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Abstract. In this work we examine a logistic equation with local and non-
local reaction terms both for time dependent and steady-state problems.

Mainly, we use bifurcation and monotonicity methods to prove the existence

of positive solutions for the steady-state equation and sub-supersolution
method for the long time behavior for the time dependent problem. The

results depend strongly on the size and sign of the parameters on the local

and non-local terms.

1. Introduction

In this paper we study the non-local parabolic problem

(1.1)


ut −∆u = u(λ+ b

∫
Ω

urdx− u) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) ≥ 0 in Ω,
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and its corresponding steady-state problem

(1.2)

 −∆u = u(λ+ b

∫
Ω

urdx− u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ IRN is a bounded and smooth domain, λ, b ∈ IR, r > 0 and u0 is a

regular positive function. In (1.1), u(x, t) represents the density of a species in

time t > 0 and at the point x ∈ Ω, a habitat surrounded by inhospitable areas.

Here, λ is the growth rate of the species, the term −u describes the limiting

effect of crowding in the population, that is, the competition of the individuals

of the species for the resources of the environment. In (1.1) we have included

a non-local term with different meanings. When b < 0 we are assuming that

this limiting effects not only depends on the value of u in the point x, but the

value of u in the whole domain. However, when b > 0 the individuals cooperate

globally to survive. When b = 0, (1.1) is the classical logistic equation.

Observe that when b > 0, the problem (1.1) can be regarded as a superlin-

ear indefinite problem with nonlocal superlinear term, similar to the classical

superlinear problem

(1.3)


ut −∆u = u(λ+ ba+ur − a−ur) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) ≥ 0 in Ω,

where a ∈ C1(Ω), a+ := max{a(x), 0}, a− := max{−a(x), 0}, studied in detail in

[14], [15], [17] and references therein. This class of local problems has been con-

sidered with other boundary conditions, for example, non-homogeneous Dirichlet

boundary conditions, see [9] and [18], where multiplicity results are shown. We

do not consider the non-local counterpart in this paper.

The introduction of nonlocal terms, as much in the equation as in the bound-

ary conditions, has shown to be useful modelling a number of processes in dif-

ferent fields such as the equations of the Mathematical Physics, the mechanic of

deformable solids, the systems of the Mathematical Biology and many others.

In population dynamics, it is used regularly; see, for instance, [8], [7] and [11].

We summarize our main results. In order to show them, denote by λ1 the

principal eigenvalue of the laplacian subject to homogeneous Dirichlet bound-

ary conditions and by ϕ1 the positive eigenfunction associated to λ1 such that

‖ϕ1‖∞ = 1.

Regarding the parabolic problem (1.1), first we prove the existence and

uniqueness of positive local in time solution. Then, we analyze the long time

behaviour of the solution. Among the main findings in this work, we mention:

(1) If b < 0 the solution of (1.1) is global in time and bounded. Moreover,

the solution goes to zero as λ < λ1.

https://www.researchgate.net/publication/226882702_Local_vs_non-local_interactions_in_population_dynamics?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/251473166_Multiplicity_of_positive_solutions_to_boundary_blow-up_elliptic_problems_with_sign-changing_weights?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/280181520_A_Nonlocal_Problem_from_Conservation_Biology?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/243115815_Complete_and_energy_blow-up_in_indefinite_superlinear_parabolic_problems?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/267109131_High_multiplicity_and_complexity_of_the_bifurcation_diagrams_of_large_solutions_for_a_class_of_superlinear_indefinite_problems?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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(2) Assume now b > 0.

(a) The trivial solution is locally exponentially stable for λ < λ1, that

is, for small u0 the solution goes to zero if t→∞.

(b) If r < 1 or r = 1 and b small, the solution of (1.1) is global in time

and bounded. Moreover, the solution goes to zero if λ is small.

(c) If r > 1 or r = 1 and b large, the solution of (1.1) blows up in finite

time for λ or u0 large.

We refer to Section 6 for more specific results. We would like to remark that

similar results for related problems have been obtained in [21], [22] and [19] and

references therein for the problem

ut −∆u =

∫
Ω

ur(x, t)dx− kup,

for r, p ≥ 1 and k ≥ 0.

Now we present the results concerning to (1.2). The case b < 0 and r = 1

was analyzed in [23], showing the existence and uniqueness of positive solution

of (1.2). We improve these results considering all the cases for r > 0. The case

b = 0 (the pure local model) is well-known, see Proposition 2.1. The equation

−∆u = u(λ+ b

∫
Ω

udx+ u)

with b < 0 was analyzed in [8].

In order to prove our results, we use mainly the bifurcation method, used

previously in this context by [1], [5] and [12].

First, we show that from the trivial solution u = 0 emanates at λ = λ1 an

unbounded continuum of positive solutions of (1.2), and we determine the local

and global behaviour of this continuum. Hence, when b ≤ 0 the behaviour does

not depend on r and we can show (see Figure 1 a)):

Theorem 1.1. Assume b ≤ 0. Then there exists a positive solution if and

only if λ > λ1. Moreover, it is unique if it exists, and it will be denoted by ωλ,b.

Furthermore,

lim
b→−∞

‖ωλ,b‖∞ = 0.

When b > 0 the behaviour depends on the size of r. When r < 1 we obtain

(see Figure 1 c)):

Theorem 1.2. Assume b > 0 and r < 1. There exists λ∗ < λ1 such that

(1.2) possesses at least one positive solution if and only if λ ≥ λ∗. Moreover,

(1.4) lim
b→0+

λ∗(b) = λ1 and lim
b→+∞

λ∗(b) = −∞.

