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Abstract. Quantum phase transitions in odd-nuclei are investigated within the framework
of the interacting boson-fermion model with a description based on the concept of intrin-
sic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even
boson core that performs a transition from spherical to deformed prolate and to deformed
gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect
of the coupling of the odd particle to this core is discussed along the shape transition and,
in particular, at the critical point.

1 Introduction

Quantum Phase Transitions (QPT) have been one of the top subjects in nuclear physics, especially
during the last decade. Phase transitions studies have been mostly performed on even-even systems [1]
within the interacting boson model (IBM) [2] and also recently in bose-fermi systems [3–11] within
the interacting boson fermion model (IBFM) [12]. IBM has three dynamical symmetries denoted by
U(5), SU(3) and O(6). Each dynamical symmetry is related to a different shape: spherical (U(5)),
deformed axial prolate (SU(3)) and deformed gamma-unstable (O(6)). The QPT from U(5) to SU(3)
is first-order while the transition U(5) to O(6) is second-order (continuous). Similar shape QPT’s are
found in the context of the Bohr Hamiltonian. Critical point symmetries have been proposed to model
their critical points: X(5), from spherical to axially deformed (first order), and E(5), from spherical to
deformed gamma-unstable (second order) [13].

The purpose of this work is to see the effect of the coupling of a single fermion to a boson core that
performs a transition from spherical to axially prolate shapes, in particular, at the critical point and its
around. We, therefore, intend to explain how the coupling of the single fermion in orbit of definite
angular momentum j modifies the geometry imposed by the boson core performing the transition and
to describe the behavior of each individual coupled state of single j at the transitional region. The odd
particle effects along U(5)→SU(3) and U(5)→O(6) transitions are compared.
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Figure 1. The effect of odd particle on the core around the U(5)-SU(3) critical point. Energy surfaces at c = 0.5
in (a), at the critical point ccr = 0.56 in (b), at c = 0.6 in (c). Contour plots in the β-γ plane are for the even-even
core with five bosons. Cuts of the energy surfaces as a function of β (γ = 0◦) are for the odd-even system for
different states labeled by K with different colors, as defined in (a), for each magnetic component of j = 9/2.

2 Intrinsic Frame Formalism of Interacting Boson Fermion Model

Quantum shape phase transitions for bose-fermi systems can be described within the framework of the
intrinsic frame formalism of the interacting boson-fermion model. The IBFM Hamiltonian including
the boson part, the fermion part and the boson-fermion interaction is generally written as

HBF = HB + HF + VBF . (1)

The HB boson Hamiltonian is here parametrized as

HB = (1 − c)n̂d −
c

4N
Q̂χB · Q̂

χ
B. (2)

where N is the total boson number, c is the control parameter, n̂d is the d-boson number operator given
by n̂d =

∑
µ d†µdµ and QχB is the boson quadrupole operator Q̂χB = (s† × d̃+ d† × s̃)(2) +χ(d† × d̃)(2). The

boson-fermion Hamiltonian can be correspondingly written as

HBF = (1 − c)n̂d −
c

4N
Q̂χBF · Q̂

χ
BF , (3)

where the quadrupole operator for the odd-even system is Q̂χBF = Q̂χB + q̂F and here q̂F is the fermion
quadrupole operator that is given by q̂F = (a†j × ã j)(2). The HF fermion part in Eq. (1) is a constant for
the single-j shell case and the boson-fermion interaction obtained from Eq. (3) is V̂BF = − c

2N Q̂χB · q̂F .
The intrinsic frame formalism can be used to describe phase transitions with the potential energy

surfaces obtained from the boson Hamiltonian (2). The intrinsic state for the ground state (gs) band
is written as a function of the shape variables (β, γ)

Φgs(β, γ) =
1
√

N!

 1√
1 + β2

(
s† + β cos γd†0 +

β
√

2
sin γ(d†2 + d†−2)

)N

|0⟩ (4)

where |0⟩ is the boson vacuum. The ground state energy surface is obtained by calculating the ex-
pectation value of the boson Hamiltonian in the intrinsic state Egs(β, γ) = ⟨Φgs(β, γ)|HB|Φgs(β, γ)⟩.
Intrinsic frame states for the mixed boson-fermion system can be constructed by coupling the odd
single-particle states to the intrinsic states of the even core. The lowest states of the odd nucleus are
expected to originate from this coupling to the intrinsic ground stateΦgs(β, γ). To obtain them, we first
construct the coupled states Ψ jK(β, γ) = Φgs(β, γ)⊗ | jK⟩ and then diagonalize the total boson-fermion
Hamiltonian in this basis. Here, K is the magnetic component of the total angular momentum j.
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Figure 2. Even-even (red color) and odd-even energy surfaces as a function of β. The control parameter c is
changed from 0 to 1 in the Hamiltonian (from spherical to prolate shape, χ = −

√
7/2).

