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Abstract

We study a system of equations arising from angiogenesis which contains a non-

regular term that vanishes below a certain threshold. This loss of regularity forces

one to modify the usual methods of bifurcation theory. Nevertheless, we obtain

results on the existence, uniqueness and permanence of a positive solution for the

time-dependent problem; and the existence and uniqueness of a positive solution

for the stationary one.
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1 Introduction

Cancer is a primary area of medical research, and many scientific fields have been
involved in the effort to understand and solve this problem. Mathematical modelling
can also contribute towards the understanding, description and prediction of the
evolution of the process, by offering its own distinct point of view. Such modelling
is difficult because cancer is a complicated phenomenon involving many biochemical
and physiological processes, which are themselves not completely understood. Given
this, deciding which simplifying assumptions are acceptable is a non-trivial task.
Furthermore, the models usually present theoretical difficulties, and information
about solutions generally has to be obtained via numerical approximations.

∗The authors acknowledge the support of the MEC under grants BFM2003-06446 and
MTM2006-07932.
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This paper considers a mathematical model of angiogenesis, which is an essential
phase of the tumor growth (see [13]). It forms part of the process of vascularization
of an avascular tumor, which serves to increase the contribution of those nutrients
necessary for its growth. This vascularization is also one way to spread the tumor
cells to other parts of the body thereby promoting metastasis. Angiogenesis begins
with the release of a number of chemical substances (TAF) by the tumor which
diffuse into the surrounding tissues, weaken the basal laminas of the endothelial cells
(EC) which form the neighboring blood vessels and stimulate the migration of these
endothelial cells towards the tumor. In a second step, angiogenesis stimulates the
proliferation of the endothelial cells to help the formation of a network of capillary
sprouts which vascularizes the tumor.

This second step only begins when TAF concentration reaches a threshold. This
fact has been modelled in previous works (for instance, in [2] for an one-dimensional
model and [7] for the numerical study of a general model) by means of the intro-
duction of a factor in the equation for the EC of the form

G(v) =
{

0 if v ≤ v∗,
v − v∗ if v > v∗, (1.1)

where v∗ > 0 is a fixed threshold. The presence of this factor, which is not differ-
entiable at v∗, introduces some mathematical difficulties in the theoretical study of
the model and it is therefore interesting initially to try to resolve these difficulties
in a very simplified model. This is the first step in the study of a more realistic
model in which a chemotaxis term in the EC equation, a third variable modelling
the extracellular matrix or even more realistic boundary conditions would be con-
sidered.

So, in this paper we are interested in the following system




ut −∆u = λu(1− u)G(v) in Ω× (0, T ), 0 < T ≤ ∞,
vt −∆v = v(µ− v − cu) in Ω× (0, T ),
u = v = 0 on ∂Ω× (0, T ),
u(0, x) = u0(x) > 0, v(0, x) = v0(x) > 0 in Ω,

(1.2)

and the corresponding steady-state problem



−∆u = λu(1− u)G(v) in Ω,
−∆v = v(µ− v − cu) in Ω,
u = v = 0 on ∂Ω,

(1.3)

where Ω is a bounded and regular domain in IRN , λ > 0, µ ∈ IR, c > 0 and G(v) is
given in (1.1). Here u represents the population density of endothelial cells (EC),
and V the concentration of TAF. Following [7], we suppose that mitosis (growth) is
governed by a logistic type growth λu(1−u), where λ is a positive constant related
to the maximum mitotic rate. Mitosis only occurs when the TAF level passes the
threshold level v = v∗. In the second equation, the loss due to the consumption of
EC and the balance between the production rate of TAF by the tumor cells and
the rate of decay of chemical appear; we model the first one by the term −cuv
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and the second one by the logistic term µv − v2. This equation means that the
concentration of TAF has a logistic growth in the absence of EC. We take Dirichlet
boundary conditions.

We will show that the stationary problem (1.3) is a predator-prey type system
because there is an a priori bound u < 1, see Lemma 2.2. In this case it is well-
known that the method of sub- and supersolutions does not give optimal existence
results, and for this reason we will study the problem by considering bifurcations
with respect to the parameters λ and µ. Our main result relating to the existence
of solution is:

1. There is no non-negative non-trivial solution of (1.3) for µ ≤ λ1, where λ1 is
the first eigenvalue of −∆ with homogeneous Dirichlet conditions; in fact, the
only solution is the trivial one.

2. There exists a value µ∗ > λ1 and a function λ0 : (µ∗,+∞) → [0, +∞) that is
decreasing and satisfies

lim
µ↓µ∗

λ0(µ) = +∞, lim
µ↑+∞

λ0(µ) = 0

(see Figure 1) such that for µ ≤ µ∗ the unique solution of (1.3) is the semi-
trivial (0, v), and for µ > µ∗ a positive solution of (1.3) exists if and only if
λ > λ0(µ).

Although the uniqueness of the positive solution for a system like (1.3) is a hard
problem (see [5]), we are able to prove that (1.3) has a unique positive solution if
c is small. Because of the loss of regularity of the function G(v) when v = v∗, we
have to use an appropriately adapted version of classical bifurcation results, along
with the Implicit Function Theorem.