This behaviour is completely different to the case r > 1 (see Figure 1 d)):

https://www.researchgate.net/publication/268245982_Existence_of_positive_solutions_of_semilinear_elliptic_equations_with_nonlocal_terms?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/46422105_Existence_of_Positive_Solutions_due_to_Non-local_Interactions_in_a_Class_of_Nonlinear_Boundary_Value_Problems?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/226882702_Local_vs_non-local_interactions_in_population_dynamics?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/266840225_Superlinear_Parabolic_Problems_Blow-up_Global_Existence_and_Steady_States?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/258231124_Boundedness_of_global_solutions_of_nonlinear_diffusion_equation_with_localized_reaction_term?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/229609370_Properties_of_Positive_Solutions_for_Non-local_Reaction-Diffusion_Problems?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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a)                                                                                 b)

c)                                                                                d)
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Figure 1. Bifurcation diagrams for equation (1.2) .

Theorem 1.3. Assume b > 0 and r > 1. There exists λ∗ > λ1 such that

(1.2) possesses at least one positive solution if and only if λ ≤ λ∗. Moreover,

(1.5) lim
b→0+

λ∗(b) = +∞ and lim
b→+∞

λ∗(b) = λ1.

Let us remark that, unlike the local case, we do not need to impose any

restriction to r in order to get the a priori bounds. Indeed, if we were considering

the local case

−∆u = u(λ+ bur − u),

then in order to obtain a priori bounds, we need to impose r+1 < (N+2)/(N−2),

see [10].

Finally, in the case r = 1, the behaviour depends of the size of b:

Theorem 1.4. Assume b > 0 and r = 1.

(1) Assume that b < 1/|Ω|. Then, there exists a positive solution for λ > λ1.

(2) Assume that b > 1/
∫

Ω
ϕ1dx. Then, there exists a positive solution if and

only if λ < λ1.

https://www.researchgate.net/publication/243046432_A_Priori_Bounds_for_Positive_Solutions_of_Nonlinear_Elliptic_Equations?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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Here |Ω| stands for the measure of Ω. When b is small, the bifurcation is

similar to the case b ≤ 0 (see Figure 1 a)) whereas when b is large we have

positive solution for λ < λ1 (see Figure 1 b)).

It is evident that there exists a gap in our results for b ∈ (1/|Ω|, 1/
∫

Ω
ϕ1).

In this case, we know that there exists an unbounded continuum of positive

solutions bifurcating from (λ, u) = (λ1, 0), even we know its local bifurcation

direction (see Theorem 2.2), but we are not able to assure the global behaviour of

the continuum. Observe, that this does not occur in the homogeneous Neumann

case. Indeed, in this case λ1 = 0 and ϕ1 = 1. Hence, 1/|Ω| = 1/
∫

Ω
ϕ1 and for

b = 1/|Ω| there exist infinite positive solutions for λ = λ1 = 0.

Observe now Figure 2, where we have represented the different bifurcation

diagrams moving the parameter b. In Figure 2 a) and b) we have drawn the

bifurcation diagrams when b → 0 in the cases r < 1 and r > 1, respectively. In

the cases c) and d) we present the case b→ +∞ for r < 1 and r > 1.

a)                                                                                 b)

c)                                                                                d)

|| || || ||

|| ||
|| ||

Figure 2. Bifurcation diagrams for equation (1.2) moving b.
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The paper is organized as follows. In Section 2 we prove the existence of

an unbounded continuum of positive solutions of (1.2). Section 3 is devoted to

prove the non-existence results and a priori bounds of positive solutions of (1.2).

In Section 4 we show the stability of the solutions in some cases. Section 5 is

dedicated to prove Theorems 1.1, 1.2, 1.3 and 1.4. Finally, in Section 6 we study

the parabolic problem (1.1).

2. Bifurcation results

We are going to prove that from the trivial solution u ≡ 0 an unbounded

continuum of positive solution of (1.2) bifurcates at λ = λ1. For that, we need

to introduce some results.

The first one plays an important role along the paper and it will be used

many times throughout the work. Consider the classical logistic equation

(2.1)

{
−∆u = u(µ− u) in Ω,

u = 0 on ∂Ω,

where µ ∈ IR. In the next result, we summarize the principal well-known results

concerning to (2.1) (see Lemma 7.8 in [6] for (2.2)).

Proposition 2.1. There exists a positive solution of (2.1) if and only if

µ > λ1. Moreover, it is unique if it exists. We denote it by θµ. Furthermore:

(1) The following inequalities hold:

(2.2) (µ− λ1)ϕ1 ≤ θµ ≤ min{µ,K(µ− λ1)}

for some K ≥
∫

Ω
ϕ2

1dx/
∫

Ω
ϕ3

1dx independent of µ.

(2) If u > 0 is a sub-solution of (2.1), then u ≤ θµ.

(3) If u > 0 is a super-solution of (2.1), then θµ ≤ u.

We consider the Banach space X := C0(Ω) and denote Bρ := {u ∈ X :

‖u‖∞ < ρ}. Define

f(u) := u+(λ+ b

∫
Ω

(u+)rdx− u),

and the map

Kλ : X 7→ X; Kλ(u) := u− (−∆)−1(f(u))

where u+ := max{u, 0} and (−∆)−1 is the inverse of the operator −∆ under

homogeneous Dirichlet boundary conditions. Now, it is clear that u is a non-

negative solution of (1.2) if, and only if, u is a zero of the map Kλ.

The main result of this section is:

Theorem 2.2. The value λ = λ1 is the only bifurcation point from the trivial

solution for (1.2). Moreover, there exists a continuum C0 of nonnegative solutions

of (1.2) unbounded in IR×X emanating from (λ1, 0). Furthermore,

https://www.researchgate.net/publication/222700631_On_the_Symbiotic_Lotka-Volterra_Model_with_Diffusion_and_Transport_Effects?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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(1) If b ≤ 0, the direction of bifurcation is supercritical.

