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Abstract

In this work we consider positive solutions to cooperative elliptic
systems of the form −∆u = λu−u2 + buv, −∆v = µv−v2 + cuv in a
bounded smooth domain Ω ⊂ RN (λ, µ ∈ R, b, c > 0) which blow up
on the boundary ∂Ω, that is u(x), v(x) → +∞ as dist(x, ∂Ω) → 0.
We show existence and nonexistence of solutions, and give sufficient
conditions for uniqueness. We also provide an exact estimate of the
behaviour of the solutions near the boundary in terms of dist(x, ∂Ω).
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1 Introduction

Boundary blow up elliptic problems have been widely treated in the literature.
They generally take the form

{

−∆u = f(x, u) in Ω
u = +∞ on ∂Ω ,

where the boundary condition is to be understood as u(x) → +∞ as d(x) :=
dist (x, ∂Ω) → 0. Their history begins with works of Bieberbach [2], Keller [15]
and Osserman [21]. Recently they have received a great deal of attention, for
instance in [1], [5], [6], [11] or [20] (see the list of references in [11]).

As a particular example consider the “logistic” equation
{

−∆u = λ(x)u− a(x)up in Ω
u = +∞ on ∂Ω , (1.1)

where Ω is a C2 bounded domain, p > 1 and λ, a are Hölder continuous functions
with a ≥ 0. This problem arises in population dynamics, where the equation

{

−∆u = λu− a(x)up in Ω0

u = 0 on ∂Ω0 , (1.2)

is considered, being now λ ∈ R, Ω0 a C2 bounded domain and a is assumed to
verify a > 0 in Ω ⊂ Ω ⊂ Ω0, a = 0 in Ω0 \ Ω. In this case, it is shown in [9], [10]
and [17] that problem (1.1) determines the asymptotic profile of the solutions to
(1.2) in Ω.

This kind of phenomenology has been studied recently for Lotka–Volterra
systems of competitive type in [7], [8], [18] and predator-prey type in [3]. However
little effort has been directed to the study of large solutions to systems (see [12]
for an example with infinitely many solutions).

Our aim in this paper is to analyze positive large solutions to cooperative
Lotka–Volterra systems of the form







−∆u = λu− u2 + buv in Ω
−∆v = µv − v2 + cuv in Ω

u = v = +∞ on ∂Ω ,
(1.3)

where Ω is a C2 bounded domain, λ, µ ∈ R and b, c > 0. By a solution to
(1.3) we mean a pair (u, v) ∈ C2(Ω)2 such that u(x), v(x) → +∞ as d(x) → 0.
This system has been treated for instance in [4], [16] and [19] in the case of
homogeneous Dirichlet boundary conditions. It is clear from the results in these
works that the size of bc is determinant in the issues of existence of solutions.
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Our first result reveals that this is indeed the situation when dealing with
problem (1.3), and also provides with exact asymptotic estimates for the solutions
near the boundary. Notice that the relative position of λ and µ with respect to
certain principal eigenvalues involving the semitrivial solutions is irrelevant when
the boundary conditions are not homogeneous, unlike the case with homogeneous
boundary conditions where it is known to play an essential rôle in existence, [4],
[16], [19].

Theorem 1.1 Let λ, µ ∈ R and b, c > 0. Then if bc ≥ 1, problem (1.3) has
no positive solutions, while if bc < 1, there exists at least a positive solution.
Moreover, all positive solutions (u, v) verify

lim
x→x0

d(x)2u(x) = 6
b + 1
1− bc

, lim
x→x0

d(x)2v(x) = 6
c + 1
1− bc

,

uniformly for x0 ∈ ∂Ω.

It is of course of interest to determine the number of positive solutions to (1.3).
It turns out that this is a fairly complicated matter even with finite boundary
conditions. So we restrict ourselves to give some necessary conditions which imply
uniqueness, as in [4] and [16].

Theorem 1.2 Assume that

sup
Ω

(u
v

)

sup
Ω

(v
u

)

≤ 1
bc

(1.4)

for every positive solution (u, v) to (1.3). Then (1.3) has a unique positive solu-
tion.