For the parabolic problem (1.2), we obtain the existence and the uniqueness of a
positive solution for all λ > 0 and µ ∈ IR. We also study the asymptotic behaviour
of this solution, showing that if µ ≤ λ1 then (u, v) → (0, 0) as t → ∞; while if
µ > λ1 and λ < λ0(µ) then (u, v) tends to a semitrivial solution of the form (0, v),
and so the CE concentration tends to zero. Finally, we analyze the interesting case
λ > λ0(µ). One might hope to find a positive solution of (1.3) that is globally
attracting, but this is not an easy task in non order-preserving system. Instead,
we prove that the system is permanent, that is, there exists a positive set which is
bounded away from zero in each component and which all solutions enter in a finite
time. To show this we use an Average Lyapunov Function approach, see Section 4
for details and references.

The organization of the paper is as follows: in Section 2 we study the elliptic
system, in Section 3 we analyze the parabolic problem, and we finish with concluding
remarks and a biological interpretation of our results.
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2 Existence and uniqueness of positive solutions
of the elliptic system

Given a regular domain D ⊂ IRN and g ∈ L∞(D) we denote by λD
1 (−∆ + g) the

first eigenvalue of the problem

−∆u + g(x)u = λu in D, u = 0 on D.

We write λD
1 := λD

1 (−∆) and we omit the superscript D when Ω = D.
Now, take a function g ∈ L∞(Ω), g ≥ 0 and non-trivial. Consider the eigenvalue

problem { −∆u = λug(x) in Ω,
u = 0 on ∂Ω. (2.1)

Denote by Λ1(g) the first eigenvalue of (2.1). We recall in the following result some
of the main properties of Λ1(g).

Lemma 2.1 The map g ∈ L∞+ (Ω) \ {0} 7→ Λ1(g) is continuous and decreasing.
Moreover, if gn ∈ L∞+ (Ω) \ {0} is such that ‖gn‖∞ → 0, then

Λ1(gn) → +∞.

Proof. Observe that if we denote by

m(λ) := λ1(−∆− λg),

then m is a decreasing map, and Λ1(g) is its unique zero. Hence,

m(λ) < 0 (resp. m(λ) > 0) if λ > Λ1(g) (resp. λ < Λ1(g).) (2.2)

If f < g then λ1(−∆ − λf) > λ1(−∆ − λg), and so Λ1(g) < Λ1(f). This proves
that the map is decreasing. The continuity follows by the continuity of the map
g 7→ λ1(−∆− λg).

Now, take a sequence gn ∈ L∞+ (Ω) \ {0} such that ‖gn‖∞ → 0. Then,

0 = λ1(−∆− Λ1(gn)gn) ≥ λ1(−∆− Λ1(gn)‖gn‖∞) = λ1 − Λ1(gn)‖gn‖∞,

and so,

Λ1(gn) ≥ λ1

‖gn‖∞ .

Hence, Λ1(gn) → +∞ as n →∞.
Before studying our problem (1.3), consider the logistic equation

{ −∆u = σu− u2 in Ω,
u = 0 on ∂Ω. (2.3)

It is well-known that (2.3) has a positive solution if, and only if, σ > λ1. Moreover,
if there exists a positive solution, the solution is unique and stable; we denote it by
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θσ. We extend θσ ≡ 0 when σ ≤ λ1. Furthermore, it is well known that θσ < σ,
the map σ ∈ (λ1,∞) → θσ is increasing and ‖θσ‖∞ →∞ as σ →∞.

It is immediate that any weak solution of (1.3) belongs in fact to X := [C1
0 (Ω)]2.

We have three kinds of solutions of (1.3): the trivial one (0, 0), the semitrivial (0, θµ)
and those with both components non-negative and non-trivial, called coexistence
states. If we denote by K the positive cone of X, by the strong maximum principle,
any non-negative and non-trivial solution of (1.3) belongs to int(K).

First, observe that if (u, v) is a solution of (1.3), then v ≤ θµ, and so if µ ≤ λ1

we get that v ≡ 0, and hence going back to the equation of u, we deduce that u ≡ 0.
On the other hand, since the map µ 7→ θµ is increasing, there exists a value

µ∗ > λ1 such that
v∗ = max

Ω
θµ∗ < µ∗.

Hence if µ ≤ µ∗ we get that θµ ≤ θµ∗ ≤ v∗ and so G(v) ≤ G(θµ) = 0; and then
u ≡ 0. Since we understand completely our problem when µ ≤ µ∗, in what follows
we assume that

µ > µ∗ > λ1.

Our first result provides us a priori bound for the first component of a positive
solution of (1.3).

Lemma 2.2 Let (u, v) be a positive solution of (1.3). Then u < 1 in Ω.

