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Abstract. Let B be a homothecy invariant collection of convex sets in Rn. Given a measure
µ, the associated weighted geometric maximal operator MB,µ is defined by

MB,µf(x) ∶= sup
x∈B∈B

1
µ(B)

∫
B
∣f ∣dµ.

It is shown that, provided µ satisfies an appropriate doubling condition with respect to B and
ν is an arbitrary locally finite measure, the maximal operator MB,µ is bounded on Lp(ν) for
sufficiently large p if and only if it satisfies a Tauberian condition of the form

ν({x ∈ Rn ∶MB,µ(1E)(x) >
1
2
}) ≤ cµ,νν(E).

As a consequence of this result we provide an alternative characterization of the class of Muck-
enhoupt weights A∞,B for homothecy invariant Muckenhoupt bases B consisting of convex sets.
Moreover, it is immediately seen that the strong maximal function MR,µ, defined with respect
to a product-doubling measure µ, is bounded on Lp(ν) for some p > 1 if and only if

ν({x ∈ Rn ∶MR,µ(1E)(x) >
1
2
}) ≤ cµ,νν(E)

holds for all ν-measurable sets E in Rn. In addition, we discuss applications in differentiation
theory, in particular proving that a µ-weighted homothecy invariant basis of convex sets satisfying
appropriate doubling and Tauberian conditions must differentiate L∞(ν).

1. Introduction

The study of weighted inequalities for classical operators such as the Hardy-Littlewood maximal
function and the Hilbert transform has been an active area of research in harmonic analysis since
the seminal paper of Muckenhoupt, [41]. Here, by weighted inequalities we mean the study of
the boundedness properties of an operator T on some weighted Lebesgue space Lp(w), where
w is an appropriate non-negative, locally integrable function, that is, a weight. Indeed, the
weights w for which the Hardy-Littlewood maximal function, the Hilbert transform, as well as
more general Calderón-Zygmund operators are bounded on Lp(w) were identified in [41] as well
as in the subsequent works [7, 22]; these investigations led to the definition of the Ap classes
of weights; see Definition 3.3. The first quantitative estimate of the operator norm ∥M∥Lp(w)
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on the Ap-constant of the weight was proved in [3] for the Hardy-Littlewood maximal function
M . In recent years, the corresponding question concerning the sharp dependence of the norm
of a Calderón-Zygmund operator ∥T ∥Lp(w) on the Ap-constant of the weight has spurred an
overwhelming amount of activity and development of relevant tools. Important representatives of
these results include (but are not exhausted to) the work of Petermichl in [44], where the sharp
bound for the Hilbert transform is proved, as well as the resolution of the celebrated A2 conjecture
by Hytönen in [23] where the sharp bound is exhibited for general Calderón-Zygmund operators.
Subsequent important developments and simplifications of the proof of the A2 theorem can be
found in [24] and [35]. The two-weight problem for the Hilbert transform was also a notoriously
hard problem, asking for necessary and sufficient conditions on a pair of weights (v,w) so that
the Hilbert transform is bounded from Lp(w) to Lp(v). The two-weight inequalities have been
intensively investigated in several papers which led to the very recent resolution by Lacey in [32],
following previous results by Lacey, Sawyer, Shen and Uriarte-Tuero in [33].

All the results mentioned so far concern the classical or one-parameter theory, where the opera-
tors under study commute with one-parameter dilations of Rn. On the other hand, the most basic
example of the multi-parameter theory is the strong maximal function MR, namely the maximal
average of a function with respect to n-dimensional rectangles with sides parallel to the coordinate
axes. This operator is in many senses the prototype for multi-parameter analysis while there are
also natural multi-parameter versions of the Hilbert transform as well as of more general singular
integral operators. See for example [46]. As the terminology suggests, these operators commute
with n-parameter dilations of Rn. A general introduction to multi-parameter harmonic analysis is
contained in [14]. The basic weighted theory for the strong maximal function is also pretty well
developed in a series of important papers such as [12], [15], [26], [27] and [47]. A natural starting
point for a more quantitative multi-parameter weighted theory would be the analogue of Buckley’s
theorem for the strong maximal function, namely, a sharp estimate on ∥MR∥Lp(w) in terms of the
(strong) Ap-constant of the weight. No such quantitative estimate is currently known, a serious
obstruction in carrying over the already described achievements of classical weighted theory to
the multi-parameter setting.

A possible reason why such a sharp weighted theorem is elusive in the multi-parameter world is
the failure of the Besicovitch covering argument for rectangles with arbitrary eccentricities. Indeed,
it is an essential fact, underlying many of the sharp quantitative estimates in the classical weighted
theory, that the (centered) Hardy-Littlewood maximal operator, defined with respect to a general
measure, is always bounded independently of the measure. This fails quite dramatically for the
strong maximal function and this is just another manifestation of the failure of the Besicovitch
covering argument. See [12]. The relevance of this fact to proving bounds on the operator norms
∥MR∥Lp(w) is revealed by abstract theorems characterizing two-weight norm inequalities in terms
of the boundedness of corresponding weighted maximal operators. For example it is implicit in
Sawyer’s two-weight norm inequalities for the Hardy-Littlewood maximal function in [48] and for
the strong maximal function in [47]. See also [26] and [34].

The strong maximal function with respect to a measure. For the weighted strong maximal
function MR,w one thus requires some restriction on the weight w so that MR,w is bounded on
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Lp(w). A sufficient condition is provided by the result of Fefferman, [12], that states that if a
weight w ∈ A∞,R, that is if w is a strong Muckenhoupt weight, then MR,w is bounded on Lp(w).
See §3 for precise definitions. It is thus no big surprise that many results in multi-parameter
weighted theory begin with the assumption that w ∈ A∞,R. This assumption has also been used
in order to derive the Fefferman-Stein inequality for the strong maximal function in [36], [39],
[40] and [42]. An apparently weaker substitute for the hypothesis w ∈ A∞,R, usually referred to
as condition (A), is that w satisfies a Tauberian condition of the form

w({x ∈ Rn ∶MR(1E)(x) >
1
2}) ≤ cw(E),(A)

where E ⊂ Rn is any measurable set. This condition was introduced in [26] in the context of
weighted inequalities for quite general maximal functions. A consequence of our main theorem is
however that (A) is equivalent to w ∈ A∞,R.

The previous discussion also motivates the seeking of conditions on a measure µ such that the
strong maximal function MR,µ, defined with respect to the measure µ, is bounded on Lp(µ).
With more general results and precise definitions to follow, one of our main theorems implies:

Theorem 1.1. Let µ be a Borel non-negative measure which is locally finite and doubling with
respect to rectangles with sides parallel to the coordinate axes. Then the operator MR,µ satisfies

µ({x ∈ Rn ∶MR,µ(1E)(x) >
1
2}) ≤ cµ(E)

for every measurable set E if and only if MR,µ is bounded on Lp(µ) for some p > 1.

This theorem can be thought of as a testing condition on the operator MR,µ. As it will become
apparent, the constant 1

2 is not important as it can be replaced by any fixed level γ ∈ (0,1) in the
statement of the theorem.

Differentiation with respect to bases of convex sets. A dual point of view and motivation
for the investigations in this paper can be given in the language of differentiation theory. Given a
collection of convex sets in Rn which is invariant under dilations and translations we want to study
when the corresponding maximal operator differentiates L∞(Rn). It turns out that boundedness
properties of quite general maximal operators can also be characterized in terms of Tauberian
conditions in the spirit of (A). Indeed, it is a classical result of Busemann and Feller, [4], that
a homothecy invariant basis B consisting of open sets differentiates L∞(Rn) if and only if the
corresponding maximal operator MB satisfies a Tauberian condition

∣{x ∈ Rn ∶MB(1E)(x) > γ}∣ ≤ cγ ∣E∣,
for every γ ∈ (0,1) and for every measurable set E. See Theorem 4.3 for the details. This point
of view is discussed in detail in [19] and taken up in [21]. In the last work it is shown that a
homothecy invariant basis consisting of convex sets differentiates L∞(Rn) (with respect to the
Lebesgue measure) if and only if it differentiates Lp(Rn) for some sufficiently large p > 1. Note
here that, lacking the convexity hypothesis on the basis one needs Tauberian conditions at all
levels γ ∈ (0,1). This should be contrasted to the results in [21] as well as in the current paper
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where the convexity assumption allows us to only assume a Tauberian condition at a fixed level,
say γ = 1

2 .
It is a natural question whether such results persist under the presence of a weight, or somewhat

more generally, a measure µ. More precisely, one seeks conditions on the measure µ and the basis
B so that the µ-averages of a function f ∈ Lp(µ) converge to f µ-almost everywhere. If B is
some abstract basis of convex sets it is in general hard to tell whether B differentiates functions
in Lp(µ) with respect to µ, for some p > 1. For the basis of rectangles with sides parallel to the
coordinate axes this is just a rephrasing of the question: “When is the strong maximal function
MR,µ, defined with respect to a measure µ, bounded on Lp(µ) for some p > 1?” However our
results address the more general case of homothecy invariant bases consisting of convex sets. Our
most general theorem has the following form:

Theorem 1.2. Let B be a homothecy invariant basis consisting of open convex sets and assume
that µ, ν are locally finite, non-negative Borel measures on Rn. Assume further that the measure
µ is doubling with respect to B. Let MB,µ denote the maximal operator with respect to the basis
B and the measure µ. Then MB,µ satisfies

ν({x ∈ Rn ∶MB,µ(1E)(x) >
1
2}) ≤ cν(E)

if and only if MB,µ is bounded on Lp(ν) for some p > 1.

Among other consequences, we get as a corollary a “weighted” version of the Busemann-Feller
theorem:

Corollary 1.3. Let B be a homothecy invariant basis consisting of convex sets and µ, ν be locally
finite, non-negative measures on Rn. Assume in addition that µ is doubling with respect to B. If

ν({x ∈ Rn ∶MB,µ(1E)(x) >
1
2}) ≤ cν(E)

then B differentiates L∞(ν) with respect to the measure µ.

2. Notations

A few words concerning the notation used in this paper are necessary. Due to the technical
nature of some of the proofs the notation becomes quite cumbersome but we have tried to be
consistent with our choice of symbols. The current paragraph can be used as a guide to the
notation and the reader is encouraged to consult it in order to avoid any sort of confusion.

We write A ≲ B whenever A ≤ CB for some constant C > 0 and A ≃ B if A ≲ B and B ≲ A.
We write A ≲n B whenever the implied constant depends on some parameter n. We omit such
dependencies when they are of no importance.

In this paper we use several differentiation bases which are basically collections of open sets in
Rn. We use the symbol B to denote a generic basis consisting of convex sets, the symbol G to
denote a generic basis consisting of rectangles, the symbol R for the basis of all rectangles with
sides parallel to the coordinate axes, the symbol b for the collection of all Euclidean balls and the
symbol Q for the collection of all cubes in Rn with sides parallel to the coordinate axes.
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For a rectangle R ∈ R we denote by DR the mesh of “dyadic rectangles” associated to R.
The “dyadic children” of R are produced by dividing each side of R into two equal parts while
the dyadic parent of R is the rectangle R(1) whose sidelengths are double the corresponding
sidelengths of R and shares exactly one corner with R. Thus every R ⊂ Rn has exactly 2n dyadic
children and is contained in a unique dyadic parent. For a dyadic rectangle R we write R(1) for
the parent of R and R(j) for the ancestor of R which is j generations “before” R. For more
details see the discussion before Proposition 6.11.

