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Canonical Discontinuous Planar Piecewise Linear Systems∗

Emilio Freire†, Enrique Ponce†, and Francisco Torres†

Abstract. The family of Filippov systems constituted by planar discontinuous piecewise linear systems with two
half-plane linearity zones is considered. Under generic conditions that amount to the boundedness of
the sliding set, some changes of variables and parameters are used to obtain a Liénard-like canonical
form with seven parameters. This canonical form is topologically equivalent to the original system
if one restricts one’s attention to orbits with no points in the sliding set. Under the assumption of
focus-focus dynamics, a reduced canonical form with only five parameters is obtained. For the case
without equilibria in both open half-planes we describe the qualitatively different phase portraits
that can occur in the parameter space and the bifurcations connecting them. In particular, we show
the possible existence of two limit cycles surrounding the sliding set. Such limit cycles bifurcate
at certain parameter curves, organized around different codimension-two Hopf bifurcation points.
The proposed canonical form will be a useful tool in the systematic study of planar discontinuous
piecewise linear systems, in which this paper is a first step.

Key words. Filippov systems, normal form, limit cycle, piecewise linear differential systems

AMS subject classifications. 34C05, 34C07, 37G15

DOI. 10.1137/11083928X

1. Introduction. Piecewise linear (PWL) systems constitute a class of differential systems
which are widely used to model many real processes and different devices; see, for instance,
[1, 5, 17]. The case of continuous PWL systems with two linearity regions separated by a
straight line is the simplest possible configuration in piecewise smooth systems. Such a family
of systems was completely studied in a previous paper [8], where in particular the existence
of at most one limit cycle was established.

Enforced by modern nonlinear engineering problems and mathematical biology (see [5]),
some recent works in the literature on planar PWL systems deal with vector fields where
continuity at the common boundary is not assumed. After the pioneering work of Filippov
[7], one must cite in this context the papers of Coll, Gasull, and Prohens [3], Giannakopoulos
and Pliete [9], Huan and Yang [11], Kuznetsov, Rinaldi, and Gragnani [13], Llibre, Ponce, and
Torres [15], Shui, Zhang, and Li [18], and the recent thorough work of Guardia, Seara, and
Teixeira [6], among others.

As mentioned in the recent work of Huan and Yang [11], the study of discontinuous
PWL systems is a difficult task because of the lack of a canonical form that can cope with a
sufficiently broad class of systems, in contrast to what can be done for the continuous case;
see [2]. In fact, only very particular cases are thoroughly analyzed in the available literature.
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182 EMILIO FREIRE, ENRIQUE PONCE, AND FRANCISCO TORRES

For instance, in [9] the two linear systems share the linear part; in [10] both linear parts are
simultaneously in real Jordan canonical form of focus type, which is a nongeneric situation; in
[11] the two involved linear systems share the same equilibrium point; and in [15] only Liénard
systems with neither real equilibria nor sliding set were considered.

One of the main contributions of this paper is the definition of a Liénard-like canonical
form for general discontinuous planar PWL systems with two linear regions separated by a
straight line. To fix ideas, let us assume without loss of generality that the linearity regions
in the phase plane are the left and right half-planes,

S− = {(x, y) : x < 0}, S+ = {(x, y) : x > 0},
so that x = 0 is the separation line and the systems to be studied become

(1.1) ẋ = F(x) =

{
F+(x) =

(
F+
1 (x), F+

2 (x)
)T

= A+x + b+ if x ∈ S+,

F−(x) =
(
F−
1 (x), F−

2 (x)
)T

= A−x + b− if x ∈ S−,

where x = (x, y)T ∈ R
2, A+ = (a+ij) and A− = (a−ij) are 2 × 2 constant matrices, and

b+ = (b+1 , b
+
2 )T and b− = (b−1 , b

−
2 )T are constant vectors of R

2. These systems have twelve
parameters, and they will be denoted DPWL (discontinuous PWL). When the condition
F+(0, y) = F−(0, y) is fulfilled for every value of y, then systems (1.1) turn out to be con-
tinuous, and they have been thoroughly studied in [8], where it was shown that only four
parameters are needed for the analysis. Therefore, in this paper we will assume that systems
(1.1) do not satisfy the continuity assumption; that is, the condition

(1.2) A+

(
0
y

)
+ b+ �= A−

(
0
y

)
+ b−

generically holds at the y-axis.
For systems (1.1) fulfilling the generic condition (1.2), we will propose a canonical form

which is able to cover all the cases where self-sustained oscillations are possible. Thus, we
will also impose the additional condition |a+12| + |a−12| �= 0; otherwise the x-component of
F depends only on variable x, and so oscillations are precluded because no orbit can cross
any line x = const. twice in opposite directions. While the original family needs twelve
parameters, our canonical form will require only seven parameters. Furthermore, the existence
and characterization of the sliding set is determined by only one of these parameters. This
canonical form allows us to obtain a necessary condition for existence of invariant closed curves
and also permits us to develop a systematic analysis of the possible dynamical behaviors to
be found in planar DPWL systems.

Next, as a first step in such a systematic approach, we partially study in this paper the
interesting case of discontinuous coupling of two linear dynamics of focus type. In this case,
despite the possible reduction in the number of parameters to five, the complete analysis is
rather involved, as will be shown. Consequently, we restrict our attention to the case when
there are no real equilibrium points in the interior of each half-plane. To keep the paper within
a reasonable length, the remaining cases of the canonical form will be considered elsewhere.

Under these assumptions of focus dynamics without inner equilibria in the linearity regions,
the possible limit cycles share no points with the sliding set, and so they can be properly
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CANONICAL DISCONTINUOUS PWL SYSTEMS 183

called crossing limit cycles. We characterize some bifurcations leading to the birth of crossing
periodic orbits and localize certain parameter regions where the number of crossing limit cycles
is exactly two. Several bifurcation sets are obtained as by-products of the different theoretical
results.

In particular, apart from standard codimension-one bifurcations (see [13]), we find different
codimension-two bifurcation points, namely a degenerate Hopf bifurcation at infinity and a
degenerate pseudo-Hopf bifurcation at the origin. Hopf bifurcation at infinity for PWL systems
has been studied in [14] but only for specific continuous cases; anyway, this bifurcation deserves
a deeper analysis not to be included here.

Pseudo-Hopf bifurcations are well known (see, for instance, [6, 13]), but the unfolding of
this degenerate case also needs more attention. The results that we obtain, when compared
with those included in [6], make evident the important role of DPWL systems as normal
forms in the study of local bifurcations of piecewise smooth systems; see the final comments
in section 4.

There seemingly appears a third codimension-two bifurcation point involving the two
previous bifurcations in nondegenerate situations; see section 4. We conjecture that the two
degenerate bifurcation points are linked by a curve which bounds the parameter region where
two crossing limit cycles coexist, two being the maximum number of crossing periodic orbits.
We remark that this maximum number is at least three when equilibrium points are allowed
to be in the interior of linearity regions; see [11].

The rest of the paper is outlined as follows. In section 2 we give a short review of Filippov
systems with emphasis on our planar systems. In section 3 the promised canonical form and
a necessary condition for the existence of periodic orbits are obtained. The main results of
this paper and some bifurcation sets are shown in section 4, where a specific canonical form
for the focus-focus case with only five parameters is also given. In section 5 some illustrative
examples are reduced to the proposed canonical form, showing the usefulness of our theoretical
approach. Several conclusions are outlined in section 6, whereas the proofs of our main results
are relegated to section 7.

2. DPWL systems as Filippov systems. Although both functions F+ and F− are defined
in every point of R2, the vector field (1.1) is not explicitly defined when x = 0, which is the
discontinuity locus, and so the definition of a solution for discontinuous system (1.1) needs
to be clarified. Following the approach in [13], we will not define solutions (x(t), y(t)) with
initial values at the y-axis, but by considering solutions with x(0) �= 0, we will give a precise
sense to the fact that orbits can pass through the discontinuity set.

Clearly, an orbit is well defined while it evolves without touching the y-axis. However, we
must adopt some criterion to define the orbits arriving at the discontinuity line Σ = {(x, y) :
x = 0}. As usual, we will adopt the Filippov convex method (see [13]), so that solutions can
be uniquely defined in forward time, although they can be nonsmooth.

The restriction of the system to each one of the zones x �= 0 is a linear system, so that the
solutions living in only one zone can be explicitly computed. When a solution arrives at the
discontinuity line at the point (0, y) different things can occur.

If F+
1 (0, y)F−

1 (0, y) > 0, then both vector fields are transversal to the discontinuity line,
and their normal components have the same sign. In this case, we will assume that orbits
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184 EMILIO FREIRE, ENRIQUE PONCE, AND FRANCISCO TORRES

are concatenated in the natural way. For instance, if an orbit arrives at the discontinuity line
coming from the zone x < 0, that is F−

1 (0, y) > 0, then assuming that also F+
1 (0, y) > 0, the

orbit crosses the line x = 0 towards the other linearity zone with a discontinuity in the tangent
vector. We say that this point is a crossing point, so that the crossing set Σc is defined as
follows:

(2.1) Σc = {(0, y) : F+
1 (0, y)F−

1 (0, y) > 0}.

If F+
1 (0, y)F−

1 (0, y) � 0, then either the normal components of vector fields to the discon-
tinuity line have opposite sign or at least one of them vanishes. We speak of (0, y) as a sliding
point, and the set

(2.2) Σs = {(0, y) : F+
1 (0, y)F−

1 (0, y) � 0}

is named the sliding set. In this case, we assume that the orbit slides along the sliding set
according to the convex method of Filippov; that is, the solutions of our system satisfy the
equation

ẋ = λF−(x) + (1 − λ)F+(x), x ∈ Σs,

where λ is selected so that the above vector field is tangent to the sliding set, i.e.,

(2.3) λF−
1 (x) + (1 − λ)F+

1 (x) = 0, x ∈ Σs.