(2) Assume b > 0.

(a) If r < 1, the direction of bifurcation is subcritical.

(b) If r > 1, the direction of bifurcation is supercritical.

(c) Assume that r = 1 and denote by

b0 :=

∫
Ω

ϕ3
1dx∫

Ω

ϕ1dx

∫
Ω

ϕ2
1dx

.

If b > b0 (resp. b < b0) the direction of bifurcation is subcritical

(resp. supercritical).

Recall that we say that the direction of bifurcation is subcritical (resp. su-

percritical) if there exists a neighborhood V of (λ1, 0) such that every solution

(λ, u) ∈ V satisfies λ < λ1 (resp. λ > λ1).

In order to prove this result we use the Leray-Schauder degree of Kλ on Bρ
with respect to zero, denoted by deg(Kλ, Bρ), and the index of the isolated zero

u of Kλ, denoted by i(Kλ, u).

Lemma 2.3. If λ < λ1, then i(Kλ, 0) = 1.

Proof. Fix λ < λ1. Define the map

H1 : [0, 1]×X 7→ X; H1(t, u) := (−∆)−1(tf(u)).

We claim that there exists δ > 0 such that

u 6= H1(t, u) for all u ∈ Bδ \ {0}, and t ∈ [0, 1].

Indeed, suppose that there exist sequences un ∈ X\{0} with ‖un‖∞ → 0 and

tn ∈ [0, 1] such that

un = H1(tn, un),

that is

−∆un = tnf(un),

and so un ≥ 0. Define

wn :=
un
‖un‖∞

.

Then,

−∆wn = tnwn(λ+ b

∫
Ω

urndx− un),

and then passing to the limit

−∆w = t0λw,

for some w ≥ 0, ‖w‖∞ = 1, t0 ∈ [0, 1]. Then, t0λ = λ1, a contradiction because

λ < λ1.

https://www.researchgate.net/publication/268245982_Existence_of_positive_solutions_of_semilinear_elliptic_equations_with_nonlocal_terms?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/268245982_Existence_of_positive_solutions_of_semilinear_elliptic_equations_with_nonlocal_terms?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/268245982_Existence_of_positive_solutions_of_semilinear_elliptic_equations_with_nonlocal_terms?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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Taking now ε ∈ (0, δ], the homotopy defined by H1 is admissible and so,

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H1(1, ·), Bε) = deg(I −H1(0, ·), Bε) =

= deg(I,Bε) = 1.

Lemma 2.4. If λ > λ1, then i(Kλ, 0) = 0.

Proof. Fix λ > λ1 and φ ∈ X, φ > 0. First, it is clear that there exists

ε > 0 such that

(2.3) λ− ε > λ1.

We define the map

H2 : [0, 1]×X 7→ X; H2(t, u) := (−∆)−1(f(u) + tφ).

We will show that there exists δ > 0 such that u 6= H2(t, u) for all u ∈ Bδ \ {0},
and t ∈ [0, 1]. Indeed, on the contrary it would exist sequences un ∈ X \ {0}
with ‖un‖∞ → 0 and tn ∈ [0, 1] such that

un = H2(tn, un).

Since tnφ ≥ 0, we have that un > 0 and so

−∆un = un(λ+ b

∫
Ω

urndx− un) + tnφ > un(λ− ε) + tnφ ≥ un(λ− ε),

hence, λ1 ≥ λ− ε, a contradiction with (2.3).

This proves that the homotopy defined by H2 is admissible. Then, if we take

ε ∈ (0, δ] we have

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H2(0, ·), Bε) = deg(I −H2(1, ·), Bε) = 0.

Proof of Theorem 2.2: The fact that λ = λ1 is a bifurcation point follows by

Lemmas 2.3 and 2.4. Moreover, if there exists a sequence (λn, un) of positive

solutions of (1.2) such that ‖un‖∞ → 0, then, with a similar argument to the

used in Lemma 2.3, we can easily conclude that λn → λ1. This proves that λ1

is the only bifurcation point from the trivial solution. Hence, we can assure the

existence of an unbounded continuum of solutions of (1.2), see [13].

Now, we study the bifurcation direction. Assume that b ≤ 0, then

−∆u ≤ λu,

that is, λ ≥ λ1.

Assume now that b > 0, r < 1 and the existence of a sequence (λn, un) of

positive solutions of (1.2) such that λn ≥ λ1 and ‖un‖∞ → 0 as n → ∞. Take

M > 0 such that

1− bM
∫

Ω

ϕ1dx < 0.

https://www.researchgate.net/publication/268245982_Existence_of_positive_solutions_of_semilinear_elliptic_equations_with_nonlocal_terms?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
https://www.researchgate.net/publication/268245982_Existence_of_positive_solutions_of_semilinear_elliptic_equations_with_nonlocal_terms?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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For n large we have that urn > Mun, and then

−∆un ≥ un(λn + bM

∫
Ω

undx− un),

and so un is supersolution of

−∆u = u(λn + bM

∫
Ω

undx− u).

Using Proposition 2.1 and (2.2), we get

un ≥ (λn + bM

∫
Ω

undx− λ1)ϕ1

and in consequence

(1− bM
∫

Ω

ϕ1dx)

∫
Ω

undx ≥ (λn − λ1)

∫
Ω

ϕ1dx,

a contradiction.