The measures µ, ν that appear in this paper are always assumed to be locally finite, non-negative
Borel measures. The symbol ν is used to denote such a measure in the underlying space. Thus
we prove bounds on Lp(ν). We use the symbol µ to denote a measure which is additionally
assumed to be doubling with respect to some differentiation basis B. The doubling constant
of µ with respect to B is denoted by ∆µ,B. We omit these indices when the definition of the
underling measure or basis is clear from the context. The measure µ is typically used in order
to define some maximal operator MB,µ. Thus our main questions concern the mapping property
MB,µ ∶ Lp(ν)→ Lp(ν). We use the symbol w to denote a non-negative locally integrable function,
that is, a weight. In this case we write MB,w for the weighted maximal function with respect to
B and w.

Some words are also necessary concerning the dilations that we use in the paper. There are
three kinds of dilations of a set E with respect to some parameter c > 0. If the set E has a
natural center of symmetry then cE denotes the dilates of E by a factor c, with respect to its
center. If B is a convex set we write cB even if B is not symmetric with respect to some point.
In this case the homothecy center is taken to be the center of the John ellipsoid of B. See § 5.2.
We write dilcE ∶= {cx ∶ x ∈ E}, that is, for the dilation with respect to 0. Finally we write c ∗R
whenever R is a “dyadic rectangle” to denote the dilation of R by the factor c, with respect to
the corner shared by R and its parent R(1). We also consider translations of sets; for σ ∈ Rn and
E ⊂ Rn we set τσE ∶= {x + σ ∶ x ∈ E}.

Finally, almost all the logarithms that appear in this paper are base-2 logarithms; we still just
write log t for log2 t.

3. Definitions and overview of known results

3.1. Bases of open sets and maximal operators. By a basis B we mean a collection of
bounded open sets in Rn. The differentiation properties of a basis B are determined by the
boundedness properties of the corresponding maximal function, acting on locally integrable func-
tions f as

MBf(x) ∶= sup
B∈B
B∋x

1
∣B∣ ∫B ∣f(y)∣dy,

if x ∈ ∪B∈BB and MBf(x) ∶= 0 otherwise. Particular attention will be given to two special bases
of open sets; namely the basis Q, consisting of all n-dimensional cubes with sides parallel to the
coordinate axes, and the basis R consisting of all rectangles with sides parallel to the coordinate
axes. The corresponding maximal operators are the Hardy-Littlewood maximal function MQ and
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the strong maximal function MR. We are interested in Lp-bounds for the maximal functions MB

of the type
∥MBf∥Lp(Rn) ≲B,p,n ∥f∥Lp(Rn), 1 < p ≤ +∞,(3.1)

together with appropriate endpoint bounds as p → 1+. The existence of such bounds cannot be
guaranteed in the generality of B discussed above. Indeed, if B is the family of all rectangles
in Rn, allowing all rotations, dilations and translations, then MB is called the universal maximal
function which is known to be unbounded for any p < +∞; see [20]. Note, however, that this
operator restricted to radial functions is bounded on Lp(Rn) for p > n. See [6] and [10]. On the
other hand, the maximal operators defined with respect to the bases R and Q are well understood,
with the corresponding sharp endpoint bounds being

∣{x ∈ Rn ∶MQf(x) > λ}∣ ≲n ∫
Rn

∣f(x)∣
λ

dx, λ > 0,

∣{x ∈ Rn ∶MRf(x) > λ}∣ ≲n ∫
Rn

Φn(
∣f(x)∣
λ

)dx, λ > 0.

Here Φn(t) ∶= t(1 + (log+ t)n−1) and log+ t ∶= max(log t,0). The first weak inequality above
is the classical maximal theorem of Hardy and Littlewood; see for example [51]. The second
distributional inequality is the strong maximal theorem of Jessen, Marcinkiewicz and Zygmund
from [28]. See also [9] for a geometric approach to the same result. By interpolation, the previous
endpoint bounds imply (3.1) for both Q and R.

3.2. Weights associated to bases. We say that w is a weight associated to the basis B if w is
a non-negative locally integrable function on Rn and w(B) ∶= ∫B w(x)dx < +∞ for every B ∈B.
The weighted analogue of estimate (3.1) takes the form

∥MBf∥Lp(w) ≲B,p,n ∥f∥Lp(w), 1 < p ≤ +∞.(3.2)
The corresponding endpoint bounds as p → 1+ are also of great interest and are typically harder
(and stronger) than their Lp-analogues (3.2).

Again, for the bases Q and R, estimates (3.2) are much better understood and the validity of
(3.2) for any 1 < p < +∞ is characterized by the membership of w to the classes of Muckenhoupt
weights Ap,B:

Definition 3.3. We say that a weight w belongs to the class Ap,B, 1 < p < +∞, if

[w]Ap,B ∶= sup
B∈B

( 1
∣B∣ ∫B w(y)dy)( 1

∣B∣ ∫B w(y)1−p′dy)
p−1

< +∞.

Here and throughout the paper p′ denotes the dual exponent of p, that is 1
p + 1

p′ = 1.
For the limiting case p = 1 the class A1,B is defined to be the set of weights w such that

[w]A1,B ∶= sup
B∈B

( 1
∣B∣ ∫B w(y)dy) ess sup

B
(w−1) < +∞.
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This is equivalent to w having the property
MBw(x) ≤ [w]A1,B ⋅w(x), a.e. x ∈ Rn.

It follows from Hölder’s inequality and the definitions above that for all 1 ≤ p < q < +∞ we have
that Ap,B ⊂ Aq,B, that is, the classes Ap,B are increasing in p ≥ 1. It is thus natural to define the
limiting class A∞,B as

A∞,B ∶= ⋃
p>1
Ap,B = ⋃

p≥1
Ap,B.

For the special bases Q,R we use the shorthand notation Ap ∶= Ap,Q and A∗
p ∶= Ap,R.

Remark 3.4. For a general basis B, as considered here, there is really no “obvious” definition of
the class A∞,B. For the basis Q many definitions have appeared in the literature and they are all
equivalent to each other. See for example [16]. This remains true for the basis R. However, for a
general basis B, these different definitions may define different classes of weights. We adhere to
the definition of the class A∞,B as the union of the classes Ap,∞ for notational simplicity mostly,
keeping in mind that for the bases Q and R the definition above coincides with all the standard
definitions that appear in the literature.

For the bases Q and R, the boundedness properties of the corresponding maximal operators on
weighted Lebesgue spaces are well known. This is completely classical and due to Muckenhoupt
for the basis Q; see [41]. The theorem of Muckenhoupt extends without difficulty to the basis R
whenever p > 1; see for example [1]. We summarize these results below.
Theorem 3.5. The following statements are true.

(i) Let B be either Q or R and 1 < p < +∞. Then MB ∶ Lp(w) → Lp(w) if and only if
MB ∶ Lp(w)→ Lp,∞(w), if and only if w ∈ Ap,B.

(ii) For Q: MQ ∶ L1(w)→ L1,∞(w) if and only if w ∈ A1,Q.
(iii) For R: If w ∈ A1,R then

w({x ∈ Rn ∶MRf(x) > λ}) ≲n,w ∫
Rn

Φn(
∣f(x)∣
λ

)w(x)dx, λ > 0.(3.6)

Thus, the boundedness properties of MB on Lp(w), 1 < p < +∞, are completely characterized
for the bases Q,R, and the same is true for the weighted endpoint estimate MQ ∶ L1(w) →
L1,∞(w). However, the endpoint estimate (3.6) for the strong maximal function is not so trans-
parent. Indeed, the presence of the logarithmic terms on the right hand side of the (3.6) results
in the condition A1,R being sufficient, but not necessary, for the validity of (3.6). A necessary
condition for (3.6), which is weaker than w ∈ A1,R, appears in [1] but the authors show that it is
not sufficient. On the other hand, the weighted endpoint estimate (3.6) has been characterized
in [17] in terms of a certain covering property for rectangles. See also [31, Theorem 4.3.1] for
a detailed proof of this fact. Similar characterizations of the boundedness properties of maximal
operators on general Lp(µ)-spaces in terms of covering properties are contained for example in
[26, Theorem 2.2] and [16, Lemma IV.6.11], while the approach goes back to [8] and [9]. There
is however no characterization in the spirit of the Muckenhoupt Ap,R-classes, of the weights w
such that (3.6) holds.
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3.3. Maximal operators with respect to measures. Let µ be a non-negative measure on Rn,
finite on compact sets, and let B be a basis. For f ∈ L1

loc(µ) we write

MB,µf(x) ∶= sup
B∈B
B∋x

µ(B)>0

1
µ(B) ∫B ∣f(y)∣dµ(y),

if x ∈ ∪B∈BB and MB,µf(x) ∶= 0 if x ∉ ∪B∈BB. If dµ(x) = w(x)dx for some weight w associated
to the basis B we just writeMB,w forMB,µ and this operator will be called the weighted maximal
operator with respect to w. The boundedness properties of MB,µ are much harder than the
corresponding properties of the unweighted maximal operator, with definitive information only for
special cases of bases B and measures µ. Again, we mainly restrict our attention to the case that
B is either Q or R. As in the unweighted case, the one-parameter operator MQ,µ is easier to
analyze than the operator MR,µ. However, even in the one-parameter case, there is no complete
characterization of the measures µ for which MQ,µ is bounded on Lp(Rn, µ). Below we give a
brief overview of the known results for the bases Q or R and refer the interested reader to the
monograph [30] for further details and proofs.

3.3.1. A special one-dimensional result. In dimension n = 1, let µ be any non-negative Borel
measure. We have that MQ,µ ∶ L1(µ)→ L1,∞(µ) and by interpolation MQ,µ ∶ Lp(µ)→ Lp(µ) for
all 1 < p ≤ +∞. This result is very special to one dimension since the proof depends on a covering
lemma for intervals of the real line. Observe that there is essentially no restriction on the measure
µ. See for example [49] for the details of this result.

3.3.2. The centered, one-parameter maximal function with respect to a measure µ. A common
variation of MQ,µ is the centered weighted Hardy-Littlewood maximal function, given as

M c
Q,µf(x) ∶= sup

r>0

1
µ(Q(x, r)) ∫Q(x,r)

∣f(y)∣dµ(y),

where Q(x, r) denotes the cube with sides parallel to the coordinate axes and sidelength r > 0,
centered at x ∈ Rn. Then for any non-negative Borel measure µ we have that M c

Q,µ ∶ L1(Rn) →
L1,∞(Rn) and thus, by interpolation, M c

Q,µ ∶ Lp(Rn)→ Lp(Rn) for all 1 < p ≤ +∞.
The proof of this result depends on the Besicovitch covering lemma and it remains valid when-

ever the Besicovitch argument goes through. Thus, the condition that the maximal function
defined above is centered is essential. For example, it was shown in [49] that if γ is the Gaussian
measure in R2 then the non-centered weighted maximal operator MQ,γ does not map L1 to L1,∞.

The second essential hypothesis, hidden in the definition of M c
Q,µ, is that it is a one-parameter

maximal operator, that is, we average with respect to a one-parameter family of cubes. Here
one could replace cubes by Euclidean balls or more general “balls”, given by translations and
one-parameter dilations of a convex set in Rn symmetric about the origin.