Proof. Assume that the set Ω1 := {x ∈ Ω : u(x) > 1} 6= ∅. Then,

−∆(u− 1) ≤ 0 in Ω1, u− 1 = 0 on ∂Ω1,

and so, u ≤ 1 in Ω1, which is a contradiction. Therefore, u ≤ 1 in Ω.
Now, take K large enough, then

{
(−∆ + K)(1− u) = (1− u)[K − λuG(v)] ≥ 0 in Ω,
1− u > 0 on ∂Ω,

and so, by the strong maximum principle it follows that u < 1 in Ω.
Through this paper, the map

µ ∈ (µ∗, +∞) 7→ λ0(µ) := Λ1(G(θµ))

plays an important role. In the following result, we show some of its properties.

Proposition 2.1 The map µ 7→ λ0(µ) is decreasing, and

lim
µ↓µ∗

λ0(µ) = +∞,

lim
µ↑+∞

λ0(µ) = 0.

Proof. Since θµ is increasing in µ, by Lemma 2.1 we conclude the monotony property
of λ0(µ) with respect to µ.
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Recall (see (2.2)) that λ0(µ) is the unique root of the map

g(λ) := λ1(−∆− λG(θµ)).

Since θµ/µ → 1 uniformly in compact sets as µ → +∞ (see for instance Theorem 2.1
in [9]), then given an ε > 0 and a subdomain Ω1 b Ω there exists µ0 > 0 such that
for µ > µ0

v∗ < µ(1− ε) ≤ θµ ≤ µ(1 + ε) in Ω1.

Then, using the monotonicity of the principal eigenvalue with respect to the domain
and the above inequality, we get

g(λ) = λ1(−∆− λG(θµ)) < λΩ1
1 (−∆− λG(µ(1− ε))) =

λΩ1
1 (−∆− λ(µ(1− ε)− v∗)) = λΩ1

1 − λ(µ(1− ε)− v∗),

and so,

λ0(µ) ≤ λΩ1
1

µ(1− ε)− v∗
.

It is easy to conclude that limµ↑+∞ λ0(µ) = 0.
Finally, since as µ ↓ µ∗ we get that ‖G(θµ)‖∞ → 0, we can apply again

Lemma 2.1 and conclude that λ0(µ) → +∞.
We have represented in Figure 1 the curve λ = λ0(µ) in the (λ− µ)-plane.

λ

µ

µ

λ=λ  (µ)
*

0

Figure 1: The curve λ = λ0(µ).

The study of the following equation will be very useful from now on,
{ −∆u = λu(1− u)g(x) in Ω,

u = 0 on ∂Ω. (2.4)

We get the following existence and uniqueness result.
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Lemma 2.3 Assume g ∈ L∞(Ω) \ {0}, and λ > 0. There exists one positive
solution of (2.4) if and only if λ > Λ1(g). In the case that the positive solution
exists, it is unique, we denote it by υ[λ,g]; and it is extended by υ[λ,g] ≡ 0 when
λ ≤ Λ1(g).

Moreover,
υ[λ,g] < 1 in Ω, (2.5)

and if h ≤ g, then υ[λ,h] ≤ υ[λ,g].

Proof. First, observe that if u is a positive solution of (2.4) then

0 = λ1(−∆− λ(1− u)g(x)) > λ1(−∆− λg),

and so λ > Λ1(g).
On the other hand, it is not hard to show that (u, u) = (εϕ1, 1) is a sub-

supersolution of (2.4) provided that ε is small enough and ϕ1 a positive eigenfunction
associated to Λ1(g). The uniqueness of positive solution follows by [4]. Estimate
(2.5) and the monotonicity with respect to g follow combining the sub-supersolution
method and the uniqueness of positive solution.

We are now ready to show the main result about existence:

Theorem 2.1 Assume that µ > µ∗. Then (1.3) possesses at least a positive solution
if and only if λ > λ0(µ).

Proof. Since v ≤ θµ, it follows that

0 = λ1(−∆− λ(1− u)G(v)) > λ1(−∆− λG(v)) ≥ λ1(−∆− λG(θµ)),

and so λ > λ0(µ).
In order to prove the existence result we apply the bifurcation method. Observe

that the first reaction term in (1.3) is not differentiable, so we will approximate it
by regular functions. Indeed, consider the family Gε(s) of C1 functions, increasing
in s, decreasing in ε, Gε(0) = 0 and such that Gε → G as ε ↓ 0 uniformly.

Consider now the approximated problem



−∆u = λu(1− u)Gε(v) in Ω,
−∆v = v(µ− v − cu) in Ω,
u = v = 0 on ∂Ω.

(2.6)

Observe that (0, 0) is solution of (2.6) and the unique semitrivial solution is (0, θµ).
Denote λε(µ) := Λ1(Gε(θµ)) the principal eigenvalue of

−∆u = λuGε(θµ) in Ω, u = 0 on ∂Ω.

It is clear that
λε(µ) → λ0(µ) as ε → 0.

We can now apply Theorem 4.1 of [12] and conclude the existence of a continuum
(a maximal connected component and closed subset of the set of solutions) Cε ⊂
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IR × int(K) of positive solutions of (2.6) emanating from the semitrivial solution
(0, θµ) at λ = λε(µ), such that Cε is unbounded in IR× int(K).

