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Abstract. An extension for odd-A actinides of a previously derived dispersive coupled-

channel optical model potential (OMP) for 238U and 232Th nuclei is presented. It is used

to fit simultaneously all the available experimental databases including neutron strength

functions for nucleon scattering on 232Th , 233,235,238U and 239Pu nuclei. Quasi-elastic (p,n)

scattering data on 232Th and 238U to the isobaric analogue states of the target nucleus are

also used to constrain the isovector part of the optical potential. For even-even (odd)

actinides almost all low-lying collective levels below 1 MeV (0.5 MeV) of excitation

energy are coupled. OMP parameters show a smooth energy dependence and energy

independent geometry.

1 Introduction

The need of higher accuracy data for fast fission reactors ([1, 2]) requires improving the description

of neutron induded reactions at energies from a few keV up to 6–7 MeV. While the ground-state band

of even-even actinides below 500 keV is well described by a rigid rotor model, above 500 keV several

vibrational bands are observed that need to be considered. The situation for odd actinides is even more

complex, as no pairing gap exists, therefore low-lying excited states are dominated by single-particle

(1QP) states. Rotational bands built on 1QP states are observed at very low excitation energies (e.g.

K=1/2+,7/2- and 5/2+ bands dominate the low lying excitation spectra for 235U and 239Pu nuclei)

and could be excited in neutron induced reactions. Therefore low-lying rotational bands, built on

vibrational band-heads for even-even and on single-particle bandheads for odd nuclei, need to be

taken into account to describe neutron inelastic scattering on actinides. Authors were not able to find

published optical model potentials for neutron scattering on odd actinides, even if many publications

described applications to even-even actinides [3–9]. The authors have derived a dispersive and isospin
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dependent optical model potential for actinides [10–12] assuming a rigid rotor coupling of levels in the

rotational ground state band. The coupling of vibrational bands improved the description of neutron

scattering on even-even actinides in the energy region from 500 keV up to about 3 MeV, which is

critical for fast neutron fission reactors, as was discussed at the WONDER 2012 workshop [13]. The

main purpose of this contribution is to extend the previously derived isospin-dependent dispersive

optical model potential for even-even actinides [13] to account for extended multiple-band couplings

in odd-A actinides, while keeping the quality of the previously achieved description of scattering data.

Preliminary findings for odd-nuclei were presented at ND2013 [14]. The work presented here for

including the coupling of rotational bands built on single particle bandheads in odd nuclei is expected

to reduce the observed discrepancies in neutron inelastic scattering on major fissile actinides 233U,
235U and 239Pu [2].

2 The formalism
The latest developments of the dispersive coupled-channel optical model potential with full coupling

for even-even and odd actinides are reviewed in this section. The basic ingredients of our methodology

were presented previously [13], therefore we briefly outline the extension of the coupling model. A

full description with all technical details will be presented in a coming publication.

2.1 The target hamiltonian and nuclear wave-functions

The existence of the pairing gap in even-even actinides allows a clear separation between single par-

ticle and collective excitations (rotational and vibrational). Therefore the low lying excited states can

be described as members of rotational bands built on vibrational excitations. However, the nuclear

structure description of odd actinides is particularly difficult due the coupling between the nuclear ro-

tation with the unpaired nucleon [15–17], which does not permit the separation of the single-particle,

rotational and vibrational degrees of freedom.

In the model, in even-even actinides, the nucleus comprises the even-even core where only paired

nucleons are present. Additionally, for odd-mass nuclei, a single unpaired nucleon moves in the

nuclear mean field created by the even-even core. We further assume that the nuclear ground state

may be statically deformed, but it is axially symmetric. Dynamical deformations (including non-

axial) are assumed to be small, and Erot(Ep) � Evib, i.e. the adiabatic assumption holds for the

separation of the rotational (single-particle) and vibrational motion ([13]). Under those assumptions,

the nuclear Hamiltonian can be written as,

H = Hrot + Hvib + Hp + Hint (1)

where Hrot is the rotational energy operator; Hvib is the vibrational energy operator; Hp is the energy

operator of the unpaired nucleon (single-particle operator); and Hint is the interaction energy operator

of the unpaired nucleon with the nuclear even-even core field.

For even-even actinides the nuclear Hamiltonian H ≡ Hrot + Hvib describes the collective motion

only, neglecting the interaction of vibrational and rotational states. Adiabatic approximation for the

collective motion means that the even-even nuclear wave function can be factorized into a rotational

and a vibrational part Ψ = Φrot(Θ)
∣∣∣nλph

〉
, where the rotational wave function Φrot(Θ) depends on the

Euler angles Θ, and the vibrational wave function depends on the number n of excited vibrational

phonons of multipolarity λph considered. The phonon parity is given by πph = (−1)λph .

