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Abstract

This paper shows a summary of mathematical results about the Muskat
problem. The main concern is well-posed scenarios which include the pos-
sible formation of singularities in finite time or existence of solutions for
all time. These questions are important in mathematical physics but also
have a strong mathematical interest. Stressing some recent results of the
author, we also give a new estimate for the problem in the last section.
Initial data with L2 decay and slope less than one provide weak solutions
which satisfy a parabolic inequality as in the linear regime.

1 Introduction

The mathematical analysis of fluid mechanics models in PDEs is a classical topic
of research since Euler’s 1757 paper, where the evolution equation of an ideal
flow was first derived. For the well established models, such as Navier-Stokes
and Euler, the incompressible case presents basic and important open questions
such as global regularity and finite time singularity formation of the solutions. It
is a current area of mathematical research of fundamental interest in particular
due to its relevance in Physics and wide applicability.

In the analysis of PDEs from fluid mechanics, an outstanding class of prob-
lems are those in which the evolution of fluids of different nature are modeled.
The interaction between the fluids provides the dynamics of their common free
boundary that evolves with the flow. It gives rise to long standing problems
such as vortex-patch [14], vortex-sheet [49, 4], water waves [44], viscous waves
evolution [41], interface flows in porous media and Hele-Shaw cells [37, 9], as
well as atmospheric front dynamics [23], among others. These free boundary
dynamics problems are modeled by fluid mechanics PDEs such as Euler, Navier-
Stokes, Darcy momentum equation and quasi-geostrophic systems. In all of
them fundamental questions are local-in-time existence, global-in-time regular-
ity of solutions or finite time singularity formation in well-posed scenarios.

In this manuscript we focus on the classical Muskat problem [45]. It con-
siders contour dynamics problems for incompressible fluids of different nature
permeating a porous medium. Recently, computer evidence has shown how
singularities may developed in Muskat [12]. With recent new techniques, it is
now possible to prove different types of finite time singularity formation for
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those scenarios [13, 10, 11]. These are the first analytic proofs of blow-up for
incompressible fluid in well-posed situations.

We introduce now the equations of the problem, considering an active scalar
ρ(x, t), depending on time t ≥ 0 and position x ∈ R2. Here we will pick the two
dimensional case for simplicity of exposition. The fluid velocity is incompressible

∇ · u(x, t) = 0, (1)

and the scalar ρ(x, t) satisfies a general transport evolution equation for incom-
pressible flows

ρt(x, t) + u(x, t) · ∇ρ(x, t) = 0. (2)

That we are dealing with two different fluids is reflected in the configuration of
ρ(x, t), which is a discontinuous function with constant values in two comple-
mentary connected sets D1(t) and D2(t) = R2 \D1(t):

ρ(x, t) =

{
ρ1, x ∈ D1(t),
ρ2, x ∈ D2(t).

(3)

The constants ρ1 and ρ2 represent the density of each fluid that occupy the sets
D1(t) and D2(t), respectively. Therefore equation (2) becomes the conservation
of mass and it is understood in a weak sense. The main concern is about
the dynamics of the free boundary of the fluids ∂Dj(t), j = 1, 2, which is
parameterized by the curve z(α, t) as follows:

∂Dj(t) = {z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R}.

Above the curve z(α, t) is asymptotically flat: z(α, t) − (α, 0) → 0 as α → ∞,
and we will consider also the case of a 2π-periodic contour in the x1 direction:
z(α + 2π, t) = z(α, t) + (2π, 0). The fluid with density ρ2 essentially lies below
the fluid of density ρ1 in such a way that there is a constant M > 1 big enough
so that R × (−∞,−M ] ⊂ D2(t). We always assume that the initial velocity is
in L2 ∫

|u(x, 0)|2dx < ∞,

the finite energy and physically relevant case.
For the Muskat problem, the most common example for applications is the

dynamics of water and oil [6]. This is a classical topic of investigation dating
back to Muskat’s 1934 paper [45]. In consequence the fluids can also have
different constant viscosities, given by

µ(x, t) =

{
µ1, x ∈ D1(t),
µ2, x ∈ D2(t).

(4)

Finally, the system is closed using Darcy’s law

µ(x, t)

κ
u(x, t) = −∇p(x, t)− g(0, ρ(x, t)), (5)
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which relates the incompressible velocity with the pressure [31], considering
that the fluids saturate the porous media. The permeability and the gravity
constants are given by κ and g respectively.