Now, observe that for any solution (u, v) of (2.6) we have that

u ≤ 1 and v ≤ θµ ≤ µ, (2.7)

and hence (u, v) is bounded in X. On the other hand, repeating the arguments
used before, we can show that for λ ≤ λε(µ) the problem (2.6) does not posses any
positive solutions.

So, it is clear that Π(Cε) = (λε(µ), +∞), where Π is the projection of IR × X
over IR, i. e., Π(λ, u) = λ.

Now, we are going to apply the following topological result (see Theorem 9.1 in
[15]):

Lemma 2.4 Let An be a sequence of connected closed sets of a complete metric
space X such that lim inf An 6= ∅, and ∪nAn is relatively compact. Then, lim supAn

is non empty, connected and closed.

Consider the metric space X = [C1
0 (Ω)]2 and a sequence εn → 0. Let Cn be the

connected component obtained before for ε = εn. We are going to show that Cn

satisfies the hypotheses of Lemma 2.4. First observe that since λεn(µ) → λ0(µ), it
is clear that lim inf Cn 6= ∅. Moreover, thanks to the a priori bounds (2.7), ∪nCn is
relatively compact. Indeed, if (λk, uk, vk) ∈ ∪nCn is a sequence bounded in IR×X,
then thanks to (2.7) and the elliptic regularity theory we get that (λk, uk, vk) is
bounded in IR× [W 2,p(Ω)]2 for all p > 1. Therefore, passing to the limit through a
subsequence we get that it is convergent in IR×X.

So, we conclude that C := lim sup Cn is a connected, closed and nonempty set.
Using an standard argument, it can be shown that the elements of C are solutions
of (1.3).

We will prove that C is non-degenerate, i.e. that C does not degenerate to the
axis λ = λ0(µ), or the solutions (0, θµ) or (0, 0).

First, observe that at λ = λ0(µ) the continuum can not degenerate because (1.3)
does not have solution for λ = λ0(µ).

Now, assume that for a sequence of solutions (λn, un, vn) ∈ Cn we have that
(λn, un, vn) → (λ, 0, 0), with λ > λ0(µ). Define

Un =
un

‖un‖∞ .

Then, it is clear that
−∆Un = λnUn(1− un)Gεn(vn),

and so −∆U = 0 in Ω, U = 0 on ∂Ω, and ‖U‖∞ = 1, an absurdum.
Analogously, if (λn, un, vn) ∈ Cn is such that (λn, un, vn) → (λ, 0, θµ) with λ >

λ0(µ), then
−∆U = λUG(θµ),

and so λ = λ0(µ), again an absurdum.
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2.1 The uniqueness result

Before proving the uniqueness result, we analyze the behaviour of (1.3) near to
c = 0. It is clear that if λ > λ0(µ) and µ > λ1, (1.3) possesses a unique positive
solution (u0, v0) for c = 0, and it verifies




−∆u0 = λu0(1− u0)G(v0) in Ω,
−∆v0 = v0(µ− v0) in Ω,
u0 = v0 = 0 on ∂Ω.

Observe that v0 = θµ and u0 = υ[λ,G(v0)]. The following result shows that the
solutions of (1.3) are near to (u0, v0) when c is small. Its proof is similar to, for
instance, Lemma 3.1 in [3].

Lemma 2.5 Let (uc, vc) be any positive solution of (1.3). Then,

(uc, vc) → (u0, v0) uniformly as c ↓ 0.

Theorem 2.2 Fix λ > 0 and µ > µ∗ such that λ > λ0(µ). There exists c0 =
c0(λ, µ) > 0 such that for c < c0 there exists a unique coexistence state of (1.3).

Proof. The proof is based on the Implicit Function Theorem. Observe that the
nonlinearities of our systems are non-differentiable, so we can not apply directly the
mentioned result.

Denote by L := (−∆)−1, subject to homogeneous Dirichlet condition, and Y :=
[W 2,p(Ω) ∩W 1,p

0 (Ω)]2 with p > N . Define the map F : IR×X 7→ Y by

F (c, u, v) := (u− λL[u(1− u)G(v)], v − L[µv − v2 − cuv]).

Thanks to the elliptic regularity, F is well defined. Also, it is clear that (u, v)
is solution of (1.3) if, and only if, F (c, u, v) = 0. And, finally F (0, u0, v0) = 0.
We are going to apply the Implicit Function Theorem in [8], see the remark after
Theorem 15.1 in [8]. For that, we need to find a homeomorphism L ∈ L(X, Y ) and
a constant k > 0 such that

‖F (c, u, v)− F (c, u, v)− L(u− u, v − v)t‖Y ≤ k‖(u− u, v − v)t‖X , (2.8)

for (u, v), (u, v) ∈ BX((u0, v0), r0) and c < c0 for some c0 > 0 and r0 > 0 to
determine, and k such that k‖L−1‖L(Y,X) < 1, where BX((u0, v0), r0) denotes the
ball in X centered at (u0, v0) with radius r0.