3 Results and Conclusions
In the IBM Hamiltonian (2), the U(5) limit is obtained with c = 0, while c = 1 gives pure O(6)
and SU(3) symmetries for χ = 0 and χ = −

√
7/2, respectively. The first-order transition appears

at ccr = 16N/(34N − 27) in between U(5)-SU(3) [7] while the second-order transition appears at
ccr = N/(2N − 2) in between U(5)-O(6) [8] for the even-even boson system. In the case of 5 bosons,
the critical point of the first-order transition is ccr = 0.56 while it is 0.625 for the second-order tran-
sition. The effect of the coupling of an odd particle to a O(6) boson core was discussed in detail in
Ref. [8]. According to the classical analysis of both cases for j=11/2 performed by Petrellis et al.
[10], the phase transition is washed out for states with K=1/2,3/2,5/2 but other states with larger K
(7/2,9/2,11/2) show first order transition and the phase transition is dramatically changed by the ex-
change term. However, in their analysis in [11], states states with larger K show oblate shape then
jump to prolate and the phase transition is also washed out for K=11/2 with larger quadrupole cou-
pling constant Γ. Here we focus on the effect of the coupling of an odd particle with j=9/2 to an
even-even core that transits from spherical to prolate shapes, particularly around the critical point.

Therefore, we assume as examples for the control parameter the values c = 0.5, ccr = 0.56, c = 0.6
in the Hamiltonian (2) and the expectation value of the boson Hamiltonian Egs(β, γ) in the intrinsic
state (4) is calculated to obtain the ground state energy surface. Then the odd j = 9/2 particle is
coupled to the core using the boson-fermion interaction VBF . The energy surfaces for the boson core
as a function of the deformation parameters (β,γ) are plotted around the critical point in Fig. 1. The
behaviour of the odd-even energy surfaces as a function of β is illustrated around critical point in the
left side of (a), (b), (c) panels of Fig. 1. In these panels, the boson core is denoted with red color as
a reference. It is clearly seen in Fig. 1(b) that the even-even surface has two minima at ccr = 0.56.
The even-even system is spherical before this point then it jumps to prolate. The intrinsic states of the
odd-even system prefer prolate or oblate shapes while the boson core is spherical in Fig. 1(a), prolate
in Fig. 1(c) or located at critical point in Fig. 1(b).

The evolution of the energy surfaces along the shape phase transition for the boson core with five
magnetic components K is illustrated in Fig. 2. States with K = 1/2, 3/2, 5/2 always favor prolate
shapes, while states with K = 7/2, 9/2 are oblate up to c7/2 ≃ 0.6 and c9/2 ≃ 0.69. After these points,
they suddenly change to prolate shapes. Therefore we can suggest that both states, K = 7/2, 9/2,
show first order transitions, since they have two absolute minima as seen in the inserts in the last two
panels of Fig. 2.

When moving towards the critical point the states with larger K values move to their preferred
oblate deformation, while the states with smaller K values are prolate as seen in left side of Fig. 3.
After the bosonic critical point each oblate state will shift to prolate shape at some specific value of
the control parameter. In the pure prolate deformed region the dominant action of the strongly prolate
core drives all odd states into the prolate side and they have approximately the same βmin as the prolate
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Figure 3. Evolution of the equilibrium deformation parameter corresponding to the different K states in the
odd-even system as a function of the control parameter c along the spherical to deformed region: the transition
from U(5) to SU(3) (in left panel) and the transition from U(5) to O(6) (right panel from Ref. [8]). Positive and
negative values of βmin indicate prolate and oblate shapes, respectively.

core. For comparison, we also show the case of U(5) to O(6) transition in the right panel of Fig. 3.
The states with low K values always prefer to be prolate, while the states with high K values always
prefer oblate shapes and hence phase transition for odd states with all K is washed out in this case.

In these proceedings, the coupling of a single j = 9/2 particle to a boson core that undergoes a
transition from spherical to prolate has been investigated and results are compared with our previous
work [8]. Forthcoming studies will be focused on the effect of the single particle (for different angular
momenta, j is changing from 3/2 to 13/2) coupling to the even-even core performing not only the
transition from spherical to prolate (U(5)-SU(3)) but also from spherical to oblate (U(5)-S U(3)) and
from prolate to oblate (SU(3)-S U(3)).
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