In [47] a completely different physical scenario is studied, with comparable
mathematical properties. This describes the flow evolution in Hele-Shaw cells,
where the fluids are confined between two parallel plates that are close together.
The evolution is essentially in 2D, and it is governed by the equation

12

b2
µ(x, t)u(x, t) = −∇p(x, t)− g(0, ρ(x, t)),

where b is the distance between the plates. Since these two pioneering works,
these different physical phenomena have been extensively studied from a math-
ematical point of view.

2 Contour evolution equation

The Muskat problem can be considered taking into account many more pe-
culiarities as boundary effects [27] and three dimensional flows [2, 20]. The
framework picked in this presentation allows us to reduce the problem from its
original Eulerian variables formulation (eqs. (1,2,3,4,5)) to the self-evolution of
an interface, hence the name contour evolution equation. It provides a simple
way to linearize the system of equations to illustrate in a non-technical manner
what is going on at the nonlinear level.

Darcy’s law (5) shows that the velocity has to be irrotational

∂x1u2(x, t)− ∂x2u1(x, t) = 0,

in the interior of each domain Dj(t), j = 1, 2. For that reason the vorticity is
given by a measure on the free interface as follows

∂x1u2(x, t)− ∂x2u1(x, t) = ω(α, t)δ(x = z(α, t)),

defined in a distributional sense as follows:

< u, (∂x2φ,−∂x1φ) >=

∫
ω(α, t)φ(z(α, t))dα, (6)

with φ(x) a regular test function. Using the Biot-Savart law

u(x, t) = (−∂x2 , ∂x1)∆
−1(∂x1u2 − ∂x2u1)(x, t),

it is possible to recover the velocity from the vorticity. It is given by the partial
derivatives of the Newton potential as follows:

u(x, t) =
1

2π
PV

∫
(x− z(α, t))⊥

|x− z(α, t)|2
ω(α, t)dα,

for x ̸= z(α, t) where PV denotes principal value (as it is necessary at infinity)
and (x1, x2)

⊥ = (−x2, x1). Taking limits by approaching the free boundary
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in the normal direction, we can obtain the velocity at the interface with a
discontinuity. It reads

u2(z(α, t), t) = BR(z, ω)(α, t) +
1

2

ω(α, t)

|∂αz(α, t)|2
∂αz(α, t),

u1(z(α, t), t) = BR(z, ω)(α, t)− 1

2

ω(α, t)

|∂αz(α, t)|2
∂αz(α, t),

(7)

where uj(z(α, t), t) denotes the limit obtained from inside Dj(t). Above BR
stands for the Birkhoff-Rott integral, which is given by

BR(z, ω)(α, t) =
1

2π
PV

∫
(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
ω(β, t)dβ. (8)

In the above contour operator it is easy to see the importance of the arc-chord
condition in order for the Birkhoff-Rott integral to make sense. A one-to-one
curve satisfies the arc-chord condition if

|z(α, t)− z(β, t)| ≥ Cac(t)|α− β|, ∀α, β ∈ R, Cac(t) > 0. (9)

The discontinuity of the velocity at the free boundary, which is produced by the
vorticity configuration (6), is given in the tangential direction and consequently
it does not give any insight on the evolution of the shape for z(α, t). In fact,
the normal velocity describes the dynamics and it is continuous on z(α, t) (see
(7)). Darcy’s law implies

∆p(x, t) = −div (
µ(x, t)

κ
u(x, t) + g(0, ρ(x, t))),

where
∆p(x, t) = RT (α, t)δ(x− z(α, t)),

and the function RT (α, t) is given by

RT (α, t) =
µ2 − µ1

κ
u(z(α, t), t) · ∂αz⊥(α, t) + g(ρ2 − ρ1)∂αz1(α, t). (10)

Above

u(z(α, t), t) · ∂αz⊥(α, t) = u2(z(α, t), t) · ∂αz⊥(α, t) = u1(z(α, t), t) · ∂αz⊥(α, t),

due to (7). Recovering the pressure through the Newton potential,

p(x, t) =
1

2π

∫
ln |x− z(α, t)|RT (α, t)dα,

for x ̸= z(α, t), it is possible to obtain the continuity of the pressure at the free
boundary

p2(z(α, t), t) = p1(z(α, t), t),
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which is just a mathematical consequence of Darcy’s law. Let us introduce the
following notation:

[µu](α, t) = (µ2u2(z(α, t), t)− µ1u1(z(α, t), t)) · ∂αz(α, t).