Condition (1.4) can be somewhat clarified in terms of the data of the problem.
If we denote by θλ the unique positive solution to (1.1) with a(x) ≡ 1 and p = 2
(see Lemma 2.1 in §2), we obtain the following:

Corollary 1.1 Assume λ ≥ µ and

sup
Ω

(

θλ

θµ

)2

≤ 1
bc

. (1.5)

Then problem (1.3) has a unique positive solution. In particular, if λ = µ and
bc < 1, then problem (1.3) always has a unique positive solution.
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It is worthy of mention that the quotient θλ/θµ is bounded in Ω, thanks to
Lemma 2.1 in Section 2, and thus the supremum in (1.5) is always finite.

Alongside with problem (1.3), we briefly treat the case in which one of the
boundary conditions is finite, say







−∆u = λu− u2 + buv in Ω
−∆v = µv − v2 + cuv in Ω

u = +∞, v = γ on ∂Ω ,
(1.6)

where now γ ≥ 0. By a solution we mean a pair (u, v) ∈ C2(Ω)2, with v ∈ C(Ω)
and u(x) → +∞ as d(x) → 0, v(x) = γ on ∂Ω. With regard to this problem we
prove the following nonexistence result.

Theorem 1.3 Let λ, µ ∈ R and b, c > 0. Then if γ > 0, problem (1.6) has no
positive solutions. If γ = 0, then there exists c0 ≥ 0 (independent of λ, µ and b),
such that problem (1.6) has no positive solutions if c > c0.

Remark 1.1 a) Notice that solutions to (1.3) are always supersolutions to (1.6),
while (0, 0) is a subsolution. Theorem 1.3 then reveals that the method of sub
and supersolutions is not applicable in this setting (compare with Lemma 4 in
[11]).

b) The existence of solutions to (1.6) with γ = 0 and c small leads to the
study of a logistic problem involving a weight that blows up on the boundary
with a critical growth (see Section 9 in [18] and Section 3.2 in [7] for a similar
situation). The study of this kind of problems is far from obvious as the existing
literature proves (cf. [14]), and will be treated elsewhere.

An outline of the paper is as follows: in Section 2 we recall some known
results which will be needed later, which cover the logistic equation (1.1) and
the cooperative system with finite boundary conditions. Section 3 is devoted to
the existence and nonexistence of solutions to (1.3), while in §4 we analyze the
boundary behaviour and uniqueness of positive solutions. Finally, Section 5 deals
with nonexistence of solutions to problem (1.6). Our main tool in the paper is
the method of sub and supersolutions, both for single equations and cooperative
systems (cf. [22]).

2 Preliminaries

In this section we collect some preliminary results which are needed to study the
positive solutions to (1.3). The first result concerns the logistic equation with
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blow up on the boundary:
{

−∆u = λ(x)u− u2 in Ω
u = +∞ on ∂Ω . (2.7)

The following Lemma is a consequence of the results in a number of works, for
instance [1], [5], [6], [11], [20], to mention but a few (see the reference list in [11]).

Lemma 2.1 Let λ ∈ Cα(Ω). Then problem (2.7) has a unique positive solution
θλ. Moreover, θλ is the limit in C2

loc(Ω) of the increasing family {θλ,n}, unique
solutions to

{

−∆u = λ(x)u− u2 in Ω
u = n on ∂Ω .

In addition,
lim

x→x0
d(x)2θλ(x) = 6 ,

uniformly for x0 ∈ ∂Ω.

The following fundamental result is an adaptation of Lemma 3.2 in [19] to
the case of nonhomogeneous boundary conditions. We include the proof for the
reader’s convenience.