Then, for x ∈ Σs and |F+
1 (x)| + |F−

1 (x)| �= 0, we get

λ(y) =
F+
1 (x)

F+
1 (x) − F−

1 (x)
,

and the so-called sliding solutions are given by

(2.4) ẋ = 0, ẏ = g(y) =
F+
1 (x)F−

2 (x) − F−
1 (x)F+

2 (x)

F+
1 (x) − F−

1 (x)
, x ∈ Σs.

Note that our notation differs from that used in [6], where Σs is reserved for the attractive
part of the sliding set, that is, when F+

1 (0, y) < 0 and F−
1 (0, y) > 0; they also use Σe for the

escaping or repulsive part of the sliding set, that is, when F+
1 (0, y) > 0 and F−

1 (0, y) < 0.
A particular instance of a sliding point occurs when |F+

1 (p)| + |F−
1 (p)| �= 0 but F+

1 (p) ·
F−
1 (p) = 0. In this case the point p is said to be a tangency point. Assume that p is a

tangency point with F+
1 (p) = 0. If the orbit of the vector field F+ passing through p at time

t = tp remains in the region x > 0 (x < 0) for |t − tp| small, then the point p will be called
a visible (invisible) tangency point. Analogously, we can have visible or invisible tangency
points by considering the vector field F−.

It is important to observe that since our vector fields F± are linear, under the tangency
assumptions ẋ = 0 and ẏ �= 0, a simple computation shows that the tangency is quadratic
whenever the corresponding coefficient a±12 does not vanish.

If F+
1 (p) = F−

1 (p) = 0, then the point p is a singular sliding point, and three cases arise:
(1) both vector fields are tangent to the line x = 0, (2) one of them is tangent while the other
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one vanishes, and (3) both vector fields vanish. In the first case p will be called a double
tangency point, while in the two last cases p will be called a boundary equilibrium point.

For our DPWL systems, the double tangency points are isolated points in the discontinuity
line. If the point of double tangency has a visible tangency at one side and an invisible tangency
at the other side, the quoted point behaves as a regular point. When the tangency is either
visible or invisible at both sides of the double tangency point (0, y) we simply impose that
g(y) = 0; for boundary equilibrium points (0, y) we also set g(y) = 0.

Points (0, ȳ) ∈ Σs with g(ȳ) = 0 act in some sense as equilibria of system (1.1), and
they are called pseudoequilibria. A double invisible tangency point with close orbits spiraling
around it is called a pseudofocus or fused focus; see [13]. A pseudoequilibrium in the attractive
part of the sliding set with g′(y) < 0 is a stable pseudonode, being a pseudosaddle if g′(y) > 0.
Similarly, a pseudoequilibrium in the repulsive part with g′(y) > 0 is an unstable pseudonode,
being again a pseudosaddle if g′(y) < 0. Note that at pseudoequilibria (0, ȳ) which are neither
boundary equilibrium nor tangency points we have

F−
2 (0, ȳ)

F−
1 (0, ȳ)

=
F+
2 (0, ȳ)

F+
1 (0, ȳ)

,

and so the two vector fields F+ and F− are anticollinear.

3. Canonical form and general results for DPWL systems. Since our goal is to study
nonlinear phenomena, we look for possible periodic orbits not totally contained in S− or S+.
These orbits must be of one of following two types, depending on the nature of their points
on the y-axis. If the periodic orbit has sliding points, then it will be called a sliding periodic
orbit. Otherwise we speak of crossing periodic orbits, whose study constitutes the main goal
of our analysis.

From (2.1), the crossing set of our systems is constituted by the points (0, y) for which
the expression

(3.1) F+
1 (0, y)F−

1 (0, y) =
(
a+12y + b+1

)
(a−12y + b−1 )

is positive. When a−12a
+
12 � 0, it is easy to see that the crossing set, if it exists, is an open

interval of the y-axis, unbounded for a−12a
+
12 = 0 and bounded for a−12a

+
12 < 0. In any case,

the x-component of both vector fields has constant sign at the crossing set, and so elementary
qualitative arguments preclude the existence of crossing periodic orbits. These cases will not
be considered in the rest of the paper, and we assume in what follows that a−12a

+
12 > 0, which

means that the sliding set is bounded and either attractive or repulsive.
In order to obtain the promised canonical form, we will make a continuous PWL change of

variables such that the resulting transformation will be a homeomorphism, keeping invariant
the discontinuity line Σ and leading to a new vector field with few parameters. The proposed
change will also keep invariant the half-planes S+ and S− and, being linear within each
open half-plane, the existence in S+ ∪ S− of a conjugacy between both vector fields can be
guaranteed. Later on (see Remark 3.2), we will discuss the implications of this change of
variables for orbits having points in Σ, and specially for orbits with points in the sliding
set Σs.
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Looking for a Liénard-like canonical form for DPWL systems, and denoting by T− and
T+ and by D− and D+ the traces and determinants of matrices A− and A+, respectively, the
following result can be stated.

Proposition 3.1 (Liénard canonical form for DPWL systems). Assume that a+12a
−
12 > 0 in sys-

tem (1.1). Then the homeomorphism x̃ = h(x) given by

(3.2) x̃ =

(
1 0
a−22 −a−12

)
x−

(
0
b−1

)
if x ∈ S− ∪ Σ

and

(3.3) x̃ =
1

a+12

(
a−12 0

a−12a
+
22 −a−12a

+
12

)
x−

(
0
b−1

)
if x ∈ S+,

after dropping tildes, transforms system (1.1) into the canonical form

(3.4)

ẋ = G−(x) =

(
T− −1
D− 0

)
x−

(
0
a−

)
if x ∈ S−,

ẋ = G+(x) =

(
T+ −1
D+ 0

)
x−

( −b
a+

)
if x ∈ S+,

where

a− = a−12b
−
2 − a−22b

−
1 , b =

a−12
a+12

b+1 − b−1 , a+ =
a−12
a+12

(a+12b
+
2 − a+22b

+
1 ).

Besides the invariance of the discontinuity line Σ, the crossing and sliding sets, tangency
points, and boundary equilibria of the original system (1.1) are transformed by the homeomor-
phism h into sets and points of the same type for system (3.4).

Moreover, there is a topological equivalence between systems (1.1) and (3.4) for all their
orbits not having points in common with the sliding set. However, the homeomorphism h
preserves the attractive or repulsive character of the sliding set.

Proof. To obtain the vector field (3.4) is a direct computation. The assertion about the
homeomorphism between the subsets of Σ, tangency points, and boundary equilibria follows
from the equalities

G+
1 (h(0, y)) = (a−12y + b−1 + b) =

a−12
a+12

F+
1 (0, y), G−

1 (h(0, y)) = (a−12y + b−1 ) = F−
1 (0, y).

Thus the signs of the x-components are preserved, and so the product G+
1 (h(0, y))G−

1 (h(0, y))
is equal to expression (3.1) up to a positive factor. Obviously, orbits totally contained in
one of the two open half-planes are transformed in a homeomorphic way. Moreover, since
orbits arriving at the crossing set are continued by the natural concatenation, the topological
equivalence is not lost at the crossing set.

Before proceeding further, some important observations are in order.
Remark 3.2. The change of variables used in the above proof is a homeomorphism defined

in the whole plane leading to a linear conjugacy for each vector field in S+ and S−, separately.
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As indicated, the topological equivalence can be extended to the crossing set, so that crossing
periodic orbits in the initial system are also transformed, in a homeomorphic way, into crossing
periodic orbits of the canonical form. In studying crossing limit cycles, this observation is
crucial for understanding the importance of the introduced canonical form.

In general, the restriction of this homeomorphism to the discontinuity line Σ does not
produce a conjugacy between the corresponding sliding vector fields. In fact, the change (3.2)–
(3.3) is nonsmooth and, as indicated in Remark 2.24 from [6], one cannot guarantee topological
equivalence between sliding vector fields. Effectively, it is easy to build examples where the
number of pseudoequilibria changes in passing to the proposed canonical form.

This lack of equivalence between the two sliding vector fields is not relevant if one is
interested in the dynamics not involving sliding orbits, as is the case for the analysis of crossing
periodic orbits to be made in what follows. Therefore, the different definitions of equivalence
given in [6] apply whenever we except the sliding set Σs. The price to be paid if one is
interested in preserving the sliding dynamics is to use a diffeomorphic change; for instance,
by extending the change in (3.2) to the whole plane, the left vector field obtained is the same
as in (3.4), but the simplest expression for the right vector field should become

ẋ =

(
g+11 −1
g+21 g+22

)
x−

( −b
ã+

)
if x ∈ S+

after a time rescaling for orbits in S+. Even if the parameter b is unmodified, this right vector
field is not in Liénard form any longer. Obviously, its analysis becomes more involved; in any
case, being interested in the crossing dynamics, we will not consider it further.

When Σs becomes one point, there is no sliding dynamics, and the previous remark is not
relevant. In such a case, system (1.1) and (3.4) are trivially Σ-equivalent according to the
definition given in [6], but the following observation is noteworthy.

Remark 3.3. Note that if b = 0 and a− = a+, then system (3.4) turns out to be continuous.
Thus Proposition 3.1 assures that certain discontinuous systems (1.1) can be transformed into
continuous systems by means of a continuous PWL change of variables. More precisely, if a
discontinuous system (1.1) satisfies

a+12a
−
12 > 0, b−1 =

a−12
a+12

b+1 , b−2 − a−22
a−12

b−1 = b+2 − a+22
a+12

b+1 ,

then its corresponding canonical form (3.4) is continuous. In particular, we see that homo-
geneous systems (1.1) with a+12a

−
12 > 0 and b+ = b− = 0 can always be transformed in a

continuous system. Thus, for instance, the class of bimodal systems considered in [12] and the
analysis done in [20] are not necessary, since they can be completely recast into the continuous
cases studied in [8].