On the other hand, emphasizing the need for the one-parameter hypothesis mentioned previ-
ously, the boundedness fails for the weighted strong maximal function, even in its centered version.
The reason is that the family R is an n-parameter family of sets for which the Besicovitch covering
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is not valid. See for example [12] for an example of a locally finite measure µ for which M c
R,µ is

unbounded on Lp(µ) for all p <∞.

3.3.3. The non-centered, one-parameter maximal function with respect to a doubling measure.
Let µ be a non-negative Borel measure. The following definition is standard.

Definition 3.7. The measure µ is called doubling if there is a constant ∆µ > 0 such that, for
every cube Q = Q(x, r) ⊆ Rn we have

µ(2Q) ≤ ∆µµ(Q),
where 2Q = Q(x,2r).

It is an easy observation that for µ doubling, the non-centered weighted maximal operatorMQ,µ

is pointwise equivalent to its centered version, that is, MQ,µf(x) ≃M c
Q,µf(x), where the implicit

constants depend only on ∆µ. It follows from the discussion in §3.3.2 that the maximal operator
MQ,µ with respect to a doubling measure µ maps L1(µ) to L1,∞(µ) and Lp(µ) to Lp(µ) for all
1 < p ≤∞.

Here, the doubling hypothesis cannot be removed. Indeed, the example from [49] mentioned
above shows that there exists a non-doubling measure, in particular the Gaussian measure in R2,
such that MQ,γ does not map L1 to L1,∞. Most of the results in the literature that study MB,µ

for non-doubling measures concern the basis b consisting of all Euclidean balls in Rn and radial
measures. For example it is shown in [52] that if µ is rotationally invariant and assigns positive
measure to all open sets then Mb,µ ∶ L1(µ)→ L1,∞(µ) if and only if µ is doubling away from the
origin. In [50] the authors provide a sufficient condition on a radial measure µ so thatMb,µ satisfies
certain weak type inequalities close to L1(µ) which in turn imply that Mb,µ ∶ Lp(µ) → Lp(µ).
An example of a radial measure µ such that Mb,µ is unbounded on all Lp(µ)-spaces, p < +∞,
can be found in [25]. Note that in the non-doubling case, the operators MQ,µ and Mb,µ can
behave quite differently, unlike the doubling case. For example, if µ is a product of non-negative
one-dimensional Borel measures then obviously MQ,µ ≤ MR,µ. By the one-dimensional result
mentioned in §3.3.1 and the methods from [5] we get that MR,µ, and a fortiori MQ,µ, is bounded
on Lp(µ) and satisfies the endpoint estimate

µ({x ∈ Rn ∶MQ,µf(x) > λ}) ≤ µ({x ∈ Rn ∶MR,µf(x) > λ}) ≲n ∫
Rn

Φn(
∣f(x)∣
λ

)dµ(x).

One such product measure is the Gaussian measure γ on Rn for which we can thus conclude

γ({x ∈ Rn ∶MQ,γf(x) > λ}) ≲n ∫
Rn

∣f(x)∣
λ

(1 + ( log+ ∣f(x)∣
λ

)
n−1

)γ(x)dx.(3.8)

On the other hand it was shown in [50] that

γ({x ∈ Rn ∶Mb,γf(x) > λ}) ≲n ∫
Rn

∣f(x)∣
λ

(1 + ( log+ ∣f(x)∣
λ

)
n+1

2 )γ(x)dx
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and that this is actually sharp. It is not currently known whether estimate (3.8) is sharp. The
previous discussion shows however that, surprisingly, the operator MR,γ on R2 exhibits stronger
endpoint behavior than Mb,γ.

3.3.4. The weighted strong maximal function. The rectangle case is less understood. Even if the
measure µ is doubling, it is not known in general whether MR,µ maps Lp(Rn, µ) to Lp(Rn, µ).
Notable exceptions are the one-dimensional case as well as the case where µ is a product measure,
as we have already seen in §3.3.3. The case dµ(x) = w(x)dx has been studied more systematically,
the main result being that of R. Fefferman from [12]: If w ∈ A∞,R then MR,w ∶ Lp(w) → Lp(w)
for all 1 < p ≤∞. The endpoint inequality

w({x ∈ Rn ∶MR,wf(x) > λ}) ≲n,w ∫
Rn

Φn(
∣f(x)∣
λ

)w(x)dx

is also true whenever w ∈ A∞,R. This was proved by Jawerth and Torchinsky in [27] and indepen-
dently by Long and Shen [38]. A weaker sufficient condition for the boundedness ofMR,w appears
in [27] but it is quite technical and we will not describe here; it shows however that w ∈ A∞,R
is not a necessary condition for the boundedness of MR,w on Lp(w), nor for the corresponding
endpoint distributional estimate above.

3.3.5. The weighted maximal function associated to a general basis. For general bases B and
associated weights w, very little is known concerning the boundedness ofMB andMB,w on Lp(w).
However, the following abstract theorem from [42] gives a necessary and sufficient condition for
the boundedness of the MB,w, in terms of the unweighted maximal function MB in the special
case that w ∈ A∞,B.
Theorem 3.9 (C. Pérez). Let B be a basis. The following are equivalent:

(i) For every 1 < p < +∞ and every w ∈ Ap,B we have that
MB ∶ Lp(w)→ Lp(w).

(ii) For every 1 < p < +∞ and every w ∈ A∞,B we have that
MB,w ∶ Lp(w)→ Lp(w).

The previous theorem as well as Theorem 3.5 motivate the following definition, which is also
from [42].
Definition 3.10. A basis B is a Muckenhoupt basis if for every 1 < p < +∞ and every w ∈ Ap,B,
we have that

MB ∶ Lp(w)→ Lp(w).
With this definition Theorem 3.9 states that B is a Muckenhoupt basis if and only if the

weighted maximal function satisfies MB,w ∶ Lp(w) → Lp(w) for every 1 < p < +∞ and every
w ∈ A∞,B. On the other hand, Theorem 3.5 shows that both Q and R are Muckenhoupt bases.
Another interesting example of Muckenhoupt basis is given by the Córdoba-Zygmund basis in
R3, consisting of rectangles with sides parallel to the coordinate axes and sidelengths of the form
(s, t, st), s, t > 0. See [13] and [15] for this and related facts. An example of a basis that is not a
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Muckenhoupt basis is the collection of all rectangles in Rn. To see this, observe that the Lebesgue
measure satisfies the Ap condition in Definition 3.3 with respect to this basis for all 1 < p < +∞,
although the corresponding universal maximal operator is unbounded on Lp(Rn) for 1 < p < +∞.

4. Tauberian conditions and Muckenhoupt weights

The purpose of this section is to give a new characterization of the class of Muckenhoupt
weights AB,∞ in the case that B is a homothecy invariant basis consisting of convex sets. This
is the content of Theorem 4.6 and Corollary 4.8 below. The main interest is in the case of the
basis R consisting of all rectangles in Rn with sides parallel to the coordinate axes. We show
that A∗

∞ = A∞,R coincides with the class of weights w satisfying a weighted Tauberian condition
which, until now, had been considered weaker than A∗

∞.

4.1. Tauberian conditions for homothecy invariant bases. In this paragraph we are con-
cerned with bases B that are homothecy invariant, namely they satisfy

(i) For every B ∈B and every y ∈ Rn we have that τyB ∈B, where τyB = {x + y ∶ x ∈ B}.
(ii) For every B ∈B and s > 0 we have that dilsB ∈B, where dilsB = {sx ∶ x ∈ B}.

Remark 4.1. An example of a Muckenhoupt basis which is not homothecy invariant is provided
by the basis B0 = {(0, b) ∶ b > 0} consisting of intervals on the real line. It is shown in [11] that
B0 is a Muckenhoupt basis and clearly it is not homothecy invariant.

We will say that the corresponding maximal operator MB satisfies a Tauberian condition with
respect to a fixed γ ∈ (0,1) if there exists some constant cB,γ > 0 such that, for every measurable
set E ⊂ Rn, we have

∣{x ∈ Rn ∶MB(1E)(x) > γ}∣ ≤ cB,γ ∣E∣.(AB,γ)
It is essential to notice here that the previous estimate is supposed to hold only for a fixed
γ ∈ (0,1). However, in practice, many times one has a Tauberian condition of the form (AB,γ)
for every γ ∈ (0,1) and typically cB,γ blows up to infinity as γ → 0+.

This condition has appeared in different contexts in several places but we are mainly interested
in the investigations initiated in [21]. There are a couple of situations where such a condition
can arise naturally. For example if the operator MB is known to be of weak type (p, p) for some
1 ≤ p < +∞ then MB satisfies (AB,γ) with respect to every γ ∈ (0,1). More interestingly, the
Tauberian condition appears naturally when one considers density bases.

Definition 4.2. Let B be a homothecy invariant basis in Rn. Then B is called a density basis if
it differentiates L∞(Rn), namely if for every f ∈ L∞(Rn), for almost every x ∈ Rn and for every
sequence {Bk}k ⊂B such that Bk ∋ x and diam(Bk)→ 0 we have

lim
k→+∞

1
∣Bk∣ ∫Bk

f(y)dy = f(x).

Note that since translations and dilations of all sets in B are still in B there is always a sequence
of sets {Bk}k as in the previous definition. The relevance of density bases to Tauberian conditions
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is revealed by the following theorem of Busemann and Feller [4]; see also [19, Chapter III, Theorem
1.2]:

Theorem 4.3 (Busemann, Feller). Let B be a homothecy invariant basis and MB be the corre-
sponding maximal operator. Then B is a density basis if and only if, for every γ ∈ (0,1) there is
a constant 0 < c(γ) < +∞ such that, for every measurable set E ⊂ Rn we have

∣{x ∈ Rn ∶MB(1E)(x) > γ}∣ ≤ c(γ)∣E∣.
Thus for homothecy invariant density bases B consisting of convex sets, the corresponding

maximal operator satisfies Tauberian conditions of the type (AB,γ) with respect to every γ ∈ (0,1).
The same is true if the operator MB is known to be of weak type (p, p) for some p ≥ 1. Even
though this is apparently stronger than a single Tauberian condition with respect to a fixed
γ ∈ (0,1), the following striking theorem was proved in [21]:

Theorem 4.4 (Hagelstein, Stokolos). Let B be a homothecy invariant basis consisting of convex
sets in Rn. Then the following are equivalent:

(i) The operator MB satisfies a Tauberian condition (AB,γ) with respect to some fixed γ ∈
(0,1).

(ii) There exists some 1 < po = po(B, γ, n) < +∞ such that MB ∶ Lp(Rn) → Lp(Rn) for all
p > po.

In virtue of the previous theorem, the Tauberian condition (AB,γ) for a single γ ∈ (0,1) is
equivalent to Tauberian conditions for every γ ∈ (0,1) whenever B is a homothecy invariant basis
consisting of convex sets in Rn.

4.2. Weighted Tauberian conditions. We now come to the main subject of the current paper
which investigates variations of the Tauberian condition (AB,γ) under the presence of a weight
w or, somewhat more generally, a measure µ. For this section we still consider the unweighted
maximal operator MB acting on the weighted space Lp(w). We will be mostly interested in the
case that B is either Q or R, but we will see that our results remain valid for general homothecy
invariant bases consisting of convex sets. We thus fix a basis B and a weight w associated to B.