Lemma 2.2 Let (u, v) ∈ C2(Ω)2 be a positive solution to the system






−∆u = σu− u2 + buv in Ω
−∆v = σv − v2 + cuv in Ω

u = Kγ, v = γ on ∂Ω ,
(2.8)

where σ ∈ R, γ ≥ 0 and K = (b + 1)/(c + 1). Then u = Kv. In particular, v is
a positive solution to the equation

{

−∆v = σv −K ′v2 in Ω
v = γ on ∂Ω ,

with K ′ = (1− bc)/(c + 1). Moreover, if bc < 1, then (2.8) has a unique positive
solution, given by

(

b + 1
1− bc

θσ,γK′ ,
c + 1
1− bc

θσ,γK′

)

.

Proof:Let w = (b + 1)v − (c + 1)u ∈ C2(Ω), w = 0 on ∂Ω. A straightforward
calculation shows that −∆w + (u + v − σ)w = 0. On the other hand, we deduce
from the first equation in (2.8) that λ1(−∆−σ+u−bv) > 0, where λ1(−∆+m(x))
stands for the first eigenvalue of −∆ + m(x) in Ω. Thus we deduce from the
monotonicity of this eigenvalue with respect to the weight that λ1(−∆− σ + u +
v) > 0. Hence the maximum principle implies w ≡ 0. The remaining assertions
in the Lemma are immediate. �
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3 Existence and nonexistence

We are undertaking in this section the questions of existence and nonexistence
of solutions to problem (1.3). The following Lemma contains the first part of
Theorem 1.1.

Lemma 3.1 Let λ, µ ∈ R, b, c > 0. If bc ≥ 1, then system (1.3) has no positive
solution, while if bc < 1, then there exists at least a positive solution.

Proof:Assume bc ≥ 1, and let (u, v) be a positive solution to (1.3). For δ > 0
fixed, let Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, and take γ > 0 so that

u ≥ Kγ, v ≥ γ on ∂Ωδ .

With this choice, and setting σ = min{λ, µ, 0}, it follows that (u, v) is a superso-
lution to 





−∆u = σu− u2 + buv in Ωδ

−∆v = σv − v2 + cuv in Ωδ

u = Kγ, v = γ on ∂Ωδ ,
(3.9)

while (0, 0) is a subsolution. Thus (3.9) has a solution (uγ, vγ) such that 0 ≤
uγ ≤ u, 0 ≤ vγ ≤ v in Ωδ. On the other hand, by Lemma 2.2, we have uγ = Kvγ,
where K is given in that Lemma, and vγ is a positive solution to

{

−∆v = σv −K ′v2 in Ωδ

v = γ on ∂Ωδ ,

with K ′ ≤ 0 also defined in Lemma 2.2. Then, vγ is a supersolution to the linear
problem

{

−∆v = σv in Ωδ

v = γ on ∂Ωδ ,

while the zero function is a subsolution. Notice that this problem has a unique
solution since σ ≤ 0. Thus vγ ≥ γφδ, where φδ is the unique solution to

{

−∆v = σv in Ωδ

v = 1 on ∂Ωδ , (3.10)

(observe that 0 < φδ ≤ 1 in Ωδ). Now letting δ → 0, we have that φδ → φ, where
φ is the solution to (3.10) in Ω, and we arrive at u ≥ Kγφ, v ≥ γφ in Ω. Letting
γ → +∞ we reach a contradiction, which shows that no solution exists in this
case.
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Now consider the opposite case bc < 1. For n ∈ N consider the problem:






−∆u = λu− u2 + buv in Ω
−∆v = µv − v2 + cuv in Ω

u = Kn, v = n on ∂Ω .
(3.11)

For n = n0 fixed, this problem has at least a solution (un, vn), since (0, 0) is a
subsolution and (M,N), is a supersolution, where M, N > 0 are large constants
such that M ≥ max{λ + bN, Kn0}, N ≥ max{µ + cM, n0}. Now consider
n = n0 + 1. We take (un, vn) as subsolution and (M, N) as supersolution and
obtain a solution to (3.11) with n = n0 +1. Proceeding in this way, we construct
an increasing sequence of solutions (un, vn).