Taking limits in Darcy’s law provides

[µu](α, t)

κ
= −(∇p2(z(α, t), t)−∇p1(z1(α, t), t)) · ∂αz(α, t)−g(ρ2−ρ1) ∂αz2(α, t)

= −∂α(p
2(z(α, t), t)− p1(z(α, t), t))− g(ρ2 − ρ1) ∂αz2(α, t)

= −g(ρ2 − ρ1) ∂αz2(α, t),

which allows us to relate the vorticity amplitude ω with the unknown curve
through the following implicit identity

ω(α, t) + 2
µ2 − µ1

µ2 + µ1
BR(z, ω)(α, t) · ∂αz(α, t) = −2gκ

ρ2 − ρ1

µ2 + µ1
∂αz2(α, t). (11)

The dynamics is given by the velocity with the following evolution equation

zt(α, t) = BR(z, ω)(α, t) + c(α, t)∂αz(α, t), (12)

where the subscript t denote partial derivative in time and c(α, t) is the function
which provides parametrization freedom. It is worth mentioning that consid-
ering different c(α, t) the geometry of the curve is the same, as the evolution
is described by the normal direction of the velocity [42]. It is usual to pick c
as the function zero, but different choices provide different advantages in the
analysis of the evolution equation. In particular, it could be chosen in such a
way that the interface is parameterized as a graph (see formula (18) below). In
conclusion, the contour dynamics equation is now closed and given by (8,11,12).

3 Mathematical results

The Muskat problem has a rich variety of features which have been studied with
a wide diversity of techniques. Interesting scenarios consider 3D fluids, multi-
phase flows, boundary effects or permeability discontinuities (see for example
[5, 43]), etc. Different methods interact, raging from analytic to computer-
assisted proofs [38]. In what follows, the permeability κ is considered to be
equal to one.

A very significant peculiarity of the problem is that Muskat develops insta-
bilities [46]. If the system of equations (1,2,3,4,5) is satisfied in a week sense,
some scenarios yield non-uniqueness of solutions [50]. In the contour evolution
setting (8,11,12), those unstable cases give rise to ill-possed equations. These
phenomena can be understood through the Rayleigh-Taylor condition. Con-
sidering the jump across the normal direction of the gradient pressures, it is
possible to find

−
(
∇p2(z(α, t), t)−∇p1(z(α, t), t)

)
= RT (α, t),
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with RT the Rayleigh-Taylor function given in (10). The Rayleigh-Taylor con-
dition is said to be satisfied if RT (α, t) > c > 0. By linearizing the equations
(8,11,12) near the steady state z(α, t) = (α, 0), it is possible to obtain

fL
t (α, t) = −(µ2 + µ1)−1RTLΛfL(α, t), (13)

where (α, fL(α, t)) represents the linearized free boundary, and the constant
RTL is the linear version of the Rayleigh-Taylor function. The operator Λ is
the minus square root of the Laplacian, Λ = (−∆)1/2, also given by a kernel
representation and using the Fourier transform as follows:

ΛfL(α) =
1

π
PV

∫
fL(α)− fL(β)

(α− β)2
dβ, Λ̂fL(ξ) = |ξ|f̂L(ξ). (14)

Now the importance of the Rayleigh-Taylor is disclosed. The case RTL > 0
turns the Muskat problem into a parabolic system at the linear level. For
RTL < 0 the character of the equation changes dramatically, giving an ill-posed
system. This fact is easy to understand by using the Fourier transform in space
to solve (13) obtaining

f̂L(ξ, t) = f̂L(ξ, 0) exp(−(µ2 + µ1)−1RTL|ξ|t).

At the nonlinear level, the Rayleigh-Taylor function (see equation (10)) impli-
cates the normal velocity of the fluids with viscosity jump and the geometry
of the contour for different densities. Basically, the unstable case arises in the
viscosity jump situation when a less viscous fluid pushes a more viscous one.
This case was studied in [48], where the contour dynamic equation is proved to
be ill-possed. In the density jump case (µ2 = µ1), the unstable regime holds
when the more dense fluid lies above the interface and the less dense fluid lies
below it. The contour dynamics equation is shown to be ill-posed in this sce-
nario [21]. On the other hand, the lost of derivative in the contour equation is
of order one, so that it is possible to find solutions of the system with analytic
initial data even in the unstable case [32, 12]. At the linear level this fact can be
checked using equation (13) and the theory of the Fourier transform for analytic
functions.

Besides gravity, the evolution Muskat problem can be driven by capillary
force. In that case surface tension effects are considered, and the discontinuity
of the pressure on the interface is proportional to its curvature as follows:

p2(z(α, t), t)− p1(z(α, t), t) = −τ
∂2
αz(α, t) · ∂⊥

α z(α, t)

|∂αz(α, t)|3
, (15)

where τ > 0 is the surface tension coefficient. In this case equation (11) is
replaced by

ω(α, t) + 2
µ2 − µ1

µ2 + µ1
BR(z, ω)(α, t) · ∂αz(α, t) =

−2gκ
ρ2 − ρ1

µ2 + µ1
∂αz2(α, t)− τ∂α

(∂2
αz · ∂⊥

α z

|∂αz|3
)
(α, t).

