

Equation Chapter 1 Section 1

Final Project

Degree in Telecommunications Engineering with a

specialization in electronics

Simulation environment for an OFDM transmitter

using UVM methodology

Author: Antonio Martínez Zambrana

Tutor: Hipólito Guzmán Miranda

Electronic Engineering Department

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2016

iii

Final Project

Degree in Telecommunications Engineering

Simulation environment for an OFDM transmitter

using UVM methodology

Author:

Antonio Martínez Zambrana

Tutor:

Hipólito Guzmán Miranda

Associate Professor

Electronic Engineering Department

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2016

v

Final Project: Simulation environment for an OFDM transmitter using UVM methodology

Author: Antonio Martínez Zambrana

Tutor: Hipólito Guzmán Miranda

The comittee judging the Project indicated above is comprised of the following members:

President:

Chair:

Secretary:

They agree to grant this project a grade of:

Sevilla, 2016

Tribunal Secretary.

vii

Acknowledgments

I would like to express my thanks firstly to Hipólito Guzmán Miranda, my tutor. He gave me the chance of

learning these new skills which were totally unknown to me. I have had the opportunity to use tools that would

have otherwise been imposible to use. He supported me and motivated me, thank you.

I am incredibly grateful to my parents and family. They made me the person I am now and they have always

been supporting and motivating me. Everything I have done is thanks to them.

Thank you Christoph Suehnel, you solved so many doubts and helped me when I needed it. I felt highly

motivated with your help.

Thank you Steve Ingham, you listened to me when I needed and encouraged me in a way that no one did

before.

Sarah Parkinson, thank you for all your patience and help.

Thank you Adrián Jiménez, for all those moments we were motivating and helping each other.

To my friends and colleagues, thank you for listening, offering me advice and supporting me all this time.

ix

Abstract

The aim of this Project was to design a verification testbench using the Universal Verification Methodology

standardized by Accellera. The HDL design I chose to verify was an OFDM transceiver written in VHDL

according to the PRIME alliance specifications. The tools used were EDA proprietary software for hardware

verification working in conjunction with Matlab.

The strategy to develop the final testbench was based on a series of UVM testbenches, focusing on adding

more UVM and verification functionality than the previous version. The final testbench was fully integrated

with Matlab, which worked as a Golden model.

The results of the project successfully prove that the UVM is a very scalable verification methodology, has the

possibility to implement the most advanced verification measures and is simple to integrate with most modern

technologies.

xi

Index

Acknowledgments ... vii

Abstract .. ix

Index ... xi

Tables index .. xiii

Figures index .. xv

Notation ... xvii

1 Introduction ... 10
1.1 Verification necessities .. 10
1.2 PRIME alliance based transceiver ... 12

2 Design Under Verification .. 13
2.1 Functional requirements of the Convolutional Encoder .. 13
2.2 Functional requirements of the Scrambler .. 14
2.3 Functional requirements of the Interleaver ... 14
2.4 Functional requirements of the Mapper .. 16
2.5 Functional requirements of the IFFT and CRC .. 17

3 The Universal Verification Methodology (UVM) .. 19
3.1 Introduction .. 19
3.2 UVM components .. 20
3.3 UVM Transactions ... 21
3.4 The BFM.. 21
3.5 Container Components .. 22
3.5.1 The Env Component .. 22
3.5.2 The Agent Component .. 22

3.6 Components of the Stimulus layer .. 23
3.6.1 UVM Sequencer ... 23
3.6.2 UVM Driver .. 24
3.6.3 UVM Sequences ... 24

3.7 Components of the Analysis layer .. 24
3.7.1 The Monitor ... 25
3.7.2 The Scoreboard .. 25
3.7.3 Predictor ... 26
3.7.4 Coverage objects ... 27

3.8 The UVM Factory ... 27
3.9 Configuration of a UVM testbench environment .. 27
3.10 The Standard UVM phases .. 28
3.11 Testbench Construction ... 31

4 Workflow ... 33
4.1 Introduction ... 33
4.2 Tools ... 33
4.3 Process to learn the UVM ... 33

5 Matlab Integrated in the Scrambler testbench .. 39
5.1 Matlab integration into Questasim ... 39
5.2 Necessities to adapt the Matlab Script .. 40
5.3 Topology of the Scrambler testbench. ... 40
5.3.1 Merging I/O Monitors ... 40
5.3.2 Scoreboard topology ... 42
5.3.3 Predictor Factory override .. 42

6 Matlab integrated in the final testbench ... 45
6.1 Compiling Xilinx IP Cores ... 45
6.2 VHDL modification ... 45
6.3 Binding internal signals ... 45
6.4 Matlab Predictor modifications .. 46
6.5 Final Testbench Architecture .. 47
6.5.1 The Sequencer and the Sequence ... 48
6.5.2 The Driver ... 48
6.5.3 Coverage Monitor and Coverage Component .. 48
6.5.4 Symbol to Symbol Monitors ... 48
6.5.5 Scoreboard Implementation .. 49
6.5.6 Top module and BFM .. 49

6.6 Inheritance and relations between classes .. 49

7 Results and conclusions ... 51
7.1 Results .. 51
7.2 Conclusions .. 51

8 Future work ... 53

References .. 55

xiii

TABLES INDEX

Table 1 - DBPSK Interleaving matrix (Source: [9]) 15

Table 2 - DQPSK Interleaving matrix (Source: [9]) 15

Table 3 - D8PSK Interleaving matrix (Source: [9]) 16

Table 4 – UVM components (Source: [15]) 21

xv

FIGURES INDEX

Figure 1. Moore’s law graph (Source: [3]) 11

Figure 2 – Languages used by verification, design and system engineers. (Source: [5]) 11

Figure 3 – Verification languages evolution (Source: [6]) 12

Figure 4 – System overview (Source: [9]) 13

Figure 5 – Encoder’s behaviour diagram (Source: [9]) 14

Figure 6 – LFSR behaviour diagram (Source: [9]) 14

Figure 7 – DBPSK, DQPSK, and D8PSK mapping (Source: [9]) 16

Figure 8 – IFFT + CRC Diagram 17

Figure 9 – Example of a Block Level UVM testbench for a DUT with SPI and APB interfaces

(Source: [14]) 19

Figure 10 – UVM simplified inheritance diagram (Source: [14]) 20

Figure 11 – Typical topology of an active/passive Agent (Source: [14]) 22

Figure 12 – Stimulus layer (Source: [14]) 23

Figure 13 – Sequence Item flow (Source: [14]) 23

Figure 14 – Analysis layer 24

Figure 15 – Scoreboard block diagram (Source: [14]) 26

Figure 16 – Predictor class 26

Figure 17 – Example of Nesting configuration objects for a verification environment for a DUT

with two interfaces (APB and SPI) (Source: [14]) 28

Figure 18 – The UVM Phases (Source: [14]) 29

Figure 19 – Top to bottom build mechanism for a verification environment for a DUT with

 two interfaces (APB and SPI) (Source: [14]) 30

Figure 20 – Construction flow in a UVM testbench (Source: [14]) 31

Figure 21 – Diagram of the first testbench using some UVM features 34

Figure 22 – Env based testbench 34

Figure 23 – Binded BFM performing functional coverage 35

Figure 24 – UVM monitor in the testbench 35

Figure 25 – Integration of UVM Agent and Driver extending a component 36

Figure 26 – Integration of the full UVM stimulus layer: Sequencer and Driver 36

Figure 27 – Scoreboard ↔ Monitor Integration 37

Figure 28 – Input and Output Monitors merged into one 41

Figure 29 – Inside the Scoreboard 42

Figure 30 – Random test without Matlab Predictor 43

Figure 31 – Random test integrating Matlab Predictor overriding 43

Figure 32 – Matlab ↔ SystemVerilog communication 47

Figure 33 – Final testbench topology 48

Figure 34 – Collaboration and inheritance diagram 50

xvii

Notation

AE Analysis Export

AP Analysis Port

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASIC Aplication-Specific Integrated Circuit

BFM Bus Functional Model

CENELEC Comité Européen de Normalisation ELECtrotechnique

CRC Cyclic Redundance Check

CPLD Complex Programmable Logic Device

DBPSK Binary Phase Shift Keying

DPI Direct Programming Interface

DQPSK Quadrature Phase Shift Keying

DUT Device Under Test

DUV Design Under Verification

D8PSK Eight Phase Shift Keying

EDA Electronic Design Automation

FIFO First In First Out

FPGA Field Programming Gate Array

FSM Finite State Machine

HDL Hardware Description Language

HVL Hardware Verification Languages

IC Integrated circuit

IFFT Inverse Fast Fourier Transform

IP Intellectual Property

KHz KiloHertz

Kbps Kilo bits per second

NBPC Number of bits per carrier

NBPS Number of Bits Per OFDM Symbol

LFSR Linear Feedback shift Register

OFDM Orthogonal Frequency Division Multiplexing

OVM Open Verification Methodology

PPDU PHY Protocol Data Unit

PRIME PoweRline Intelligent Metering Evolution

RAM Random Access Memory

ROM Read Only Memory

RTL Register-transfer Level

SV SystemVerilog

TCL Tool Command Language

URL Uniform Resource Locator

UVM Universal Verification Methodology

VHDL VHSIC Hardware Description Language

VMM Verification Methodology Manual

XOR Exclusive OR

3D Three Dimensional

1 INTRODUCTION

This chapter contains a brief summary of the whole document. The principal aspects of the thesis are covered.

For a deeper understanding the reader will need to go chapter by chapter where everything will be explained in

detail.

1.1 Verification necessities

Unfortunately, verification is not a topic well covered in the university background. This makes the study of

verification challenging, but also very rewarding. Engineering schools teach briefly how to test either analog

or digital electronic designs. After graduating, an electronic engineer is only able to accomplish simple tests,

which are not enough in an industrial environment where everything has to be tested before being sold.

Directed testing is not enough to test a design and should only be used as a strategy to reach those “countable”

corners which are harder to verify using constrained random verification.

Verification has evolved rapidly in ASIC designs, however it took longer for engineers to realize how

important verification also is in FPGAs. In general, it could be said the electronic engineer community did not

care about verification in programmable devices. This was due to the fact of being able to program the device

again if it did not work the first time. However, semiconductor professionals working with ASICs were much

more aware of the importance of verification, considering that errors in a chip mask are irreversible and can

cause huge economic losses for a company. Verification is a process that saves two of the most important

aspects in an engineering project: time and money. It is a common practice in companies that need to rent

electronic equipment to test the designs. When bugs are not detected before reaching the lab, they prolong the

use of electronic equipment. This causes problems for other engineers who also need access to the equipment,

as well as the company that needs to pay more for the rental. Most of these problems could be solved using a

good verification strategy.

In addition, it is also worth mentioning the increase of transistors per area that Gordon Moore predicted in his

empiric law. Even though Moore’s law is more than 50 years old, it has still been accurate in predicting

development in recent years. Although this prediction is reaching its limit, EDA companies are searching for

new ways of increasing the number of transistors such as 3D ICs [1]. The vast number of transistors makes

debugging a horrific if not impossible task to achieve in real time. The first CPLDs had fewer logic gates

which made it “possible” to test directly in the lab. Because of the increased number of logic gates, modern

engineers should avoid testing FPGAs in the lab if they have not planned a proper verification strategy in

advance.