Definition 4.5. We will say that the maximal operator MB satisfies a weighted Tauberian con-
dition with respect to some γ ∈ (0,1) and a weight w if there exists a constant cB,γ,w > 0 such
that, for all measurable sets E ⊂ Rn we have

w({x ∈ Rn ∶MB(1E)(x) > γ}) ≤ cB,γ,ww(E).(AB,γ,w)

The weighted Tauberian condition has been considered many times in the literature, especially
in the context of weighted inequalities for the strong maximal function. Indeed, it appears for
example in [18], [26], [27], [37], [42] and [43]. Condition (AB,γ,w) is typically presented in the
literature as a presumably weaker substitute for the hypothesis w ∈ A∞,B and is usually referred
to as condition (A). For example, in [27] condition (AB,γ,w) is used as a hypothesis in order
to prove Lp(w)-bounds for the weighted strong maximal function MR,w. Likewise, in [42] it is
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shown that if B is a Muckenhoupt basis and MB satisfies (AB,γ,w) for a fixed γ ∈ (0,1) then MB

satisfies a Fefferman-Stein inequality, namely

∫
Rn
MBf(x)pw(x)dx ≲n,p,w ∫

Rn
∣f(x)∣pMBw(x)dx, 1 < p < +∞.

Finally, in [18] and [37], the condition is used in order to deal with covering properties of rectangles
which are relevant in the study of two weight problems for the strong maximal function. The
following theorem shows however that condition (AB,γ,w) is just an equivalent characterization of
A∞,B for quite a large class of bases B. This is the content of our first main result:

Theorem 4.6. Let B be a homothecy invariant basis consisting of convex sets. Let w be a
non-negative, locally integrable function on Rn. Then the following are equivalent:

(i) Condition (AB,γ,w) is satisfied for the weight w and the basis B, for a fixed level γ ∈ (0,1).
(ii) There exists 1 < po = po(cB,γ,w, γ, n) < +∞ such that MB ∶ Lp(w)→ Lp(w) for all p > po.

Proof. It is trivial that (ii) implies (i). The converse implication for w ≡ 1 is essentially [21,
Theorem 1]. Now a careful inspection of the proofs of the relevant results in [21] reveals that the
arguments therein actually show that if MB and w satisfy (AB,γ,w) then MB is of restricted type
(q, q) for some q > 1, with respect to the weight w. Marcinkiewicz interpolation now gives (ii)
for any p > q. Alternatively, the proof follows from the more general result in the current paper,
namely Theorem 7.1. �

Remark 4.7. In fact the same proof goes through to show that if µ is a non-negative Borel measure
which is finite on compact sets and µ({MB(1E) > γ}) ≤ cB,γ,µµ(E) for every measurable set E
then MB ∶ Lp(µ) → Lp(µ) for some p > 1. We will not insist on the this generalization here as
Theorem 7.1 below provides a much more general statement.

If the basis B is additionally a Muckenhoupt basis we immediately get the following corollary:

Corollary 4.8. Let B be a homothecy invariant basis consisting of convex sets which is also
a Muckenhoupt basis. Then w ∈ A∞,B if and only if w satisfies (AB,γ,w) for some fixed level
γ ∈ (0,1).

Specializing to the case B = Q or B = R, Corollary 4.8 provides a new characterization of
the usual Muckenhoupt class A∞ and the strong Muckenhoupt class A∗

∞, respectively. However,
condition (AB,γ,w) is a lot harder to check in practice than all the other equivalent formulations
of A∞ and A∗

∞ that appear in the literature. Our main point however is that the assumption
(AB,γ,w) for B =R is exactly the same as w ∈ A∗

∞ and not weaker, as it was so far believed.

5. Doubling measures with respect to general bases

Consider the maximal functionMB,µ defined with respect to a non-negative measure µ which is
finite on compact sets and a homothecy invariant basis B in Rn, consisting of open and bounded
convex sets with non-empty interior. Our main objective is to find a characterization of the
measures µ such that MB,µ ∶ Lp(ν) → Lp(ν) for some p > 1 in terms of a mixed µ, ν-Tauberian
condition. To make this precise we give the following definition:
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Definition 5.1. We will say that the maximal operator MB,µ satisfies the Tauberian condition
(Aµ

B,γ,ν) with respect to some fixed γ ∈ (0,1) if there is a constant cµB,γ,ν > 0 such that for all
measurable sets E ⊂ Rn we have

ν({x ∈ Rn ∶MB,µ(1E)(x) > γ}) ≤ cµB,γ,νν(E).(Aµ
B,γ,ν)

If MB,µ ∶ Lp(ν) → Lp(ν) for some p > 1 then (Aµ
B,γ,ν) is satisfied for all γ ∈ (0,1). We

want to investigate if the converse is true, namely, if (Aµ
B,γ,ν) for some fixed γ ∈ (0,1) implies

the boundedness of MB,µ on Lp(ν) for sufficiently large p > 1. We will not pursue this in full
generality but rather confine ourselves to the case that the measure µ is doubling with respect to
the underlying basis.

5.1. Doubling measures with respect to a differentiation basis. In this section we discuss
the properties of measures which are doubling with respect to a basis of convex sets. By a basis of
convex sets we will always mean a homothecy invariant basis B consisting of non-empty, bounded,
open convex sets with non-empty interior.

We begin by the definition of doubling in this general context. Remember that for σ ∈ Rn,
E ⊂ Rn and c > 0 we write τσE = {σ + x ∶ x ∈ E} and dilcE = {cx ∶ x ∈ E}.
Definition 5.2. Let µ be a non-negative measure which is finite on compact sets. We will say
that µ is doubling with respect to B if there is a constant ∆µ,B > 1 such that, for every B ∈ B
and every σ ∈ Rn such that B ⊂ τσdil2B we have

µ(τσdil2B) ≤ ∆µ,Bµ(B).
We always assume ∆µ,B to be the smallest possible constant so that the previous inequality holds
uniformly for all B ∈B. When the underlying basis B is clear from the context we will write ∆µ

for ∆µ,B.

Remark 5.3. The previous definition of a doubling measure reduces to the usual doubling con-
dition (up to changes in the doubling constant) if B = Q or B = b. However, the doubling
condition with respect to R, say, is quite different than the doubling condition with respect to
cubes. In fact, if one wants to study the behavior of the operator MR,µ with respect to a measure
µ then the “natural” condition is that µ is doubling with respect to R. For example in [45],
measures that are doubling with respect to R are called product-doubling and we will adopt the
same terminology here. The same notion of product-doubling is discussed for example in [27].
Naturally, weights w ∈ A∗

∞ give product-doubling measures w(x)dx.
Observe also that for a general basis of convex sets B there is in general no natural homothecy

center as the convex sets in B might not be symmetric with respect to some point. In order to
avoid confusion in all these subtle issues we will always specify the basis according to which a
measure is assumed to be doubling.

5.2. The John ellipsoid. One of the technical annoyances when dealing with general convex sets
is the lack of a natural homothecy center as the convex sets we will consider will not in general be
symmetric with respect to some point. In order to deal with this lack of symmetry and resulting



TAUBERIAN CONDITIONS AND MUCKENHOUPT WEIGHTS 15

technical issues, the classical lemma of F. John, [29], will be very useful. See also [2] for a very
nice exposition of this and related topics.

Lemma 5.4 (F. John). Let B be a bounded convex set in Rn. Then B contains a unique ellipsoid
EB, of maximal volume. We will call EB the John ellipsoid of B. The John ellipsoid of B is such
that

EB ⊂ B ⊂ nEB.
Here cEB denotes the dilation of the ellipsoid EB by a factor c > 0 with respect to its center.

Given a basis B consisting of convex sets we will now construct an associated basis GB con-
sisting of rectangles as in [21]. To this end let B ∈ B and EB be the John ellipsoid of B. Then
there is a (not necessarily unique) rectangle R ⊃ EB of minimal volume. It is elementary to check
that for any ellipsoid E , a rectangle R of minimal volume that contains E satisfies

E ⊂ R ⊂
√
nE .

Given B ∈ B, let RB be a rectangle of minimal volume containing nEB. By the above observations
and John’s lemma we get for every B ∈ B that

B ⊂ nEB ⊂ RB ⊂ n
√
nEB ⊂ n3/2B.

Here the dilations cB are with respect to the center of the John ellipsoid associated to B. We
now define the basis GB as

GB ∶= {RB ∶ B ∈B}.
Since B is homothecy invariant the rectangle RB may be selected so that GB is homothecy
invariant. In this paper we will always assume that this is the case.

The following lemma is an immediate consequence of the above discussion. We omit the easy
proof.

Lemma 5.5. Let B be a basis of convex sets and GB be the homothecy invariant basis of
associated rectangles as constructed above. Suppose that µ is doubling with respect to B with
doubling constant ∆µ,B. We have:

(i) The measure µ is doubling with respect to GB with doubling constant

∆µ,GB
≤ ∆1+⌈ 3

2 logn⌉
µ,B .

(ii) We have the pointwise equivalence
1
cn
MGB,µf(x) ≤MB,µf(x) ≤ cnMGB,µf(x), x ∈ Rn,

where cn ∶= ∆⌈ 3
2 logn⌉
µ,B .

(iii) If B ∈B and RB is the associated rectangle of B with B ⊂ RB ⊂ n 3
2B then

µ(B) ≥ ρµ(RB),
where ρ ∶= c−1

n and cn as defined in (ii).
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5.3. Properties of general doubling measures. The doubling condition has some important
consequences in that the measure is “homogeneously” distributed in the space. We summarize
these properties in the proposition below. We note that these properties are classical and refer
the reader to [51, §8.6] for more details.

Proposition 5.6. Let µ be a (not identically zero) locally finite, non-negative Borel measure.
Assume that µ is doubling with respect to some family K consisting of all the homothetic copies
of a fixed rectangle. The following properties are satisfied.

(i) We have µ(U) > 0 for every open set U ⊂ Rn.
(ii) Let R ∈ K and DR be the dyadic grid generated by R. There exists a constant γµ > 1,

depending only on the doubling constant of µ and the dimension n such that µ(R) ≤
γ−mµ µ(R(m)), where R(m) is the ancestor of R, m generations higher. In particular
µ(Rn) = +∞.

(iii) The maximal operatorMK,µ is of weak type (1,1) and strong type (p, p) for all 1 < p ≤∞,
with respect to µ, and the operator norms depend only on the doubling constant of the
measure µ, the exponent p and the dimension n. Also the centered maximal operator
M c

K,µ satisfies the same bounds.
(iv) If B is a convex set in Rn we have µ(∂B) = 0 where ∂B ∶= B̄ ∖B is the boundary of B.

