la 

complejidad de los diseños. Esto se conoce como Verification Gap: diferencia de 

productividad entre la verificación y el diseño. A día de hoy, nuestras habilidades de 

verificación son menores que nuestras habilidades para diseñar. Esto podría deberse a 

la importancia que los ingenieros electrónicos le atribuyen al diseño. Hay más 

ingenieros de diseño que ingenieros de verificación. Además, los ingenieros de 

verificación necesitan tener un conjunto de habilidades que no eran necesarias antes.  

Entre las que podrían destacarse: Systemverilog, C/C++, Perl, TCL, Python, 

Assertions, functional coverage, etc.  

 

Las compañías de diseño electrónico en el pasado insistían en tener lenguajes de 

verificación propios que eran bastante complicado de aprender si no se tenía acceso a 

la propia empresa. Gracias a Accelera ha sido posible unificar unificar y estandarizar 

un conjunto de los lenguajes de verificación mas relevantes alcanzando así UVM. 

 

Figura 2 – Evolución de los lenguajes de verifiación 

 

 

Es de importante mención el hecho de que el software que se necesita para aprender 

lenguajes de verificación pertenece a empresas como Cadence, Mentor Graphics o 

Synopsis. Lo cual dificulta que los estudiantes de ingeniería tengan la capacidad de 

aprender adecuadamente dichos lenguajes de verificación. La escasez de recursos para 

enseñar verificación es un problema que debería preocupar a las universidades, ya que 

los estudiantes deberían tener un conjunto de habilidades más amplias y profundas a 

la hora de enfrentarse al mercado laboral.  

 



1.2 Diseño bajo verificación 

 

Se verifica usando la metodología UVM un diseño en VHDL de un transmisor 

OFDM. Dicho diseño cumple parcialmente las especificaciones de la recomendación 

PRIME Alliance, el cual establece comunicaciones en líneas de tranmisión de 

potencia de banda estrecha.  

 

El diseño se realizó como trabajo de curso de la asignatura Sistemas Electrónicos de 

Comunicaciones y fue implementado en la FPGA Spartan-3.  

 

La arquitectura del diseño bajo verificación de la capa física se muestra en la imagen 

inferior: 

 

Figura 3 – Diagrama de bloques del transmisor OFDM 

1.3 Universal Verification Methodology (UVM) 

 

La metodología UVM es muy extensa. Se recomienda al lector interesado consultar el 

capítulo correspondiente en el Trabajo Fin de Grado o bien acceder directamente al 

estándar. 

 

Dicha metodología fue estandarizada en el año 2009 por Accelera, una organización 

responsable de estándares en las áreas de automatización de diseño electrónico y 

fabricación de circuitos integrados. Surge como consecuencia del esfuerzo de 

diseñadores electrónicos en conjunto con las empresas de ingeniería electrónica tras 

en líneas generales mezclar las metodologías OVM y VMM. No se trata de un 

lenguaje de verificación por sí misma, sino de una librería de código libre basada en 

SystemVerilog. 

 

La principal característica de UVM es la potencia de verificación mediante 

testbenches, que usan estimulos aleatorios y restringidos (constrained random 

stimulus) y functional coverage. Actualmente UVM no es una metodología completa 

de como seguir cada paso a la hora de verificar diseños digitales. Sin embargo, es una 

excelente guía de como seguir los aspectos más importantes en verificación.  
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Un diagrama de bloques típico acorde a la metodología UVM se muestra en la 

imagen siguiente: 

 

 

Figura 4 – Ejemplo a nivel de bloques de un testbench UVM para un DUT con interfaces APB y SPI 

 

 

Los componentes constituyentes de UVM son: 

 

 UVM Transactions. 

En verificación de diseños digitales, Transactions es el término para la clase que 

agrupa los datos y todas las operaciones que pueden llevarse a cabo sobre dichos 

datos. UVM Transactions se usan para distribuir los datos entre los diferentes 

UVM Components. 

  

 UVM Components. 

Todos los Components de UVM se ubican dentro de una clase test. Dentro de esta 

se distinguen principalmente dos Components contenedores: UVM Env y UVM 

Agent. En el conjunto de componentes dentro de UVM Agent se difiere entre 

componentes de la capa de estímulos y componentes de la capa de análisis. 

o Capa de estímulos: 

- UVM Sequencer. 

- UVM Sequences. 

- UVM Driver. 

 



o Capa de análisis: 

- UVM Monitor. 

- UVM Scoreboard. 

- Predictor. 

- Objetos de Coverage. 

 

 BFM (Bus Functional Modeling). 

Es una abstracción para interacturar con el DUV. Encapsula todas las señales del 

DUV y como estas interactúan con los pines del diseño. 