Besides what is depicted in Fig.1 [2] , the same law applies for FPGAs. Even though the graph shows only

until the year 2000 this trend can be extended to the present with bigger and faster electronic devices.

I think of code coverage the way I think of a roof. How much of

a roof is enough? If your roof is 95% waterproof would you be

pleased with the results? The same is true with code coverage.

- Ray Salemi -

11

Figure 1. Moore’s law graph (Source: [3])

In theory, verification complexity grows exponentially with increasingly complex designs. This is called The

Verification Gap: the difference between verification productivity and design productivity [4]. Nowadays our

ability to verify is lower than our ability to design. This gap could be due to the importance that electronics

engineers ascribe to design. There are more design engineers than verification engineers, and verification

engineers need to have an understanding of many more skills that were not needed before such as

SystemVerilog, C/C++, Perl, TCL, Python, assertions, functional coverage, etc.

Figure 2 – Languages used by verification, design and system engineers. (Source: [5])

 Introduction

12

12

In the past, EDA companies insisted on having their own verification languages, and therefore it was very hard

to learn them. Eventually, as depicted in the image below it was possible to merge and standardize them to

reach the UVM. The committee who standardized it was Accellera. The UVM will be explained in more detail

later on in chapter 3.

Figure 3 – Verification languages evolution (Source: [6])

It is important to note that all of the industry software needed to learn hardware verification languages (HVL)

currently belongs to companies such as Cadence, Mentor Graphics, and Synopsis. At the moment, there is not

any free software which allows students to properly learn verification languages, although there is a webpage

which provides some tools and free simulations of several languages which has very limited usage [7]. It also

allows users to share the code with others using URLs. This lack of access to verification education should

concern universities, as students should have a wider and deeper skill set in order to be prepared to face the

industrial market.

The tools used to tackle this verification project were Questa using mixed VHDL-SystemVerilog (UVM),

Matlab for the checker object, TCL (“.do” scripts) and Doxygen for documentation.

1.2 PRIME alliance based transceiver

It is a must to briefly describe the PRIME alliance [8] specification because the transceiver which has been

verified in this project was designed according to those guidelines.

PRIME alliance is a specification for narrow band power line communications. The transmission lines are the

powerlines themselves. As a communication protocol it defines its proper layers. However, the transceiver

only works in the lower layer, or the physical layer. It is based on an OFDM and differential phase shift keying

as the carrier modulation (BPSK, DQPSK and D8PSK). It uses the CENELEC A band (42-89KHz) and data

rates from 5.4Kbpps to 128.6Kbps. In the last specification (version 1.4) more frequency bands were added.

The next chapter will include a description of the transceiver itself.

13

2 DESIGN UNDER VERIFICATION

In this chapter the functional requirements and the transmitter architecture at block level will be described. The

transmitter was implemented in a Spartan-3 FPGA using VHDL as the HDL language following partially the

PRIME alliance specification. The original transmitter would have a CRC block preceding the Convolutional

Encoder.

The system architecture of the physical layer is as shown in the diagram below [9]:

Figure 4 – System overview (Source: [9])

It is worth noting the system from the PRIME alliance is slightly different. It had a CRC block before the

convolutional encoder. The DUT has a ROM memory as the first part of the system behind the convolutional

encoder. This memory contained the first and last name of the students that wrote the HDL. It has an 8-bit

width and a depth long enough to be filled with different names. The whole system fed itself with N-bit long

PPDUs. These bits were provided by the ROM memory in a bit-to-bit stream. The last useful element of the

memory that was information (in other words; the bits of the last letter) was followed by a carriage return

character which helped the system to recognize when the input data finished.

2.1 Functional requirements of the Convolutional Encoder

The bit stream has to be coded and therefore may go through convolutional coding. This convolutional

encoder is a bit to bit encoder with a
1

2
 rate, which means it outputs two bits per input bit. It is a 7-bit register

with upper and lower polynomials 1111001 and 1011011 [9] (Fig.5).

“We, in the semiconductor industry, know that only the

paranoid survive.”

- Andy Grove -

 Design Under Verification

14

14

Figure 5 – Encoder’s behaviour diagram (Source: [9])

At the end of the PPDU 6 bits set to zero need to be inserted to establish the Convolutional encoder in its

original state.

2.2 Functional requirements of the Scrambler

The scrambler block randomizes the input stream. By doing this, reduces the crest factor at the IFFT’s output

due to a long ones or zeros stream. It carries out the XOR of the input by a pseudo random cyclic sequence.

Figure 6 – LFSR behaviour diagram (Source: [9])

The shift register has to be set to all ones at the start of every PPDU.

2.3 Functional requirements of the Interleaver

What is known by frequency fadings occur in narrowband communication. The OFDM subcarriers are likely

to be received at different amplitudes. As a consequence, not all the subcarriers will be equally reliable, and

burst errors may occur. To avoid this the bit stream is shuffled. The interleaver’s task is to ensure adjacent bits

are not mapped into nonadjacent data. The interleaver formula is described as:

 w((NBPS /s) × (k mod s) + floor(k/s)) = v(k)

 · NBPS = 96×NBPC ; where NBPC can be 1, 2 or 3 depending on the constellation.

 · K = 0, 1, … NCBPS-1; bit stream coded at interleaver’s input.

 · mod; refers to the module operator.

15

 · S = 8×(1+floor(NBPC /2)).

Depending on the constellation there are different permutation tables shown below:

12 11 10 9 8 7 6 5 4 3 2 1

24 23 22 21 20 19 18 17 16 15 14 13

36 35 34 33 32 31 30 29 28 27 26 25

48 47 46 45 44 43 42 41 40 39 38 37

60 59 58 57 56 55 54 53 52 51 50 49

72 71 70 69 68 67 66 65 64 63 62 61

84 83 82 81 80 79 78 77 76 75 74 73

96 95 94 93 92 91 90 89 88 87 86 85

Table 1 - DBPSK Interleaving matrix (Source: [9])

12 11 10 9 8 7 6 5 4 3 2 1

24 23 22 21 20 19 18 17 16 15 14 13

36 35 34 33 32 31 30 29 28 27 26 25

48 47 46 45 44 43 42 41 40 39 38 37

60 59 58 57 56 55 54 53 52 51 50 49

72 71 70 69 68 67 66 65 64 63 62 61

84 83 82 81 80 79 78 77 76 75 74 73

96 95 94 93 92 91 90 89 88 87 86 85

108 107 106 105 104 103 102 101 100 99 98 97

120 119 118 117 116 115 114 113 112 111 110 109

132 131 130 129 128 127 126 125 124 123 122 121

144 143 142 141 140 139 138 137 136 135 134 133

156 155 154 153 152 151 150 149 148 147 146 145

168 167 166 165 164 163 162 161 160 159 158 157

180 179 178 177 176 175 174 173 172 171 170 169

192 191 190 189 188 187 186 185 184 183 182 181

Table 2 - DQPSK Interleaving matrix (Source: [9])

 Design Under Verification

16

16

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37

72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55

90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73

108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91

126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109

144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127

162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145

180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163

198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181

216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199

234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217

252 251 250 249 248 247 246 245 244 243 242 241 240 239 238 237 236 235

270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 255 254 253

288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271

Table 3 - D8PSK Interleaving matrix (Source: [9])

These matrixes were created in hardware using a dual port RAM memory. By doing this the convolutional

encoder writes to a port, and the mapper reads from the other port.

2.4 Functional requirements of the Mapper

Each carrier is modulated as differential Phase Shift Keying. Depending on the modulation: DBPSK, DQPSK,

D8PSK 1,2 or 3 bits will be transmitted per carrier.

Figure 17 shows the DBPSK, DQPSK and D8PSK mapping [9]:

Figure 7 – DBPSK, DQPSK, and D8PSK mapping (Source: [9])

The following equation defines the constellation of the different modulations:

𝑆𝑘 = 𝐴𝑒𝑗𝜃𝑘
Where:

17

 k is the frequency index that represents each subcarrier within an OFDM symbol. k =1 corresponds to the

phase reference (0º).

 𝑆𝑘 is the mapper output for each subcarrier.

 𝜃𝑘 is the carrier phase, defined by: 𝜃𝑘 = (𝜃𝑘−1 + (
2𝜋

𝑀
) ∆𝑏𝑘) mod 2𝜋 .

o ∆𝑏𝑘 represent the data coded in each modulation. ∆𝑏𝑘 ∈ {0,1, … , 𝑀 − 1}

o M = 2,4 or 8 for DBPSK, DQPSK, D8PSK respectively.

o A represents the power in each carrier and also the ring radius from the center of the

constellation.

2.5 Functional requirements of the IFFT and CRC

The modulator output consists of 97 carriers per OFDM symbol. The OFDM modulation is made up of an

IFFT with 128 points. As a consequence, there are 31 unused carriers at the lower and higher frequencies. This

is done in order to avoid interferences with adjacent channels.

The input stream originating from the mapper is inserted from the 16th untill the 112th carrier (both included).

Once the data has passed the IFFT, the data is in the time domain, the CRC copies the last 12 IFFT samples

and inserts them at the beginning of the IFFT output. This is done to allow the receptor to detect accidental

changes in the data. In total the CRC output contains 144 samples.

Figure 8 – IFFT + CRC Diagram

 Design Under Verification

18

18

19

3 THE UNIVERSAL VERIFICATION

METHODOLOGY (UVM)

3.1 Introduction

The UVM is very comprehensive, and this chapter does not go into extensive detail into it. Instead this chapter

will cover briefly the main features of a UVM testbench. The interested reader can find the official

documentation in [10]. There are also free online courses and very good cookbook in the Verification

Academy website [11].

The Universal Verification Methodology was standardized in 2009 by Accellera, a standards organization in

the EDA and IC areas. The UVM is a methodology for verifying integrated circuit designs. It is the combined

effort of designers and tool vendors based on the VMM and the OVM (which is based in e). The UVM is not a

verification language, but rather an open source SystemVerilog class library. It is designed to enable the

creation of robust, reusable, interoperable verification IP and testbench components [12].

The main caracteristics of the UVM are the powerful testbenches that use constrained random stimulus

generation and functional coverage methodologies. Unfortunately, (or fortunately) the UVM is not yet a total

methodology of how to approach every step in verification. However, even though there are discrepancies on

how to follow certain aspects of it, it is a great guide to the main paths in verification. Furthermore, it is in its

popularity and most knowledgable engineers agree that is the future verification methodology. At the moment

the UVM is endorsed by all the major simulator vendors.

A typical block level UVM testbench is shown in Fig.9 [13]. Later in this chapter all the blocks in the figure

below will be explained.

Figure 9 – Example of a Block Level UVM testbench for a DUT with SPI and APB interfaces (Source: [14])

Times change, and we change with them

- Latin proverb -

 The Universal Verification Methodology (UVM)

20

20

3.2 UVM components

UVM testbenches are built by components. Components are objects that extend from uvm_object. When one

creates a component object, it stays in the testbench architecture for the duration of the simulation. This is

different from the uvm sequence branch (depicted in Fig.10) where objects are transient -- created at first, used

and then deleted by the garbage collector once they are no longer referenced [12].