Thus, from the above remark, some presumed Filippov systems can be considered as false
discontinuous systems. This fact is a surprising byproduct of the above canonical form. We
emphasize that the study of the properties of the family of systems (3.4), which represents
an important subset of all possible DPWL systems, is relevant on its own. We claim that the
family is able to reproduce most of the nonlinear dynamics one can find in DPWL systems.
Here, we start its thorough study by considering a useful reduction in the number of different
cases to be analyzed.
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Remark 3.4. Canonical form (3.4) is invariant under the change of variables (x, y, t) →
(x,−y,−t), simultaneous with the change of parameters

(D+,D−, T+, T−, a+, a−, b) → (D+,D−,−T+,−T−, a+, a−,−b).

Thus, it is enough to consider b � 0 in the study of system (3.4).
In the following, according to Remark 3.4, we concentrate our attention on the canonical

form (3.4) with b � 0. Next, we give some preliminary results related to the existence of
crossing periodic orbits.

From (2.2), the sliding set of the canonical form (3.4) is determined by the inequality

F−
1 (0, y)F+

1 (0, y) = y(y − b) � 0.

Since b � 0, the sliding set is the segment

(3.5) Σs = {(x, y) : x = 0, 0 � y � b} ,
shrinking to the origin when b = 0. When b > 0, the convex method of Filippov (see (2.3))
leads to the system

(3.6) ẋ = 0, ẏ =
a− − a+

b
y − a−, 0 � y � b.

As the normal component of both vector fields points outwards from the sliding set when
b > 0, we say that the sliding set is unstable in the normal direction. The crossing set is the
complement in Σ of the sliding set, i.e.,

Σc = {(x, y) : x = 0, y < 0} ∪ {(x, y) : x = 0, b < y}.
Regarding the tangency points and pseudoequilibrium points of system (3.4), we give the

next proposition, whose proof is elementary and will not be shown.
Proposition 3.5. For system (3.4) the following statements hold:
(a) If a− �= 0, then the origin is a left tangency point, visible for a− < 0 and invisible for

a− > 0. If a− = 0, then the origin is a boundary equilibrium point.
(b) If a+ �= 0, then the point (0, b) is a right tangency point, visible for a+ > 0 and

invisible for a+ < 0. If a+ = 0, then the point (0, b) is a boundary equilibrium point.
(c) If b = 0 and a+a− �= 0, then the origin is a double tangency point. It behaves as a

regular point for a+a− > 0, being a pseudoequilibrium point for a+a− < 0; in fact, the
origin is a pseudofocus for a+ < 0 < a− and a pseudosaddle for a− < 0 < a+.

(d) For b > 0, regarding possible pseudoequilibrium points in the interior of the sliding set,
the following subcases arise:

(d1) If a− = a+ = 0, then every point of the interior of the sliding set is a pseudoequi-
librium point.

(d2) If a−a+ < 0, then the point (0, a−b
a−−a+

) is the only pseudoequilibrium point, being

a pseudosaddle for a− < 0 and an unstable pseudonode for a− > 0.
(d3) If a+a− � 0 with a− + a+ �= 0, then there are no pseudoequilibrium points in the

interior of the sliding set.
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Γ−

Γ+

x

L−

L+

yL

yU

Ω− Ω+

y

Figure 1. A crossing periodic orbit surrounding the sliding set.

Note that the above statements for tangency points can be translated back to the original
system corresponding to the canonical form, but the same is not true for pseudoequilibria; see
Remark 3.2. Regarding the possible equilibria of system (3.4) belonging to the open sets S−

and S+, the following standard proposition is also given without proof.
Proposition 3.6. The following statements hold:
(a) System (3.4) has one equilibrium point in the left zone when a−D− < 0, and no

equilibria in that zone when a−D− > 0. Analogously, it has one equilibrium point in
the right zone when a+D+ > 0, and no equilibria in that zone when a+D+ < 0.

(b) If D− = 0, then the system has no equilibria in the left zone when a− �= 0, having
a continuum of equilibria making up the half-straight line y = T−x, x < 0, when
a− = 0. Analogously, if D+ = 0, then the system has no equilibria in the right
zone when a+ �= 0, having a continuum of equilibria making up the half-straight line
y = T+x− b, x > 0, when a+ = 0.

Since for y > b we have F+
1 (0, y) < 0 and F−

1 (0, y) < 0 and for y < 0 we have F+
1 (0, y) > 0

and F−
1 (0, y) > 0, we conclude that a crossing periodic orbit Γ has exactly two points at the

y-axis, namely, the two points (0, yL) and (0, yU ) with yL < 0 < b < yU = yL + h with h > 0;
see Figure 1.

Here, a necessary condition for the existence of crossing periodic orbits in system (1.1)
will be given. We define, by removing the two crossing points, the left open arc Γ− = Γ∩S−,
the right open arc Γ+ = Γ ∩ S+, and the oriented segments

L− = {(x, y) : x = 0, y = (1 − μ)yL + μyU , 0 � μ � 1}

and

L+ = {(x, y) : x = 0, y = μyL + (1 − μ)yU , 0 � μ � 1} .
Since Γ− ∪ L− is a closed Jordan curve, its interior Ω− = int{Γ− ∪ L−} and the value σ− =
area(Ω−) are well defined. Analogously, it can be considered that Ω+ = int{Γ+ ∪ L+} and
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σ+ = area(Ω+). Next, the following proposition, whose proof is given in section 7, is deduced
from Green’s formula.

Proposition 3.7. If system (3.4) has a crossing periodic orbit Γ that crosses the line x = 0
through the points (0, yL) and (0, yL + h), where h > 0, then

(3.7) T−σ− + T+σ+ + bh = 0.

The above result, as a necessary condition for the existence of periodic orbits, is also useful
to exclude them in certain cases; see the next remark.

Remark 3.8. We remark that in the two cases (i) T+ > 0, T− > 0, b > 0, and (ii)
T+T− � 0, T+ + T− �= 0, b = 0, the equality (3.7) of Proposition 3.7 cannot be fulfilled, and
so system (3.4) cannot have crossing periodic orbits.

4. The focus-focus case without equilibria in the interior of the half-planes. In the
remainder, we pay attention only to one of the most important cases in practice, in which
both dynamics are of focus type; that is, T 2− 4D < 0 in both zones. In this case, we can give
a simpler canonical form depending on only five parameters.

Proposition 4.1 (Liénard reduced form in the focus-focus case). Assume T± = 2α±, D± =
(α±)2 + (ω±)2 with ω± > 0 in the canonical form (3.4), so that the corresponding eigenvalues
are λ± = α± ± iω±, and introduce the parameters

γR =
α+

ω+
, γL =

α−

ω− , aR =
a+

ω+
, aL =

a−

ω− .

Then the change of variables (different for each half-plane)

(x, y, t) →
(

x

ω(x)
, y,

t

ω(x)

)
, where ω(x) =

{
ω− if x < 0,
ω+ if x > 0,

transforms the canonical form (3.4) into the form

(4.1)

ẋ =

(
2γL −1

1 + γ2L 0

)
x−

(
0
aL

)
if x ∈ S−,

ẋ =

(
2γR −1

1 + γ2R 0

)
x−

( −b
aR

)
if x ∈ S+.

Using again Remark 3.2, the study of crossing periodic orbits of system (3.4) can be done
by means of the analysis of system (4.1). However, the rich possible dynamics of system (4.1)
forces us to split its study into different steps. As the first step, here we will consider only
the case where there are no real equilibria in the open zones S+ and S−; that is, we assume
in the following that aR � 0 � aL. From Proposition 3.5, the endpoints of the sliding set are
invisible tangency points or boundary equilibria. The cases where there can be equilibria in
the interior of the half-planes will be studied in a forthcoming paper.

Our first main results are related to the case b = 0. This situation was already considered
in [15] but only when aR < 0 < aL and γR γL �= 0. Here, we present new results including
all the possible situations. Clearly, the origin is then the single sliding point and is always a
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topological focus, whose Lyapunov constants could be obtained through the analysis done in
[3]; here we follow a different approach to capture not only local but also global information.

Proposition 4.2 (stability of the origin in systems without sliding set). Assuming b = 0 and
aR � 0 � aL in system (4.1), the following statements hold:

(a) The origin is asymptotically stable for aLγR < aRγL and unstable for aLγR > aRγL.
(b) If aLγR = aRγL, then the origin is unstable for γR + γL > 0, asymptotically stable for

γR + γL < 0, and a global center for γR + γL = 0.
It is worth noting that, under the assumptions of Proposition 4.2(b), if γR = −γL �= 0,

then aR = −aL �= 0, and the system is reversible. The above conditions allow us to identify
the DPWL systems which have reversible nonlinear global centers.

Theorem 4.3 (systems without sliding set). Assuming in system (4.1) the conditions b = 0
and aR � 0 � aL, the following statements hold:

(a) If γR + γL = 0, then there is a global nonlinear center around the origin for aLγR =
aRγL, and no crossing periodic orbits when aLγR �= aRγL.

(b) If γR + γL �= 0 and γRγL � 0, then there are no crossing periodic orbits.
(c) If γR + γL �= 0 and γRγL < 0, then for (γR + γL)(aLγR − aRγL) < 0 there is only one

crossing periodic orbit, which is stable for γR + γL < 0 and unstable for γR + γL > 0.
When (γR + γL)(aLγR − aRγL) � 0 there are no crossing periodic orbits.

Corollary 4.4 (global asymptotic stability of the origin). Under the conditions b = 0 and aR
� 0 � aL, the origin in system (4.1) is globally asymptotically stable in the two following
cases: (i) when aLγR < aRγL and γR + γL � 0, and (ii) when aLγR = aRγL and γR + γL < 0.