Let us see that this sequence is locally bounded. Indeed, if we let σ =
max{λ, µ}, it follows that (un, vn) is a subsolution to







−∆u = σu− u2 + buv in Ω
−∆v = σv − v2 + cuv in Ω

u = Kn, v = n on ∂Ω ,
(3.12)

while large constants (M, N) are again a supersolution. On the other hand,
Lemma 2.2 implies that (3.12) has a unique solution

(

b + 1
1− bc

θσ,K′n,
c + 1
1− bc

θσ,K′n

)

.

It follows from the preceding discussion and Lemma 2.1 that

un ≤
b + 1
1− bc

θσ,K′n ≤
b + 1
1− bc

θσ

vn ≤
c + 1
1− bc

θσ,K′n ≤
c + 1
1− bc

θσ .

Thus a standard bootstrapping argument gives that un → u, vn → v in C2
loc(Ω),

where (u, v) is a solution to (1.3). This completes the proof of the Lemma. �

4 Boundary behaviour and uniqueness

We are now performing an analysis of the behaviour of the solutions near ∂Ω in
terms of the distance function d(x) = dist (x, ∂Ω). We remark that if Ω is C2

then there exists δ0 > 0 such that d(x) is C2 in 0 ≤ d(x) ≤ δ0, and |∇d(x)| = 1
(cf. Lemma 14.16 in [13]).
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We begin by constructing suitable sub and supersolutions to (1.3) near ∂Ω,
in the spirit of [5] and [6]. We remark that the construction of the subsolutions
is much more delicate than that of the supersolutions.

Lemma 4.1 Assume bc < 1. Let A = 6(b + 1)/(1− bc), B = 6(c + 1)/(1− bc),
c < η < 1/b. Then for every small ε > 0, there exist 0 < δ̄ ≤ δ0 and t0 > 0 such
that for 0 < δ < δ̄ and t ≥ t0 the functions

ū(x) = (A + ε)(d(x)− δ)−2 + Kt, v̄(x) = (B + ηε)(d(x)− δ)−2 + t

are supersolutions to (1.3) in δ < d(x) < δ̄. In the same way, for every small ε,
there exist δ̄ and t0 > 0 such that for 0 < δ < δ̄, the functions

u(x) = (A− ε)(d(x) + δ)−2 −Kt0, v(x) = (B − ηε)(d(x) + δ)−2 − t0

are subsolutions to (1.3) in 0 < d(x) < δ̄ and u(x), v(x) ≤ 0 in {x ∈ Ω : d(x) =
δ̄}.

Proof:A somewhat lengthy calculation shows that whenever δ < d(x) < δ0,

(d− δ)4(−∆ū− λū + ū2 − būv̄)

= ε(A + ε)(1− bη) + 2(A + ε)(d− δ)∆d

+(d− δ)2{[(12K + 6B−1ε + K(1− bη)ε]t− λ(A + ε)}

+(d− δ)4Kt(6B−1t− λ) .

Thus for ε > 0 fixed we can find t0 > 0 such that the last two expressions are
positive if t ≥ t0. Hence

(d− δ)4(−∆ū− λū + ū2 − būv̄)

≥ (A + ε)[(1− bη)ε− 2δ̄ supd≤δ0 |∆d|] > 0 ,

provided δ̄ = δ̄(ε) is chosen small enough. A similar calculation shows that
−∆v̄ − µv̄ + v̄2 − cūv̄ > 0 if δ < d(x) < δ̄.

As for the subsolution, proceeding as before, we have that

(d + δ)4(−∆u− λu + u2 − buv)

= −ε(A− ε)(1− bη) + 2(A− ε)(d + δ)∆d− λ(A− ε)(d + δ)2

+(d + δ)4t
(

6KB−1t + λK + (d + δ)−2(−12K + ε6B−1 + εK(1− bη))
)

.
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The last expression between brackets is negative in 0 < d(x) < δ̄ provided that

t ≤ (δ + δ̄)−2(12K − ε6B−1 − εK(1− bη))− λK
6KB−1 .

Thus, choosing a value of t verifying this inequality and then taking δ̄ small
enough, it follows that −∆u− λu + u2 − buv < 0 if 0 < d(x) < δ < δ̄.