Proof. The proof of (i) can be found for example in [51, §8.6]. For (ii) let R(1) be the dyadic
parent of R and let {Rj}2n

j=1 denote the dyadic children of R(1) and suppose that R = R1. Then

µ(R(1)) =
2n

∑
j=1
µ(Rj) = µ(R1) +

2n

∑
j=2
µ(Rj) ≥ (1 + (2n − 1)δ−1

µ )µ(R1),

where δµ > 1 is the doubling constant of µ. Let γµ = 1+(2n−1)δ−1
µ > 1. Since R is m generations

inside R(m) we iterate to get µ(R) ≤ γ−mµ µ(R(m)) as desired.
For (iii) observe that MK,µ is essentially the Hardy-Littlewood maximal operator with respect

to a doubling measure and the result is classical. Since the measure µ is doubling the operators
MK,µ,M c

K,µ are pointwise comparable and satisfy the same bounds.
Finally for (iv) let us fix the convex set B and x ∈ ∂B. Let H be a supporting hyperplane of

B through x and let H− be the open half-space defined by H so that H− ∩B = ∅. Let R ∈ K,
centered at x and sR be the rectangle with the same center as R and sides s < 1 times the
corresponding sides of R. So sR is an homothetic copy of R. Consider the 4n subrectangles Rs,j

produced by dividing each side of sR into four equal parts. Now at least one of these Rs,j’s is
contained in the open half space H−. Let us call this rectangle R′ and observe that it is of the
form R′ = z + 1

4sR ⊂ sR and R′ ∩B = ∅. We can then estimate
µ(∂B ∩ sR) = µ(∂B ∩ sR ∩R′) + µ(∂B ∩ sR ∖R′)

= µ(∂B ∩ sR ∖R′) ≤ µ(sR) − µ(R′)

≤ µ(sR) − 1
δ2
µ

µ(sR) ≤ cµ(sR),
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with c < 1. Applying (iii) for the centered operator M c
K,µ we see that

1 > c ≥ µ(∂B ∩ sR)/µ(sR)→ 1∂B, µ-almost everywhere as s→ 0+,
which implies that µ(∂B) = 0. �

6. Tauberian conditions for bases of rectangles

We now turn our attention to the maximal functionMG,µ defined with respect to a non-negative
measure µ which is finite on compact sets and a homothecy invariant basis G in Rn consisting
of rectangles. Observe that we do not assume the rectangles in G to have sides parallel to the
coordinate axes but one possible choice of G is the basis R.

Our main objective is to find a characterization of the measures µ such that MG,µ ∶ Lp(ν) →
Lp(ν) for some p > 1 in terms of a mixed µ, ν-Tauberian condition. The Tauberian condition
(Aµ

B,γ,ν) now takes the form

ν({x ∈ Rn ∶MG,µ(1E)(x) > γ}) ≤ cµG,γ,νν(E).(Aµ
G,γ,ν)
Our second main result gives a characterization of the boundedness of MG,µ on Lp(ν) in terms

of the Tauberian condition (Aµ
G,γ,ν), whenever the measure µ is doubling with respect to G. Note

that for the measure ν we only assume that it is non-negative and locally finite.

Theorem 6.1. Let G be a homothecy invariant basis consisting of rectangles and µ, ν be two
non-negative measures on Rn, finite on compact sets. Assume that µ is doubling with respect to
G. The following are equivalent:

(i) The measures µ, ν satisfy the Tauberian condition (Aµ
G,γ,ν) with respect to some fixed

level γ ∈ (0,1).
(ii) There exists 1 < po = po(cµG,γ,ν , γ, µ) < +∞ such that MG,µ ∶ Lp(ν)→ Lp(ν) for all p > po.

The previous theorem has an interesting corollary whenever µ ≡ ν. In this special case our main
theorem concerns the boundedness of the operatorMG,µ on Lp(µ), for sufficiently large p > 1 and
µ doubling with respect to G. As discussed in § 3.3 this scenario is very well understood for the
basis Q. Indeed, we already know that for a doubling measure µ the operator MQ,µ is of weak
type (1,1) and thus of strong type (p, p) for all p > 1. Thus both (i) and (ii) of this theorem
are always satisfied for Q and µ ≡ ν. However, for G = R and µ product-doubling we get a new
characterization of the measures µ such that MR,µ is bounded on Lp(µ), for sufficiently large
p > 1.

When µ ≡ ν the mixed Tauberian condition becomes:
µ({x ∈ Rn ∶MG,µ(1E)(x) > γ}) ≤ cµG,γ,µµ(E).(Aµ

G,γ,µ)
We then have:

Corollary 6.2. Let G be a homothecy invariant basis consisting of rectangles and µ be a non-
negative measure on Rn, finite on compact sets. Assume that µ is doubling with respect to G .
The following are equivalent:
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(i) The measure µ satisfies the Tauberian condition (Aµ
G,γ,µ) with respect to some fixed level

γ ∈ (0,1).
(ii) There exists 1 < po = po(cµG,γ,ν , γ, µ) < +∞ such that MG,µ ∶ Lp(µ)→ Lp(µ) for all p > po.

6.1. Proof of Theorem 6.1. In this subsection we give the details of the proof of Theorem 6.1.
First of all observe that if MG,µ ∶ Lp(ν) → Lp(ν) then trivially (Aµ

G,γ,ν) is satisfied for every
γ ∈ (0,1). For the rest of this section we will thus assume that (Aµ

G,γ,ν) holds for some γ ∈ (0,1).
Let β ∈ (γ,1). Any such choice of β will work equally well but for definitiveness we can take β to
be the arithmetic mean of γ and 1. The hypothesis implies that

ν({x ∈ Rn ∶MG,µ(1E)(x) ≥ β}) ≤ cν(E) for all measurable sets E ⊆ Rn.(6.3)
Here c = cµG,γ,ν but we suppress these dependencies for the sake of simplicity. We will need the
following notation introduced in [21]. For every measurable set E ⊂ Rn we define H0

β(E) ∶= E
and for k ≥ 1

Hkβ(E) ∶= {x ∈ Rn ∶MG,µ(1Hk−1
β

(E))(x) ≥ β}.
With these definitions at hand it is not difficult to check the following basic properties. Let
k, k′ ≥ 0 be non-negative integers and A,B measurable subsets of Rn. Then

H1
β(Hkβ(A)) = Hk+1

β (A),(6.4)
A ⊆ B ⇒ Hkβ(A) ⊆Hk

β(B),(6.5)
If k′ ≤ k then Hk′β (A) ⊆ Hkβ(A).(6.6)
(Aµ

G,γ,µ) implies (6.3) which in turn implies that ν(Hkβ(A)) ≤ ckν(A).(6.7)
The properties above will be used in several parts of the proof with no particular mention.

The following lemma is the heart of the proof of Theorem 6.1.

Lemma 6.8. Let µ be a doubling measure with respect to G, with doubling constant ∆µ, and E
be a measurable set in Rn. Suppose that for some α ∈ (0, β) and R ∈ G we have 1

µ(R) ∫R 1Edµ = α.
Then

R ⊂ Hkα,ββ (E) where kα,β ∶= ⌈
− log(βα)

logβ ⌉⌈2 + log+(β∆µ))
log(1/β) ⌉ + 1.

Here we denote by ⌈x⌉ the smallest positive integer which is no less than x.

Before giving the proof of the lemma let us see how we can use it to conclude the proof of
Theorem 6.1. By restricted weak type interpolation it suffices to show that for every 0 < λ < 1
and every measurable set E ⊂ Rn we have the estimate

ν({x ∈ Rn ∶MG,µ(1E)(x) > λ}) ≤
C

λpo
ν(E)(6.9)

for some po > 1 and some constant C > 0, independent of λ and E. Estimate (6.9) above is
the claim that the sublinear operator MG,µ is of restricted weak type (po, po) with respect to the
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measure ν, for some po > 1. Now we have
ν({x ∈ Rn ∶MG,µ(1E)(x) > λ}) ≤ ν({x ∈ Rn ∶ λ <MG,µ(1E)(x) < β})

+ ν({x ∈ Rn ∶MG,µ(1E)(x) ≥ β})(6.10)

≤ ν({x ∈ Rn ∶ λ <MG,µ(1E)(x) < β}) +
c
λpo

ν(E),

by (6.3), for all po > 0. In order to estimate the first summand let Eλ,β ∶= {λ <MG,µ(1E)(x) < β}.
For every x ∈ Eλ,β there exists Rx ∈ G and λ < α < β with

Rx ∋ x, µ(Rx) > 0 and µ(Rx ∩E)
µ(Rx)

= α.

By Lemma 6.8 we get that Rx ⊂ Hkα,ββ (E). Now observe that kα,β is a nonincreasing function of
α. Thus for all α > λ we have that kα,β ≤ kλ,β which by (6.6) implies that Hkα,ββ (E) ⊆ Hkλ,ββ (E).
Combining these observations we get that

Eλ,β ⊆ ⋃
x∈Eλ,β

Rx ⊆ Hkλ,ββ (E).

Using (6.7) we now see that

ν(Eλ,β) ≤ ν(Hkλ,ββ (E)) ≤ ckλ,βν(E).
By the explicit expression for kλ,β observe that we can write

kλ,β ≤
log(βλ)
log 1

β

ηβ,µ + 1

with ηβ,µ ≥ 2, depending only on β and µ. Thus

ckλ,β ≤ ccηβ,µ log 1
λ
/ log 1

β ≤ c
λpo

=
cµG,γ,ν
λpo

,

with po = ηβ,µ log cµG,γ,ν/log(1/β) > 0. Remember that β is completely determined by the level γ in
hypothesis (Aµ

G,γ,µ) so that po = po(cµG,γ,ν , γ, µ). Together with (6.10) this completes the proof
of (6.9) and thus of Theorem 6.1.

For the proof of Lemma 6.8 we will need an intermediate result. For this we introduce a final
piece of notation. If R ∈ G then there is a natural “dyadic system of rectangles” associated to R
which we will denote by DR. This system has the properties

(i) We have that R ∈ DR ⊆ G.
(ii) Every S ∈ DR has a unique dyadic parent S(1) and 2n dyadic children. Furthermore, each

corner of a rectangle S ∈ DR is shared by S and exactly one of its dyadic children.
(iii) If V,S ∈ DR then V ∩ S ∈ {∅, V, S}.
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We leave the details of the dyadic construction above to the interested reader. We now define
the dyadic weighted maximal function with respect to DR and µ as

MDR,µf(x) ∶= sup
S∈DR
S∋x

µ(S)>0

1
µ(S) ∫S ∣f(y)∣dµ(y), x ∈ Rn.

The dyadic maximal function just defined satisfies all the desired bounds:

Proposition 6.11. Let µ be a locally finite non-negative measure. We have thatMDR,µ ∶ L1(µ)→
L1,∞(µ). We conclude that the family {R ∶ R ∈ DR,R ∋ x,µ(R) > 0} differentiates L1

loc(µ).
Note that there is no doubling assumption on the measure µ in this proposition. Indeed,

the proof amounts to selecting the maximal “dyadic rectangles” S ∈ DR ∩ [0,2N)n such that
1

µ(S) ∫S ∣f(y)∣dµ(y) > λ and noting that they are disjoint. One then lets N → +∞. An identical
argument works for “dyadic rectangles” contained in the other quadrants of Rn. We leave the
details to the interested reader.

Lemma 6.12. Let µ,E and R be as in the hypothesis of Lemma 6.8 above. Then there exists a
non-negative integer N such that

µ(R ∩HN+2
β (E)) ≥ 1

β
µ(E ∩R).

Proof. We perform a Calderón-Zygmund decomposition of 1E∩R at level β with respect to the
dyadic grid DR. Namely, let {Sj}j ⊂ DR be the collection of “dyadic rectangles” which are
maximal among the S ∈ DR that satisfy

1
µ(S) ∫S 1E∩R(y)dµ(y) > β.