Figure 10 – UVM simplified inheritance diagram (Source: [14])

The uvm_component inherits the infrastructure needed to use the UVM messaging from the

uvm_report_object. It is necessary to populate the UVM phases explicitly, since each Component has virtual

methods for the UVM phases. The UVM phases will be explained in the section “The Standard UVM phases”.

UVM components are registered with the UVM Factory to support swapping between different version of

components using Factory Override.

21

Class Description
Contains sub-

components?

uvm_driver Adds sequence communication sub-components, used with the uvm_sequencer Yes

uvm_sequencer Adds sequence communication sub-components, used with the uvm_driver Yes

uvm_subscriber A wrapper around a uvm_analysis_export Yes

uvm_env
Container for the verification components surrounding a DUT, or other envs surrounding a

(sub)system
No

uvm_test Used for the top level test class No

uvm_monitor Used for monitors No

uvm_scoreboard Used for scoreboards No

uvm_agent Used as the agent container class No

Table 4 – UVM components (Source: [15])

In the UVM the components could be separated in three groups:

 Container components.

 Stimulus layer.

 Analysis layer.

3.3 UVM Transactions

In verification of digital designs, Transactions could be described as a class which groups data and the

necessary operations that can be done to that data. UVM Transactions are used to separate relevant data from

pin activity. For a VHDL user a transaction could be seen as a record data type, only that transactions are

relative to the class-based objects world. Transactions are used to share data between different components.

The life of a Transaction is generally related to its use; when the testbench no longer references it, it is

collected by the garbage collector.

Because the type uvm_transaction is deprecated, verification engineers use its subtype: uvm_sequence_item.

The Sequencer and Monitor Components send Transactions, while the Driver, Scoreboard and Coverage

Components receive them.

3.4 The BFM

BFM stands for Bus Functional Model and consists of an abstraction to interact with the DUV. It encapsulates

all the signals of the DUV so the rest of the testbench can be separated from the static module-based world.

How complex a BFM is will vary from design to design depending on the bus protocol. BFMs are usually

implemented within a SystemVerilog interface and perform the BFM model by using tasks and functions.

 The Universal Verification Methodology (UVM)

22

22

3.5 Container Components

The two container Components in a testbench are the Environment and the Agent.

3.5.1 The Env Component

In general, the Env could be defined as the component that groups the rest of the testbench. This may change

from design to design, and sometimes there is a top level Env with other Envs inside. In order to use the UVM

Env methods, a class may need to extend the UVM component uvm_env.

3.5.2 The Agent Component

The Agent is a component that is placed inside the Env. It can be thought of as a verification component kit for

a specific logical interface [16]. In order to use the UVM Agent methods, a class may need to extend the UVM

component uvm_agent. The Agent acts as a container for lower classes from the analysis and stimulus layers.

It is also a partial top level with respect to classes within the Agent.

The Agent has an “external” analysis port which is used to connect external analysis components to the agent

without knowing anything about its design.

Figure 11 – Typical topology of an active/passive Agent (Source: [14])

An Analysis Port can be understood as a pipe that drives transactions into the Analysis Export of analysis

components. Therefore, the AP is a transaction transmitter, and the AE is the transaction receiver.

The Agent configuration object determines the topology that the Agent constructs, retrieves a handle for the

virtual interface and determines the behavior of the Agent. To extend the uvm_agent class, the Agent has a

variable which defines whether the Agent is active or Passive. This variable (UVM_ACTIVE_PASSIVE) is

used to determine if the stimulus layer is created or not.

23

3.6 Components of the Stimulus layer

The components of the stimulus layer are those which provide stimuli to the DUV. In other words, these

components are in charge of driving the DUT.

Figure 12 – Stimulus layer (Source: [14])

3.6.1 UVM Sequencer

A Sequencer is a class that controls Transaction flow. It controls the flow of uvm_sequence_item objects sent

to the driver.

Figure 13 – Sequence Item flow (Source: [14])

The Sequencer class takes the Sequence Items from the Sequence and passes them to a Driver.

 The Universal Verification Methodology (UVM)

24

24

3.6.2 UVM Driver

A Driver is the object that interacts with the BFM. It is declared as a specific Sequence Item consumer. The

uvm_driver class eases the connection between the Sequencer and the Driver, removing the need to declare a

TLM_FIFO to store the data.

The Driver will pull Transactions from the Sequencer and use the BFM to modify the signals with the DUT. A

Driver may also send information from the signal level interface back to the Sequencer [17].

3.6.3 UVM Sequences

A Sequence is a class that primarily generates Sequence Items. It inherits from uvm_sequence. After the

Sequence generates the transactions, the Sequencer sends them to the Driver. Once the body of the Sequence is

executed, the Sequence is discarded. It is possible to embed several Sequences within a Sequence body, thus

making it easier to define new test cases by executing a combination of Sequences. Because Sequences are not

Components, they need the Sequencer to access the testbench hierarchy.

3.7 Components of the Analysis layer

The components of the analysis layer are those which provide analysis capabilities to the testbench. The

Analysis Components examine the input that drives the DUT and the output that the DUV drives. It is in the

Analysis Layer where the verification is performed.

Analysis Layer

Coverage

Scoreboard

Input
Monitor

Output
Monitor

Analysis_export

BFM BFM

Predictor

Figure 14 – Analysis layer

Note: The diagram of Figure 12 is only a simplified example and it will vary from design to design.

25

The Analysis Layer of a testbench contains Components that observe the DUV behavior and determine

whether the design fulfills the specifications.

3.7.1 The Monitor

The first task that needs to be done in the Analysis Layer is monitoring the DUV activity. Monitors are

simililar to Drivers in that both translate between signals of the design and classes in the objects world. The

main difference is that while a Driver is active, Monitors are always passive. In other words, they are a “read-

only” component when interacting with the DUV [18]. Monitors are the only figure that remains in the

hierarchy even when the Agent is passive.

Monitors communicate with the DUT through the virtual interface to the BFM. BFM stands for Bus

Functional Model, which refers to the interface that connects the verification part with the actual hardware of

the design via buses.

The Monitor detects signal toggles and translates them into transactions. Sometimes they are known as

Protocol Monitors because they recognize a certain pattern. Depending on the design and the number of

transactions that a certain Monitor needs to distribute, the Monitor may behave in different ways. If the

number of transactions is not too much it is highly recommended to adopt the copy-on-write policy. Classes in

SystemVerilog are like a pointer. When a Monitor writes a Transaction in its analysis port, its reference is sent.

It may occur that when a transaction reaches a subscriber, the subscriber needs to modify the transaction. Thus,

the Transaction that the rest of the subscribers see would not be the original Transaction.

To avoid overwriting this object, the handle shared by the Monitor should point to a copy of the original

transaction. This could be fixed by creating a new transaction everytime the Monitor writes in the analysis port

by reusing the same transaction, but cloning the object before writing the transaction in the analysis port.

There is a solution to avoid copying transactions, although it is not always possible to implement. It is known

as MOOCOW (Mandatory Obligatory Object Copy on Write) [19]. It means that one could share the original

transaction reference as long as the subscribers do not modify the data received. If the subscribers need to

modify the data, they have to make a copy of it.

3.7.2 The Scoreboard

The Scoreboard is the component that judges whether the DUV is working properly. The scoreboard could be

seen as two pieces working together. The first determines the correct results for a certain input data. When the

Scoreboard has predicted the actual output it checks if the DUV output is correct. This is done by the

comparer, checker or evaluator.

The implementation of the Scoreboard will depend on the user necessities, but sometimes it is useful to create

the Scoreboard class as a child of uvm_subscriber rather than just a uvm_component child.

 The Universal Verification Methodology (UVM)

26

26

Figure 15 – Scoreboard block diagram (Source: [14])

Because the UVM is intended to create modular and reusable designs, it is highly recommended to separate

the prediction part from the evaluation part. This eases future changes in the evaluation model.

3.7.3 Predictor

The Predictor is a Component which is placed inside the scoreboard and represents a Golden model of the

DUV functionality [20]. It is fed by the input signals converted into transactions and produces an expected

output response according to the design specifications. It is not an obligation to place a Predictor class inside

the Scoreboard, but the latter will always contain some piece of code that serves as a Golden model of the

DUV.

CHECKERCHECKERPREDICTORPREDICTOR

Actual
input

Expected
output

Real Output

Reporting
Macros

Reporting
Macros

Figure 16 – Predictor class

It is worth mentioning that in verification teams a predictor can be quite useful. It can also be used to describe

the DUT when verification engineers do not yet have the HDL design ready. By doing this verification

engineers could work on their verification tasks in pararel to design engineers and would not have to wait for

design engineers to finish the DUT.

27

3.7.4 Coverage objects

Coverage objects perform functional coverage, and their design and distribution around the testbench will vary

from design to design. The Coverage objects’ task is to determine whether all the possible stimuli has been

applied to the system. A design is not considered fully tested until all functional coverage has been done, even

if the design has 100% code coverage.

Functional coverage features are [21]:

 Coverage of variables and expressions and also cross coverage.

 Coverage bins.

 Filtering conditions.

 Events and sequences to trigger coverage sampling.

The verification progress can be seen as a relation between code coverage and functional coverage progress.

3.8 The UVM Factory

The UVM Factory creates components. There is only one instance of the factory per simulation. The intent of

the factory is to permit the substitution of a parent object with a child one without changing the testbench

structure or changing the code.

This functionality is very convenient for changing the functionality of the sequence or swapping one version of

a component for another version without modifying the code. To use the factory there are a few rules to

follow [22]:

 Registration: a component needs to have a registration code, which is comprised of a static function to

get the type_id, and a function to get the type name. The registration code is generated using one of

the four different declaration macros depending on if it is an object or a class, and whether it is

parametrizable.

 Constructor default: the uvm_component and uvm_object are virtual methods and therefore the users

need to follow their prototype template. The factory constructor should contain default arguments for

the constructor.

 Component and object creation: components are created in the build phase; objects are created when

required.

3.9 Configuration of a UVM testbench environment

To make testbenches reusable, it is necessary to make them as configurable as possible. By configuring the

testbench and the blocks surrounding the DUT, it is easier to reuse them and also quicker to modify them.

In a testbench there are a number of variables, normally written as literals. In SystemVerilog those values can

be represented as variables, which can be set and modified at runtime, or as parameters, which need to be set at

compile time. There is more flexibility when the variables are organized as configuration objects and accessed

using the uvm_config_db if possible. The uvm_config_db is the method that allows access to resources in the

database.

Ideally, in a typical testbench there are several configuration objects. Each of them binded to a class (as a

subclass) which groups all the parameters together. There are global configuration objects as well.