Now, we build L. Observe that the nonlinear part of the first component of
F (c, u, v)− F (c, u, v) can be written as

u(1− u)G(v)− u(1− u)G(v) = (u(1− u)− u(1− u))G(v) + u(1− u)(G(v)−G(v)) =

= [(1− 2u0)G(v0)− (1− 2u0)G(v0) + (1− u− u)G(v)](u− u)+

[u(1− u)(
G(v)− G(v)

v − v
)− χ(x)u0(1− u0) + χ(x)u0(1− u0)](v − v),
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where
χ(x) := χ{θµ>v∗},

(χA stands for the characteristic function of a set A ⊂ IRN ). With a similar rea-
soning to the second equation, we can show that

F (c, u, v)− F (c, u, v) = L (u− u, v − v)t +K (u− u, v − v)t
,

where L = (Lij), K = (Kij) with

L11ξ := ξ − λL[(1− 2u0)G(v0)ξ],
L12η := −λL[χ(x)u0(1− u0)η],
L21 := 0
L22η := η − L[(µ− 2v0)η],
K11ξ := L[A(x)ξ], K12η := L[B(x)η], K21ξ := L[C(x)ξ], K22η := L[D(x)η],

where
A(x) := −λ(G(v)(1− u− u)− G(v0)(1− 2u0)),

B(x) := −λ(u(1− u)(
G(v)− G(v)

v − v
)− χ(x)u0(1− u0)),

C(x) := cv,
D(x) := −(2v0 − v − v − cu).

First, we show that L−1 is well-defined. Take (f, g)t ∈ Y , we have to prove that
there exists a unique (ξ, η) ∈ X such that

L (ξ, η)t = (f, g)t
,

or equivalently,




(−∆− λG(v0)(1− 2u0))ξ − λu0(1− u0)χ(x)η = −∆f in Ω,
(−∆− (µ− 2v0))η = −∆g in Ω,
ξ = η = 0 on ∂Ω.

Observe that since v0 is a positive solution of −∆v0 = v0(µ− v0), we get

λ1(−∆− (µ− 2v0)) > λ1(−∆− (µ− v0)) = 0,

and so η is well defined. On the other hand, since u0 is a positive solution of
−∆u0 = λu0(1− u0)G(v0), we get

0 = λ1(−∆− λ(1− u0)G(v0)) < λ1(−∆− λG(v0)(1− 2u0)),

and so ξ is also well-defined.
Hence,

‖F (c, u, v)− F (c, u, v)− L(u− u, v − v)t‖Y = ‖K(u− u, v − v)t‖Y

≤ ‖K‖L(X,Y )‖(u− u, v − v)t‖X .
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Now, we compute ‖K‖L(X,Y ). Take ‖(ξ, η)t‖X = 1 and denote by (f, g)t = K(ξ, η)t,
then

{ −∆f = A(x)ξ + B(x)η in Ω,
f = 0 on ∂Ω,

{ −∆g = C(x)ξ + D(x)η in Ω,
g = 0 on ∂Ω,

and so by the elliptic regularity

‖f‖2,p ≤ K{‖Aξ‖p + ‖Bη‖p}, ‖g‖2,p ≤ K{‖Cξ‖p + ‖Dη‖p},

for some positive constant K. Now, by Lemma 2.5 we have that A(x) → 0 point-
wise as c → 0, and similarly to the functions C and D. So, using the dominated
convergence theorem, we get that

‖A‖p, ‖C‖p, ‖D‖p → 0 as c → 0.

We need to show a similar result to B. Denoting by

Gc(x) :=
G(v)(x)− G(v)(x)

v(x)− v(x)
,

we can show that
|Gc| ≤ 1,

and that pointwise
Gc(x) → χ(x).

Then, the dominated convergence theorem concludes that ‖B‖p → 0 as c → 0.
Therefore,

‖K‖L(X,Y ) = sup
‖(ξ,η)t‖X=1

‖K(ξ, η)t‖Y → 0 as c → 0.

Hence, there exists c0 > 0 such that for c < c0 we have that

‖K‖L(X,Y ) ≤ k

for k such that k‖L−1‖L(Y,X) < 1. This proves (2.8) and completes the proof.

3 The time dependent problem

We denote by Θσ the unique positive solution of




ut −∆u = σu− u2 in Ω× (0, T ), T ≤ ∞,
u = 0 on ∂Ω× (0, T ),
u(0, x) = u0(x) > 0 in Ω.

(3.1)

It holds (see Theorem 4.4 in [5]) that

Θσ → θσ in C1(Ω) as t → +∞.
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Before studying the system (1.2), we analyze the following equation




ut −∆u = λu(1− u)G(x, t) in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(0, x) = u0(x) > 0, in Ω,

(3.2)

where G ∈ Cγ(Ω× IR+) for some γ ∈ (0, 1), G ≥ 0 and non-trivial, and for instance
u0 ∈ C1

0 (Ω). The following result shows the existence and uniqueness of positive
solution of (3.2) and its asymptotic behaviour. Its proof is standard, see for instance
[14] and [5].

Proposition 3.1 1. There exists a unique positive solution of (3.2), denoted by
Υ[λ,G].

2. Assume that g ∈ Cγ(Ω), γ ∈ (0, 1), g ≥ 0 and non-trivial. Then,

Υ[λ,g] → υ[λ,g], in C1(Ω) as t → +∞.

where υ[λ,g] = 0 when λ ≤ Λ1(g).