For b > 0 in system (4.1), we have that the normal components of both vector fields
at the set Σs defined in (3.5) point outwards, so the sliding set is unstable in the normal
direction. Then the orbits that leave the sliding set never return to it, and we cannot have
stable sliding periodic orbits. If additionally aR < 0 < aL, then from Proposition 3.5(d2) an
unstable pseudonode appears in the sliding set. Then, by reversing time, the orbits entering
into the sliding set go towards the pseudonode, which now becomes stable. Thus our system
has no unstable sliding periodic orbits either. In the limiting case aRaL = 0, we have at least
one boundary equilibrium point, and a similar argument precludes the existence of sliding
periodic orbits. Therefore, we focus our attention on the existence and number of crossing
periodic orbits for b �= 0.

Theorem 4.5 (systems with escaping sliding set, b > 0). Assuming the conditions aR � 0 �
aL, b > 0 in system (4.1), the following statements hold:

(a) If γRγL � 0, then there are no crossing periodic orbits for γR + γL � 0, while for
γR + γL < 0 there is only one crossing periodic orbit, which is stable.

(b) If γRγL < 0, then the following subcases arise:
(b1) If γR + γL � 0 and aLγR � aRγL, then there are no crossing periodic orbits.
(b2) If γR + γL = 0, aLγR < aRγL, and we define the value

b∞ = 2(aL + aR)
γL

1 + γ2L
= −2(aL + aR)

γR
1 + γ2R

,

then b∞ > 0, and there is only one crossing periodic which is stable for 0 < b < b∞
and no periodic orbits for b � b∞.

(b3) If γR + γL > 0 and aLγR < aRγL, then there are two hyperbolic crossing periodic
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orbits for b sufficiently small, while there are no crossing periodic orbits for b
sufficiently big.
If additionally aRaL = 0 with aR + aL �= 0, there exists a value bSN such that
(4.1) has exactly two hyperbolic crossing periodic orbits for 0 < b < bSN , only one
crossing periodic orbit which is semistable for b = bSN , and no crossing periodic
orbits for b > bSN .

(b4) If γR +γL < 0, then there is always a stable crossing periodic orbit. If in addition
aRaL = 0, then the above crossing periodic orbit is unique.

The following theorem is a direct consequence of the previous one, after using Remark 3.4.
Theorem 4.6 (systems with attractive sliding set, b < 0). Assuming the conditions aR � 0 �

aL and b < 0 in system (4.1), the following statements hold:
(a) If γRγL � 0, then for γR + γL � 0 there are no crossing periodic orbits, while for

γR + γL > 0 there is only one crossing periodic orbit, which is unstable.
(b) If γRγL < 0, then the following subcases arise:

(b1) If γR + γL � 0 and aLγR � aRγL, then there are no crossing periodic orbits.
(b2) If γR + γL = 0, aLγR > aRγL, and we define the value

b∞ = 2(aL + aR)
γL

1 + γ2L
= −2(aL + aR)

γR
1 + γ2R

,

then b∞ < 0 and there is only one crossing periodic, which is unstable for b∞ <
b < 0, and no periodic orbits for b � b∞.

(b3) If γR + γL < 0 and aLγR > aRγL, then there are two hyperbolic crossing periodic
orbits for |b| sufficiently small, while there are no crossing periodic orbits for |b|
sufficiently big.
If additionally aRaL = 0 with aR + aL �= 0, there exists a value bSN such that
(4.1) has exactly two hyperbolic crossing periodic orbits for bSN < b < 0, only one
crossing periodic orbit which is semistable for b = bSN , and no crossing periodic
orbits for b < bSN .

(b4) If γR + γL > 0, then there is always an unstable crossing periodic orbit. If in
addition aRaL = 0, then that crossing periodic orbit is unique.

In Figure 2, we sketch a global (γR, b)-bifurcation set for the generic case γL < 0 and
aR < 0 < aL < −aR, according to Theorems 4.3, 4.5, and 4.6. Under these conditions, there
are no real equilibrium points and only one pseudonode in Σs for b �= 0, which becomes a
pseudofocus for b = 0. Some different bifurcation lines appear in the quoted figure. At the
horizontal axis b = 0, the sliding set becomes the origin; from Proposition 4.2, the pseudofocus
at the origin is asymptotically stable for γR < γA, being unstable for γR � γA, where

γA =
aRγL
aL

> −γL > 0.

For b �= 0, the sliding set Σs is a segment with two invisible tangencies at its endpoints:
the origin and the point (0, b). Also, there appears a pseudonode in Σs, which is stable for
b < 0 and unstable when b > 0. Thus, in passing from a situation with b �= 0 to the case
b = 0, we have a collision of two invisible tangencies. Such a collision is in fact the bifurcation
phenomenon called II2 or pseudo-Hopf bifurcation in [13]. Such pseudo-Hopf bifurcation (p-H
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γR = −γL

γR

b

p-H

H∞

SN

A

B

C

Figure 2. Bifurcation set in the plane (γR, b) for the case γL < 0 and aR < 0 < aL < −aR, that is,
γA > −γL. Different bifurcation curves appear: H∞ stands for Hopf at infinity, SN indicates saddle-node of
periodic orbits, and p-H means pseudo-Hopf. There are also two codimension-two bifurcation points A = (γA, 0),
B = (−γL, b∞) and another C = (−γL, 0) where two different bifurcations (one local and and another global)
simultaneously appear.

in Figure 2) is supercritical for γR < γA and subcritical for γR > γA. This is indicated in the
figure with an arrow that defines the birth of a crossing limit cycle, black for the stable case
and red for the unstable one. Thus, in the plane (γR, b) the point A = (γA, 0) represents a
degenerate bifurcation point where the character of the bifurcation changes.

Consider a small neighborhood of point A in Figure 2. For b < 0 we find one crossing
stable limit cycle (Theorem 4.6(b4)); for b > 0 we have two crossing limit cycles for γR < γA
(Theorem 4.5(b3)) and no crossing limit cycles when γR > γA (Theorem 4.5(b1)). However,
for γR < γA and b sufficiently big, Theorem 4.5(b3) tells us that there are no crossing limit
cycles. In fact, it can be shown that, in the quadrant γR < γA and b > 0, a bifurcation curve
SN emanates from the point A, corresponding to the collapse of two crossing periodic orbits
with different stability, disappearing in the collision, as in degenerate Hopf bifurcations for
smooth systems. A similar codimension-two bifurcation for piecewise smooth systems is called
invisible fold-fold singularity in [6], where a piecewise polynomial normal form is introduced
to obtain the same local bifurcation behavior. From our results, it seems possible to obtain
the generic unfolding of such a singularity by using only piecewise linear normal forms; this
is an important problem worth further study.

Regarding the straight line γR = −γL, we see that for b < b∞ there appears a subcritical
Hopf bifurcation at infinity, H∞, leading to the birth of an unstable crossing periodic orbit
of big amplitude for γR > −γL. Analogously, for b > b∞ there appears a supercritical Hopf
bifurcation at infinity, leading to the birth of a stable crossing periodic orbit of big amplitude
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γR = −γL

γR

b

p-H

H∞

SN

A

B

C

Figure 3. Bifurcation set in the plane (γR, b) for the case γL < 0 and −aL < aR < 0 < aL, that is,
γA < −γL. Labels have the same meaning as in previous figure.

for γR < −γL. As before, in the plane (γR, b), at the point B = (−γL, b∞) we have a degenerate
bifurcation point similar to the degenerate point A of the previous paragraph, where another
curve of bifurcation points corresponding to the collision of two limit cycles begins. The
complete analysis of this Hopf bifurcation at infinity and its possible degeneracies will appear
elsewhere.

We conjecture that the SN curve joins the points A and B, so that the triangle-shaped
region defined by such a curve is the parameter locus where two crossing periodic orbits
coexist. We also conjecture the uniqueness of the crossing periodic orbit in the region defined
by γLγR < 0 and b(γL + γR) < 0, which might be shown by adequately extending the results
in [15]. We would like to remark that, regarding Figure 2, our results show the nonexistence
of crossing periodic orbits in the quadrant with b(γR + γL) > 0 and the uniqueness of the
crossing periodic orbit in the quadrant γRγL � 0 with b(γR + γL) < 0.

For the sake of completeness, we sketch in Figure 3 the bifurcation set for the case γL < 0
and aR < 0 < aL < −aR. Here we have b∞ < 0 and

0 < γA =
aRγL
aL

< −γL.

Finally, we note that when aL = −aR we have γA = −γL and b∞ = 0. So the two
degenerate Hopf bifurcation points collide at the point C = (−γL, 0) in the plane (γR, b),
and then the bifurcation set can be obtained from either Figure 2 or Figure 3 by eliminating
the triangle-shaped region. This common point then corresponds to the reversible nonlinear
global center predicted in Proposition 4.2(b).
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5. Examples. Next, we illustrate the usefulness of the previous results by considering
their application to some DPWL systems; namely, we consider a model regarding the direct
voltage control of an electronic Buck converter under idealized switching, and the Morris–
Lecar model of neural activity in one cell. For the sake of simplicity we will represent the
discontinuity by using the Heaviside step function h(·); namely,

h(z) =

{
0 if z < 0,
1 if z > 0.

5.1. Discontinuous control in the Buck electronic converter. Our first example comes
from power electronics and corresponds to the direct voltage control of the Buck converter
under idealized switching. Its dimensionless equations are (see [4, 16])(

Ẋ

Ẏ

)
=

( −γ1 1
−1 −γ2

)(
X
Y

)
+ h(Xref −X)

(
0
1

)
,

where γ1 > 0, γ2 > 0 are normalized parameters of the circuit, X, Y are the normalized load
voltage and impedance current, and the desired normalized voltage in the load Xref fulfills
the condition

(5.1) 0 < Xref <
1

1 + γ1γ2
< 1.

By setting x = X −Xref , y = Y , we get(
ẋ
ẏ

)
=

( −γ1 1
−1 −γ2

)(
x
y

)
−

(
γ1Xref

Xref − 1 + h(x)

)
.