 The Universal Verification Methodology (UVM)

28

28

Basically, all Components that require configuration follow the same flow. Immediately after being

configured, the internal structure and behavior is created based on that configuration. Finally, they configure

all children at lower levels. Configuration objects can be retrieved and inserted from/into the database using

the uvm_config_db API through the methods uvm_config_db #(…)::get(…) and uvm_config_db #(…)::set

respectively. The uvm_config_db method is parametrizable to be able to retrieve and insert different

configuration objects.

It is worth mentioning that configuration objects can also be nested [23]. By doing this, the parent component

nests the configuration component of its child. If nested configuration objects are used it will eventually show

a structure parallel to the testbench architecture.

Figure 17 – Example of Nesting configuration objects for a verification environment for a DUT with two

interfaces (APB and SPI) (Source: [14])

Every layer in the hierarchy requires the get method in the UVM database to retrieve its corresponding

configuration component and the set method to insert the component relative to its child in the UVM database.

Readers interested in a deeper understanding of configuration objects and the UVM database may read a paper

written by Synopsys [24].

3.10 The Standard UVM phases

The UVM uses phases to allow a consistent testbench execution flow and to order the major steps that occur in

simulation.

There are three different groups of phases executed in the following order [25]:

1. Build phases: where the testbench is configured and constructed.

2. Run-Time phases: where time is consumed in running the testcase.

3. Clean-up phases: where the results of the testcase are collected and reported.

The verification engineer decides which phases are called from each component.

29

UVM testbenches are comprised of two pieces, the dynamic and the static parts:

 Static part: it is arguably the top level module of the testbench which is module-based. The DUT is

connected to the interface within this module. This interface will bridge the data coming in and out of

the DUT to the dynamic part.

 Dynamic part: the dynamic part corresponds to the class-based object world. Simulations vary

regarding which objects are created.

Calling the run_test() method from the static testbench part (SystemVerilog module) starts a UVM testbench.

This is usually done inside an initial SystemVerilog block.

The run_test() constructs the UVM root component and starts the UVM phasing. It is possible to call the

run_test() by passing the test name as an argument, however it is more flexible to send this parameter from the

command line argument. The specific way of passing the test name depends on the simulator.

Figure 18 – The UVM Phases (Source: [14])

 The Universal Verification Methodology (UVM)

30

30

The following is a brief description of the main phases in a simulation:

 Build phases:

The build phases are executed at the start of simulation to construct, configure and connect the

testbench topology. These phases are SystemVerilog functions and therefore are not time consuming.

o build_phase: when the root component has been constructed, (also know as the UVM test

component), the build phase starts. The testbench hierarchy is built from the top to the

bottom. Each component in a lower layer can be configured by the component immediately

above it. For instance: in Figure 9 the test has to build the env, the env has to build the agent

and so on.

o connect_phase: this phase makes connections between different components or assigns

handles to a testbench object.

o End_of_elaboration_phase: this phase is intended to make the necessary adjustments to the

structure after being constructed and connected before the simulation starts. This phase is

executed from the bottom to the top.

 .

Figure 19 – Top to bottom build mechanism for a verification environment for a DUT with two interfaces

(APB and SPI) (Source: [14])

31

 Run phases:

The testbench stimulus is generated and executed during the time consuming phases or tasks. This

phase goes right after the build phase has finished. Everything within the run_phase() goes in parallel.

The run phase generates and checks the stimuli.

 Clean-up phases:

These phases are used to extract the information of the scoreboard and functional coverage of the

monitors, thus determining whether the test passed and the coverage goals were reached. Clean-up

phases do not consume time and therefore are implemented as functions. These phases have a bottom

to top approach.

o extract_phase(): is used to retrieve and process information from analysis objects.

o report_phase():is used to print the results of simulation.

o final_phase(): is used to do any other task that was not done before.

3.11 Testbench Construction

As previously stated, the testbench starts with the build phase. The construction flow starts with the call to the

run_test() method. Figure 10 shows the construction flow [23]. When the build phase finishes, the connect

phase starts to ensure intercomponent connections. After this all the phases explained in the Stanrdard UVM

phases section take place.

env

test

$finish;

Connect, Run, Report, etc Phases

Build Phase

Dynamic Component WorldStatic Component World

Calling run_test() causes
the selected test to be
Constructed.

Build process starts
From the test and works
top-down

test = new ();

When all the UVM phases are complete control the
UVM calls $finish, after which control returns to the test
bench module initial block

module top_tb;
//DUT, interfaces etc
Initial begin.
 //Virtual Interface handling
Code
 run_test();

end
endmodule: top_tb

Figure 20 – Construction flow in a UVM testbench (Source: [14])

 The Universal Verification Methodology (UVM)

32

32

The call to build method in the build phase triggers the construction of the test class, which is the first object

constructed. Thus the test class will determine the testbench architecture. The test class [23] :

 Sets up factory overrides, thus creating the components or configuration objects as derived types.

Factory overrides allow classes to be substituted by child classes. By using the factory override

mechanism, it is possible to write more reusable testbenches, avoiding the need to change the

component declaration for every case.

 Creates and configures the configuration objects required by the subcomponents.

 Assigns virtual interfaces. The recommended way of sharing the virtual interface handlers is by

configuring the objects and the database. Before calling the run_test() method, it is necessary to

connect the DUT with the interfaces. A handle to each interface should have been assigned to virtual

interface handles and then passed to the UVM database. These virtual interface references will then be

assigned to the BFM inside the relevant configuration object handles. They are used to drive or

monitor DUT signals. Drivers and Monitors should not get the virtual interface handlers from the

database and should use configuration objects to keep the testbench structure clean, reusable and

modular. In the test class, virtual interfaces should be assigned to the corresponding components as

part of their configuration objects.

 Builds a level below in the testbench hierarchy as shown in Figure 13.

The UVM is very flexible. More than one env can be built if required by the DUV complexity. The creation of

additional Envs is conditional and depends on each testing situation.

It is very common to have a similar test classes if they are not the same for each test. Due to this, it is highly

recommended to create a virtual “base test” class which the rest of the test cases will extend from.

33

4 WORKFLOW

4.1 Introduction

This chapter explains my approach to learning how to create a UVM verification testbench for the OFDM

transceiver, the tools I used and the verification capabilities I sought to add to the testbench.

4.2 Tools

The tools I had for this Project were:

 QuestaSim: an HDL and VHDL simulator of Mentor Graphics. It was used to carry the mixed VHDL

and SystemVerilog + UVM simulations.

 Matlab: because of the compatibility with the Questa simulator, Matlab was the software used to

accomplish the Golden Model.

 Doxygen: a tool for generating documentation. It does not integrate SystemVerilog, but a Perl patch

design by Christoph Suehnel allows it to integrate SystemVerilog.

 Emacs: At the moment there are several text editors which are SystemVerilog compatible. I used

Emacs because the HDL part of the project was written in VHDL, it has a great VHDL mode

integrated in it, and it is SystemVerilog compatible.

4.3 Process to learn the UVM

Before starting this project, I did not know anything about the UVM. Therefore, I needed to decide on the best

strategy to face the task. SystemVerilog has the same syntax as Verilog, but with Extended functions.

SystemVerilog is both an HDL and HVL language. However, this project only used its HVL capabilities

because the HDL was already written in VHDL. SystemVerilog is an Object Oriented Programming

Language, of which I had no previous knowledge.

I took several steps to adapt and improve my testbench. The first approach was to test only one block of the

whole transceiver. I chose to test the scrambler because it is one of the simplest blocks. The steps I followed

were the following:

1. Conventional testbench: I coded a SystemVerilog testbench without using any OOP. All the code was

If you don’t know where you are going, you might wind up

someplace else.

- Yogi Berra -

 Workflow

34

34

in the same file under the same SystemVerilog module.

2. Interfaces and BFM: the files were separated in different SystemVerilog modules. There was a top

SystemVerilog module where the rest of modules were instatiated. All the modules had access to the

BFM. This test did not have functional coverage yet.

3. First OOP testbench: This test had first two parts: the static and dynamic object worlds. It did not have

any functional coverage at that time.

4. Partial UVM test: this test began to have some UVM features. It was comprised of a test class that

inherited the uvm_test component. It had a component which drived the DUV and another that

checked if the behavior was correct. This test did not have coverage features yet. Its architecture can

be seen in Figure 22.

Random test extends uvm_testRandom test extends uvm_test

ScoreboardScoreboard

BFMBFM

TesterTester

BFMBFM

B
FMB
FM DUVDUV

Figure 21 – Diagram of the first testbench using some UVM features

5. Testbench made by components: This test had the same topology as shown above, except that all of

the classes were extending uvm_components. The Tester blocks functioned as a Sequencer and

Driver.

6. Integrating the Env in the testbench architecture: This test had two new features. The Env contained

both the Scoreboard and the tester which was extending the base_tester to be able to run more than

one test.

extends base_testerextends base_tester

Random test extends uvm_testRandom test extends uvm_test

ScoreboardScoreboard

BFMBFM

 Random Tester Random Tester

BFMBFM

B
FMB
FM DUVDUV

extends uvm_componentextends uvm_component

env extends uvm_envenv extends uvm_env

Figure 22 – Env based testbench

35

7. First test with functional coverage: this test included the Coverage class. The Scrambler had a serial

input so that the functional coverage was checking whether the input was zero or one. The topology

was the same as the shown in Figure 23, adding the Coverage class which extended a

uvm_component.

8. First test with internal functional coverage: The scrambler has a 7-bit shift register inside which had to

be tested. The Questa simulator has a bind constructor which allows internal DUT signals to be

checked [26].

extends base_testerextends base_tester

Random test extends uvm_testRandom test extends uvm_test

 Random Tester Random Tester

BFMBFM

B
FMB
FM DUVDUV

env extends uvm_envenv extends uvm_env

CoverageCoverage

BFMBFM

extends uvm_componentextends uvm_component

ScoreboardScoreboard

BFMBFM

extends uvm_componentextends uvm_component
Covergroups and

bins

Covergroups and
bins

Binded_BFMBinded_BFM

Figure 23 – Binded BFM performing functional coverage

9. Integrating the monitor in the structure: in the previous test both the Coverage and Scoreboard

components had access to the BFM. This test was different in that the Coverage class was fed by a

monitor. The Scoreboard class was still linked to the BFM because it needed access to the internal

signals of the DUT to compute the Golden model of the shift register. This test does not use

Transactions; it only used a variable sent throught the Analysis Port.

extends base_testerextends base_tester

Random test extends uvm_testRandom test extends uvm_test

 Random Tester Random Tester

BFMBFM B
FMB
FM DUVDUV

env extends uvm_envenv extends uvm_env

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

ScoreboardScoreboard

BFMBFM

extends uvm_componentextends uvm_component

Covergroups and
bins

Covergroups and
bins

Binded_BFMBinded_BFMInput
Monitor

Input
Monitor

BFMBFM

extends
uvm_component

extends
uvm_component

Legend:
Analysis export

Analysis port

Figure 24 – UVM monitor in the testbench

10. Integrating the UVM Reporting macros: All the previous testbenches had not used the UVM

Reporting system. Instead they had been using SystemVerilog tasks such as “$display”, “$error” and

“$final”.

11. Integrating UVM Transactions: as mentioned above, when the monitor was integrated it did not use

Transactions. In this testbench, both Coverage and Monitor Components were adapted to use

Transactions.