 

Otro de los aspectos claves de UVM es que cada acción debe ocurrir en un momento 

determinado, para lo cual se crearon las fases UVM (Standard UVM Phases). Hay 

tres grupos diferentes de fases que se ejecutan en el siguiente orden: 

1. Build Phases: se configura y construye el testbench.  

2. Run-Time Phases: se aplican estímulos sobre el diseño bajo verificación.  

3. Clean-up Phases: se reciben y se reportan los resultados de la prueba. 

 

 

 

Figura 5 – fases UVM  
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1.4 Flujo de trabajo 

 

Antes de comenzar el presente proyecto no tenía conocimiento alguno sobre UVM y 

SystemVerilog. SystemVerilog es un lenguaje de programación orientado a objetos 

que tiene la misma sintaxis que Verilog, aunque con mas funcionalidad. Por tanto, es 

posible usarlo tanto para tareas de diseño (HDL) como de verificación (HVL). Dado 

que el transmisor OFDM ya estaba originalmente diseñado en VHDL sólo usé las 

funcionalidades de SystemVerilog relacionadas con verificación.  

Comencé haciendo testbenches para un único bloque del sistema. Elegí el Scrambler 

como el primer bloque al que aplicar verificación por su simplicidad y 

incrementalmente fui añadiendo funcionalidad a los testbenches en SystemVerilog 

hasta conseguir el primer testbench UVM. 

 

Las herramientas usadas en este trabajo fueron: 

 QuestaSim: un simulador de lenguajes de descripción hardware (HDL) y 

lenguajes de verificación hardware (HVL). Se usó para llevar a cabo 

simulaciones mixtas con VHDL y SystemVerilog+UVM. 

 Matlab: una herramienta de software matemático compatible con QuestaSim 

que llevaba a cabo el modelo software del sistema. 

 Doxygen: una herramienta para generar documentación automáticamente en 

conjunto a un script en Perl creado por Christoph Suehnel para poder integrar 

SystemVerilog en la documentación. 

 Emacs: un editor de textos con una excelente funcionalidad para VHDL y 

SystemVerilog. 

 

 

1.5 Integración del testbench para Scrambler con Matlab 

 

SystemVerilog es un lenguaje de programación que puede ser muy potente en diseño 

de modelos software. Sin embargo, se usó Matlab como Predictor dado que ya se 

partía de los modelos en Matlab acorde a las especificaciones del transmisor. Al usar 

Matlab en lugar de SystemVerilog para predecir la salida del bloque IFFT en el 

testbench se simplificó considerablemente dicha tarea. 

 

 

 



A pesar de lo explicado con anterioridad, fue necesario adaptar ligeramente el script 

de Matlab correspondiente al Scrambler. Este originalmente estaba programado para 

trabajar con todo el vector de datos de entrada al bloque. Para tener más exactitud 

encontrando errores, fue necesario añadir variables de estado al script para que 

pudiera funcionar bit a bit y así detectar errores con la mayor precisión posible. 

 

La topología del testbench resulta de la siguiente manera: 

 

 

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

I / O 
Monitor

I / O 
Monitor

BFMBFM

extends 
uvm_monitor

extends 
uvm_monitor

Random test extends base_testRandom test extends base_test

uvm_componentuvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
F

M
B

F
M

DUVDUV

env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins

Binded_BFMBinded_BFM

Legend:

Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends 
uvm_driver

extends 
uvm_driver

SequencesSequences

Stimulus Layer Analysis Layer

Scoreboard extends uvm_componentScoreboard extends uvm_component

Predictor extends uvm_subcriberPredictor extends uvm_subcriber

analysis_portanalysis_port

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

Expected valueExpected value

Actual valueActual value

Comparer extends uvm_componentComparer extends uvm_component

Figura 6 – Topología del testbench para el Scrambler 

 

 

 

Además, se hizo uso de la funcionalidad UVM Factory Overrides para poder tener en 

el mismo diseño una arquitectura flexible. Con lo que se consiguió que un mismo 

testbench instanciase diferentes Components dependiendo del test que se ejecutase. 

Por medio de un Makefile se automatizó la tarea de simular un testbench que 

instanciara el Predictor en SystemVerilog (Fig.6) o basado en Matlab (Fig.7). 

 



20 

 

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

I / O 
Monitor

I / O 
Monitor

BFMBFM

extends 
uvm_monitor

extends 
uvm_monitor

Random_test_matlab extends random_testRandom_test_matlab extends random_test

uvm_componentuvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
FMB
FM

DUVDUV

env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins

Binded_BFMBinded_BFM

Legend:

Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends 
uvm_driver

extends 
uvm_driver

SequencesSequences

Stimulus Layer Analysis Layer

Scoreboard extends uvm_componentScoreboard extends uvm_component

Predictor_matlab extends predictorPredictor_matlab extends predictor

analysis_portanalysis_port

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

Expected valueExpected value

Actual valueActual value

Comparer extends uvm_componentComparer extends uvm_component

UVM Factory OverridesUVM Factory Overrides

Figura 7 – Topología del testbench usando el Predictor de Matlab 

 

1.6 Integración del testbench final con Matlab 

 

Debido a que el diseño HDL usaba varios IP cores de Xilinx fue necesario compilar 

con anterioridad dichos IP cores para poder simularlos en el simulador QuestaSim. 