On the other hand, if we further restrict t to verify

t ≥ (A− ε)(δ + δ̄)−2

K
,

we achieve ū ≤ 0 if d(x) = δ̄. It is then sufficient to have

(A− ε)(δ + δ̄)−2

K
≤ (δ + δ̄)−2(12K − ε6B−1 − εK(1− bη))− λK

6KB−1 ,

which is certainly possible if ε and δ̄ are small.
A similar calculation for v shows that t must be taken to verify as well:

(B − ηε)(δ + δ̄)−2 ≤ t ≤ (δ + δ̄)−2(12 + O(ε))− µ
6B−1 ,

which is also possible. A convenient value for t is t = 3B(δ+ δ̄)−2/2. This finishes
the proof of the Lemma. �

Next we use the sub and supersolutions given by Lemma 4.1 to ascertain
the exact behaviour of the solutions near the boundary. Notice that this result,
together with Lemma 3.1 completes the proof of Theorem 1.1.

Lemma 4.2 Assume bc < 1. If (u, v) is a positive solution to (1.3), then

lim
x→x0

d(x)2u(x) = 6
b + 1
1− bc

, lim
x→x0

d(x)2v(x) = 6
c + 1
1− bc

,

uniformly for x0 ∈ ∂Ω. In particular, if (u1, v1) and (u2, v2) are two positive
solutions to (1.3), then

lim
d(x)→0

u1(x)
u2(x)

= lim
d(x)→0

v1(x)
v2(x)

= 1 . (4.13)

Proof:Let (u, v) be a positive solution to (1.3), and fix ε > 0 small. Define Ωδ =
{x ∈ Ω : δ < d(x) < δ̄}, where δ̄ is given in Lemma 4.1, and set σ = max{λ, µ}.
We now choose an arbitrary function v0 such that

u ≤ Kv0, v ≤ v0 on ∂Ωδ .
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Notice that ∂Ωδ has a component not depending on δ, given by d(x) = δ̄. Thus
we can fix v0 on d(x) = δ̄. It turns out that (u, v) is a subsolution to the problem







−∆u = σu− u2 + buv in Ωδ

−∆v = σv − v2 + cuv in Ωδ

u = Kv0, v = v0 on ∂Ωδ ,
(4.14)

and we get as before u ≤ uδ, v ≤ vδ, where (uδ, vδ) is the unique positive solution
to (4.14).

On the other hand, we can choose t large enough so that ū ≥ Kv0, v̄ ≥ v0 on
d(x) = δ̄, where (ū, v̄) is the supersolution given by Lemma 4.1. It follows that
ū ≥ uδ, v̄ ≥ vδ in Ωδ (notice that ū = v̄ = +∞ in d(x) = δ, but this problem can
be easily overcome by considering (4.14) in Ωτ for τ > δ and then letting τ → δ).
To summarize, we obtain

u(x) ≤ (A + ε)(d(x)− δ)−2 + Kt, v(x) ≤ (B + ηε)(d(x)− δ)−2 + t

if δ < d(x) < δ̄. Since t is independent of δ, we can let δ → 0, d(x) → 0 and
ε → 0 to arrive at

lim sup
d(x)→0

d(x)2u(x) ≤ A, lim sup
d(x)→0

d(x)2v(x) ≤ B .

To get the lower estimate we proceed in an analogue fashion, taking as subsolution
(u0, v0), given by u0 = max{0, u}, v0 = max{0, v}, with the value of t0 provided
by Lemma 4.1.

It is clear from the above arguments that the limits hold uniformly. Estimate
(4.13) is an easy consequence of the preceding discussion. This proves the Lemma.
�

We now proceed to the proof of Theorem 1.2, following the ideas in [16] (see
also [4]).