 Workflow

36

36

12. Integrating the UVM Agent and Driver: This step added the Agent and the Driver to the testbench.

The architecture connected the Tester and Driver using a UVM_TLM_FIFO. The UVM_TLM_FIFO
is connected to allow ports into and out of the Tester and Driver, respectively.

extends
uvm_component

extends
uvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
FMB
FM DUVDUV

env extends uvm_envenv extends uvm_env

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

ScoreboardScoreboard

BFMBFM

extends uvm_componentextends uvm_component

Covergroups and
bins

Covergroups and
bins

Binded_BFMBinded_BFMInput
Monitor

Input
Monitor

BFMBFM

extends uvm_componentextends uvm_component

Legend:
Analysis export

Analysis port

Random test extends uvm_testRandom test extends uvm_test

TesterTester UVM_TLM_FIFOUVM_TLM_FIFO DriverDriver

BFMBFM

extends
uvm_component

extends
uvm_component

Figure 25 – Integration of UVM Agent and Driver extending a component

13. Integrating UVM Sequences: Apart from the Scoreboard, the rest of the UVM blocks were

functioning in their respective roles. A Sequencer and a Driver were added.

Random test extends uvm_testRandom test extends uvm_test

env extends uvm_envenv extends uvm_env

uvm_componentuvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
FMB
FM DUVDUV

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

ScoreboardScoreboard

BFMBFM

extends uvm_componentextends uvm_component

Covergroups and
bins

Covergroups and
bins

Binded_BFMBinded_BFMInput
Monitor

Input
Monitor

BFMBFM

extends
uvm_component

extends
uvm_component

Legend:
Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends
uvm_driver

extends
uvm_driver

Figure 26 – Integration of the full UVM stimulus layer: Sequencer and Driver

14. Integrating the Scoreboard to a Monitor: The Scoreboard needs both input and output Transactions

since it predicts whether the DUV is working properly. Therefore, it needs two Analysis Exports. The

first inherits uvm_subscriber and the second was created using a uvm_tlm_analysis_fifo. It was

possible to isolate the Scoreboard from the DUT signals using an appropriate monitor to read the pin-

level signals. The FIFO stores the input value, and everytime the DUT generates an output value it

makes the LFSR shift and checks if the values are the same.

37

Random test extends uvm_testRandom test extends uvm_test

uvm_componentuvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
FMB
FM DUVDUV

env extends uvm_envenv extends uvm_env

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

ScoreboardScoreboard

extends uvm_subscriberextends uvm_subscriber

Covergroups and
bins

Covergroups and
bins

Binded_BFMBinded_BFM
Input

Monitor

Input
Monitor

BFMBFM

extends
uvm_component

extends
uvm_component

Legend:
Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends
uvm_driver

extends
uvm_driver

Output
Monitor

Output
Monitor

uvm_tlm_analysis_fifouvm_tlm_analysis_fifo

SequencesSequences

Stimulus Layer Analysis Layer

BFMBFM

Figure 27 – Scoreboard ↔ Monitor Integration

15. Integrating the Configuration Objects: the same principle explained in 3.7 has been applied here. The

Test Component retrieves the handle to the BFM from the UVM database, fills a configuration object

for the Env and inserts it in the database. Then, the Env gets the Configuration Object out of the

database and fills the Agent Configuration Object. If the UVM_ACTIVE_PASSIVE variable were set

to passive, the testbench would not have the Stimulus Layer.

 Workflow

38

38

39

5 MATLAB INTEGRATED IN THE SCRAMBLER

TESTBENCH

SystemVerilog is a programming language that can be very powerful to design Golden models. Although it is

possible to design Golden models in SystemVerilog, I did not use one because I already had Matlab simulation

models according to the transceiver specifications. By using Matlab instead of SystemVerilog to model the

IFFT in the testbench, I avoided much of the difficulty in completing this time-consuming task.

5.1 Matlab integration into Questasim

Using Matlab source code during the verification process significantly reduced the time to develop a

verification testbench. Existing Matlab functions can be used for both initial testbench development as a DUT

before the RTL is available, as well as a Scoreboard to verify DUV functionality [27].

There are three interesting ways to use Matlab together with VHDL, SystemVerilog or mixed testbenches:

 Questa Simulator dedicated Matlab integration package:

The Mentor Graphics Questa simulator has a package that permits setting up a connection between Matlab

and VHDL/SystemVerilog more quickly. The main features are:

1. VHDL/SV QMW API that allows sending integers, matrixes and vectors between the simulator

and Matlab, and also permits sending commands.

2. TCL layer that allows sending signals. Note: this feature would be very useful in case Matlab

were used as a temporary DUT.

3. Debugging of SV/Matlab code.

 Matlab C API with SystemVerilog DPI.

 Matlab function as VHDL entities:

The input and output of the Matlab functions are the VHDL ports. This works internally and calls to other

functions. It is necessary to make Matlab understand HDL signals which is not a trivial task, and there is

also difficulty caused by Matlab’s inaccurate clock cycle.

The choice to integrate Matlab with QuestaSim was the QMW API, since it eases the Matlab-Testbench

communication. However, Matlab C API with SystemVerilog DPI could have also been used with a little extra

If at first you don't succeed; call it version 1.0

- Anonymous quote-

 Matlab Integrated in the Scrambler testbench

40

40

effort.

5.2 Necessities to adapt the Matlab Script

According to the PRIME alliance specifications, the scrambler can be modeled as a 7-bit LFSR, which is

equivalent to XORing the input of the scrambler and a pseudo sequence given as:

Pref0..126=
{0,0,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,1,1,1,0,1,0,1,1,0,1,1,0,0,0,0

,0,1,1,0,0,1,1,0,1,0,1,0,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,1,0,0,0,1,1,0,1,1,1,0,

0,0,1,1,1,1,1,1,1}

The Matlab script was designed originally to work with complete blocks of bits, and the original script would

not work with the HDL scrambler because the RTL code had an FSM that Matlab could not follow.

In order to adapt the Matlab script it was necessary to implement a variable that was not erased every time the

SV predictor sent a new input bit. Most programming languages have a static variable type. Static variables are

used in functions. When the function is called for the first time, the variable is declared and is stored in the

memory. Matlab has a static type called persistent. By using static variables, it was possible to adapt the

internal state of the FSM to the Matlab function.

5.3 Topology of the Scrambler testbench.

The testbench had the architecture shown in Fig. 28 with a few modifications to the Components.

5.3.1 Merging I/O Monitors

The topology depicted in Figure 28 is comprised of two Monitors. One of them sends the input data of the

DUV while the other Monitor does the same for the output data. This setup can be simplified by merging both

of the Monitors into one. This is possible because of the data flow within the scrambler. Merging the two

Monitors also simplifies the work done by the Analysis Layer Components that receive all the data at once by

avoiding the need for two Analysis Exports.

41

Analysis LayerAnalysis Layer

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

ScoreboardScoreboard

extends uvm_subscriberextends uvm_subscriber

I / O
Monitor

I / O
Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Legend:
Analysis export

Analysis port

Figure 28 – Input and Output Monitors merged into one

It is worth mentioning that in order to being able to modify the Monitor as explained above it is also necessary

to modify the Transaction class. The Transactions previously were working as two separate transactions. There

was an input and an output Transaction, which were combined into one Transaction class that contains all of

the compacted data.

Note: In all the testbench topologies the Monitor extended the uvm_component, but it was modified to extend

uvm_monitor. In fact, this change was not necessary because the features of uvm_monitor are the same as

uvm_component. However, the UVM guidelines suggest extending the proper component when possible. By

doing so, if in the future such Components have any additional features, the migration would be easier, faster

and less prone to error.

 Matlab Integrated in the Scrambler testbench

42

42

5.3.2 Scoreboard topology

The Scoreboard functionality has been split between two additional Components: The Predictor and the

Checker. The Predictor is the class which will work as the golden model while the Checker will test whether

the DUV is working according to the specifications.

Analysis LayerAnalysis Layer

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber
Scoreboard extends uvm_componentScoreboard extends uvm_component

I / O
Monitor

I / O
Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Legend:
Analysis export

Analysis port

Predictor extends uvm_subcriberPredictor extends uvm_subcriber

analysis_portanalysis_port

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

Expected valueExpected value

Actual valueActual value

Comparer extends uvm_componentComparer extends uvm_component

Figure 29 – Inside the Scoreboard

In order to make the configuration shown in Figure 30 it was necessary to design two Components:

 Predictor: the predictor task was to work as a golden model, and also was to send the predicted output

to the comparer Component after calculating it. To accomplish that, it was necessary to implement an

Analysis Port which could send the expected output.

 Comparer: The Comparer Component works as a checker. It receives both the real RTL output and

the ideal output and compares them. If the two values are unidentical it stops the simulation by using

the uvm_fatal reporting macro. I chose to have two Analysis Ports which were connected to an

Analysis FIFO. The purpose of adding an Analysis FIFO was that in case the Transactions were

arriving faster than what the Checker could run, the extra Transactions would be stored.

5.3.3 Predictor Factory override

Until this point the whole testbench had been done uniquely using SystemVerilog code, but after this point

Matlab is incorporated. The UVM Factory override method makes it possible to define a new test where one

Component is substituted for another component. In this testbench, both of the Predictors could be simulated

using different tests.

43

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

I / O
Monitor

I / O
Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Random test extends base_testRandom test extends base_test

uvm_componentuvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
FMB
FM

DUVDUV

env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins

Binded_BFMBinded_BFM

Legend:

Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends
uvm_driver

extends
uvm_driver

SequencesSequences

Stimulus Layer Analysis Layer

Scoreboard extends uvm_componentScoreboard extends uvm_component

Predictor extends uvm_subcriberPredictor extends uvm_subcriber

analysis_portanalysis_port

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

Expected valueExpected value

Actual valueActual value

Comparer extends uvm_componentComparer extends uvm_component

Figure 30 – Random test without Matlab Predictor

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

I / O
Monitor

I / O
Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Random_test_matlab extends random_testRandom_test_matlab extends random_test

uvm_componentuvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
FMB
FM

DUVDUV

env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins

Binded_BFMBinded_BFM

Legend:

Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends
uvm_driver

extends
uvm_driver

SequencesSequences

Stimulus Layer Analysis Layer

Scoreboard extends uvm_componentScoreboard extends uvm_component

Predictor_matlab extends predictorPredictor_matlab extends predictor

analysis_portanalysis_port

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

Expected valueExpected value

Actual valueActual value

Comparer extends uvm_componentComparer extends uvm_component

UVM Factory OverridesUVM Factory Overrides

Figure 31 – Random test integrating Matlab Predictor overriding

Because of the override method, we can extend a previously written test and modify only the necessary

components by overriding.

 Matlab Integrated in the Scrambler testbench

44

44

To automatize the test execution a Makefile [28] was created. The Makefile had two targets, to compile and

simulate the random test with the SV predictor, and to compile and simulate the random test using the Matlab

predictor.

45

6 MATLAB INTEGRATED IN THE FINAL

TESTBENCH

This chapter will describe all the necessary steps to create the testbench for the complete transceiver.