The following result shows the existence and uniqueness of positive solution for
(1.2).

Proposition 3.2 Take (u0, v0) ∈ X, u0, v0 > 0. There exists a unique positive
solution (u, v) ∈ (C(Ω× [0, T ]) ∩ C1,2(Ω× (0, T )))2 of (1.2).

Proof. Observe that in this case we can not assure that u < 1 because we do not
know the size of u0. So, our coupled system (1.2) has non-monotone nonlinearities.
Anyway, we can apply the general sub-supersolution method (see the definition 8.9.1
in [14] for instance) with

(u, u) = (0, K), (v, v) = (0,Θµ),

where K is a positive constant such that K ≥ max{1, ‖u0‖∞}. Observe that al-
though the nonlinearities are not C1, they are Lipschitz and satisfy the condition
(8.8.15) in [14], and so we can apply the method, see Theorem 8.9.3 in [14].

The positivity and uniqueness follow easily.
With respect to the asymptotic behavior, we get

Proposition 3.3 Assume that λ < λ0(µ). Then if (u, v) is the positive solution of
(1.2), we have that

(u, v) → (0, θµ) as t → +∞,

where θµ = 0 if µ ≤ λ1.

Proof. First consider µ ≤ λ1. Observe that if (u, v) is the solution of (1.2), then

v ≤ Θµ. (3.3)
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So, v → 0 as t → ∞. Hence, for t large we get that v ≤ v∗, and going back to the
equation for u, we deduce that u → 0 as t →∞.

Second, assume that λ1 < µ < µ∗. Take ε > 0 positive and small such that

‖θµ‖∞ + ε < ‖θµ∗‖∞ = v∗.

So, using (3.3) for large t we have that

v ≤ θµ + ε < v∗,

and then u → 0 and we conclude that v → θµ as t →∞.
Now assume that µ > µ∗ > λ1 and λ < λ0(µ) = Λ1(G(θµ)). By the continuity

of Λ1(H) with respect to the function H, there exists ε > 0 such that

λ < Λ1(G(θµ + ε)).

Observe that again by (3.3), there exists t0 > 0, such that for t ≥ t0, we get

v ≤ θµ + ε.

So, for t ≥ t0

ut −∆u = λu(1− u)G(v) ≤ λuG(v) ≤ λuG(θµ + ε).

Hence, u is a subsolution of the linear problem

zt −∆z = λzG(θµ + ε)

and since λ < Λ1(G(θµ + ε)) we get z → 0, and so it follows that

u → 0 as t → +∞.

Hence, we conclude that u → 0, and then v → θµ as t →∞.
Finally, we consider the case µ = µ∗. Fixed λ > 0, thanks to Lemma 2.1 there

exists ε > 0 small enough such that

λ < Λ1(G(θµ∗ + ε)).

Now, we can reason similarly to the above case.
Now, we want to show that for λ > λ0(µ) the solution of of (1.2) enters and

remains in a bounded set of X for away from zero for large time, that is the system
is permanent. For that, we use a similar argument to [6], see also [5].

In order to formalize this, we need some notation. Define the map

π : K × [0,∞) 7→ K, π(u0, v0, t) := (u, v)

being (u, v) the unique solution of (1.2) in t initially in (u0, v0). We will show some
properties of π later. We say that (1.2) is permanent if there exists a bounded set
U ⊂ X such that
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1. infu∈U d(u, ∂K) > 0, where d(u, ∂K) = infv∈∂K d(u, v), and

2. limt→∞ d(π((u0, v0), t), U) = 0 for all (u0, v0) ∈ int(K).

Our main result reads:

Theorem 3.1 Assume that λ > λ0(µ). Then the system (1.2) is permanent.

For that, we use the following result (see Corollary 2.3 of [11] or Theorems 4.1
and 4.2 in [5]).

Theorem 3.2 Assume that π is dissipative and π(·, t) is compact for t ≥ t0 for
some t0 > 0. Let A denote the global attractor for π and

X ′ := π(B(A, ε), [t0,∞)) and X ′′ := π(X ′, t′)

for some t′ large, and B(A, ε) is a neighbourhood of A. Finally, denote by

S := X ′′ ∩ ∂K.

Assume that there exists a continuous function P : X ′′ 7→ [0,+∞) with P (u, v) = 0
if and only if (u, v) ∈ S, and define

a(t, (u, v)) = lim inf
(u0,v0)→(u,v)

(
P (π(u0, v0, t))

P (u0, v0)

)
, with (u0, v0) ∈ X ′′ \ S. (3.4)

Then, (1.2) is permanent if

sup
t>0

a(t, (u, v)) >

{
1 (u, v) ∈ ω(S),
0 (u, v) ∈ S,

where ω(S) denotes the ω−limit set.

We need to check the hypotheses of the above theorem.

Lemma 3.1 The map π is well defined, it is dissipative and compact for large t.

Proof. First, we show that the solutions are bounded in L∞. Observe that since
v ≤ Θµ and Θµ → θµ < µ as t →∞, there exists t0 = t(v0) such that for t ≥ t0

v ≤ Θµ ≤ µ + 1.