Assume now that b > 0, r > 1 and the existence of a sequence (λn, un) of

positive solutions of (1.2) such that λn ≤ λ1 and ‖un‖∞ → 0 as n → ∞. Take

ε > 0 such that

1− bKε|Ω| > 0,

where K is defined in (2.2). For n large we have that urn < εun, and then

−∆un ≤ un(λn + bε

∫
Ω

undx− un),

and so, using again (2.2)

un ≤ (λn + bε

∫
Ω

undx− λ1)K

and in consequence

(1− bKε|Ω|)
∫

Ω

undx ≤ (λn − λ1)K|Ω|,

again a contradiction.

Finally, assume that b > 0 and r = 1. In this case, we apply the Crandall-

Rabinowitz Theorem, [2]. Then, there exist ε > 0 and two regular functions

λ(s), u(s), s ∈ (−ε, ε), such that in a neighborhood of (λ1, 0) the unique positive

solutions of (1.2) are (λ(s), u(s)), s ∈ (0, ε). We can write

u(s) = sϕ1 + s2ϕ2 + o(s2), λ(s) = λ1 + sλ2 + o(s),

where λ2 ∈ IR, ϕ2 ∈ C2(Ω). It is evident that the sign of λ2 determines the

bifurcation direction. Substituting these expansions into (1.2) and identifying

the terms of order one in s yields

−∆ϕ2 − λ1ϕ2 = λ2ϕ1 − ϕ2
1 + bϕ1

∫
Ω

ϕ1dx.

https://www.researchgate.net/publication/221986151_Bifurcation_from_Simple_Eigenvalues?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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Multiplying by ϕ1, we conclude that

λ2 =

∫
Ω

ϕ3
1dx− b

∫
Ω

ϕ2
1dx

∫
Ω

ϕ1dx∫
Ω

ϕ2
1dx

.

This finishes the proof. �

3. A priori bounds and non-existence results of (1.2)

In this section we obtain a priori bounds of the solutions for b > 0 as well as

non-existence results of (1.2).

Proposition 3.1. Assume that b > 0, r < 1. Let (λ, uλ) be a positive

solution of (1.2) such that λ ∈ K ⊂ IR a compact set. Then,

‖uλ‖∞ ≤ C for a constant independent to λ.

Moreover, if

λ ≤ λ :=

(
1

|Ω|br

)1/(r−1)(
1− 1

r

)
,

(1.2) does not possess any positive solution.

Proof. Since uλ is a positive solution of (1.2) we have, using Proposition 2.1,

that

(3.1) uλ ≤ λ+ b

∫
Ω

urλdx.

Using now that ‖u‖r ≤ |Ω|(1−r)/r‖u‖1, we have that

(3.2)

∫
Ω

uλdx− b|Ω|2−r
(∫

Ω

uλdx

)r
≤ λ|Ω|.

From (3.2) we get that if λ ∈ K, then
∫

Ω
uλdx ≤ C, and so by (3.1) we get that

‖uλ‖∞ ≤ C, where by C we denote different positive constants. On the other

hand, the function

(3.3) f(s) := As−Bsq, A,B > 0, 0 < q < 1, s ≥ 0,

has a minimum at s = sm := (A/(qB))1/(q−1) and

f(sm) = Aq/(q−1)

(
1

Bq

)1/(q−1)(
1− 1

q

)
.

Hence, if

λ|Ω| ≤
(

1

b|Ω|2−rr

)1/(r−1)(
1− 1

r

)
then by (3.2), equation (1.2) does not have positive solution.
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Proposition 3.2. Assume that b > 0, r > 1. Let (λ, uλ) be a positive

solution of (1.2) such that λ ∈ K ⊂ IR a compact set. Then,

‖uλ‖∞ ≤ C for a constant independent of λ.

Moreover, if

λ ≥ λ := λ1 + b1/(1−r)
(∫

Ω

ϕ1dx

)r/(1−r)
|Ω|rr/(1−r)(r − 1).

(1.2) does not possess any positive solution.

Proof. Using now the lower bound in Proposition 2.1 we get that

(λ− λ1 + b

∫
Ω

urλdx)ϕ1 ≤ uλ

and then

(λ− λ1 + b

∫
Ω

urλdx)

∫
Ω

ϕ1dx ≤
∫

Ω

uλdx ≤ |Ω|(r−1)/r

(∫
Ω

urλdx

)1/r

,

and hence

(3.4) b

∫
Ω

ϕ1dx

∫
Ω

urλdx− |Ω|(r−1)/r

(∫
Ω

urλdx

)1/r

≤ (λ1 − λ)

∫
Ω

ϕ1dx.

From (3.4) we get that if λ ∈ K, then
∫

Ω
urλ ≤ C, and hence by (3.1), ‖uλ‖∞ ≤ C.

On the other hand, applying again the results of (3.3) with

A = b

∫
Ω

ϕ1, B = |Ω|(r−1)/r, q = 1/r,

we get that if

(λ1 − λ)

∫
Ω

ϕ1dx ≤ b1/(1−r)
(∫

Ω

ϕ1dx

)1/(1−r)

|Ω|rr/(1−r)(1− r)

then by (3.4), equation (1.2) does not have positive solution.

For the case r = 1, the bounds depend on the size of b.

Proposition 3.3. Assume that b > 0, r = 1. Assume that b < 1/|Ω|
or b

∫
Ω
ϕ1dx > 1, then there exists a priori bounds of the solution of (1.2).

Moreover, if b < 1/|Ω| and λ ≤ 0 or b
∫

Ω
ϕ1dx > 1 and λ ≥ λ1, then (1.2) does

not possess positive solution.