6.1 Compiling Xilinx IP Cores

The transceiver originally had two Xilinx IPCores, a dual port RAM memory and an IFFT. To simulate those

IPCores in the Questa simulator, it is necessary to compile them and link the compiled files to the Questa

simulator so it can instantiate them into the RTL design.

Xilinx provides a tool for compiling IPCores called Compxlib [29]. After compiling the IPs with Compxlib it

is possible to link them.

6.2 VHDL modification

The original VHDL design had a ROM memory which inserted the 8-bit to 8-bit stream into the system. In

order to provide verification, it was necessary to modify the input of the System, removing the ROM. In the

RTL there was a small FSM that controlled the flow of the bit stream into the Convolutional Encoder.

To accomplish this, I adapted the way the Driver inserted the data into the DUV. The easiest and least

error-prone solution was to change the input Transaction that the Driver receives from the Sequencer into a

Transaction with 8-bit data fields. Because the FSM that controlled the ROM stopped the transmission when it

detected a carriage return character, in order to not modify the VHDL, the Sequence plan needed to have the

carriage return as the last 8-bit data Transaction that the Driver toggled in the DUT interface. The VHDL top

entity has a signal used by the driver called ask4byte, and when that signal goes high the Driver sends the 8-bit

input.

6.3 Binding internal signals

In theory, verification engineers should not modify the design, but they sometimes need to access internal

signals [30]. This is called white box, grey box or black box testing, depending on the degree to which a

verification engineer has to go inside the RTL.

All internal signals that interconnect RTL components have been binded using an interface per signal, making

Success is nothing more than a few simple disciplines, practiced

every day.

- Jim Rohn-

 Matlab integrated in the final testbench

46

46

them accessible at the top module, and connecting them to the BFM to ease future work. The binded signals

are:

 Convolutional Encoder input.

 Scrambler input.

 Interleaver input.

 Mapper input.

It is not necessary to bind the IFFT output because it is a top level output.

As explained in the Workflow chapter, the functional coverage of internal registers has been maintained so

that binded interfaces perform functional coverage:

 Shift register of the scrambler.

 Shift Register of the Convolutional Encoder.

6.4 Matlab Predictor modifications

As explained in section 4.2, the original Matlab script was originally intended to work with bit vectors. By

doing this it was possible to detect an error in an exact clock cycle. The goal of the predictor is to work at the

lowest number of bits possible in order to identify any HDL error with the maximum timing accuracy possible.

However, the actual Predictor was not designed with the same intended purpose. Since errors are now detected

at OFDM symbol level.

The design of this predictor was changed such that the SystemVerilog code does not call a function, but rather

a Matlab script. Before the simulation starts, SystemVerilog sends a variable to Matlab in the build phase

which indicates what modulation the transceiver is going to run. After that there are three main Matlab scripts:

 A Configuration file.

 The predictor script.

 IFFT that checks the IFFT

After sending the modulation, the Predictor sends a command to run a configuration script which will set all

the variables to their initial values. The IFFT block works at OFDM symbol level, which means that if one

wants to verify the complete system it has to work with those block of bits.

Before running the Predictor Matlab script, SystemVerilog has to send all the variables that the script needs to

work: the input, the output, and end of simulation. Once Matlab has all that information it is possible to run the

Predictor script, as depicted in Figure 33.

47

BPSK, QPSK or 8PSK Send Modulation

Send

Configuration

File

¿Receive

input bits and Output

OFDM-Symbol?

Send SV

variables

End

Yes

The variables sent are:

 Input Stream

 End of simulation

 IFFT+CRC output

¿End of

simulation?

No

Execute

Predictor

Script

Comparison

Script

Retrieve Matlab

Variables

No Yes

Figure 32 – Matlab ↔ SystemVerilog communication

In the Predictor script a few modifications have been made. The Scrambler golden model has been modified

and no longer uses persistent variables. Instead, its internal state is first set by the configuration file. The state

of the last position that the scrambler was XORing in the pseudorandom sequence is stored, and the Sequence

is adapted to work in the next iteration as if the scrambler were in the previous state. The Convolutional

Encoder is also a golden model that has a state. The case of the Convolutional Encoder is different, in that uses

a Matlab ToolBox function. To accommodate this difference, the last six input bits were stored in a vector to

set the state of the Convolutional Encoder for the upcoming OFDM symbol.

Because Matlab accuracy is higher than SystemVerilog, the ideal and real outputs are compared in Matlab

rather than in the SystemVerilog Predictor. Matlab receives the IFFT + CRC binary output, adapts it and then

compares it with the ideal values it predicted. The script measures the relative error and the maximum and

average error per symbol.

After the comparison in Matlab, the SystemVerilog’s predictor retrieves the values. Because the QMW library

only allows integers to be sent, it is necessary to scale the number and send the integer and decimal values

separately and then cast it in SystemVerilog into a real (floating point data type).

6.5 Final Testbench Architecture

The testbench has followed the UVM testbench guidelines. However, some Components were added and

modified from the final Scrambler testbench in order to effectively achieve verification goals.

 Matlab integrated in the final testbench

48

48

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

Bit2bit input
Monitor

Bit2bit input
Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Random_test_matlab extends random_testRandom_test_matlab extends random_test

uvm_componentuvm_component

agent extends uvm_agentagent extends uvm_agent

B
FMB
FM

DUVDUV

env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins

Scrambler_BFMScrambler_BFM

Legend:

Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends
uvm_driver

extends
uvm_driver

SequencesSequences

Scoreboard extends uvm_componentScoreboard extends uvm_component

analysis_exportanalysis_exportTLM_analysis_FIFOTLM_analysis_FIFO

analysis_exportanalysis_exportTLM_analysis_FIFOTLM_analysis_FIFO

IFFT+CRC outputIFFT+CRC output

InputStreamInputStream

Predictor extends uvm_componentPredictor extends uvm_component

Symbol2symbol
Input Monitor

Symbol2symbol
Input Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Symbol2symbol
Output Monitor

Symbol2symbol
Output Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

analysis_exportanalysis_export

analysis_exportanalysis_export

input

output

MatlabMatlab

Covergroups and binsCovergroups and bins

Encoder_BFMEncoder_BFM

Interface binded to Encoder s inputInterface binded to Encoder s input

Interface binded to Scrambler s inputInterface binded to Scrambler s input

Interface binded to Interleaver s inputInterface binded to Interleaver s input

Interface binded to Mapper s inputInterface binded to Mapper s input

Interface binded to IFFT s inputInterface binded to IFFT s input

Figure 33 – Final testbench topology

6.5.1 The Sequencer and the Sequence

The new Sequencer sends new Transactions to the Driver. By this time, the system input has been adapted to

an 8-bit input. The Sequence creates the 8-bit random Transactions. The last Transaction the Sequence object

generates to stop the DUV is given as 00001101b, which is the ASCII code for the carriage return.

6.5.2 The Driver

Now the workflow of the DUT is different, and therefore the Driver will need to toggle more signals using the

BFM. It sets the modulation and also sends the input data when the DUV requires it. It will print a `uvm_info

in the report phase indicating the number of sequence_items that have been driven.

6.5.3 Coverage Monitor and Coverage Component

The Coverage Monitor reads the input data to the system in a bit to bit stream and connects the Coverage

Component. The Coverage object performs a simple functional coverage. It consists of a single covergroup

that contains two bins: one for the ones, and another for the zeros.

6.5.4 Symbol to Symbol Monitors

There are two monitors sending data to the Scoreboard: the input and the output Monitors. For this testbench,

it was not possible to merge both of them together. This was due to the latency of the transceiver -- by the time

the system produced the IFFT+CRC output, it was already being driven by a new input.

As a consequence, two monitors were needed. Both of the actual monitors work at OFDM symbol level to

49

facilitate the Predictor task.

6.5.5 Scoreboard Implementation

The Scoreboard design in the final testbench is different compared to the Scrambler test. In the final testbench

there is no Checker implementation. This task is performed by Matlab as explained in section 5.4. The reason

for this was the difficulty of the synchronization job necessary between the Checker and the Predictor. In

addition, sending variables to Matlab from two different Components imply modifying the Matlab workspace

from two different angles, which is more complex to debug.

Inside the Scoreboard there is the Predictor class, which actually works as both a Predictor and a checker.

Even though it was not necessary to design the Scoreboard with subcomponents, it was implemented in that

way because it allows changes to the Scoreboard content and future reuse.

The Predictor needs to implement two TLM_FIFOs to avoid losing incoming Transactions. When retrieveing

the FIFO data, the first position in both FIFOs will correspond to the same OFDM symbol.

In the run phase, the Predictor prints the average relative error per real and imaginary parts using a `uvm_info

message. Additionally, in the report phase it prints the maximum real and imaginary relative error in the whole

simulation using another `uvm_info.

At the moment the Predictor is purely informative. It does not stop the simulation since the computation it

performs is just the relative error. Nevertheless, it would be very easy to add a `uvm_error or `uvm_fatal

message according to a maximum tolerable error.

6.5.6 Top module and BFM

The top module contains the DUV and BFM instantiations and connections. In addition, all the intermediate

signals between components have been linked to the BFM interface. Thus if in the future more functionality

needs to be added to the testbench, it can easily be done.

The internal signals have been accessed from the interfaces binded within the DUT using the SystemVerilog

assign key word.

6.6 Inheritance and relations between classes

The Doxygen documentation generation tool generates online documentation as well as diagrams that show all

of the relations between classes once all of the SystemVerilog code is commented according to its marking

syntax. It gives very useful information because it is possible to see the position of every class and where

classes extend from a simple picture. This is shown in Figure 35.

 Matlab integrated in the final testbench

50

50

F
ig

u
re 3

4
 –

 C
o
llab

o
ratio

n
 an

d
 in

h
eritan

ce d
iag

ram

51

7 RESULTS AND CONCLUSIONS

7.1 Results

This project was accomplished creating a complete UVM testbench for an OFDM transceiver written in

VHDL. In order to adopt the Universal Verification Methodology many testbenches have been set up until

reaching the final version. The testbench now is comprised of the fundamentals of verification:

 Code coverage.

 Functional coverage.

 Random Testing.

7.2 Conclusions

The UVM is a methodology used by electronic engineers in the semiconductor industry and therefore is very

comprehensive. It is usually used in conjunction with other verification technologies. For an engineering

student it can be frustrating at first, especially because there are not many resources available and most of the

resources are for engineers that work in the verification field. However, although it can seem impossible to

learn at times, after finishing this project I have realized how powerful this methodology is. Once one starts

coding the first testbenches, the rest only depends on being patient and continuing to learn.

I strongly encourage other engineering students to learn the UVM. I believe verification helps to open minds

with respect to the way you design. Even if your goals are to work as a design engineer, going through the

process of learning the UVM will help you to communicate effectively with your colleagues.

However beautiful the strategy, you should occasionally look at

the results.