Proof of Theorem 1.2: Let (u1, v1), (u2, v2) be two positive solutions to (1.3).
Then, in virtue of (4.13), for ε > 0 fixed there exists δ0 such that for every
δ < δ0,

u1 ≤ (1 + ε)u2, v1 ≤ (1 + ηε)v2 in Ω \ Ωδ , (4.15)

where Ωδ = {x ∈ Ω : d(x) > δ}, and η > 0 is fixed, to be chosen below.
We claim that, with a convenient choice of η, and for t ≥ ε, the functions

(ut, vt) = ((1 + t)u2, (1 + ηt)v2)

10



are supersolutions to the problem






−∆u = λu− u2 + buv in Ωδ

−∆v = µv − v2 + cuv in Ωδ

u = u1, v = v1 on ∂Ωδ .

Indeed a straightforward calculation shows that this is the case provided that
u2 ≥ bηv2 and ηv2 ≥ cu2. Thus it suffices to take η so that

c
u2

v2
≤ η ≤ 1

b
u2

v2
,

which is always possible on account of (1.4). Since ut ≥ u1, vt ≥ v1 for t large, it
follows from the sweeping principle in [16] that

(1 + ε)u2 ≥ u1, (1 + ηε)v2 ≥ v1 in Ωδ .

Hence (4.15) implies that this inequality is valid throughout Ω. Letting ε go to
zero we arrive at u2 ≥ u1, v2 ≥ v1, and the symmetric argument proves that
u2 = u1, v2 = v1, giving the uniqueness. �

Proof of Corollary 1.1: Let us prove that condition (1.5) implies (1.4). For this
sake, we are estimating all possible solutions (u, v) to (1.3) from above and from
below.

Assume λ ≥ µ, and let (u, v) be a positive solution to (1.3). Notice that, as
a consequence of Lemma 4.2, we have

lim
d(x)→0

u(x)
v(x)

= K . (4.16)

Define w = u/(Kv), and notice that extending w by 1 on ∂Ω, we have w ∈
C2(Ω) ∩ C(Ω). It is not hard to see that −v∆w − 2∇v∇w = (λ − µ)vw + (b +
1)v2w(1− w) in Ω. Assume ˜Ω = {x ∈ Ω : w(x) < 1} is nonempty. Then in ˜Ω it
holds −v∆w−2∇v∇w ≥ 0, and the maximum principle implies w ≥ inf∂eΩ w = 1
in ˜Ω (notice that the coefficients of the operator are locally bounded, which is all
we need for this conclusion). This contradiction proves w ≥ 1, that is u ≥ Kv.
Hence from (1.3), we obtain

−∆u ≤ λu− 1− bc
b + 1

u2 in Ω .

Thus (1 − bc)/(b + 1)u is a subsolution to problem (2.7). Also, Mθλ is a super-
solution for M > 1, and Mθλ ≥ (1− bc)/(b + 1)u in Ω for M large (observe that
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θλ/u is bounded in Ω thanks to Lemmas 2.1 and 4.2). Thus Lemma 4 in [11], the
uniqueness of solutions to (2.7) and a similar argument for v lead to

u ≤ b + 1
1− bc

θλ, v ≥ c + 1
1− bc

θµ in Ω .

Since u ≥ Kv, we also have

u ≥ b + 1
1− bc

θµ, v ≤ c + 1
1− bc

θλ in Ω .

We finally combine this two inequalities to get

sup
Ω

(u
v

)

sup
Ω

(v
u

)

≤ sup
Ω

(

θλ

θµ

)2

,

and the proof of the corollary is finished with the aid of Theorem 1.2. �

Remark 4.1 An alternative proof of the uniqueness can be given when λ = µ:
indeed a similar argument as the one used in the proof of Corollary 1.1 gives
u ≤ Kv, hence u = Kv. It follows from Lemma 2.2 that u = (b + 1)/(1− bc)θλ,
v = (c + 1)/(1− bc)θµ, which gives the uniqueness.

5 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. That is, we are showing
nonexistence of positive solutions to







−∆u = λu− u2 + buv in Ω
−∆v = µv − v2 + cuv in Ω

u = +∞, v = γ on ∂Ω ,
(1.6)

when γ > 0 or γ = 0 and c is large enough. The nonexistence proof for γ > 0 is
a consequence of the following general Lemma.