Proof. In this case, by (2.2) we get

(3.5) (λ+ b

∫
Ω

udx− λ1)ϕ1 ≤ u ≤ λ+ b

∫
Ω

udx,

and so

(3.6) (1−b|Ω|)
∫

Ω

udx ≤ λ|Ω|,
(
b

∫
Ω

ϕ1dx− 1

)∫
Ω

udx ≤ (λ1−λ)

∫
Ω

ϕ1dx.

From these inequalities we obtain the result.
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4. Stability and uniqueness results

In this section we study the stability of a positive solution u of (1.2) when

b > 0. In order to ascertain its stability we have to calculate the sign of the

principal eigenvalue of the linearized problem around u, that is,

(4.1)

 −∆ξ + (2u− λ− b
∫

Ω

urdx)ξ − bru
∫

Ω

ur−1ξdx = σξ in Ω,

ξ = 0 on ∂Ω.

This problem is a nonlocal and singular (when r < 1) eigenvalue problem

which was analyzed in other papers (see [4] and Section 5 in [12]) and it is

included in the general problem

(4.2)

 −∆ξ +m(x)ξ − a1(x)

∫
Ω

a2(x)ξdx = σξ in Ω,

ξ = 0 on ∂Ω,

where m, a1 ∈ C1(Ω), a2 ∈ C(Ω), a1, a2 > 0 and a2(x) ≤ Kd(x, ∂Ω)−β , β < 1,

K > 0. The existence of a principal eigenvalue of (4.2), denoted by λ1(−∆ +

m; a1; a2), was proved. If no confusion arises, we write λ1(−∆ +m) when a1 or

a2 vanishes (observe that λ1(−∆ + m) is the classical principal eigenvalue of a

local eigenvalue problem).

In the following result we give a criteria to ascertain the sign of λ1(−∆ +

m; a1; a2). The proof, adaptation of the characterization theorem of the maxi-

mum principle established in Theorem 7.10 of [16], can be found in [4].

Proposition 4.1. (1) Assume that there exists a positive function u ∈
C2(Ω) ∩ C1,δ

0 (Ω), δ ∈ (0, 1), such that

−∆u+m(x)u− a1(x)

∫
Ω

a2(x)udx > 0 in Ω,

(we say that u is a supersolution of (4.2)). Then,

λ1(−∆ +m; a1; a2) > 0.

(2) Assume that there exists a positive function u ∈ C2(Ω) ∩ C1,δ
0 (Ω), δ ∈

(0, 1), such that

−∆u+m(x)u− a1(x)

∫
Ω

a2(x)udx < 0 in Ω.

(we say that u is a subsolution of (4.2)). Then,

λ1(−∆ +m; a1; a2) < 0.

In the following result, we show the sign of the principal eigenvalue in some

specific cases.

Proposition 4.2. Assume that b > 0.
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(1) Assume r ≤ 1 and λ > λ1. There exists b1 > 0 such that for 0 < b < b1,

any positive solution is stable.

(2) Assume r ≥ 1 and λ ≤ 0. Then, any positive solution is unstable.

Proof. 1. Observe that in our case

m(x) = 2ub − λ− b
∫

Ω

urbdx, a1 = brub, a2 = ur−1
b ,

where ub is a positive solution of (1.2). By the strong maximum principle ub
is strongly positive. Hence, there exist 0 < k1 < k2 such that k1d(x, ∂Ω) ≤
ub ≤ k2d(x, ∂Ω), and then a2 verifies the hypothesis a2(x) ≤ Kd(x, ∂Ω)−β for

β = 1− r.
On the other hand, since ub is a positive solution of (1.2), then

λ1(−∆ + ub − λ− b
∫

Ω

urbdx) = 0,

and so, by the monotonicity of the principal eigenvalue with respect to the zero

order term, λ1(−∆ + 2ub − λ − b
∫

Ω
urbdx) > 0. Consider eb > 0 the unique

positive solution of the linear equation

(4.3)

 −∆eb + (2ub − λ− b
∫

Ω

urbdx)eb = rub in Ω,

eb = 0 on ∂Ω.

Now, we apply Proposition 4.1. It is clear that eb is a supersolution of (4.1) if

(4.4)
1

b
>

∫
Ω

ur−1
b ebdx.

We claim that

(4.5) ub → θλ in C2(Ω) as b→ 0.

Observe that (4.5) implies that eb → eλ in C2(Ω) as b → 0, where eλ is the

unique positive solution of

−∆eλ + (2θλ − λ)eλ = rθλ in Ω, eλ = 0 on ∂Ω.

Hence, we conclude that (4.4) holds for b small, then ub is stable.

We prove (4.5). Assume r < 1, then using (3.2) and (3.1) we get that

(4.6) ‖ub‖∞ ≤ C(λ, b)

where C is a constant bounded when b→ 0. Hence,

b

∫
Ω

urbdx→ 0 as b→ 0,

and we conclude (4.5).

Assume now that r = 1, in this case by (3.5) and (3.6) we conclude that

(4.7) ‖ub‖∞ ≤
λ

1− b|Ω|
.
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We can repeat the above reasoning to conclude (4.5).

2. In a similar way, ub is subsolution of (4.1) provided that

(4.8) ub ≤ br
∫

Ω

urbdx.

Since ub ≤ λ+ b
∫

Ω
urbdx, it follows that (4.8) holds for λ ≤ 0 and r ≥ 1.

Corollary 4.3. Assume 0 < b < b1, r ≤ 1 and λ > λ1, where b1 is from

Proposition 4.2. Then, there exists a unique positive solution of (1.2).

Proof. We use the fixed point index in cones. Define

P := {u ∈ X : u ≥ 0 in Ω}.

Assume that r ≤ 1 and b < b1, then using (4.6) and (4.7) there exists R1

independent of b such that

‖u‖L∞(Ω) ≤ R1,

for all u positive solution of (1.2).