-Winston Churchill-

 Results and conclusions

52

52

53

8 FUTURE WORK

It is difficult to point to how this work could be expanded because testbenches can be so diverse and there can

be so many variations. One possible improvement in the future may be to mix a series of random and directed

testing until reaching 100% code coverage in the design. In addition, UVM testbenches are very modular, and

it would be very interesting to study the efficiency of a testbench that, instead of using a single OFDM-Symbol

level Scoreboard, also included Scoreboards (with their own Predictor and Checker) for each system module

with Predictors less Matlab-based. In this more scalable testbench, there would exist several Agents in which

each Agent performs the verification of one of the DUT blocks.

Outside of the verification world, the OFDM transceiver was originally done as part of coursework. It would

be extremely useful to integrate the testbench in a server where students could upload their HDL code, and the

testbench would check whether the RTL of those students is working under the specifications. This would

improve verification in student designs because the UVM can deliver messages using the reporting macros,

that are very clock cycle accurate, which would help students to fix their RTL more rapidly.

I never think of the future - it comes soon enough.

-Albert Einstein-

 Future work

54

54

55

REFERENCES

[1] M. Demler, "Signal processing design," [Online]. Available: http://signal-processing.mil-

embedded.com/articles/designing-the-beyond-moores-law/.

[2] . J. Perry and T. Kupper, "The decline of scarcity," [Online]. Available:

http://declineofscarcity.com/?cat=14.

[3] P. Rosenzweig, "Heritage," [Online]. Available: http://www.heritage.org/research/testimony/2012/08/the-

state-of-privacy-and-security-our-antique-privacy-rules.

[4] R. Narayan and T. Symons, I created the Verification Gap.

[5] Cadence, "Cadence," [Online]. Available: https://www.cadence.com/content/cadence-

www/global/en_US/home/alliances/standards-and-languages.html.

[6] T. L. Anderson, "Chip Design," [Online]. Available:

http://chipdesignmag.com/display.php?articleId=5153.

[7] [Online]. Available: https://www.edaplayground.com/.

[8] P. alliance. [Online]. Available: http://www.prime-alliance.org/?page_id=769.

[9] P. alliance, "Specification for PoweRline Intelligen Metering Evolution," [Online]. Available:

http://www.prime-alliance.org/wp-content/uploads/2014/10/PRIME-Spec_v1.4-20141031.pdf.

[10] Accellera, "Standard Universal Verification Methodology".

[11] Verification Academy, "Verification Academy," [Online].

[12] Verification Academy, "Verification Academy," [Online]. Available:

https://verificationacademy.com/cookbook/component.

[13] Verification Academy, [Online]. Available: https://verificationacademy.com/cookbook/testbench.

[14] Verification Academy, "Verification Academy," [Online]. Available:

https://verificationacademy.com/cookbook/uvm.

[15] Verification Academy, "Verification Academy," [Online]. Available:

https://verificationacademy.com/cookbook/component.

[16] Verification Academy, "Verification Academy," [Online]. Available:

 References

56

56

https://verificationacademy.com/cookbook/agent.

[17] Doulos , "Doulos," [Online]. Available:

https://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/.

[18] Verification Academy, "Verification Academy," [Online]. Available:

https://verificationacademy.com/cookbook/monitorcomponent.

[19] R. Salemi, The UVM primer.

[20] Verification Academy, "Verification Academy," [Online]. Available:

https://verificationacademy.com/cookbook/predictors.

[21] D. K. Tala, "Asic World," [Online]. Available: http://www.asic-

world.com/systemverilog/coverage1.html#Introduction.

[22] Verification Academy, [Online]. Available: https://verificationacademy.com/cookbook/factory.

[23] Verification Academy, [Online]. Available: https://verificationacademy.com/cookbook/testbench/build.

[24] H. Nurminen and S. Durga Ravi, "Synopsys - Hierarchal Testbench Configuration Using

uvm_config_db".

[25] Verification Academy, [Online]. Available: https://verificationacademy.com/cookbook/phasing.

[26] Mentor Graphics, [Online]. Available: https://www.mentor.com/products/fv/resources/overview/binding-

systemverilog-to-vhdl-components-using-questa-f43cc1c4-6607-44e3-8dc0-515bf2c08abc.

[27] Verification Academy, "Verification Academy," [Online]. Available:

https://verificationacademy.com/cookbook/matlab/integration.

[28] GNU, [Online]. Available: https://www.gnu.org/software/make/manual/html_node/Makefiles.html.

[29] Xilinx, "Xilinx," [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgn_c_df_compile_lib.htm.

[30] D. Rich, "The Missing Link: The Testbench to DUT".

[31] O. Autor, "Otra cita distinta," revista, p. 12, 2001.

[32] Ray Kurzweil, "Syngularity Simposium," [Online]. Available:

http://www.singularitysymposium.com/moores-law.html.

[33] verificationacademy, [Online]. Available: https://verificationacademy.com/cookbook/testbench.

[34] Mentor Graphics, [Online]. Available: https://www.mentor.com/products/fv/methodologies/uvm-ovm/.

[35] R. Salemi, FPGA Simulation A complete Step-by-Step Guide.

57

Equation Chapter 1 Section 1

Trabajo fin de grado

Grado en Ingeniería de las Tecnologías de

Telecomunicación

Intensificación en Sistemas Electrónicos

Entorno de simulación para un transmisor OFDM

usando la metodología UVM

- Resumen en castellano -

Autor: Antonio Martínez Zambrana

Tutor: Hipólito Guzmán Miranda

Departamento de Ingeniería Electrónica

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2016

12

Índice

Índice .. 12

1 Resumen .. 13
1.1 Introducción ... 13
1.2 Diseño bajo verificación .. 15
1.3 Universal Verification Methodology (UVM) .. 15
1.4 Flujo de trabajo .. 18
1.5 Integración del testbench para Scrambler con Matlab .. 18
1.6 Integración del testbench final con Matlab ... 20
1.7 Resultados .. 24

2 Palabras clave .. 25

3 Conclusiones .. 26

1 RESUMEN

En el presente documento se explican de forma concisa los aspectos clave tratados en

el Trabajo Fin de Grado.

1.1 Introducción

La verificación de diseños hardware no es un tema tratado en profundidad en el

mundo de la academia. Esto convierte dicho estudio en un desafío. Tras graduarse, un

alumno de ingeniería electrónica sólo tiene capacidad de llevar a cabo pruebas muy

simples, que no son suficiente en un entorno industrial en el que cada paso que se da

en un diseño tiene que probarse antes de llegar al mercado.

En general, podría decirse que la comunidad de ingeniería electrónica no se ha

preocupado sobre la verificación de dispositivos programables como las FPGAs o

CPLDs. En parte, esto está influenciado por la Ley de Moore, la cual indica que el

número de transistores por área se duplica cada dos años.

Figura 1 – Gráfica de la ley de Moore

14

Con el creciente número de transistores por densidad de área se dificulta

enormemente la tarea de comprobar un funcionamiento correcto de los circuitos

integrados. Es por ello que los ingenieros electrónicos modernos deberían evitar la

depuración en el laboratio si previamente no han planificado una estrategía de

verificación adecuada para el diseño.

En teoría, la dificultad de verificación crece exponencialmente conforme aumenta la

complejidad de los diseños. Esto se conoce como Verification Gap: diferencia de

productividad entre la verificación y el diseño. A día de hoy, nuestras habilidades de

verificación son menores que nuestras habilidades para diseñar. Esto podría deberse a

la importancia que los ingenieros electrónicos le atribuyen al diseño. Hay más

ingenieros de diseño que ingenieros de verificación. Además, los ingenieros de

verificación necesitan tener un conjunto de habilidades que no eran necesarias antes.

Entre las que podrían destacarse: Systemverilog, C/C++, Perl, TCL, Python,

Assertions, functional coverage, etc.

Las compañías de diseño electrónico en el pasado insistían en tener lenguajes de

verificación propios que eran bastante complicado de aprender si no se tenía acceso a

la propia empresa. Gracias a Accelera ha sido posible unificar unificar y estandarizar

un conjunto de los lenguajes de verificación mas relevantes alcanzando así UVM.

Figura 2 – Evolución de los lenguajes de verifiación

Es de importante mención el hecho de que el software que se necesita para aprender

lenguajes de verificación pertenece a empresas como Cadence, Mentor Graphics o

Synopsis. Lo cual dificulta que los estudiantes de ingeniería tengan la capacidad de

aprender adecuadamente dichos lenguajes de verificación. La escasez de recursos para

enseñar verificación es un problema que debería preocupar a las universidades, ya que

los estudiantes deberían tener un conjunto de habilidades más amplias y profundas a

la hora de enfrentarse al mercado laboral.

1.2 Diseño bajo verificación

Se verifica usando la metodología UVM un diseño en VHDL de un transmisor

OFDM. Dicho diseño cumple parcialmente las especificaciones de la recomendación

PRIME Alliance, el cual establece comunicaciones en líneas de tranmisión de

potencia de banda estrecha.

El diseño se realizó como trabajo de curso de la asignatura Sistemas Electrónicos de

Comunicaciones y fue implementado en la FPGA Spartan-3.

La arquitectura del diseño bajo verificación de la capa física se muestra en la imagen

inferior:

Figura 3 – Diagrama de bloques del transmisor OFDM

1.3 Universal Verification Methodology (UVM)

La metodología UVM es muy extensa. Se recomienda al lector interesado consultar el

capítulo correspondiente en el Trabajo Fin de Grado o bien acceder directamente al

estándar.

Dicha metodología fue estandarizada en el año 2009 por Accelera, una organización

responsable de estándares en las áreas de automatización de diseño electrónico y

fabricación de circuitos integrados. Surge como consecuencia del esfuerzo de

diseñadores electrónicos en conjunto con las empresas de ingeniería electrónica tras

en líneas generales mezclar las metodologías OVM y VMM. No se trata de un

lenguaje de verificación por sí misma, sino de una librería de código libre basada en

SystemVerilog.

La principal característica de UVM es la potencia de verificación mediante

testbenches, que usan estimulos aleatorios y restringidos (constrained random

stimulus) y functional coverage. Actualmente UVM no es una metodología completa

de como seguir cada paso a la hora de verificar diseños digitales. Sin embargo, es una

excelente guía de como seguir los aspectos más importantes en verificación.

16

Un diagrama de bloques típico acorde a la metodología UVM se muestra en la

imagen siguiente:

Figura 4 – Ejemplo a nivel de bloques de un testbench UVM para un DUT con interfaces APB y SPI

Los componentes constituyentes de UVM son:

 UVM Transactions.

En verificación de diseños digitales, Transactions es el término para la clase que

agrupa los datos y todas las operaciones que pueden llevarse a cabo sobre dichos

datos. UVM Transactions se usan para distribuir los datos entre los diferentes

UVM Components.

 UVM Components.

Todos los Components de UVM se ubican dentro de una clase test. Dentro de esta

se distinguen principalmente dos Components contenedores: UVM Env y UVM

Agent. En el conjunto de componentes dentro de UVM Agent se difiere entre

componentes de la capa de estímulos y componentes de la capa de análisis.

o Capa de estímulos:

- UVM Sequencer.

- UVM Sequences.

- UVM Driver.

o Capa de análisis:

- UVM Monitor.

- UVM Scoreboard.