Lemma 5.1 Let Ω ⊂ RN be a bounded domain, f ∈ Cα(Ω) such that f(x) ∼
C0d(x)−β as x → x0, for some x0 ∈ ∂Ω, where C0 > 0 and β ≥ 2. Then for
every solution u ∈ C2(Ω) to −∆u = f(x) which is bounded from below, we have

lim
x→x0

u(x) = +∞ .
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Proof:Assume γ = lim infx→x0 u(x) is finite. Then for every ε > 0, there exists a
neighbourhood U of x0 (relative to Ω) such that u ≥ γ − ε in U . By diminishing
this neighbourhood if necessary, we can achieve f(x) ≥ (C0−ε)d(x)−β in U . Take
a sequence xn → x0 such that u(xn) → γ. If we denote by Bn the ball of center
xn and radius d(xn), we have Bn ⊂ U for n large, so that u verifies

{

−∆u ≥ (C0 − ε)2−βd(xn)−β in Bn

u ≥ γ − ε on ∂Bn ,

since d(x) ≤ 2d(xn) in Bn. It follows from the maximum principle and a suitable
rescaling that

u(x) ≥ γ − ε + (C0 − ε)2−βd(xn)2−βv(d(xn)−1(x− xn)) , (5.17)

where v is the unique solution to
{

−∆v = 1 in B
v = 0 on ∂B ,

and B is the unit ball (notice that v > 0 in B). Setting x = xn in (5.17) and
making n → +∞ we directly arrive at a contradiction if β > 2. When β = 2, we
also reach a contradiction by letting n → +∞ and then ε → 0. �

Remark 5.1 a) Lemma 5.1 admits obvious generalizations, for instance to the
case C0 < 0 and u bounded from above.

b) In the complementary case 0 < β < 2, bounded solutions to −∆u = f(x)
may exist, as shown in §6.5 of [13].

Proof of Theorem 1.3: Assume γ > 0, and let (u, v) be a positive solution to
(1.6). Then, since v ∈ C(Ω), it follows that u is a positive solution to

{

−∆u = (λ + bv)u− u2 in Ω
u = +∞ on ∂Ω.

and from Lemma 2.1 we obtain u = θλ+bv, u(x) ∼ 6 d(x)−2 as d(x) → 0. As
a consequence, letting f := µv − v2 + cuv, we have f(x) ∼ 6 cγ d(x)−2 as
d(x) → 0, and −∆v = f(x). Thus Lemma 5.1 implies limx→x0 v(x) = +∞, for
every x0 ∈ ∂Ω, which contradicts v = γ on ∂Ω.

Now assume γ = 0. Lemma 5.1 can not be applied, since f(x) does not behave
like d(x)−2. Assume for a contradiction that (u, v) is a positive solution to (1.6).
Then u ∼ 6 d(x)−2 as d(x) → 0. Proceeding as in the first part of the proof,

13



together with the reasoning in Lemma 5.1, it follows that in a neighbourhood U
of every point x0 ∈ ∂Ω we can achieve







−∆v ≥ (6c− ε)
4

d(xn)−2v − v2 in Bn

v ≥ 0 on ∂Bn ,

where Bn is the ball of center xn and radius d(xn), and xn → x0 is an arbitrary
sequence. If we define

v̄(x) = d(xn)2v(xn + d(xn)x) , (5.18)

we have






−∆v̄ ≥ (6c− ε)
4

v̄ − v̄2 in B

v̄ ≥ 0 on ∂B ,

B standing again for the unit ball. In particular, if 6c− ε > 4λ1, where λ1 is the
first eigenvalue of −∆ in B, then v̄ ≥ w, the unique positive solution to







−∆w =
(6c− ε)

4
w − w2 in B

w = 0 on ∂B .

In conclusion, setting x = 0 in (5.18), we arrive at v(xn) ≥ d(xn)−2w(0), and we
reach again a contradiction letting n → +∞. This finishes the proof. �

Remark 5.2 Notice in particular that c0 ≤ 2λ1/3.
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