Observe that µ(S) > 0 for all rectangles S by Proposition 5.6. Furthermore µ(E∩R)/µ(R) < β so
that every dyadic rectangle S as above is contained in a maximal dyadic rectangle. This selection
algorithm together with the hypothesis µ(R ∩ E)/µ(R) = α < β allows us to choose a µ-a.e.
disjoint family {Sj}j ⊂ DR such that

⋃
j

Sj ⊆ R, Sj ≠ R for all j,

{x ∈ Rn ∶MDR,µ(1E∩R)(x) > β} =⋃
j

Sj,(6.13)

1
µ(Sj) ∫Sj

1E∩Rdµ > β,

1E∩R ≤ 1∪jSj µ-a.e. in R.(6.14)
For any constant c > 1 we let c∗Sj denote the rectangle containing Sj that has sidelength c times
the sidelength of Sj and has a common corner with Sj and S(1)

j . With this notation we have
S

(1)
j = 2 ∗ Sj while the doubling hypothesis for µ implies that µ(S(1)

j ) ≤ ∆µµ(Sj) for every j.
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For each j we set Sj,0 ∶= Sj. Suppose we have defined Sj,0 ⊂ ⋯ ⊂ Sj,k for some k ≥ 0. We define
Sj,k+1 to be a rectangle of the form cj,k+1 ∗Sj, where cj,k+1 > 1 is chosen so that Sj,k ⊂ Sj,k+1 and

µ(Sj,k+1)
µ(Sj,k)

= 1
β
> 1.(6.15)

Observe that such a choice is always possible since the function f(c) ∶= µ(c∗Sj,k)/µ(Sj,k) satisfies
f(1) = 1, f(c)→ +∞ as c→ +∞ and by (iv) of Proposition 5.6 it is continuous on [1,+∞).

For k ≥ 0 we now set
Ek ∶=⋃

j

Sj,k.

Observe that for k ≥ 0 we have
Ek+1 ⊂ {x ∈ Rn ∶MG,µ(1Ek)(x) ≥ β}.(6.16)

Indeed if x ∈ Ek+1 then x ∈ Sj0,k+1 for some j0. We estimate

MG,µ(1Ek)(x) = sup
S∈G
S∋x

µ(S ∩Ek)
µ(S) ≥

µ(Sj0,k+1 ∩⋃j Sj,k)
µ(Sj0,k+1)

≥
µ(Sj0,k)
µ(Sj0,k+1)

= β,

by (6.15). Next we claim that for every k ≥ 0 we have
Ek ⊂ Hk+1

β (E).(6.17)
For k = 0 this is an immediate consequence of (6.13) since

E0 =⋃
j

Sj = {x ∈ Rn ∶MDR,µ(1E∩R)(x) > β}

⊆ {x ∈ Rn ∶MG,µ(1E)(x) ≥ β} = H1
β(E).

Assume now that (6.17) is valid for some k ≥ 0. By (6.16), the inductive hypothesis and properties
(6.4),(6.5) we get that

Ek+1 ⊂ {x ∈ Rn ∶MG,µ(1Ek)(x) ≥ β} = H1
β(Ek) ⊆ H1

β(Hk+1
β (E)) = Hk+2

β (E),
which proves the claim.

Now let N be the smallest non-negative integer such that β−(N+1) ≥ ∆µ, where ∆µ is the
doubling constant of the measure µ. It follows that

S
(1)
j ⊆ Sj,N+1(6.18)

for every j. Indeed, assume for the sake of contradiction that Sj,N+1 ⊊ S(1)
j . Then the doubling

property of µ implies that µ(Sj,N+1) < µ(S(1)
j ). Thus

∆µ ≥
µ(S(1)

j )
µ(Sj)

> µ(Sj,N+1)
µ(Sj)

= β−(N+1)

which contradicts the choice of N .
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Now (6.18) implies that for every j we have
µ(Sj,N)
µ(S(1)

j )
≥ µ(Sj,N)
µ(Sj,N+1)

= β

and we can conclude that for every j
µ(EN ∩ S(1)

j )
µ(S(1)

j )
=
µ(⋃ν Sν,N ∩ S(1)

j )
µ(S(1)

j )
≥
µ(Sj,N ∩ S(1)

j )
µ(S(1)

j )
≥ min(1,

µ(Sj,N)
µ(S(1)

j )
) ≥ β.

Hence
⋃
j

S
(1)
j ⊆ {x ∈ R ∶MG,µ(1EN )(x) ≥ β}.(6.19)

Let {S(1)
jk

}k denote the maximal elements of {S(1)
j }j. Then the sets {S(1)

jk
}k are µ-a.e. pairwise

disjoint and ⋃k S(1)
jk

= ⋃j S(1)
j . Note that all S(1)

jk
’s are contained in R since for all j we have

Sj ⫋ R. We also have that we have S(1)
jk

≠ Sm for any k,m. Indeed, if S(1)
jk

= Sm for some k,m
then we would have S(1)

jk
⫋ S(1)

m which is impossible because of the maximality of the S(1)
jk

’s among
the S(1)

m ’s. Thus none of the S(1)
jk

were selected in the Calderón-Zygmund decomposition so that

µ(S(1)
jk

∩E ∩R) ≤ βµ(S(1)
jk

)

and hence µ(S(1)
jk

∩E) ≤ βµ(S(1)
jk

) for all k since S(1)
jk

⊆ R for all k. Using the last estimate and
(6.19) we now have

µ({x ∈ R ∶MG,µ(1EN )(x) ≥ β}) ≥ µ(⋃
j

S
(1)
j ) = µ(⋃

k

S
(1)
kj

)

=∑
k

µ(S(1)
kj

) ≥ 1
β
∑
k

µ(E ∩ S(1)
kj

)

= 1
β
µ(E ∩⋃

k

S
(1)
kj

) = 1
β
µ(E ∩⋃

j

S
(1)
j )

≥ 1
β
µ(E ∩⋃

j

Sj).

Now (6.14) implies that 1E∩R ≤ 1R∩∪jSj almost everywhere so that µ(E ∩ R) ≤ µ(R ∩ ∪jSj).
Thus the previous estimate reads

µ({x ∈ R ∶MG,µ(1EN )(x) ≥ β}) ≥
1
β
µ(E ∩R)

which by (6.17) implies that µ(R ∩HN+2
β (E)) ≥ β−1µ(E ∩R) as desired. �

We can now conclude the proof of Lemma 6.8.
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Proof of Lemma 6.8. By the hypothesis of the lemma there exists α ∈ (0, β) and R ∈ G with
µ(E ∩R)/µ(R) = α. Let jo be the smallest positive integer such that β−joα ≥ β. Such an integer
obviously exists since β < 1. There are two possibilities.

case 1: We have that µ(R ∩Hj(N+2)
β (E)) < βµ(R) for j = 0, . . . , jo − 1. Then we claim that we

have

µ(R ∩Hk(N+2)
β (E)) ≥ 1

βk
µ(R ∩E) for all k = 1, . . . , jo.(6.20)

We will prove (6.20) by induction on k. Indeed, the case k = 1 is just Lemma 6.12. Assume that
(6.20) is true for some 1 ≤ k ≤ jo − 1. Then, since µ(R ∩Hk(N+2)

β (E)) < βµ(R) we can apply
Lemma 6.12 for the rectangle R and the set Hk(N+2)

β (E) in place of E to conclude that

µ(R ∩HN+2
β (Hk(N+2)

β (E))) ≥ 1
β
µ(Hk(N+2)

β (E) ∩R) ≥ 1
β
( 1
β
)kµ(R ∩E) = ( 1

β
)k+1

µ(R ∩E).

However this is just (6.20) for k + 1 since HN+2
β (Hk(N+2)

β (E)) = H(k+1)(N+2)
β (E).

Now by (6.20) for k = jo we get that
1

µ(R)µ(R ∩Hjo(N+2)
β (E)) ≥ ( 1

β
)jo µ(R ∩E)

µ(R) = β−joα ≥ β

by the choice of jo. This implies that R ⊆ Hjo(N+2)+1
β (E).

case 2: We have that µ(R ∩Hj(N+2)
β (E)) ≥ βµ(R) for some j ∈ {0, . . . , jo − 1}. In fact, by the

hypothesis we necessarily have that j ≥ 1 in this case. Then
1

µ(R)µ(R ∩Hj(N+2)
β (E)) ≥ β

which implies that R ⊆ {x ∈ Rn ∶MG,µ(1Hj(N+2)
β

(E))(x) ≥ β} = H
j(N+2)+1
β (E).

Observe that in either one of the complementary cases considered above we can conclude that
R ⊆ Hjo(N+2)+1

β (E). This proves the lemma with kα,β = jo(N + 2) + 1. It remains to estimate
kα,β. This can be easily done by going back to the way the integers N and jo were chosen. For
N remember that it is the smallest non-negative integer such that (1/β)N+1 ≥ ∆µ. If 1/β ≥ ∆µ

then the choice N = 0 will do. If 1/β < ∆µ then we get that N is the smallest positive integer
which is greater or equal to log(β∆µ)/ log(1/β). Thus the choice

N ∶= ⌈ log+(β∆µ)
log(1/β) ⌉

covers both cases. Likewise, jo is the smallest integer such that β−jo ≥ β/α or jo is the smallest
integer greater than log(β/α)/ log(1/β). Thus we can choose

jo ∶= ⌈
log(βα)
log 1

β

⌉.
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We set

kα,β ∶= jo(N + 2) + 1 = ⌈
log(βα)
log 1

β

⌉(⌈ log+(β∆µ)
log(1/β) ⌉ + 2) + 1

= ⌈
log(βα)
log 1

β

⌉⌈2 + log+(β∆µ)
log(1/β) ⌉ + 1.

Of course, any integer greater than the kα,β above will also do since the sets Hkβ(E) are increasing
in k. �

7. An extension to bases of convex sets

The purpose of this section is to provide an extension of Theorem 6.1 to the case that the
Tauberian condition is given with respect to a homothecy invariant basis B consisting of convex
sets:

ν({x ∈ Rn ∶MB,µ(1E)(x) > γ}) ≤ cµB,γ,νν(E).(Aµ
B,γ,ν)

As in the previous section where the basis G consisted of rectangles, we will need to assume the
doubling property of the measure µ with respect to the basis B. The main theorem of this section
is the following.

Theorem 7.1. Let B be a homothecy invariant basis consisting of convex sets and µ, ν be two
non-negative measures on Rn, finite on compact sets. Assume that µ is doubling with respect to
B. The following are equivalent:

(i) The measures µ, ν satisfy the Tauberian condition (Aµ
B,γ,ν) with respect to some fixed

level γ ∈ (0,1).
(ii) There exists 1 < po = po(cµB,γ,ν , n, γ, µ) < +∞ such that MB,µ ∶ Lp(ν) → Lp(ν) for all

p > po.
The general strategy of the proof is the following. Assuming that (Aµ

B,γ,ν) is satisfied for some
level γ ∈ (0,1) we will show that the maximal operator MGB,µ also satisfies a Tauberian condition
with respect to every level α ∈ (γ,1). We will then use Theorem 6.1 to conclude that MGB,µ is
bounded on some Lp(ν)-space, for sufficiently large p. According to Lemma 5.5 the operators
MGB,µ, MB,µ are pointwise comparable so this will complete the proof of Theorem 7.1.