Then T = T− = T+ = −γ1 − γ2, D = D− = D+ = 1 + γ1γ2, and after applying Proposition
3.1, we get (

ẋ
ẏ

)
=

(
T −1
D 0

)(
x
y

)
−

(
0

1 −D ·Xref

)
if x < 0,

(
ẋ
ẏ

)
=

(
T −1
D 0

)(
x
y

)
−

(
0

−D ·Xref

)
if x > 0.

Now, it is easy to see that b = 0 (the sliding set shrinks to the origin), a− = 1 −D ·Xref > 0
(see (5.1)), and a+ = −D·Xref < 0, so that we have no inner equilibria in the linearity regions.
From Proposition 3.7 we conclude that there are no crossing periodic orbits. Typically, the
condition |γ1−γ2| < 2 holds, which implies T 2−4D < 0, and so the dynamics is of focus-focus
type. Then in (4.1) we have γL = γR < 0 and aR < 0 < aL, so that from Proposition 4.2(a) we
deduce that the pseudoequilibrium point is stable. Therefore, from Corollary 4.4 we see that
the origin is globally asymptotically stable, which is the goal of the designed discontinuous
control strategy.
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5.2. A PWL version of the Morris–Lecar model. In [19], a preliminary study of a PWL
version of the Morris–Lecar model for neural activity is presented. We will see that it is a
particular instance of system (1.1). We recall that the equations of the PWL version of the
Morris–Lecar model are

dv

dt
= −v

τ
− w + μh(v − ϑ) + I,

dw

dt
= δ [βv − γw + αh(v − ϑ)] ,

where the state variables v and w stand for the action potential variable and the recovery
variable, h(·) is the Heaviside function, and we assume that all the parameters α, β, γ, δ, τ, ϑ
are positive; see [19] again for the meaning of different parameters. This system can be written
in the form (1.1) by the linear change of variables x = v − ϑ, y = w, and then we get

ẋ =

( −τ−1 −1
δβ −δγ

)
x +

(
I − ϑτ−1 + μh(x)
δβϑ + δαh(x)

)
.

Next, we arrive at the canonical form of Proposition 3.1 with

T = T− = T+ = −τ−1 − δγ, D = D− = D+ = δ(β + γτ−1),

the discontinuity parameter b = μ > 0, and

a− = δγ

(
I − ϑ

(
1

τ
+

β

γ

))
, a+ = δγ

(
I − ϑ

(
1

τ
+

β

γ

)
+ μ− α

γ

)
.

Here, we look only for the cases studied in this paper. The dynamics of this model is of a
focus-focus type when T 2 − 4D < 0, that is,

(5.2) β >
(τ−1 − δγ)2

4δ
,

and the condition for nonexistence of inner equilibria in the linearity regions, namely a+ �
0 � a−, translates to

(5.3) ϑ

(
1

τ
+

β

γ

)
� I � ϑ

(
1

τ
+

β

γ

)
+

α

γ
− μ.

Hence for the particular set of parameters defined by (5.2) and (5.3), which is nonempty for
α > γ μ, the dynamical behavior of the PWL Morris–Lecar model can be described by means
of Theorem 4.5. Since both traces are negative, then the case (a) of the quoted theorem
applies, and we conclude that under these assumptions there is only one crossing limit cycle
and it is stable, being responsible for the asymptotic periodic dynamics observed in such a
PWL Morris–Lecar model.
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6. Conclusions. The study of all possible dynamics in discontinuous PWL systems with
two zones is by no means a trivial task, involving a large number of parameters. In this
paper, some headway is made in addressing this problem by proposing a canonical form with
fewer parameters. Nevertheless, the full rigorous analysis of this simpler family remains a
formidable challenge, this paper being only the first of a series to complete the task.

The existing topological equivalence between the dynamics not involving sliding orbits
of a given system and that of its reduced form has been exploited for the study of crossing
periodic orbits. As a first result, a useful necessary condition for existence of such periodic
orbits has been derived.

We have limited our study to DPWL systems whose dynamics rotates around the sliding
set, resembling that of a smooth focus. Here, the case where there are no real equilibrium
points, describing the possible dynamical behavior both in the phase portrait and parameter
space, has been sorted out. Even for this restricted case, the usefulness of the followed
approach is emphasized with a couple of applications.

Certain bifurcation sets show different codimension-two Hopf bifurcation points that de-
serve further study. The existence of up to two limit cycles surrounding the whole sliding set
has been proved here. The remaining cases with real foci, where up to three nested crossing
limit cycles are possible, are left for a forthcoming work. It is an open problem to determine
whether three is the maximum number of nested limit cycles.

The proposed canonical form possesses a sliding set which is controlled by a single param-
eter. Even its sliding dynamics is in general not topologically equivalent to the corresponding
sliding dynamics of the original system; the canonical form seems to be capable of reproducing
most of the generic bifurcation phenomena to be found in Filippov systems. Thus, the PWL
form obtained could be a valuable tool for obtaining a generic unfolding of some singularities
of high codimension.

7. Proof of main results. In this section, we give the proofs of the results included in
section 4. We begin by considering some Poincaré maps that we introduce in order to look
for crossing periodic orbits.

7.1. Analysis of the Poincaré map. We start by giving the expression of the solutions in
each linearity zone. For x �= 0, system (4.1) can be written as

(7.1) ẋ =

(
2γ −1

1 + γ2 0

)
x−

( −σ
ρ

)
for appropriate values of parameters γ, σ, and ρ. Its solutions have the form

(7.2)

⎛⎝ x(t) − x̄

y(t) − ȳ

⎞⎠ = eγt

⎛⎝ cos t + γ sin t − sin t

(1 + γ2) sin t cos t− γ sin t

⎞⎠⎛⎝ x(0) − x̄

y(0) − ȳ

⎞⎠ ,

where the coordinates (x̄, ȳ) of the equilibrium point are

x̄ =
ρ

1 + γ2
, ȳ =

2γρ

1 + γ2
+ σ.
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−2π −π
2πt̂

π

Figure 4. The graph of function ϕγ(·) for a positive value of γ.

We resort to the auxiliary function ϕγ(t) = 1 − eγt(cos t − γ sin t). This function was
introduced in [1] and has the symmetry properties

ϕ−γ(−t) = ϕγ(t), ϕ−γ(t) = ϕγ(−t), ∀γ, t ∈ R,

and the graph shown in Figure 4. Note that function ϕγ has relative maxima at t = ±π; when
γ > 0, we denote as t̂ ∈ (π, 2π) the minimum positive value where the function vanishes.

For system (4.1), the direction of the flow at the line x = 0 assures that orbits starting at
points (0, y0) with y0 � 0 go into the zone S− until they reach Σ at a point (0, y1) with y1 � 0
after a time t−. Thus, we define a left Poincaré map PL as y1 = PL(y0), with PL(0) = 0.

To determine PL we set σ = 0 and ρ = aL � 0 in (7.2) and consider different cases. If
γL = 0, then

(7.3) PL(y0) = −y0, y0 � 0.

If aL = 0, then the origin is a boundary equilibrium point. From (7.2) we obtain t− = π, and

(7.4) y1 = PL(y0) = −eγLπy0, y0 � 0.

If aL > 0, then the origin is a left invisible tangency point. By solving (7.2), we obtain the
parametric representation of the left Poincaré map,

(7.5) y0 =
aL

1 + γ2L

e−γLt
−
ϕγL(t−)

sin t−
, y1 = − aL

1 + γ2L

eγLt
−
ϕ−γL(t−)

sin t−
.

Direct computations from (7.5) show that the two first derivatives of the left Poincaré map
when aLγL �= 0 are given by

P ′
L(y0) = − ϕγL(t−)

ϕ−γL(t−)
=

y0
PL(y0)

e2γLt
−
< 0,(7.6)

P ′′
L(y0) =

2a2L
1 + γ2L

sinh γLt
− − γL sin t−

P 3
L(y0)

e3γLt
−
.(7.7)
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Integrating the system in the zone S+ from the point (0, z0) with z0 � b big enough, after
a time t+ we arrive at the point (0, z1), with z1 � b. So we can define the right Poincaré map
PR as z1 = PR(z0) with PR(b) = b.

In the trivial case γR = 0, from (7.2) we explicitly obtain

(7.8) z1 = PR(z0) = −z0 + 2b, z0 � b.

If aR = 0, then the point (0, b) is a boundary equilibrium point, and from (7.2) we obtain
t+ = π and

(7.9) z1 = PR(z0) = −eγRπz0 + (1 + eγRπ)b, z0 � b.

If aR < 0, the point (0, b) is a right invisible tangency point, and the parametric representation
of the right Poincaré map is given by

(7.10) z0 = b +
aR

1 + γ2R

e−γRt+ϕγR(t+)

sin t+
, z1 = b− aR

1 + γ2R

eγRt+ϕ−γR(t+)

sin t+
.

The two first derivatives of PR when aRγR �= 0 are given by

P ′
R(z0) =

z0 − b

PR(z0) − b
e2γRt+ < 0,(7.11)

P ′′
R(z0) =

2a2R
1 + γ2R

sinh γRt
+ − γR sin t+

(PR(z0) − b)3
e3γRt+ .(7.12)

Finally, as the main tool in looking for crossing periodic orbits, we define the Poincaré
map P as the composition P = PR ◦ PL. Obviously, the first and second derivatives of map
P are

(7.13) P ′ = (P ′
R ◦ PL) · P ′

L, P ′′ = (P ′′
R ◦ PL)(P ′

L)2 + (P ′
R ◦ PL) · P ′′

L .

Recalling that both parameters t+ and t− (see (7.5) and (7.10)) belong to the interval (0, π),
we summarize some properties of maps PL, PR, and P .

Proposition 7.1. Assume that aL � 0 in system (4.1). Then the following statements hold:
(a) If aLγL = 0, then PL(y) = −eγLπy for all y � 0.
(b) If aL > 0, then the left Poincaré map PL given in (7.5) is well defined for all y � 0,

with t ∈ (0, π); in particular we have PL(0) = 0. Its first four derivatives at the point
y = 0 are

(7.14)

P ′
L(0) = −1, P ′′

L(0) = −8γL
3aL

,

P ′′′
L (0) = −32γ2L

3a2L
, P IV

L (0) = −32γL
79γ2L − 9

45a3L
.