Denote now by z(t; z0) the unique positive solution of




zt −∆z = λz(1− z)χ{z<1}G(µ + 1) in Ω× (0, +∞),
z = 0 on ∂Ω× (0, +∞),
z(0, x) = z0(x) > 0 in Ω.

(3.5)

It is not hard to show that there exists a unique positive solution z of (3.5). More-
over, the steady state equation to (3.5) is similar to (2.4) with g = G(µ + 1), and
hence by (2.5)

z → υ[λ,G(µ+1)] < 1, as t → +∞.
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Thus, for t ≥ t1(z0) we get
z ≤ 1.

Now, take t ≥ t0 and consider z the solution of (3.5) with z(0, x) = u(t0, x). It is
clear that since v ≤ µ + 1, z is supersolution of the u-equation and so

u ≤ z ≤ 1

for t ≥ t1 = t(u0). Thus, for t ≥ t2 := max{t0, t1} there exist Mi, i = 1, 2 such that

u(x, t) ≤ M1, v(x, t) ≤ M2. (3.6)

Now, denote by
E := [C0

0 (Ω)]2,

and hi : [0,∞) → C0
0 (Ω) as

h1(r) := λu(x, r)(1− u(x, r))G(v(x, r)), h2(r) := v(x, r)(µ− v(x, r)− cu(x, r)).

Thanks to the bound (3.6), we have that supr∈[0,∞) ‖hi(r)‖C0
0 (Ω) < ∞, and by

Lemma 3.2 in [6] we get hat (u(t), v(t)) ∈ Eβ , where Eβ denotes the fractional
power space, β ∈ (0, 1) and given t > 0, there exist Mi(t), i = 1, 2, depending only
on t such that for t ≥ t

‖(u, v)‖Eβ ≤ M1(t)‖(u0, v0)‖E0 + M2(t) sup
r∈[0,∞)

‖(h1(r), h2(r))‖E0 .

Taking q = 1 in Lemma 3.1 of [6], getting Eβ ↪→ [C1
0 (Ω)]2 for β > 1/2. So,

‖(u, v)‖[C1(Ω)]2 ≤ M(t),

and therefore π is well defined and it is dissipative in K.
We will show now the compactness of π. Now, take (u0, v0) ∈ [C1

0 (Ω)]2, and so
u0 ∈ E0 := Lq(Ω) for all q ≥ 1. It is clear that h1(r) ∈ Lq(Ω) for all q ≥ 1 and
‖h1(r)‖q ≤ C. Putting A = −∆, we can write the solution u as

u(t) = e−Atu0 +
∫ t

0

e−A(t−s)h1(s)ds.

Consider the complex interpolation spaces Eβ between E0 = Lq(Ω) and E1 :=
W 2,q(Ω) ∩ W 1,q

0 (Ω). It is known that Eβ = L2β,q(Ω) are the Bessel potential
spaces, see [1]. Hence,

‖u(t)‖β = ‖Aβu(t)‖q ≤ ‖e−Atu0‖β +
∫ t

0

‖e−A(t−s)h1(s)‖βds.

On the other hand, by Theorem 1.4.3 in [10] we have

‖e−Atu0‖β ≤ Cβt−βe−δt‖u0‖q
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for some δ > 0 and Cβ > 0. Then,

‖u(t)‖β ≤ Cβ

[
t−βe−δt‖u0‖q + sup

s∈[0,t]

‖h1(s)‖q

∫ t

0

e−δ(t−s)

(t− s)β
ds

]
,

and so,
‖u(t)‖β ≤ C.

Now, by Theorems 7.63 and 7.57 in [1] we get

L2β,q(Ω) ↪→ W 2β−ε,q(Ω) ↪→ C1(Ω),

for N < (2β − ε− 1)q. It suffices to take q large. Similarly, we can reason with the
equation for v. Hence, π is compact and the proof is completed.

We are now ready to prove our main result.
Proof of Theorem 3.1. Once we have proved that π is dissipative and compact,

we need to build a continuous function P verifying the hypotheses of Theorem 3.2.
It is clear that

S = {(u, v) ∈ X : u = 0 in Ω, or v = 0 in Ω},

and so
ω(S) = {(0, 0), (0, θµ)}.

Now, denote by ϕ1 a positive eigenfunction associated to λ1 and ϕλ a positive
eigenfunction associated m(λ) = λ1(−∆− λG(θµ)), that is

−∆ϕλ − λG(θµ)ϕλ = m(λ)ϕλ in Ω, ϕλ = 0 on ∂Ω.

Recall that m(λ) < 0 for λ > λ0(µ). Define

P (u0, v0) :=
(∫

Ω

ϕλu0dx

)β1
(∫

Ω

ϕ1v0dx

)β2

with β1 and β2 positive constants to be chosen.
First, observe that P can be written as

P (u0, v0) = exp

{
β1 log

(∫

Ω

ϕλu0dx

)
+ β2 log

(∫

Ω

ϕ1v0dx

)}
.