(16)
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The linearization of the system in this case is given by

fLτ
t (α, t) = −(µ2 + µ1)−1RTLΛfLτ (α, t) + τΛ∂2

αf
Lτ (α, t), (17)

showing a high parabolic regularizing effect for the graph (α, fLτ (α, t)). The
local-in-time existence for the nonlinear problem without gravity and surface
tension (g = 0 and RTL = 0 in above linear interpretation) and in the one fluid
case (µ2 = 0 = ρ2) was given in [33]. See also [29] for the boundary value prob-
lem. Same type of results for the two fluids case were given in [35]. Besides this
surface tension regularizing mechanism, Rayleigh-Taylor instabilities still play
a crucial role considering the force of gravity. In [40] initial small perturbation
are shown to be unstable under small time evolution for low order norms. In
[34] finger shaped stationary-states are found using bifurcation theory which are
unstable. On the other hand, when the Rayleigh-Taylor condition is satisfied
initially, surface tension solutions approach to solutions without surface tension
effects as the coefficient τ vanishes [3].

Without surface tension (τ = 0), the positivity of the nonlinear Rayleigh-
Taylor function have been shown to be crucial to disclose a local-in-time exis-
tence result [1, 51]. The system is proved to be well-posed in the case of equal
viscosity µ1 = µ2 = µ for the stable case [21] by using energy estimates on
the contour dynamics equation through the chain of Sobolev norms. In this
situation, the Rayleigh-Taylor condition is satisfied only if the free boundary is
represented by the graph of a function (α, f(α, t)) and ρ2 > ρ1. The contour
evolution equation is given in this situation by

ft(α, t) =
g(ρ2 − ρ1)

2µπ

∫
β(∂αf(α, t)− ∂αf(α− β, t))

β2 + (f(α, t)− f(α− β, t))2
dβ, (18)

and RT (α, t) = g(ρ2 − ρ1) due to ∂αz1(α, t) = 1. The case with different
viscosities and densities was shown to be well-posed in [19]. In that proof
it is crucial to get control of the norm of the implicit operator given in (11)
involved in the definition of the amplitude of the vorticity ω. The arguments
rely upon quantitative bounds of Hilbert transforms in variable domains in the
plane. It requires a harmonic analysis approach involving the Hopf maximum
principle, conformal mappings and Harnack inequalities. A local-in-time control
of the positivity of the Rayleigh-Taylor sign condition is indispensable to reach
legitimate energy estimates, as for a general parametrization RT (α, t) does not
need to be positive. Finally we would like to quote some recent articles where
local-in-time existence is shown of classical solution for large and low regular
initial data. For the one fluid case (µ1 = ρ1 = 0) see [30] and [17] for the density
jump case.

If µ2 = µ1 = µ and τ = 0, it is possible to obtain decay of the L∞ norm of
the interface for arbitrary initial data (see [22]). The graph interface evolves by
(18) giving

∥f − 1

2π

∫ π

−π

f0dα∥L∞(t) ≤ ∥f0 −
1

2π

∫ π

−π

f0dα∥L∞e−Ct,
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for 2π-periodic f and

∥f∥L∞(t) ≤ ∥f0∥L∞(1 + Ct)−1,

in the asymptotically flat case, where f(α, 0) = f0(α) and C = C(f0) > 0.
These maximum principles are sharp as they provide the same rate of decay
as equation (13) for fL. On the other hand, the L2 norm evolution allows to
control half a derivative of fL in (13) due to the identity

∥fL∥2L2(t) +
g(ρ2 − ρ1)

µ

∫ t

0

∥Λ1/2fL∥2L2(s)ds = ∥fL
0 ∥2L2 ,

or equivalently

∥fL∥2L2(t)+
g(ρ2−ρ1)

2µπ

∫ t

0

∫
R

∫
R

(
fL(α, s)−fL(β, s)

α− β

)2

dβdαds = ∥f0∥2L2 , (19)

using the integral formula (14) and that RTL = g(ρ2 − ρ1). For the nonlinear
problem, the identity

∥f∥2L2(t)+
g(ρ2−ρ1)

2µπ

∫ t

0

∫
R

∫
R
ln
(
1+

(f(α, s)−f(β, s)