(c) If aL > 0 and γL �= 0, then for all y � 0, P ′
L(y) < 0,

lim
y→0+

P ′
L(y) = −1, lim

y→∞P ′
L(y) = −eγLπ, signP ′′

L(y) = − sign γL,
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and map PL has the asymptote AL given by

AL(y) = −eγLπy +
2aLγL
1 + γ2L

(1 + eγLπ)

with sign (AL(y) − PL(y)) = sign(γL).
Proof. Statement (a) follows from (7.3) and (7.4).
The first assertion of statement (b) is straightforward. When aL > 0, the first derivative

at the point y = 0 follows directly from (7.6). Take a point (0, ε) with 0 < ε 	 1, and consider
the point (0, PL(ε)) in the same orbit after a time t̂. We will follow an approach similar to
that taken in section 4.19 of [7]. Since the solutions of a linear system are analytical, from
(7.1) with σ = 0, ρ = aL, γ = γL and dropping the superscripts for simplicity, one gets for
the solutions around an invisible tangency point

x(t) = −εt +
a− 2γε

2
t2 +

2aγ + (1 − 3γ2)ε

6
t3 +

a(3γ2 − 1) + 4γε(1 − γ2)

24
t4 + · · · ,(7.15)

y(t) = ε− at + (1 + γ2)

(
−ε

2
t2 +

a− 2γε

6
t3 +

2aγ + ε(1 − 3γ2)

24
t4 + · · ·

)
.

Imposing that x(t̂) = 0 with t̂ > 0 and inverting series (7.15), we obtain

t̂ =
2

a
ε +

4γ

3a2
ε2 +

2(5γ2 − 3)

9a3
ε3 +

8γ(17γ2 − 27)

135a4
ε4 + · · ·

and so

y(t̂) = PL(ε) = −ε− 4γ

3a
ε2 − 16γ2

9a2
ε3 − 4γ(79γ2 − 9)

135a3
ε4 + · · · ,

concluding the proof of statement (b).
We know that t− ∈ (0, π), and from (7.6) we have

lim
y→0+

P ′
L(y) = lim

t−→0+
P ′
L(y) = −1, lim

y→∞P ′
L(y) = lim

t−→π
P ′
L(y) = −eγLπ.

Since sign [sinh γLt
− − γL sin t−] = sign γL, it is easy to see from (7.7) that signP ′′

L(y) =
− sign γL. The computation of the asymptote is straightforward, and statement (c) is
shown.

The following proposition about the right Poincaré map is similar and is given without
proof.

Proposition 7.2. Assuming that aR � 0 in system (4.1), the following statements hold:
(a) If aRγR = 0, then PR(y) = −eγRπy + (1 + eγRπ)b for all y � b.
(b) If aR < 0, then the right Poincaré map PR given in (7.10) is defined for all y � b,

where t ∈ (0, π); in particular we have PR(b) = b. Its first four derivatives at the point
y = b are

(7.16)

P ′
R(b) = −1, P ′′

R(b) = −8γR
3aR

,

P ′′′
R (b) = −32γ2R

3a2R
, P IV

R (b) = −32γR
79γ2R − 9

45a3R
.
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γL = 0

γL < 0

γL > 0

PL(y) y γR = 0

γR < 0

γR > 0
PR(y)

y

Figure 5. The left Poincaré map for different values of parameter γL, and the right Poincaré map for
different values of parameter γR and b = 0.

(c) If aR < 0 and γR �= 0, then P ′
R(y) < 0 for all y � b and

lim
y→b−

P ′
R(y) = −1, lim

y→−∞P ′
R(y) = −eγRπ, signP ′′

R(y) = sign γR.

(d) Map P−1
R has the asymptote A−1

R given by

A−1
R (y) = −e−γ+πy + (1 + e−γ+π)

(
b +

2aRγR
1 + γ2R

)
,

with sign
(
P−1
R (y) −A−1

R (y)
)

= sign (γR).
In Figure 5, we show different graphs of left and right Poincaré maps depending on the

parameters. As a consequence of the above results we can enumerate some properties of the
complete Poincaré map.

Proposition 7.3 (properties of the full Poincaré map). Assuming that aR � 0 � aL in system
(4.1), the following statements hold:

(a) The Poincaré map P is defined for y � 0.
(b) If aLγL = aRγR = 0, then the Poincaré map P is given by

(7.17) P (y) = e(γR+γL)πy + (1 + eγRπ) b.

(c) For all y � 0, the derivative of the Poincaré map is given by

P ′(y) =
y

PL(y)

PL(y) − b

P (y) − b
e2(γRt++γLt

−)

and satisfies

lim
y→∞P ′(y) = e(γR+γL)π.

(d) If b = 0 and aR < 0 < aL, then the three first derivatives of the Poincaré map at the
origin are

(7.18) P ′(0) = 1, P ′′(0) =
8

3

(
γL
aL

− γR
aR

)
, P ′′′(0) =

3

2

(
P ′′(0)

)2
.
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When aRγL = aLγR, then P ′′(0) = P ′′′(0) = 0, and P IV (0) reduces to

P IV (0) = −32γR(γR − γL)(γR + γL)

5a3Rγ
2
L

.

(e) If aR < 0 < aL and γL = −γR �= 0, then

(7.19) PR

[
b− aL

aR
PL(y)

]
= b− aL

aR
y.

If, in addition, aR = −aL and b = 0, then P (y) = y, and we have a nonlinear global
center around the origin.

(f) If aR < 0 and aL = 0, then signP ′′(y) = sign γR. If, in addition, b = 0, we get
P ′(0) = eγLπ.

(g) If aR = 0 and aL > 0, then signP ′′(y) = sign γL. If, in addition, b = 0, we get
P ′(0) = eγRπ.

Proof. Statement (a) directly follows from Propositions 7.1 and 7.2.
If aLγL = 0, then from (7.3) and (7.4) we have PL(y) � 0 for y � 0, and when aRγR = 0,

from (7.8) and (7.9) we explicitly obtain PR. Then by doing the composition P = PR ◦ PL,
statement (b) follows.

From Propositions 7.1 and 7.2 and the chain rule, the statements about the derivatives of
the Poincaré map can be easily deduced.

If γ = γL = −γR, then from (7.5) and (7.10), we get

b− aL
aR

PL(y) = P−1
R

(
b− aL

aR
y

)
,

and (7.19) follows. If additionally aR = −aL and b = 0, it is evident that PR(PL(y)) = y, and
statement (e) is proven.

Statement (f) follows from Proposition 7.1(b), Proposition 7.2(c), and the chain rule,
taking into consideration that P ′′

L(y) = 0.
Statement (g) follows from Proposition 7.1(c), Proposition 7.2(b), and the chain rule,

taking into consideration that P ′′
R(y) = 0.

Remark 7.4. We remark that when aL < 0 < aR, we have signP ′′(0) = sign (aLγR−aRγL).
Moreover, since γR(γR−γL) > 0, when γRγL < 0 we deduce that signP IV (0) = sign (γR +γL)
for aLγR = aRγL and γRγL < 0.

7.2. Proof of results related to crossing periodic orbits. We start by giving a proof of
Proposition 3.7.

Proof of Proposition 3.7. We start by considering the vector field

F⊥(x) =

{
(−D−x + a−, T−x− y)T , x ∈ S−,
(−D+x + a+, T+x− y + b)T , x ∈ S+,

which is a field orthogonal to the one defined by (3.4). The Green’s formula produces

(7.20)

∮
Γ−∪L−

F⊥dr =

∫∫
Ω−

T−dσ = T−σ−,
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Table 1
Symmetries of canonical form (4.1).

Π1 Π2 Π3

x → x x → −x x → −x

y → −y y → y + b y → −y − b

t → −t t → −t t → t

γL → −γL γL → −γR γL → γR
γR → −γR γR → −γL γR → γL
aL → aL aL → −aR aL → −aR

b → −b b → −b b → b

aR → aR aR → −aL aR → −aL

where the continuous extension of the vector field in S− to the boundary Σ must be considered
in �L−. Similarly, we have

(7.21)

∮
Γ+∪L+

F⊥dr =

∫∫
Ω+

T+dσ = T+σ+,

where the continuous extension of the vector field in S+ to the boundary Σ must be considered
in �L+. By the orthogonality and the above remarks, we have

(7.22)

∮
Γ−∪L−

F⊥dr =

∫
L−

F⊥dr =

∫ yL+h

yL

(−y)dy

and

(7.23)

∮
Γ+∪L+

F⊥dr =

∫
L+

F⊥dr = −
∫ yL+h

yL

(−y + b)dy.

Adding (7.20) with (7.21), taking into consideration (7.22) and (7.23), we have

T−σ− + T+σ+ = −
∫ yL+h

yL

b dy,

and the conclusion follows.
Next note that the canonical form given in (4.1) is invariant under the transformations

shown in Table 1, where each transformation is the composition of the other two. Obviously,
adding the identity transformation Π0, we should have an invariant transformation group. We
can use the above symmetries to reduce the number of cases to be considered in the different
proofs. We recall that when b �= 0, after applying either Π1 or Π2, we need only to study,
as said before, the case b > 0. Then, we need to consider only the three cases aR < 0 < aL,
aR = aL = 0 and aR < 0, aL = 0 because the remaining case aR = 0 and aL > 0 can be
reduced to the last one by means of the symmetry Π3.