Finally, take M > 0 large enough and consider the operator K : X 7→ X

defined by

K(u) := (−∆ +M)−1(u(λ+M − u+ b

∫
Ω

urdx)).

It is clear that K is a positive operator whose fixed points are nonnegative solu-

tions of (1.2).

Hence, the fixed point index of K over B with respect to the cone P is well

defined, where

B := {u ∈ P : ‖u‖L∞(Ω) ≤ R1 + 1}.

Now, we are going to compute this index in some cases. We claim that if

λ > λ1 then

(I.1) iP (K,B) = 1;

(I.2) iP (K, 0) = 0;

(I.3) iP (K, ub) = 1,

for any positive solution ub of (1.2). Of course, we conclude the uniqueness of

positive solution of (1.2).

(I.2) follows by a similar argument to the used in the proof of Lemma 2.4.

Proposition 4.2 implies (I.3). Finally, we show (I.1). Consider the operator

H1 : [0, 1]×X 7→ X defined by

H1(t, u) := (−∆ +M)−1(u(λ+M − u+ tb

∫
Ω

urdx)).

https://www.researchgate.net/publication/268245982_Existence_of_positive_solutions_of_semilinear_elliptic_equations_with_nonlocal_terms?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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By the a priori bounds, H1 has no fixed points on ∂B for t ∈ [0, 1]. Thus, it

follows by homotopy invariance that

iP (K,B) = iP (H1(1, ·),B) = iP (H1(0, ·),B) = 1.

This last inequality follows because u = H1(0, u) is equivalent to the classical

equation (2.1), and for this equation it is well-known that the fixed point index

is equal to one.

5. Proofs of Theorems 1.1, 1.2, 1.3 and 1.4

5.1. Proof of Theorem 1.1: By Theorem 2.2 we know the existence of an

unbounded continuum of positive solutions bifurcating from the trivial solution

at λ = λ1. Since −∆u ≤ u(λ− u), we know that positive solutions do not exist

for λ ≤ λ1 and that for any solution u ≤ θλ. Hence we conclude the existence of

positive solution for λ > λ1.

We show now the uniqueness. Assume that there exist two positive solutions

u 6= v. If
∫

Ω
urdx =

∫
Ω
vrdx then we conclude easily that u = v. So, assume

that for instance
∫

Ω
urdx >

∫
Ω
vrdx. Then,

−∆u = u(λ+ b

∫
Ω

urdx− u) < u(λ+ b

∫
Ω

vrdx− u),

and then by Proposition 2.1 we get u < v, a contradiction.

On the other hand, we have that

u ≤ λ+ b

∫
Ω

urdx,

and then u ≤ λ. So, as b→ −∞ we get∫
Ω

urdx→ 0.

Moreover as

(λ+ b

∫
Ω

urdx− λ1)ϕ1 ≤ u and λ+ b

∫
Ω

urdx− λ1 > 0

we conclude that b
∫

Ω
urdx→ λ1 − λ. This implies that ‖u‖∞ → 0.

5.2. Proof of Theorem 1.2: Assume b > 0 and r < 1. Define

λ∗ := inf{λ ∈ IR : (1.2) possesses at least a positive solution}.

We know by Theorem 2.2 and Proposition 3.1 that −∞ < λ∗ < λ1. We prove

now that there exists positive solution for all λ > λ∗, for which we are going

to use the sub-supersolution method, see for instance [3]. Indeed, take λ > λ∗,

then there exists µ ∈ [λ∗, λ) such that (1.2) possesses at least a positive solution,

denoted by uµ. Now, it is clear that (u, u) = (uµ,K) is a sub-supersolution of

(1.2) for K large, specifically for K verifying

K − bKr|Ω| ≥ λ.

https://www.researchgate.net/publication/268245982_Existence_of_positive_solutions_of_semilinear_elliptic_equations_with_nonlocal_terms?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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Enlarging if necessary K such that uµ ≤ K we conclude the existence of a

positive solution for λ.

Finally, take a sequence of positive solutions (λn, un) of (1.2) such that λn ≥
λ∗ and λn → λ∗. Thanks to the bounds of Proposition 3.1 we have that un →
u∗ ≥ 0, u∗ a solution for λ = λ∗. Since λ∗ < λ1 and λ1 is the unique bifurcation

point from the trivial solution, we conclude that u∗ > 0.

On the other hand, since u is bounded and

λ+ b

∫
Ω

urdx > λ1,

and then taking b→ 0 we have that λ ≥ λ1, that is limb→0 λ∗(b) = λ1.

Finally, we prove that limb→∞ λ∗(b) = −∞, for that it suffices to show that

for any λ < λ1 there exists b > 0 large such that (1.2) possesses at least one

positive solution. Fixed λ < λ1 there exists b > 0 large enough (see (3.3)) such

that the function f(s) = s− srb
∫

Ω
ϕr1dx has a minimum sm such that f(sm) <

λ−λ1. Fixed such b, take ε > 0 such that f(ε) < λ−λ1. Then, (u, u) = (εϕ1,K)

is sub-supersolution of (1.2) for K large. Indeed, u is subsolution if

εϕ1 − bεr
∫

Ω

ϕr1dx ≤ λ− λ1,

that is, taking into account that ‖ϕ1‖∞ = 1, f(ε) < λ− λ1.

5.3. Proof of Theorem 1.3: Assume that b > 0 and r > 1. Define now

λ∗ := sup{λ ∈ IR; (1.2) possesses at least one positive solution}.