Take (u0, v0) and denote by (z1, z2) = π(u0, v0, t). Then,

P (z1, z2)
P (u0, v0)

= exp

{
β1

[
log

(∫

Ω

ϕλz1

)
− log

(∫

Ω

ϕλu0

)]

+β2

[
log

(∫

Ω

ϕ1z2

)
− log

(∫

Ω

ϕ1v0

)]}
.
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Using that log(f(t))−log(f(0)) =
∫ t

0
f ′(s)/f(s)ds for a positive and regular function

f , we get

P (z1, z2)
P (u0, v0)

= exp

{
β1

∫ t

0

[∫
Ω

ϕλ(∆z1 + λz1(1− z1)G(z2))∫
Ω

ϕλz1(x, s)dx

]
ds+

β2

∫ t

0

[∫
Ω

ϕ1(∆z2 + µz2 − z2
2 − cz1z2)∫

Ω
ϕ1z2(x, s)dx

]
ds

}
.

Using that
∫

Ω

ϕλ∆z1 =
∫

Ω

(−λG(θµ)−m(λ))ϕλz1, and
∫

Ω

ϕ1∆z2 = −λ1

∫

Ω

ϕ1z2,

we get that

P (z1, z2)
P (u0, v0)

= exp

{
β1

∫ t

0

[∫
Ω

ϕλz1(λ(1− z1)G(z2)− λG(θµ)−m(λ))∫
Ω

ϕλz1(x, s)dx

]
ds+

+ β2

∫ t

0

[∫
Ω

ϕ1z2(µ− λ1 − z2 − cz1)∫
Ω

ϕ1z2(x, s)dx

]
ds

}
.

(3.7)
Now, since z1 and z2 are bounded, there exist d1, d2 ∈ IR such that

λ(1− z1)G(z2)− λG(θµ)−m(λ) ≥ d1, µ− λ1 − z2 − cz1 ≥ d2,

hence
P (z1, z2)
P (u0, v0)

≥ exp {(β1d1 + β2d2)t} ,

and so a(t, (u, v)) > 0 for some t.
It remains to show that a(t, (u, v)) > 1 for some t > 0 if (u, v) ∈ ω(S). Take

(u, v) ∈ ω(S) and (u0, v0) → (u, v). We distinguish two cases:
Case 1: (u, v) = (0, θµ). Observe that if (u0, v0) is near to (0, θµ), then the solution
(z1(x, t), z2(x, t)) is near to (0, θµ) for t ∈ [0, 1] for instance, because (0, θµ) is the
solution of (1.2) with initial data (0, θµ). Taking into account that multiplying the
equation of θµ by ϕ1 we get,

∫

Ω

ϕ1θµ(µ− λ1 − θµ) = 0,

we conclude that for all s ∈ [0, 1]
∫
Ω

ϕ1z2(µ− λ1 − z2 − cz1)∫
Ω

ϕ1z2(x, s)dx
→

∫
Ω

ϕ1θµ(µ− λ1 − θµ)∫
Ω

ϕ1θµdx
= 0, as (u0, v0) → (0, θµ).

Moreover, since (z1, z2) → (0, θµ) as (u0, v0) → (0, θµ) and m(λ) < 0, for all ε > 0
small enough we get

λ(1− z1)G(z2)− λG(θµ)−m(λ) ≥ −ε−m(λ) > 0,
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and so, using (3.7)

a(1, (0, θµ)) ≥ exp(β1(−ε−m(λ))) > 1.

Case 2: (u, v) = (0, 0). In this case, if (u0, v0) → (0, 0) then (z1, z2) → (0, 0). Then,
there exists d ∈ IR such that

λ(1− z1)G(z2)− λG(θµ)−m(λ) ≥ d−m(λ), µ− λ1 − z2 − cz1 ≥ µ− λ1

2
> 0,

and so,

a(1, (0, 0)) ≥ exp{β1(d−m(λ)) + β2(
µ− λ1

2
)} > 0

taking β2 large enough.
This proves the claim and completes the proof.

4 Concluding remarks

We have framed a simple model to study the difficulties that appear when the
proliferation of EC only occurs when the TAF level reaches some threshold. We
can summarize the behavior of the solutions of this model in the following manner.

Fix λ > 0, i.e. the maximum mitotic rate of EC. We can calculate µ0 such that
λ0(µ0) = λ; it results λ1 < µ∗ < µ0 (see Figure 1). Then:

1. If µ ≤ λ1, the growth rate of TAF is small. The consumption of TAF by EC
and the decay of chemical lead the system to solution v = 0 and so u = 0 also.
There is no angiogenesis.

2. If λ1 < µ < µ0, then while TAF remains it is not sufficiently large for the pro-
liferation of EC. The system tends to (0, θµ). Again, there is no angiogenesis.

3. If µ > µ0, the system is permanent, i.e., the solutions of the system maintain
a distance from zero. In this case, the angiogenesis occurs.

Moreover, by Proposition 2.1 we know the behaviour of µ0 with respect to λ. In
particular, if λ increases to +∞, then µ0 → µ∗; while if λ decreases to zero, then
µ0 → +∞.
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