Proof of Proposition 4.2. (a) Assuming aLγR < aRγL, we cannot have aL = aR = 0. If
aR < 0 < aL, then γL/aL − γR/aR < 0, and from Proposition 7.3(d) we have P ′(0) = 1 and
signP ′′(0) < 0. If aR < 0 and aL = 0, we must have γL < 0, and from Proposition 7.3(f) we
get P ′(0) = eγLπ < 1. In both cases the origin is stable. The proof of the statement when
aLγR > aRγL is reduced to the previous proof by using the symmetry Π1 of Table 1.
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(b) If aLγR = aRγL = 0, then from Proposition 7.3(b) we obtain P ′(y) = e(γR+γL)π. If
aLγR = aRγL �= 0, then from the assumptions aR < 0 < aL, γRγL < 0 and from Proposition
7.3(d) we get P ′(0) = 1, P ′′(0) = P ′′′(0) = 0, but from Remark 7.4 we have signP IV (0) =
sign(γR + γL). In any case the statement follows.

Proof of Theorem 4.3. Through this proof we will extensively use the Poincaré map. First
note that P (0) = 0. If system (4.1) has a crossing periodic orbit, then the Poincaré map has a
fixed point ȳ with P (ȳ) = ȳ, and we conclude, by the mean value theorem, that there exists a
point ξ ∈ (0, ȳ) with P ′(ξ) = 1. In the following, all the different possible cases are considered.

(a) In the cases where aRγL = aLγR = 0, from Proposition 7.3(b) we obtain P (y) = y for
all y � 0, and the existence of a global center follows. Thus, by recalling the leading paragraph
of this section, we need only to study the cases with γR = −γL �= 0 and aL − aR > 0.

(i) Assume that aR < 0 < aL. If aRγL = aLγR, then aR = −aL, and from Proposition
7.3(e) we have P (y) = y and again a global center. If aRγL �= aLγR, then aR �= −aL,
and we write 0 < κ = −aL/aR �= 1. If a point ȳ with PR(PL(ȳ)) = ȳ exists, then from
Proposition 7.3(e) we have PR [κPL(ȳ)] = κȳ, and so

PL(ȳ) =
1

κ
P−1
R (κȳ) = P−1

R (ȳ).

Let us introduce the function h(y) = P−1
R (κy) − κP−1

R (y). Since h(0) = h(ȳ) = 0,
there exists a value ξ ∈ (0, ȳ) such that

h′(ξ) = κ
[
(P−1

R )′(κξ) − (P−1
R )′(ξ)

]
= 0,

but this is impossible because the function P−1
R has a monotonic derivative. The last

assertion comes easily from Proposition 7.2(c). Hence our system has no crossing
periodic orbits.

(ii) Suppose that aR < 0 and aL = 0. Then aRγL �= aLγR, and from Proposition 7.3(c)
and (f) we get

lim
y→∞P ′(y) = 1, signP ′′(y) = sign γR, P ′(0) = eγLπ.

We can assume without loss of generality that γR < 0 and γL > 0; otherwise apply
symmetry Π1. Then P ′ is decreasing with P ′(y) > 1 always, so there cannot exist ξ
with P ′(ξ) = 1, and consequently the system has no crossing periodic orbits.

(b) Since system (4.1) is a particular instance of system (3.4) where T+ = 2γR and
T− = 2γL, the statement follows from Remark 3.8.

(c) When γRγL < 0, then by the symmetries of Table 1 we can assume without loss of
generality that γR + γL < 0. Thus, from Proposition 7.3(c) we have limy→∞ P ′(y) < 1, and
we need only study the following three cases:

(i) If aR < 0 < aL, then again by the symmetries we can assume without loss of generality
that γL < 0, γR > 0. From Proposition 7.3(d) we get P ′(0) = 1 and signP ′′(0) =
sign(aLγR − aRγL). As P ′(y) is eventually less than 1, we have P (y) < y for y
sufficiently big. When aLγR = aRγL, from Remark 7.4 we get P ′′(0) = P ′′′(0) = 0 and
signP IV (0) = sign(γR+γL) < 0. When aLγR < aRγL, we have P ′′(0) < 0. Thus when
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aLγR � aRγL, the number of periodic orbits, if any, is even. When aLγR > aRγL, we
conclude the existence of one periodic orbit at least. The assertions on uniqueness and
nonexistence of periodic orbits now come directly from Theorem 4 of [15].

(ii) If aL = aR = 0, then aRγL = aLγR, and from Proposition 7.3(b) we have P (y) =
e(γR+γL)πy < y, and there are no crossing periodic orbits.

(iii) If aR < 0 and aL = 0, then obviously aRγL �= aLγR, and we distinguish two cases
depending on the sign of γL:
If γL > 0, then γR < 0, and from Proposition 7.3(f) we have P ′(0) > 1 and P ′′(y) < 0
for all y > 0. Hence P ′ is decreasing from P ′(0) > 1 to e(γR+γL)π < 1. Then it is easy
to show the existence of only one value ȳ with P (ȳ) = ȳ. Furthermore, P ′(ȳ) < 1, and
the system has only one stable crossing periodic orbit.
If γL < 0, then γR > 0, and again from Proposition 7.3(f) we have P ′(0) < 1, P ′′(y) > 0
for all y > 0. Hence P ′ is increasing with P ′(0) < P ′(y) < e(γR+γL)π < 1, and there
are no crossing periodic orbits.

Now, by using elementary properties of the full Poincaré map, the proof of Corollary 4.4
easily follows.

Proof of Corollary 4.4. If the origin is stable and there are no crossing periodic orbits, it
is obvious that P (y) < y for all y > 0, and we are done.

In the following, the existence of periodic behavior in system (4.1) for b > 0 is considered.
Note that the left Poincaré map does not depend upon parameter b, but Poincaré maps PR

and P−1
R linearly depend on parameter b. In fact, by emphasizing the dependence on b in the

notation, from (7.9) and (7.10) we see that

(7.24) P−1
R (y; b) = b + P−1

R (y − b; 0);

that is, if we make the change y → y − b, we should have a right system with b = 0 having
the same orbit, but vertically translated in the amount b. Note that (7.24) implies that if we
translate the coordinates of every point (y, P−1

R (y, 0)) belonging to the graph of P−1
R (y; 0) to

the point

(y + b, P−1
R (y, 0) + b) = (y + b, P−1

R (y + b, b)),

such a point is in the graph of P−1
R (y; b). In short, the graph of P−1

R (y; b) is just a translation
in both coordinates of P−1

R (y; 0) by the amount b; see Figure 6.
If ȳ is a fixed point of the Poincaré map P , then P (ȳ) = PR (PL(ȳ); b) = ȳ, and so

PL(ȳ) = P−1
R (ȳ; b). Hence the existence of crossing periodic orbits is equivalent to the existence

of zeros for the function

(7.25) Ψb(y) = P−1
R (y; b) − PL(y) = b + P−1

R (y − b; 0) − PL(y), y � b,

where we have also used (7.24).
Remark 7.5. We remark that if Ψb(y) �= 0 for b � 0 and y � b, then Ψb(y)(P (y)− y) > 0.

Effectively, if Ψb(y) > 0, then P−1
R (y; b) > PL(y), and since PR is decreasing, from Proposition

7.3 we get y < P (y). Analogously, when Ψb(y) < 0, we get P (y) − y < 0.
The two first derivatives of function Ψb with respect to the variable y can be computed
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B

γR > 0

γR < 0

γR = 0

P−1
R (y)P−1
R (y)

y

Figure 6. The inverse half Poincaré map P−1
R for b = 0 and several values of parameter γR. To obtain the

map P−1
R for b > 0, it suffices to translate the graphs to the point B, which has the coordinates (b, b).

by using the derivatives of PR, which are

(7.26) Ψ′
b(y) =

1

(P ′
R ◦ P−1

R )(y; b)
− P ′

L(y), Ψ′′
b (y) = − (P ′′

R ◦ P−1
R )(y; b)

(P ′
R ◦ P−1

R )3(y; b)
− P ′′

L(y).

We will derive some properties of function Ψb with b > 0, by considering the case b = 0.
Thus, first note that Ψ0(0) = 0. Next, under the assumptions aR < 0 < aL, from (7.26) and
Propositions 7.1(b) and 7.2(b), the first and second derivatives of function Ψ0 at the origin
are

(7.27) Ψ′
0(0) = 0, Ψ′′

0(0) = −8(aLγR − aRγL)

3aRaL
.

Some properties of function Ψb defined in (7.25) follow.
Lemma 7.6. For system (4.1) with aR � 0 � aL and b > 0, the following statements hold:
(a) If Ψb(ȳ) = 0, then P (ȳ) = ȳ, and ȳ corresponds to a stable crossing periodic orbit

when Ψ′
b(ȳ) < 0 (respectively, unstable for Ψ′

b(ȳ) > 0).
(b) Function Ψb satisfies the inequality Ψb(y) > b + Ψ0(y) for y � b.
Proof. (a) If Ψb(ȳ) = 0, then it directly follows that P (ȳ) = ȳ. Furthermore, as P−1

R (ȳ) =
PL(ȳ), from (7.26) the first derivative of function Ψb reduces to

Ψ′
b(ȳ) =

1

P ′
R(PL(ȳ))

− P ′
L(y) =

1 − P ′
R(PL(ȳ))P ′

L(y)

P ′
R(PL(ȳ))

=
1 − P ′(ȳ)

P ′
R(PL(ȳ))

.

Since PR is decreasing, the above denominator is negative, and the value ȳ corresponds to a
stable crossing periodic orbit when Ψ′

b(ȳ) < 0 since then P ′(ȳ) < 1. The unstable case follows
similarly.

(b) Since map P−1
R is decreasing, from (7.24) we have

Ψb(y) = b + P−1
R (y − b; 0) − PL(y) > b + P−1

R (y; 0) − PL(y) = b + Ψ0(y).
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Lemma 7.7. For system (4.1) with aR � 0 � aL the following statements hold:
(a) If γR + γL = 0, then sign Ψ0(y) = sign(aLγR − aRγL) for y � 0.
(b) If γR + γL �= 0, γRγL < 0, and (γR + γL)(aLγR − aRγL) � 0, then for y � 0

sign Ψ0(y) =

{
sign(aLγR − aRγL) when aLγR �= aRγL,
sign(γR + γL) otherwise.