We know by Theorem 2.2 and Proposition 3.2 that λ1 < λ∗ < +∞. We prove

now that there exists positive solution for all λ ∈ [λ1, λ
∗) and observe that for

λ ≤ λ1 positive solutions exist. Indeed, take λ < λ∗, then there exists µ ∈ (λ, λ∗]

such that (1.2) possesses at least one positive solution, denoted by uµ. Now, it

is clear that (u, u) = (εϕ1, uµ) is a sub-supersolution of (1.2) for ε > 0 small,

specifically for ε verifying

ε− bεr
∫

Ω

ϕr1dx ≤ λ− λ1 and εϕ1 ≤ uµ.

Finally, taking a sequence of solutions (λn, un) with λn ≤ λ∗, λn → λ∗ and

thanks to the bounds of Proposition 3.2, we have that un → u∗ > 0, where u∗ is

one positive solution for λ = λ∗.

Observe that since λ1 < λ∗ ≤ λ, where λ is defined in Proposition 3.2 and

limb→∞ λ(b) = λ1 we conclude that

lim
b→∞

λ∗(b) = λ1.

Finally, we prove that limb→0 λ
∗(b) = +∞, for that it suffices to show that

for any λ > λ1, there exists b > 0 small enough such that (1.2) possesses at least
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one positive solution. Let us fix λ > λ1, take Ω̃ ⊃ Ω and consider ϕ̃1 and λ̃1 the

positive eigenfunction and eigenvalue associated to Ω̃. Consider the function

g(s) := s(ϕ̃1)L − bsr
∫

Ω

ϕr1dx,

where (ϕ̃1)L := minx∈Ω ϕ1(x). This function attains a maximum at

s = sM = ((ϕ̃1)L/(b

∫
Ω

ϕr1dx))1/(r−1)

and

g(sM ) = (ϕ̃1)
r/(r−1)
L

(
1

b
∫

Ω
ϕr1dx

)1/(r−1)

(1− 1

r
).

Hence for b small enough we get

g(sM ) > λ− λ̃1.

Take K > 0 such that g(K) > λ − λ̃1. Fixing such b and K, we have that

(u, u) = (εϕ1,Kϕ̃1) is a sub-supersolution of (1.2) for ε small.

5.4. Proof of Theorem 1.4: By Theorem 2.2 there exists an unbounded

continuum of positive solutions bifurcating from the trivial solution at λ = λ1.

Assume b < 1/|Ω|, then by Proposition 3.3 there does not exist positive

solution for λ ≤ 0 and the positive solutions are bounded. Hence the existence

of positive solution for λ > λ1 is obtained.

Assume now that b > 1/
∫

Ω
ϕ1dx. In this case by Proposition 3.3 we know

that for λ ≥ λ1 there does not exist positive solution and that the positive

solutions are bounded for λ ≤ λ1. Hence the existence of positive solution for

λ < λ1 is obtained.

6. The parabolic problem

Consider now the time dependent problem (1.1). The existence and unique-

ness of the local positive solution follows by classical theory, see for instance

Example 51.13 in [19]. Moreover, the solution can be extended in time if the

L∞-norm remains finite.

First, we show that in the case b < 0 the solution is global and bounded.

Lemma 6.1. Assume b ≤ 0. Then, the positive solution u of (1.1) is global

in time and bounded. Moreover, if λ < λ1 we get ‖u(x, t)‖∞ → 0 as t→∞.

Proof. If b < 0, the solution u of (1.1) is a sub-solution of the local logistic

equation

Ut −∆U = U(λ− U), U(x, 0) = u0(x).

It is well known, see for instance [20], that the above equation is global and

bounded and that u ≤ U . Finally, ‖U(x, t)‖∞ → 0 as t → ∞ for λ < λ1 and

this completes the proof.

https://www.researchgate.net/publication/266840225_Superlinear_Parabolic_Problems_Blow-up_Global_Existence_and_Steady_States?el=1_x_8&enrichId=rgreq-7b2bbc6273ba8a0858cc595df56df146-XXX&enrichSource=Y292ZXJQYWdlOzI5OTc3NjAyMTtBUzozNDg1NTgzMjM2NjY5NDRAMTQ2MDExNDE4ODI0NA==
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Now, we consider the case b > 0. In this case, thanks to the maximum

principle (see again [20] or [22]) we can assume that u0(x) > 0 for x ∈ Ω and

u0(x) = 0 on ∂Ω.

Theorem 6.2. (Global existence results.) Assume b > 0.

(1) If r < 1, the solution exists globally in time ∀λ ∈ IR.

(2) If r = 1 and b|Ω| < 1, the solution exists globally in time for all λ ∈ IR.

(3) If r = 1 and b|Ω| ≥ 1, the solution exists globally in time for all λ < 0 if

u0(x) ≤ λ

1− b|Ω|
,∀x ∈ Ω.

(4) Assume r = 1. Let e be the unique positive solution of

(6.1)

{
−∆e = 1 in Ω,

e = 0 on ∂Ω.

Then, there exists a small number a1 > 0 such that if u0(x) ≤ a1e(x) x ∈

Ω, the solution exists globally in time ∀λ ∈
(
−∞, 1

maxx∈Ω̄ e(x)

)
.

(5) Assume r > 1, then, there exists a2 > 0 (which can be computed explic-

itly) such that the solution exists globally in time, for all

λ ∈

(
−∞,

(
1

b|Ω|r

) 1
r−1 r − 1

r

)
provided that u0(x) ≤ a2.

Proof. For the first three paragraphs, use u(x, t) = M as super-solution,

where M is a positive constant. Indeed, u is super-solution of (1.1) if

M ≥ λ+ b|Ω|Mr, M ≥ u0(x).