7.1. The Tauberian condition for MGB,µ. In the subsection we will show that (Aµ
B,γ,ν) implies

a Tauberian condition for the operator MGB,µ. This is the content of:

Lemma 7.2. Suppose that MB,µ satisfies the Tauberian condition (Aµ
B,γ,ν) for some fixed level

γ ∈ (0,1). Then for all α ∈ (γ,1) the operator MGB,µ satisfies a Tauberian condition with respect
to α:

ν({x ∈ Rn ∶MB,µ(1E)(x) > α}) ≤ cµGB,α,ν
ν(E)(Aµ

GB,α,ν
)

where cµGB,α,ν
depends on cµB,γ,ν , the measures µ, ν, the dimension n, γ and α.
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The proof of this lemma is the most crucial step towards Theorem 7.1 and its proof will be
explained through several intermediate steps in this section.

We will adopt the definitions and notation of § 5.1, namely for every B ∈ B we consider the
associated rectangle RB where B ⊂ RB ⊂ n 3

2B and GB = {RB ∶ B ∈ B} forms a homothecy
invariant basis. Our basic assumption is that µ is doubling with respect to B with doubling
constant ∆µ,B. By Lemma 5.5 this implies that µ is also doubling with respect to GB, with
doubling constant ∆µ,GB

. All these notions and constants will be fixed throughout this section so
we will just write ∆µ ∶= ∆µ,B and δµ ∶= ∆µ,GB

.
We now fix a convex set B and its associated rectangle R = RB ⊃ B and work locally inside

R. By using a bijection T ∶ Rn → Rn we always have [0,1]n = Q = T (R) and then we set
K ∶= T (B) ⊂ Q. By considering the pushforward of µ, that is the measure defined as µT (E) ∶=
µ(T −1E) for every measurable set E, we readily see that the measure µT is doubling with respect
to the basis TB ∶= {T (B) ∶ B ∈B} with doubling constant ∆µ. Also the measure µT is doubling
with respect to the basis TG with doubling constant δµ. Using these invariances we can and will
henceforth assume that R = Q and B is a convex set inside Q. We will use the same notation µ
for the measure µT . This will hopefully create no confusion as all our estimates will only depend
on the doubling constants which are the same for both measures.

The following lemma is the heart of the matter when it comes to the proof of Lemma 7.2.

Lemma 7.3. Let K be a convex set contained in the unit cube Q = [0,1]n and µ be a doubling
measure which is doubling with respect to Euclidean cubes in Rn with doubling constant δµ. For
every ε > 0 we have the estimate

µ({x ∈ Rn ∖K ∶ 0 ≤ dist(x,K) < ε}) ≤ vεµ(Q),

where vε ≤ 9δ4+⌈log(34
√
n)⌉

µ ( log 1
ε
)−1.

We immediately get the following corollary.

Corollary 7.4. Let m be a positive integer and {Qj}j denote the dyadic cubes of sidelength 2−m,
contained in Q and disjoint from K. Then

µ(⋃
j

Qj) + µ(K) ≥ ξmµ(Q),

where ξm = 1 − v√n2−m → 1 as m→ +∞ and vε is as in Lemma 7.3.

Proof. Suppose that x ∈ Q∖K and dist(x,K) ≥ √
n2−m. Then since the cubes Qj have diameter

less than
√
n2−m we have that x ∈ Qj for some j. Thus

Q ∖ (⋃
j

Qj ∪K) ⊂ {x ∈ Q ∖K ∶ 0 ≤ dist(x,K) <
√
n2−m}.

Using Lemma 7.3 and the previous inclusion we conclude
µ(⋃

j

Qj) + µ(K) ≥ (1 − v√n2−m)µ(Q)

which is the desired estimate with ξm = 1 − v√n2−m . �
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Some remarks are in order concerning Lemma 7.3 and its corollary above. If µ is replaced by the
Lebesgue measure then Lemma 7.3 appears in [21, Lemma 2] and is one of the main ingredients
for the proof of the Lebesgue-measure analogue of Lemma 7.2. In the Lebesgue measure case,
Lemma 7.3 is a simple calculation that crucially depends on the fact that the Lebesgue measure
of an “annulus” around a convex set can be calculated as the sum of the (n − 1)-dimensional
Hausdorff measures of the boundaries of an increasing sequence of convex sets. Since the (n−1)-
dimensional Hausdorff measure of the boundary of a convex set contained in Q is at most 2n this
yields the desired estimate. Under the presence of a general doubling measure the proof of such
a result is more involved. In order not to divert the attention from the proof of Lemma 7.2 we
postpone the proof of Lemma 7.3 until § 7.3.

Let E be a set in Rn, σ ∈ Rn and c > 0. Remember the notations τσE = {x + σ ∶ x ∈ E} and
dilcE = {cx ∶ x ∈ E}. In the following lemma we iterate the construction of Lemma 7.3 in order
to get “many” disjoint homothetic copies of a convex set B inside its associated rectangle RB,
with diameters bounded away from zero and whose union captures a big portion of the measure
of RB.

Remember that ξm is the constant appearing in Lemma 7.3, ρ = ∆−⌈ 3
2 logn⌉

µ < 1 is the constant
from Lemma 5.5, and δµ is the doubling constant of µ with respect to GB.

Lemma 7.5. Let B ∈ B be a convex set in let R = RB ∈ GB be the associated rectangle of B
so that B ⊂ R. Let m be a a large positive integer so that ξm > ρ. For every positive integer N
there exists a set BN ⊂ R with the following properties:

(i) The set BN is a finite union of pairwise disjoint homothetic copies of B. That is, BN =
∪αBα, each Bα ⊂ R is an homothetic copy of B and the Bα’s are pairwise disjoint.

(ii) Let Bα be a homothetic copy of B in BN and let RBα be the associated rectangle of Bα.
Then RBα is a “dyadic rectangle” in DR which is at most mN generations inside R. This
means that R(s)

Bα
= R for some non-negative integer s ≤ Nm.

(iii) For the µ-measure of BN we have the estimate

µ(BN) ≥ ρ1 −ΨN+1

1 −Ψ µ(R),

where Ψ ∶= ξm − ρ.
Proof. By the discussion before Lemma 7.3 concerning affine invariance we can assume that
R = Q = [0,1]n and B =K ⊂ Q. We will thus construct the set KN = BN as in the statement of
the lemma, assuming everything takes place inside the unit cube Q.

Let {Qj}j denote the pairwise disjoint cubes from Lemma 7.3 which satisfy µ(∪jQj)+µ(K) ≥
ξmµ(Q). It is essential to note that ξm depends only on the dimension, the doubling constant
of µ and m, and that ξm → 1 as m → +∞. Remember that by Lemma 5.5 we have for every
B ∈B with associated rectangle RB that µ(B) ≥ ρµ(RB). Since we have reduced everything to
the case K ⊂ Q this means that we have

µ(V ) ≥ ρµ(QV )(7.6)



TAUBERIAN CONDITIONS AND MUCKENHOUPT WEIGHTS 27

for all the convex sets V ⊂ Q which are homothetic copies of K and for QV ⊃ V being the
associated cube of V . Throughout this proof (and for the rest of the paper) we assume that m
is sufficiently large, depending upon the dimension, δµ and ∆µ only, so that ξm − ρ > 0.

Consider {σj}j ⊂ Rn such that Qj =∶ τσjdil2−mQ and set K1,j ∶= τσjdil2−mK. Observe that
Qj is the associated cube of the convex set K1,j, just like Q is the associated rectangle of K.
Combining this observation with (7.6) we see that µ(K1,j) ≥ ρµ(Qj) and thus

µ(⋃
j

K1,j) ≥ ρµ(⋃
j

Qj).

By Lemma 7.3 we estimate
µ(⋃

j

K1,j) + µ(K) ≥ ρ(ξmµ(Q) − µ(K)) + µ(K)

= ρξmµ(Q) + (1 − ρ)µ(K).
Now ρ < 1 and µ(K) ≥ ρµ(Q) thus

µ(⋃
j

K1,j) + µ(K) ≥ ρξmµ(Q) + (1 − ρ)ρµ(Q)

= ρ(1 + ξm − ρ)µ(Q).
We call Ψ ∶= ξm − ρ since this quantity will appear quite a lot in what follows. Observe that
0 < Ψ < 1. Now let K1 ∶= K ∪ ⋃`K1,` and K2,j ∶= τσjdil2−mK1 = K1,j ∪ ⋃` τσjdil2−mK1,`. The
previous estimate reads

µ(K1) ≥ ρ(1 +Ψ)µ(Q).
We iterate the estimate of Lemma 7.3 as follows:

µ(⋃
j

K2,j) + µ(K) ≥ µ(⋃
j

K1,j) +∑
j

µ(⋃
`

τσjdil2−mK1,`) + µ(K)

≥ µ(⋃
j

K1,j) + ρ∑
j

µ(⋃
`

τσjdil2−mτσ`dil2−mQ) + µ(K)

= µ(⋃
j

K1,j) + ρ∑
j

∑
`

µ(τσjdil2−mQ`) + µ(K)

≥ µ(⋃
j

K1,j) + ρ∑
j

(ξmµ(Qj) − µ(K1,j)) + µ(K)

= (1 − ρ)µ(⋃
j

K1,j) + ρξm∑
j

µ(Qj) + µ(K)

≥ (1 − ρ)µ(⋃
j

K1,j) + ρξm(ξmµ(Q) − µ(K)) + µ(K).

Noting that the coefficient in front of µ(K) is positive and using µ(K) > ρµ(Q) together with
the lower bound for µ(⋃jK1,j) we can conclude

µ(⋃
j

K2,j) + µ(K) ≥ ρ(1 +Ψ +Ψ2)µ(Q).
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Thus K2 ∶=K ∪⋃`K2,` satisfies
µ(K2) ≥ ρ(1 +Ψ +Ψ2)µ(Q)

We continue inductively. If Kν has been defined and satisfies µ(Kν) ≥ ρ(1 +Ψ + ⋯ +Ψν)µ(Q)
we can set Kν+1,j ∶= τσjdil2−mKν and Kν+1 ∶=K ∪⋃`Kν,` and in the same fashion we show that

µ(Kν+1) ≥ ρ(1 +Ψ +⋯ +Ψν +Ψν+1)µ(Q).

We conclude that for every positive integer N we have µ(KN) ≥ ρ1−ΨN+1

1−Ψ µ(Q).
Going back from the unit cube Q to a general rectangle R, if Q = T (R) for a bijection

T ∶ Rn → Rn then the desired set BN is just BN ∶= T −1KN . �

In the following lemma we make appropriate selections of the parameters m,N as these appear
in the statement of Lemma 7.5.

Lemma 7.7. Let η ∈ (0,1) and α ∈ (η,1) and consider the parameters N,m and Ψ from
Lemma 7.5. There exists a choice of m,N so that

ρ
1 −ΨN+1

1 −Ψ ≥ 1 − α
1 − η .

Proof. Remember that Ψ = ξm − ρ. We begin by fixing m large enough so that ξm > ρ and
ρ

1 −Ψ = ρ

1 − (ξm − ρ) >
1 + 1−α

1−η

2 .

For the previous inequality to be true it is enough to define m so that

ξm > 1 − ρ
1 − 1−α

1−η

1 + 1−α
1−η

= 1 − ρ α − η
2 − α − η .

This is always possible since 0 < α−η
2−α−η < 1 and 0 < ρ < 1. With this value of m fixed we now let

the positive integer N be large enough so that
1 + 1−α

1−η

2 (1 −ΨN+1) =
1 + 1−α

1−η

2 (1 − (ξm − ρ)N+1) > 1 − α
1 − η .