Para la compilación se usó la herramienta Compxlib de Xilinx.  

 

En teoría, los ingenieros de verificación no deben modificar el diseño. Sin embargo, a 

veces es necesario acceder a señales internas del sistema, conocido como caja blanca 

(White box). QuestaSim tiene un constructor (bind) para “atar” interfaces en 

SystemVerilog a partes internas del diseño y así poder tener acceso desde el 

testbench. Las señales internas a las que se ha accedido son: 

 Entrada del Codificador Convolucional. 

 Entrada del Scrambler. 

 Entrada del Interleaver. 

 Entrada del Mapper. 

 

 



Además, se ha usado el constructor bind para poder hacer functional coverage sobre: 

 

 Registro de desplazamiento del Scrambler. 

 Registro de desplazamiento del Codificador Convolucional. 

 

De nuevo, el script de Matlab que funciona como Predictor tuvo que modificarse para 

poder localizar errores en el diseño con la máxima precisión posible. Ahora, el 

Predictor funciona a nivel de vectores de bit, pero no de la entrada total del sistema 

desde el origen de los tiempos, sino de símbolo OFDM. Fue necesario de nuevo 

integrar variables de estado en Matlab que permitieran conocer el estado interno en el 

que se encontraban tanto el Scrambler como el Codificador Convolucional. 

La comunicación entre Matlab y el testbench se corresponde al siguiente diagrama de 

flujo: 

 

 

 

BPSK, QPSK or 8PSK Send Modulation

Send

Configuration 

File

¿Receive 

input bits and Output 

OFDM-Symbol?

Send SV 

variables

End

Yes

The variables sent are:

 Input Stream

 End of simulation

 IFFT+CRC output

¿End of 

simulation?

No

Execute 

Predictor 

Script

Comparison

Script

Retrieve Matlab 

Variables

No Yes

 

Figura 8 – Comunicación entre Matlab y SystemVerilog 
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Finalmente se consiguió una topología de testbench acorde a las directrices de UVM: 

 

 

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

Bit2bit input
Monitor

Bit2bit input
Monitor

BFMBFM

extends 
uvm_monitor

extends 
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Random_test_matlab extends random_testRandom_test_matlab extends random_test
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B
F

M
B

F
M
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env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins
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Legend:
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SequencerSequencer DriverDriver

BFMBFM
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Scoreboard extends uvm_componentScoreboard extends uvm_component
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Input Monitor
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extends 
uvm_monitor

extends 
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analysis_exportanalysis_export
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Figura 9 – Topología del testbench final 

 

 

Gracias a Doxygen junto con el script en Perl es possible generar diagramas que 

muestran la relación entre clases una vez que todo el código SystemVerilog se haya 

comentado acorde a una sintaxis de marcado. En la figura 10 es posible ver donde está 

ubicada cada clase y de donde heredan de un simple vistazo. 
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1.7 Resultados 

 

En este proyecto se ha llevado a cabo la creación completa de un testbench usando la 

metología UVM para verificar un transmisor OFDM descrito en VHDL. Para adoptar 

UVM se han planificado un conjunto de testbenches hasta llegar a la versión 

definitiva. El testbench finalmente consta de los fundamentos de verificación: 

 Code Coverage. 

 Functional Coverage. 

 Random Testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 PALABRAS CLAVE 

 

 Verificación. 

 UVM: Universal Verification Methodology. 

 Simulación. 

 SystemVerilog. 

 VHDL: VHSIC Hardware Description Language. 

 OFDM: Orthogonal Frequency Division Multiplexing / Multiplexación por 

division en frecuencia orthogonal.  

 Matlab. 
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3 CONCLUSIONES 

 

UVM es una metodología usada por ingenieros electrónicos en la industria de los 

semiconductores, y por tanto es muy amplia y completa. Normalmente se usa 

conjuntamente con otras tecnologías de verificación. Para un estudiante de ingeniería 

puede ser frustrante al principio, especialmente porque no hay muchos recursos 

disponibles y los que hay son para ingenieros que trabajan en ámbitos de verificación. 

Aunque en ocasiones puede parecer imposible de aprender, después de completar este 

trabajo me he dado cuenta que es una metodología muy potente. Una vez se empieza 

a diseñar los primeros testbenches, el resto es cuestión de ser paciente y seguir 

aprendiendo.  

Animo completamente a otros estudiantes de ingeniería a aprender UVM. Pienso que 

la verificación ayuda a abrir la mente con respecto a la forma de diseñar. Incluso si tus 

objetivos son trabajar como ingeniero de diseño, seguir el proceso de aprender UVM 

te ayudará a comunicarte de forma eficaz con tus compañeros. 
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