Proof. (a) When γR + γL = 0 and b = 0, two cases arise. If aLγR = aRγL, then from
Theorem 4.3(a) we get P (y) = y; that is, Ψ0 vanishes everywhere. If aLγR �= aRγL, then
again from Theorem 4.3(a) we get P (y) �= y and Ψ0(y) �= 0 for y > 0, and from (7.27) the
conclusion follows.

(b) From Theorem 4.3(c) we have P (y) �= y for y > 0, and from Remark 7.4 we have

sign (P (y) − y) =

{
signP ′′(0) = sign(aLγR − aRγL) if aLγR �= aRγL,
signP IV (0) = sign(γR + γL) otherwise,

and the conclusion follows, taking into account Remark 7.5.
Proof of Theorem 4.5. (a) When γRγL � 0, we distinguish two cases:
(i) If γR + γL � 0, then γR � 0, γL � 0 and the statement follows from Remark 3.8.
(ii) If γR + γL < 0, then γR � 0 and γL � 0. From Propositions 7.1 and 7.2 we get

P ′
R(y) < 0, P ′′

R(y) � 0, P ′′
L(y) � 0, for all y > 0, and so from (7.13) we get P ′′(y) < 0 always.

Since P (0) = PR(0) > b and limy→∞ P ′(y) < 1, from the concavity of map P we conclude
the existence of a unique point ȳ with P (ȳ) = ȳ. Moreover, as P ′(ȳ) < 1, the corresponding
crossing periodic orbit is stable.

(b1) Under the assumptions, from Lemma 7.7 we get Ψ0(y) � 0 for all y � 0. Finally,
from Lemma 7.6(b) we obtain Ψb(y) � b > 0 for all y � b, and the conclusion follows.

(b2) Under our hypotheses we have γR = −γL �= 0; then we obtain b∞ > 0. Furthermore,
from Proposition 7.3(b) we get limy→∞ P ′(y) = 1. Now, we distinguish two cases:

(i) If aR < 0 < aL, we claim that system (4.1) has at most one crossing periodic orbit.
Assume on the contrary that our system has two periodic orbits, so that the Poincaré map
has two fixed points ȳ1 and ȳ2. Then, by defining κ = aL/aR, the hypotheses enforce κ < −1,
and from (7.19) we get

b− κPL(ȳi) = b− κP−1
R (ȳi) = P−1

R (b− κȳi) , i = 1, 2,

where the first equality comes from the obvious fact PL(ȳ) = P−1
R (ȳ). Let us introduce for

y > b the function

h(y) = P−1
R (b− κy) − b + κP−1

R (y).

Since h(ȳ1) = h(ȳ2) = 0, there exists a value ξ ∈ (ȳ1, ȳ2) such that

h′(ξ) = −κ
[
(P−1

R )′ (b− κξ) − (P−1
R )′(ξ)

]
= 0,

but this is impossible because the function P−1
R has a second derivative with constant sign,

and so our system has one transversal periodic orbit at most. Without loss of generality we
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can assume γR = −γL < 0; otherwise, we can apply transformation Π1 of Table 1. From
Propositions 7.1 and 7.2, we have PL(y) < AL(y), P−1

R (y) < A−1
R (y), and

A−1
R (y) −AL(y) = (1 + eγLπ)(b− b∞).

When 0 < b < b∞, A−1
R (y) < AL(y), and from the properties of asymptotes we deduce that

for y sufficiently big we must have

P−1
R (y) < A−1

R (y) < PL(y) < AL(y);

that is, Ψb(y) < 0 for y 
 1. Since Ψb(b) > 0 the system must have at least one crossing
periodic orbit. But we know that there should be only one by the properties of function h.
Furthermore, this unique periodic orbit is stable because function Ψb has to be decreasing in
a neighborhood of its vanishing value. When b � b∞, reasoning as before, for y 
 1 we now
have

PL(y) < AL(y) < P−1
R (y) < AR−1(y).

Thus Ψb(y) > 0 for y 
 1, and system (4.1) might have an even number of periodic orbits or
none. Since the system has one transversal periodic orbit at most, we conclude that there are
no periodic orbits in this case, and the statement follows.

(ii) If aR < 0 and aL = 0, then we must have γR = −γL > 0. From Propositions 7.1 and
7.2 then A−1

R (y) < P−1
R (y) and

A−1
R (y) − PL(y) = (1 + eγLπ)(b− b∞).

If b < b∞ and y 
 1, from the properties of asymptotes and the previous equality, we
have A−1

R (y) < P−1
R (y) < PL(y), that is, Ψb(y) < 0 for y 
 1, and taking into account that

Ψb(b) > 0, we conclude the existence of one crossing periodic orbit, at least. From Proposition
7.3(f) we get P ′′(y) > 0, and so P ′(y) < 1 for all y > 0. Then the Poincaré map has only one
fixed point, which corresponds with the only crossing periodic orbit, being stable. However,
when b � b∞, we have PL(y) < A−1

R (y) < P−1
R (y), that is, Ψb(y) > 0 for all y > b, so that

system (4.1) has no periodic orbits.
(b3) Under the assumptions, we will apply the implicit function theorem at two different

solutions of the equation

(7.28) Ψb(y) = b + P−1
R (y)(y − b; 0) − PL(y) = 0.

From Theorem 4.3(c) there is one unstable crossing periodic orbit for b = 0. Therefore, there is
a value ȳ > 0 such that (7.28) holds for (b, y) = (0, ȳ). From Lemma 7.6(a) we have Ψ′

0(ȳ) > 0,
and so, by the implicit function theorem, we can assure the existence of a smooth function
y = δ(b), defined in a neighborhood of the origin, with δ(0) = ȳ such that Ψb(δ(b)) = 0, so
that there exists an unstable crossing periodic orbit for b in such a neighborhood.

We know that (7.28) also holds for (y, b) = (0, 0). If we try to apply the above reasoning
at the point (b, y) = (0, 0), we find from (7.27) that Ψ′

0(0) = 0, which is an obstacle to
proceeding. However, from (7.25) we see that

∂

∂b
Ψb(y) = 1 − (P−1

R )′(y − b; 0),
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so that
∂

∂b
Ψb(y)

∣∣∣∣
(y,b)=(0,0)

= 2.

Thus, considering analytical extensions of both functions P−1
R and PL if needed, we can assure

the existence of a smooth function b = η(y), defined in a neighborhood of 0, with η(0) = 0
and such that Ψη(y)(y) = 0. Effectively, if aR < 0 < aL, then we have

η′(0) = − Ψ′
b(y)

∂Ψb
∂b (y)

∣∣∣∣∣
(y,b)=(0,0)

= 0,

since Ψ′
0(0) = 0, and computing the second derivative, after neglecting some vanishing terms,

we get

η′′(0) = − Ψ′′
b (y)

∂Ψb
∂b (y)

∣∣∣∣∣
(y,b)=(0,0)

=
4

3

aLγR − aRγL
aRaL

> 0.

If aRaL = 0, we will assume aR < 0 and aL = 0 (otherwise apply symmetry Π3), and we get
η′(0) = 1/2. In the two cases aL > 0 and aL = 0 we have shown the existence of a crossing
periodic orbit for b = η(y) > 0 with y positive and sufficiently small. Since for aR < 0 < aL
we have Ψ0(0) = 0 and Ψ′′

0(0) < 0, and as for aRaL = 0 we have Ψ′
0(0) < 0, we must have

Ψ′
b(y) < 0 for b > 0 and sufficiently small. Hence the corresponding crossing periodic orbit is

stable.
From Theorem 4.3(c) we also deduce that Ψ0(y) > 0 for all y > ȳ. Then by taking

b > max
y∈[0,ȳ]

|Ψ0(y)|

and using Lemma 7.6(b), we can assure that for such values of b there cannot exist a periodic
orbit. The first assertion of the statement is proved.

If either aR = 0 or aL = 0, then from Proposition 7.3(f) or (g) we can assure that Poincaré
map P has a definite convexity. Hence, the Poincaré map has two fixed points at most. As for
b > 0 and small, there are two periodic orbits and none if b is sufficiently big; by increasing b
we must pass through a value bSN satisfying the statement (b3).

A sketch of the proof for the case aR < 0 < aL appears in Figure 7.
(b4) When γR+γL < 0, then limy→∞ P ′(y) = e(γR+γL)π < 1. Since P (0) > b, the Poincaré

map has at least one fixed point ȳ with P ′(ȳ) < 1, and so the system has a stable crossing
periodic orbit.

In the following we will show the uniqueness of the crossing periodic orbit under additional
assumptions. If aR = aL = 0, then from (7.17) the Poincaré map has the unique fixed point

ȳ =
1 + eγRπ

1 − e−(γR+γL)π
b > b.

If aRaL = 0 with aR + aL �= 0, we can assume aR < 0 and aL = 0; otherwise apply symmetry
Π3. In this case, from Propositions 7.1 and 7.2 we get sign Ψ′′

b (y) = sign(P−1
R )′′(y) = sign γR,
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P−1
R (y), PL(y)

y

P−1
R (y), PL(y)

y

Figure 7. Sketch of the proof of Theorem 4.5(b3). In the left panel the situation for b = 0 is represented,
where map PL (blue line), with γL < 0, cuts at map P−1

R (red line), with γR > 0 at only one point outside the
origin. In the right panel we have b > 0, and now another intersection point appears.

so that the function Ψb has a definite convexity. Two cases will be considered depending upon
the sign of γR. If γR < 0, then

lim
y→∞Ψ′

b(y) = −e−γRπ + eγLπ = e−γRπ(−1 + e(γL+γR)π) < 0,

and taking into account Ψb(b) > 0 and the convexity of function Ψb, the conclusion follows.
If γR > 0, then Ψ′

b(y) < −e−γRπ + eγLπ < 0, and the statement is shown.
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