- Predictor.

- Objetos de Coverage.

 BFM (Bus Functional Modeling).

Es una abstracción para interacturar con el DUV. Encapsula todas las señales del

DUV y como estas interactúan con los pines del diseño.

Otro de los aspectos claves de UVM es que cada acción debe ocurrir en un momento

determinado, para lo cual se crearon las fases UVM (Standard UVM Phases). Hay

tres grupos diferentes de fases que se ejecutan en el siguiente orden:

1. Build Phases: se configura y construye el testbench.

2. Run-Time Phases: se aplican estímulos sobre el diseño bajo verificación.

3. Clean-up Phases: se reciben y se reportan los resultados de la prueba.

Figura 5 – fases UVM

18

1.4 Flujo de trabajo

Antes de comenzar el presente proyecto no tenía conocimiento alguno sobre UVM y

SystemVerilog. SystemVerilog es un lenguaje de programación orientado a objetos

que tiene la misma sintaxis que Verilog, aunque con mas funcionalidad. Por tanto, es

posible usarlo tanto para tareas de diseño (HDL) como de verificación (HVL). Dado

que el transmisor OFDM ya estaba originalmente diseñado en VHDL sólo usé las

funcionalidades de SystemVerilog relacionadas con verificación.

Comencé haciendo testbenches para un único bloque del sistema. Elegí el Scrambler

como el primer bloque al que aplicar verificación por su simplicidad y

incrementalmente fui añadiendo funcionalidad a los testbenches en SystemVerilog

hasta conseguir el primer testbench UVM.

Las herramientas usadas en este trabajo fueron:

 QuestaSim: un simulador de lenguajes de descripción hardware (HDL) y

lenguajes de verificación hardware (HVL). Se usó para llevar a cabo

simulaciones mixtas con VHDL y SystemVerilog+UVM.

 Matlab: una herramienta de software matemático compatible con QuestaSim

que llevaba a cabo el modelo software del sistema.

 Doxygen: una herramienta para generar documentación automáticamente en

conjunto a un script en Perl creado por Christoph Suehnel para poder integrar

SystemVerilog en la documentación.

 Emacs: un editor de textos con una excelente funcionalidad para VHDL y

SystemVerilog.

1.5 Integración del testbench para Scrambler con Matlab

SystemVerilog es un lenguaje de programación que puede ser muy potente en diseño

de modelos software. Sin embargo, se usó Matlab como Predictor dado que ya se

partía de los modelos en Matlab acorde a las especificaciones del transmisor. Al usar

Matlab en lugar de SystemVerilog para predecir la salida del bloque IFFT en el

testbench se simplificó considerablemente dicha tarea.

A pesar de lo explicado con anterioridad, fue necesario adaptar ligeramente el script

de Matlab correspondiente al Scrambler. Este originalmente estaba programado para

trabajar con todo el vector de datos de entrada al bloque. Para tener más exactitud

encontrando errores, fue necesario añadir variables de estado al script para que

pudiera funcionar bit a bit y así detectar errores con la mayor precisión posible.

La topología del testbench resulta de la siguiente manera:

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

I / O
Monitor

I / O
Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Random test extends base_testRandom test extends base_test

uvm_componentuvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
F

M
B

F
M

DUVDUV

env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins

Binded_BFMBinded_BFM

Legend:

Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends
uvm_driver

extends
uvm_driver

SequencesSequences

Stimulus Layer Analysis Layer

Scoreboard extends uvm_componentScoreboard extends uvm_component

Predictor extends uvm_subcriberPredictor extends uvm_subcriber

analysis_portanalysis_port

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

Expected valueExpected value

Actual valueActual value

Comparer extends uvm_componentComparer extends uvm_component

Figura 6 – Topología del testbench para el Scrambler

Además, se hizo uso de la funcionalidad UVM Factory Overrides para poder tener en

el mismo diseño una arquitectura flexible. Con lo que se consiguió que un mismo

testbench instanciase diferentes Components dependiendo del test que se ejecutase.

Por medio de un Makefile se automatizó la tarea de simular un testbench que

instanciara el Predictor en SystemVerilog (Fig.6) o basado en Matlab (Fig.7).

20

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

I / O
Monitor

I / O
Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Random_test_matlab extends random_testRandom_test_matlab extends random_test

uvm_componentuvm_component

Scrambler_agent extends uvm_agentScrambler_agent extends uvm_agent

B
FMB
FM

DUVDUV

env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins

Binded_BFMBinded_BFM

Legend:

Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends
uvm_driver

extends
uvm_driver

SequencesSequences

Stimulus Layer Analysis Layer

Scoreboard extends uvm_componentScoreboard extends uvm_component

Predictor_matlab extends predictorPredictor_matlab extends predictor

analysis_portanalysis_port

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

analysis_exportanalysis_exportanalysis_FIFOanalysis_FIFO

Expected valueExpected value

Actual valueActual value

Comparer extends uvm_componentComparer extends uvm_component

UVM Factory OverridesUVM Factory Overrides

Figura 7 – Topología del testbench usando el Predictor de Matlab

1.6 Integración del testbench final con Matlab

Debido a que el diseño HDL usaba varios IP cores de Xilinx fue necesario compilar

con anterioridad dichos IP cores para poder simularlos en el simulador QuestaSim.

Para la compilación se usó la herramienta Compxlib de Xilinx.

En teoría, los ingenieros de verificación no deben modificar el diseño. Sin embargo, a

veces es necesario acceder a señales internas del sistema, conocido como caja blanca

(White box). QuestaSim tiene un constructor (bind) para “atar” interfaces en

SystemVerilog a partes internas del diseño y así poder tener acceso desde el

testbench. Las señales internas a las que se ha accedido son:

 Entrada del Codificador Convolucional.

 Entrada del Scrambler.

 Entrada del Interleaver.

 Entrada del Mapper.

Además, se ha usado el constructor bind para poder hacer functional coverage sobre:

 Registro de desplazamiento del Scrambler.

 Registro de desplazamiento del Codificador Convolucional.

De nuevo, el script de Matlab que funciona como Predictor tuvo que modificarse para

poder localizar errores en el diseño con la máxima precisión posible. Ahora, el

Predictor funciona a nivel de vectores de bit, pero no de la entrada total del sistema

desde el origen de los tiempos, sino de símbolo OFDM. Fue necesario de nuevo

integrar variables de estado en Matlab que permitieran conocer el estado interno en el

que se encontraban tanto el Scrambler como el Codificador Convolucional.

La comunicación entre Matlab y el testbench se corresponde al siguiente diagrama de

flujo:

BPSK, QPSK or 8PSK Send Modulation

Send

Configuration

File

¿Receive

input bits and Output

OFDM-Symbol?

Send SV

variables

End

Yes

The variables sent are:

 Input Stream

 End of simulation

 IFFT+CRC output

¿End of

simulation?

No

Execute

Predictor

Script

Comparison

Script

Retrieve Matlab

Variables

No Yes

Figura 8 – Comunicación entre Matlab y SystemVerilog

22

Finalmente se consiguió una topología de testbench acorde a las directrices de UVM:

CoverageCoverage

extends uvm_subscriberextends uvm_subscriber

Bit2bit input
Monitor

Bit2bit input
Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Random_test_matlab extends random_testRandom_test_matlab extends random_test

uvm_componentuvm_component

agent extends uvm_agentagent extends uvm_agent

B
F

M
B

F
M

DUVDUV

env extends uvm_envenv extends uvm_env

Covergroups and binsCovergroups and bins

Scrambler_BFMScrambler_BFM

Legend:

Analysis export

Analysis port

SequencerSequencer DriverDriver

BFMBFM

extends
uvm_driver

extends
uvm_driver

SequencesSequences

Scoreboard extends uvm_componentScoreboard extends uvm_component

analysis_exportanalysis_exportTLM_analysis_FIFOTLM_analysis_FIFO

analysis_exportanalysis_exportTLM_analysis_FIFOTLM_analysis_FIFO

IFFT+CRC outputIFFT+CRC output

InputStreamInputStream

Predictor extends uvm_componentPredictor extends uvm_component

Symbol2symbol
Input Monitor

Symbol2symbol
Input Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

Symbol2symbol
Output Monitor

Symbol2symbol
Output Monitor

BFMBFM

extends
uvm_monitor

extends
uvm_monitor

analysis_exportanalysis_export

analysis_exportanalysis_export

input

output

MatlabMatlab

Covergroups and binsCovergroups and bins

Encoder_BFMEncoder_BFM

Interface binded to Encoder s inputInterface binded to Encoder s input

Interface binded to Scrambler s inputInterface binded to Scrambler s input

Interface binded to Interleaver s inputInterface binded to Interleaver s input

Interface binded to Mapper s inputInterface binded to Mapper s input

Interface binded to IFFT s inputInterface binded to IFFT s input

Figura 9 – Topología del testbench final

Gracias a Doxygen junto con el script en Perl es possible generar diagramas que

muestran la relación entre clases una vez que todo el código SystemVerilog se haya

comentado acorde a una sintaxis de marcado. En la figura 10 es posible ver donde está

ubicada cada clase y de donde heredan de un simple vistazo.

F
ig

u
ra 1

0
 –

 D
iag

ram
a d

e co
lab

o
ració

n
 y

 h
eren

cia

24

1.7 Resultados

En este proyecto se ha llevado a cabo la creación completa de un testbench usando la

metología UVM para verificar un transmisor OFDM descrito en VHDL. Para adoptar

UVM se han planificado un conjunto de testbenches hasta llegar a la versión

definitiva. El testbench finalmente consta de los fundamentos de verificación:

 Code Coverage.

 Functional Coverage.

 Random Testing.

2 PALABRAS CLAVE

 Verificación.

 UVM: Universal Verification Methodology.

 Simulación.

 SystemVerilog.

 VHDL: VHSIC Hardware Description Language.

 OFDM: Orthogonal Frequency Division Multiplexing / Multiplexación por

division en frecuencia orthogonal.

 Matlab.

26

3 CONCLUSIONES

UVM es una metodología usada por ingenieros electrónicos en la industria de los

semiconductores, y por tanto es muy amplia y completa. Normalmente se usa

conjuntamente con otras tecnologías de verificación. Para un estudiante de ingeniería

puede ser frustrante al principio, especialmente porque no hay muchos recursos

disponibles y los que hay son para ingenieros que trabajan en ámbitos de verificación.

Aunque en ocasiones puede parecer imposible de aprender, después de completar este

trabajo me he dado cuenta que es una metodología muy potente. Una vez se empieza

a diseñar los primeros testbenches, el resto es cuestión de ser paciente y seguir

aprendiendo.

Animo completamente a otros estudiantes de ingeniería a aprender UVM. Pienso que

la verificación ayuda a abrir la mente con respecto a la forma de diseñar. Incluso si tus

objetivos son trabajar como ingeniero de diseño, seguir el proceso de aprender UVM

te ayudará a comunicarte de forma eficaz con tus compañeros.

	Simulation environment for an OFDM transmitter using UVM methodology
	Entorno de simulaciÃ³n para un transmisor OFDM usando la metodologÃ-a UVM