Assuming that the nucleus behaves as a non-axial rotor and denoting K as the total angular mo-

mentum projection on the symmetry axis and I (I ≥ K) as the total angular momentum, then the

nuclear wave function for even-even nuclei Ψ can be written in the form ([18, 19])
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Ψ(IMτΘ) =
I∑

K=0

AτK

[
2I + 1

16π2(1 + δK0)

]1/2 [
DI

MK(θ
′, ϕ′) + (−1)I+λph DI

M−K(θ
′, ϕ′)
] ∣∣∣∣nK
λph

〉
(2)

being (−1)λph the parity of the phonon. The coefficients AτK are the K-mixing coefficients that depend

on all deformation parameters.

For odd actinides we neglect vibrational excitations. Following refs.[19, 20], we assume the ex-

treme extracore single-particle model for the Hamiltonian Hp describing the unpaired nucleon. The

nucleon single-particle wavefunctions, satisfying HpχΩ = EpχΩ, being Ep the single-particle energy,

are expanded in the spherical single-particle basis functions as χΩ =
∑

n j cΩn j |n j〉.
The nuclear wave function of odd-A actinides can be expressed in the extreme single-particle

model:

Ψ(IMτΘ) =
I∑

K=1/2

∑
Ω

AτKΩ

[
2I + 1

16π2

]1/2 [
DI

MK(θ
′, ϕ′)χΩ + (−1)I−1/2DI

M−K(θ
′, ϕ′)πχχ−Ω

]
(3)

being πχ the parity of the intrinsic wave function.

It is worth mentioning that the odd-nucleus wave function given by eq.(3) has exactly the same

collective angular operator structure (i.e. Wigner functions) that the even-nucleus wave function given

by eq.(2). Such analogy allows using the same matrix element derived for the even-even nuclear wave

function to obtain the odd-A matrix element as will be shown below.

2.2 The reduced matrix elements of the couplings

According to ref.[13], a key ingredient in our approach is the assumption of static large axial defor-

mations on which small dynamic deformations (δβ2, γ, β3, η), with axial and non-axial components,

are built

R(θ′, ϕ′) = R0

⎧⎪⎪⎨⎪⎪⎩1 +
∑

λ=2,4,6,8

βλ0Yλ0(θ′)

⎫⎪⎪⎬⎪⎪⎭ + R0

[
δβ2 − β20 γ

2

2

]
Y20(θ

′) + (4)

R0

β20γ√
2

[
Y22(θ

′, ϕ′) + Y2−2(θ′, ϕ′)
]
+ R0β3 cos ηY30(θ

′) +

R0β3
sin η√

2

[
Y32(θ

′, ϕ′) + Y3−2(θ′, ϕ′)
]

Generalizing [13], the coupling matrix elements for even-even nuclei are given by

< IK||
[
Dλ;μ + (−1)μDλ;−μ

]
||I′K′ >=

√
2I′ + 1√

(1 + δK0)(1 + δK′0)
× [1 + (−1)λ+μ+λph+λ

′
ph ]

2
× (5)

[
< I′λK′μ|IK > + (−1)I′+λ′ph < I′λ − K′μ|IK > +

(−1)I+λph < I′λK′μ|I − K > + (−1)I+I′+λph+λ
′
ph < I′λ − K′μ|I − K >

]
where λ + μ + λph + λ

′
ph = λ + λph + λ

′
ph = even (as μ = even).
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Generalizing [14] the reduced matrix elements for odd-A nuclei are given by

< IK||
[
Dλ;μ + (−1)μDλ;−μ

]
||I′K′ >=

√
2I′ + 1

[1 + (−1)λπχπχ′ ]
2

∑
n j

cK
n jc

K′
n j

[
< I′λK′μ|IK > +(−1)I′−1/2πχ′ < I′λ − K′μ|IK > + (6)

(−1)I−1/2πχ < I′λK′μ|I − K > +(−1)I+I′−1πχπχ′ < I′λ − K′μ|I − K >
]

where the following selection rules are implicit:

- for intraband transitions χK = χK′ , therefore πχπχ′ = +1, λ = even.

- for inter-band transitions if πχ = πχ′ then λ = even; if πχ � πχ′ then λ = odd. In practice, these se-

lection rules forbid inter-band transitions in the cases under study as each inter-band matrix element

will be proportional to the product of any two of the small dynamical deformations quantities.

2.3 Results and conclusions

A dispersive and Lane consistent OMPwith multiple-band coupling and energy independent geometry

has been developed for nucleon scattering on odd actinides: 233,235,238U, 239Pu, and 232Th. It’s has

been optimized by a least-squares fit of a regional set of OMP parameters from (n,n),(p,p) & (p,n)

reactions. It included couplings based on rigid rotor with dynamical corrections for rotational bands

built on vibrational (even-even) or single-particle band-heads (odd nuclei). Fitted static deformations

are in reasonable agreement with FRDM deformations theoretically derived by Moller and Nix [21]
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Figure 1. Calculated total cross sections using the DCCOMP with multiple-band coupling for neutron induced

reactions on 235,238targets.
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Table 1. Chi-square values of the optimum fit.

χ2

Nuclide Present [12]
232Th 2.45 2.55
233U 0.09 0.61
235U 1.38 2.05
238U 1.52 2.10
239Pu 1.18 2.64
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