For 5., observe that the function g(M) = λ + b|Ω|Mr − M , goes to +∞ as

M → +∞ if r > 1 and attains a minimum at Mm =

(
1

b|Ω|r

)1/(r−1)

. It is

enough to impose that g(Mm) ≤ 0 and a2 will be defined by g(a2) = 0. Finally,

for (4), take u(x, t) = a1e(x). It is clear that u is super-solution if

1 > λe+ a1e

(
b

∫
Ω

e(x) dx− e
)
, a1e(x) ≥ u0(x).

If 1 > λe we can take a1 small.

The next result studies the case when the solution goes to zero:

Proposition 6.3. Assume b > 0.

(1) If r > 0, the trivial solution is locally exponentially stable if λ < λ1.

(2) If r < 1, there exists λ such that for all λ < λ and initial datum u0, we

have that ‖u(x, t)‖∞ → 0 as t→∞.
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(3) If r = 1 and b small, then for λ < λ1 and for all initial datum u0, we

have that ‖u(x, t)‖∞ → 0 as t→∞.

(4) If r > 1, then for all u0 there exists λ(u0) such that for λ < λ(u0), we

have that ‖u(x, t)‖∞ → 0 as t→∞.

Proof. First, take a domain Ω1 ⊃ Ω such that, if necessary,

(6.2) λ < µ1 < λ1

where µ1 is the principal eigenvalue associated to −∆ in Ω1 and denote by ψ1

the positive eigenfunction associated to µ1 such that ‖ψ1‖∞ = 1.

In all the cases, we take u(x, t) = Me−σtψ1 as supersolution, with M > 0

and σ > 0 to be chosen. It is clear that u is supersolution of (1.1) if

(6.3) Mψ1(x) ≥ u0(x) x ∈ Ω and −σ+µ1−λ ≥ −Me−σtR+bMre−rσtB,

where R := minx∈Ω ψ1(x) and B :=
∫

Ω
ψr1dx.

For the first paragraph, take M small, and then it suffices to take 0 < σ <

µ1 − λ which is possible thanks to (6.2). For the second one (r < 1), observe

that

−Me−σtR+ bMre−rσtB ≤ C
for some positive constant C independent of t and M . It suffices to take λ

negative. When r = 1, then

−Me−σtR+ bMe−σtB = Me−σt(−R+ bB) < 0

for b small. Fixing this value of b, take λ < λ1 and σ > 0.

For the last paragraph (r > 1), for a given u0 take M such that u0 ≤ Mψ1.

Fixed such M , take λ small such that (6.3) is verified.

Theorem 6.4. (Blow-up in finite time.) Assume b > 0.

(1) Assume r = 1 and define

A :=

∫
Ω

ϕ1dx.

If bA = 1 and λ > λ1 the solution ‖u(x, t)‖∞ goes to ∞ as t → ∞. In

the case bA > 1 the solution blows up in finite time for λ > λ1 or for

any λ if u0 is large enough.

(2) Assume r > 1. Then, there exists λ such that for λ > λ the solution

blows up in finite time for any u0.

(3) Assume r > 1. Then, there exists b2 > 0 such that the solution blows up

in finite time if u0(x) ≥ b2ϕ1(x).

Proof. Take u(x, t) = q(t)ϕ1(x) with q(t) and q(0) > 0 to be chosen.

Observe that u is sub-solution of (1.1) if

q′(t) ≤ (λ− λ1)q − q2ϕ1 + bqr+1B and q(0)ϕ1(x) ≤ u0(x),
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with B :=
∫

Ω
ϕr1dx. Since ‖ϕ1‖∞ = 1, we can take q such that

q′(t) = (λ− λ1)q − q2 + bqr+1B.

If r = 1 the results follow easily. Indeed, in this case the above equation can be

written as

q′(t) = (λ− λ1)q + q2(−1 + bA).

This proves first paragraph.

Assume that r > 1. It can be proved that for 1 < p < r + 1, there exists

µ ∈ IR such that

(λ− λ1)q − q2 + bqr+1B ≥ µq + qp.

Indeed, this is equivalent to λ− λ1 − µ ≥ q− bBqr + qp−1, and observe that the

function h(q) = q − bqr + qp−1 is bounded.

Taking µ = 0, the above inequality for λ large, and hence q′ ≥ qp and so q

blows up in finite time. This completes second paragraph.

For the third paragraph, we take µ < 0 with |µ| large, and hence in this case

q′ ≥ µq + qp. In this case, q blows-up in finite time for q(0) > 0 large, that is,

for u0 large.

Remark 6.5. (1) Remember that for r ≤ 1 and b small the steady-state

problem (1.2) has a unique positive solution. Then, using arguments of

[20] (see for instance Theorem 5.4.4) the solution of (1.1) converges to

the unique positive solution of (1.2).

(2) The blow-up in finite time of problem (1.3) was studied in [15]. In order

to compare the results of [15] with ours, let us assume that r = 1 and fix

the function a. In [15] it was proved that that there exists a value λ∗ > 0

(related with some eigenvalue problem associated to a+) such that:

(a) If λ1 < λ < λ∗, then the solution of (1.3) blows-up if

(6.4) b > A(λ, u0),

for some specific positive constant A depending on λ and u0. More-

over, the maps λ 7→ A(λ, u0) and u0 7→ A(λ, u0) are decreasing.

(b) If λ ≥ λ∗, the solution of (1.3) blows-up for any u0.

Hence, as consequence, the solution of (1.3) blows-up for any b if λ is

large or any λ and u0 large. However, in our results we need to impose

that b is large to obtain that the solution of (1.1) blows-up.
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Faculdade de Ciências e Tecnologia - Unesp

CEP: 19060-900, Presidente Prudente-SP, BRAZIL

E-mail address: pimenta@fct.unesp.br

TMNA : Volume 00 – 0000 – No 00