A straightforward calculation shows that it is enough to take

N ∶= ⌈
log (2−α−η

α−η )
log ( 1

ξm−ρ)
⌉.

These values of m and N prove the statement of the lemma. �

We are now ready to give the proof of Lemma 7.2.
Proof of Lemma 7.2. Let us assume that MB,µ satisfies the Tauberian condition (Aµ

B,γ,ν) for a
fixed level γ ∈ (0,1) and let β ∈ (γ,α). As in the proof of Theorem 6.1 any such β will work
equally well, but a concrete choice is β ∶= (γ + α)/2. Then the Tauberian condition (Aµ

B,γ,ν) implies
ν({x ∈ Rn ∶MB,µ(1E)(x) ≥ β}) ≤ cµGB,γ,ν

ν(E)(7.8)
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for any µ-measurable set E ⊂ Rn. For every y ∈ {x ∈ Rn ∶ MGB,µ(1E)(x) > α} there exists a
rectangle R = Ry ∈ GB with R ∋ y and

1
µ(R) ∫R 1E(y)dµ(y) > α.(7.9)

We will use the basic inclusion
Hα ∶= {x ∈ Rn ∶MGB,µ(1E)(x) > α} ⊂ ⋃

y∈Hα
Ry.

Denoting
H0

B,β(E) ∶= E and HkB,β(E) ∶= {x ∈ Rn ∶MB,µ(1Hk−1
B,β

(E))(x) ≥ β}, k ≥ 1,

we will show that ∪yRy ⊂ HkB,β(E) for some positive integer k.
To this end let R = Ry be one of these rectangles. Observe that there is some B ∈B such that

R = RB is the associated rectangle of the convex set B and R ⊃ B. We now consider the set BN

as in Lemma 7.5 with the choice of parameters m,N provided by Lemma 7.7 applied for η = β.
Observe that we have µ(BN) ≥ 1−α

1−βµ(RB) and BN is a disjoint union of homothetic copies of
B inside RB, with each homothetic copy having associated a rectangle which is dyadic, and at
most Nm generations “inside” RB. We claim that for at least one of the homothetic copies of
B forming BN , say B̃, we have

1
µ(B̃) ∫B̃

1E(y)dµ(y) ≥ β.

Indeed, if this is not the case then we would have
µ(E ∩R) ≤ µ(E ∩BN) + µ(E ∩R ∖BN) < βµ(BN) + µ(R) − µ(BN)

= µ(R) − (1 − β)µ(BN) ≤ µ(R) − (1 − β)1 − α
1 − βµ(R) = αµ(R)

which contradicts (7.9). The previous claim just proved immediately implies that
B̃ ⊂ H1

B,β(E).(7.10)

If RB̃ is the associated rectangle of B̃ we get by the construction of Lemma 7.5 that RB̃ is a
dyadic rectangle which is at most Nm generations “inside” R. Thus 2Nm+1RB̃ ⊃ R. Remembering
that RB̃ ⊂ n 3

2 B̃ we arrive at
B̃ ⊂ R ⊂ 2Nm+1+ 3

2 ⌈logn⌉B̃.

From the doubling property of µ with respect to B we now get that

µ(2Nm+1+ 3
2 ⌈logn⌉B̃) ≤ ∆Nm+1+⌈ 3

2 logn⌉
µ µ(B̃).
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We define a nested sequence of homothetic copies of B̃ as follows. Let B̃0 ∶= B̃. Assuming we
have defined B̃0, . . . , B̃j then we set B̃j+1 ∶= cjB̃j where cj > 1 is chosen so that

µ(B̃j+1)
µ(B̃j)

= 1
β
> 1.(7.11)

This is possible because of the continuity of the measure µ proved in (iv) of Proposition 5.6. Here
remember that cB̃ denotes dilation with respect to the center of the John ellipsoid of B̃. It is
not hard to see that B̃ ⊂ cB̃ whenever c > 1. We define k = kα,β,n,µ to be the smallest positive
integer such that

( 1
β
)k−1 ≥ ∆Nm+1+⌈ 3

2 logn⌉
µ .

Observe that for this it suffices to set

k ∶= 1 + ⌈ log ∆µ

log(1/β)⌉⌈Nm + 1 + 3
2 logn⌉,

with the choices of m,N given by Lemma 7.7 with η = β. Then we claim that
B̃k−1 ⊇ 2Nm+1+⌈ 3

2 logn⌉B̃.

If this is not the case then necessarily B̃k−1 ⊊ 2Nm+1+⌈ 3
2 logn⌉B̃ since both sets in the previous

inclusion are of the form cB̃ and, as already observed, one must contain the other. This would
imply

∆Nm+1+⌈ 3
2 logn⌉

µ ≥ µ(2
Nm+1+⌈ 3

2 logn⌉B̃)
µ(B̃)

> µ(B̃k−1)
µ(B̃)

= ( 1
β
)k−1

which contradicts the choice of k. Now for every j = 1, . . . , k − 1 the choice in (7.11) implies that
B̃j ⊂ H1

B,β(B̃j−1).
Iterating the previous inclusion we get

R ⊂ 2Nm+1+⌈ 3
2 logn⌉B̃ ⊂ B̃k−1 ⊂ Hk−1

B,β(B̃) ⊂ HkB,β(E)
by (7.10).

Remembering that Hα = {x ∈ Rn ∶MGB,µ(1E)(x) > α} ⊂ ⋃y∈Hα Ry, the previous inclusion and
(7.8) imply

ν({x ∈ Rn ∶MGB,µ(1E)(x) > α}) ≤ ν(⋃
y
Ry) ≤ ν(HkB,β(E)) ≤ [cµB,γ,ν]kν(E)

which is the Tauberian condition for MGB,µ with constant cµGB,α,ν
≤ [cµB,γ,ν]k. �
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7.2. The proof of Theorem 7.1. It is now routine to complete the proof of Theorem 7.1. Indeed,
suppose that MB,µ satisfies (Aµ

B,γ,ν) for some fixed level γ ∈ (0,1). Then Lemma 7.2 implies that
the associated operator MGB,µ satisfies (Aµ

GB,α,ν
). Since GB is an homothecy invariant basis

of rectangles and µ is doubling with respect to that basis, Theorem 6.1 implies that MGB,µ is
bounded on Lp(ν) for p > p0 with p0 depending on µ,n, γ and the constant cµB,γ,ν , in the Tauberian
condition (Aµ

B,γ,ν). By Lemma 5.5 the operators MGB,µ and MB,µ are pointwise comparable. We
conclude that MB,µ is bounded on Lp(ν) for p > p0.

7.3. The proof of Lemma 7.3. This section is dedicated to the proof of Lemma 7.3. Remember
that Q = [0,1]n is the unit cube in Rn and K ⊂ Q is a convex set and our purpose is to estimate
the µ-measure of the “annulus” {x ∈ Rn ∖K ∶ 0 ≤ dist(x,K) < ε}. The estimate of the lemma is
only interesting when ε is small so it is without loss of generality to assume that 0 < ε < 1

28 . We
consider the larger cube L ∶= 16Q which is the cube with the same center as Q and and sidelength
equal to 16. Now let us fix a positive integer k ≥ 8 such that 2−k−1 ≤ ε < 2−k. It obviously suffices
to estimate the measure of the “annulus”

Ak ∶= {x ∈ Rn ∖K ∶ 0 ≤ dist(x,K) < 2−k}.
Let x ∈ Ak and consider p = px ∈ ∂K such that ∣p − x∣ ≤ 2−k. Let Hp be a supporting hyperplane
through p and H−

p be the half space defined by Hp and such that H−
p ∩K = ∅. We now consider

the half line `p which is emanating from the point p, is perpendicular to Hp and is contained in
H−
p , and suppose that `p meets ∂L at some point bp. Since K ∩H−

p = ∅ and `p is perpendicular
to Hp, we have for z ∈ `p:

dist(z,K) = dist(z,Hp) = ∣z − p∣, z ∈ `p.(7.12)
Thus we can conclude

{dist(z,K) ∶ z ∈ `p} ⊃ [0, ∣bp − p∣] ⊃ [0,1]
since ∣bp − p∣ ≥ 8 − 1/2 > 1. Now let 2−j ∈ [2−k,1] for some 0 ≤ j ≤ k. By the continuity of the
distance function there exists zp ∈ `p such that dist(zp,K) = 2−j. Let {Sj}j denote the Whitney
cubes associated to K and remember that these cubes satisfy

K̄c = ∪jSj,
S̊j ∩ S̊j′ = ∅ if j ≠ j′,

diamSj ≤ dist(Sk,K) ≤ 4 diamSj.

Here Å denotes the interior of a set A. See for example [51, §VI.1] for the details of the
construction of the Whitney cubes. Since the Whitney cubes cover K̄c and dist(zp,K) > 0, there
is a Whitney cube Sp = Sjp such that zp ∈ Sp. We then have that

diamSp ≤ dist(Sp,K) ≤ dist(zp,K)
and on the other hand

diamSp ≥
1
4 dist(Sp,K) ≥ 1

4(dist(zp,K) − diamSp)
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bp

p

Q

L
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zp

K

2−k
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H−
p H+

p

Figure 1. A figure for the proof of Lemma 7.3

so that diamSp ≥ 1
5 dist(zp,K) > 1

8 dist(zp,K). Thus the Whitney cube Sp satisfies
diamSp ≤ dist(zp,K) = 2−j ≤ 8 diamSp.

By (7.12) we also get that diamSp > 1
8 dist(zp,K) = 1

8 ∣zp − p∣. Remember that x ∈ Ak satisfies
∣x − p∣ ≤ 2−k ≤ 2−j. An easy calculation now verifies that x ∈ 34

√
nSp, where we remember that

the dilation is taken with respect to the center of Sp.
We have actually shown that for every x ∈ Ak and every 2−j ∈ [2−k,1], there exists a Whitney

cube Sx such that

x ∈ 34
√
nSx and 1

82−j < diamSx ≤ 2−j

Let Cj denote the Whitney cubes such that 1
82−j < diamS ≤ 2−j. Observe that for different j’s

the collections C4j are disjoint. We can write for every positive integer j ∈ [0, k/4)
Ak ⊂ ⋃

S∈C4j

34
√
nS,

and thus
µ(Ak) ≤ δ⌈log 34

√
n⌉

µ µ( ⋃
S∈C4j

S).
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Summing in j ∈ [0, k/4) yields

⌊k/4⌋µ(Ak) ≤ δ⌈log 34
√
n⌉

µ

⌊k/4⌋

∑
j=0

µ( ⋃
S∈C4j

S),

with ⌊x⌋ denoting the largest integer less or equal to x. Now all the Whitney cubes S that appear
on the right hand side of the last display satisfy diam(S) ≤ 1 and dist(S,K) ≤ 4, and thus they
are all contained in 11Q ⊂ L. Since the families C4j are pairwise disjoint, and every family C4j
consists of pairwise µ-a.e. disjoint cubes, the previous estimate implies

µ(Ak) ≤
8
k
δ
⌈log(34

√
n)⌉

µ µ(16Q) ≤ 8
k
δ

4+⌈log(34
√
n)⌉

µ µ(Q).

Since 1
k ≤ 9

8
1

log 1
ε

this completes the proof of Lemma 7.3.
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