α−β

)2)
dαdβds=∥f0∥2L2 (20)

holds [16], which does not give a chance of gaining any regularity at the level of
f . This can be easily shown by the bound∫

R

∫
R
ln
(
1+

(f(α, s)−f(β, s)

α−β

)2)
dαdβ ≤ C∥f∥L1(s), (21)

which allows to control the nonlinear term with zero derivatives.
In the case with small initial data, it is possible to use the parabolic character

of the equation in the stable state (see (13) and (17) for the lineal interpretation)
to prove global in time regularity in different situations. For purely surface
tension driven fluids (g = 0) see results in [29, 18]. Without surface tension (τ =
0), global existence for the viscosity jump case was proven in [48] and extended
to the density jump case in [21], showing in both papers instant analyticity of
the solutions. For gravity and surface tension interaction with boundary values
see [34]. Those global existence results have been extended in some situations
assuming initial smallness for critical norms with respect to the scaling [16, 39],
and showing instant analyticity in [7]. In works [16, 15] some results of global
in time regularity of classical solutions are shown with µ1 = µ2, τ = 0 and
medium-size initial slope in the Wiener algebra, i.e∫

|ξ||f̂(ξ)|dξ ≤ c0

with c0 an explicit constant. In particular, the terminology medium-size is used
to emphasize that the constant c0 is of size O(1) and independent of the physical
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constants g, κ, ρj , and µj (j = 1, 2). Those papers show global existence of
Lipschitz weak solutions with initial slope less than 1 and gradient less than
1/3 in 3D. Using equation (18), multiplying by a test function and integrating
by parts, it is possible to find a weak formulation of the system. In fact, we
say that the graph (α, f(α, t)) is a weak solution of the Muskat problem if the
following identity is satisfied∫ T

0

∫
R
ηt(α, t)f(α, t)dαdt+

∫
R
η(α, 0)f0(α)dα

=

∫ T

0

∫
R
∂αη(α, t)

g(ρ2−ρ1)

2µπ
PV

∫
R
arctan

(
f(α, t)− f(β, t)

α− β

)
dβdαdt,

(22)

for any η ∈ C∞
c ([0, T )× R).

A fascinating behavior of Muskat solution, which can be proved analytically,
is finite time singularity formation starting from regular stable initial data. In
[13] it is proved that in the case µ1 = µ2 and τ = 0 there are solutions of
the Muskat equation with initial interfaces being certain smooth stable graphs,
which enter the unstable regime, where the interface is no longer a graph, in
finite time. In particular there exists a time tp in which

lim
t→t+p

∥∂αf∥L∞(t) = +∞,

for solutions of equation (18). In other words, the interface evolves into a non-
graph in finite time. For some contour dynamics problems these “wave-turning”
effects are not dramatic, it is just a breakdown in the parametrization as a graph.
But for the Muskat problem this is a strong change in the character of the equa-
tion. In particular the significance of a wave-turning is that the Rayleigh-Taylor
condition breaks down. At some branch in the interface it is possible to local-
ize the heavy fluid on top of the lighter one. An important reason why this
phenomenon arises is that, even for large initial data, Muskat solutions become
instantly analytic [13]. So that, despite the interface is about to reach an un-
stable regime, the analyticity remains by the time the wave-turning occurs. In
fact, the Muskat curve solution exists and remains analytic for some time after
the turnover, even in the unstable regime. Furthermore, global existence can be
false for certain scenarios with large initial data. In [10] it is shown that some of
these smooth initial interfaces in the stable regime turn to the unstable regime
and later blow-up; i.e. for some time ts > tp there is a lost of regularity in
the interface. Therefore Muskat develops finite time singularities starting from
well-posed scenarios. This is the first case of singularity formation in contour
dynamics of incompressible fluids in an initially well-posed problem. The pat-
tern of these initial data is far from trivial: numerical simulations performed in
[25] show that there exists initial data with steep slopes for which a regularizing
effect appears. Even more, some analytic unstable solutions can reach a stable
regime and some later time become unstable [26]. If the contour evolution re-
mains regular in the stable regime is not known, but a finite time singularity
formation characterization is given in [17] in terms of the interface slope.

9



−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1: An example of wave-turning for Muskat. At (x, y) = (0, 0) the slope
of the function is +∞.

A different kind of singularities which could breakdown the dynamics of
incompressible fluid interfaces is finite time self-intersection. In this scenario
two different particles of the fluid interface collide. For Muskat with density
jump (µ1 = µ2) the self-intersection can not occur along a curve of points
if the interface remains regular. This type of collision is called “squirt” or
“splat” singularity (see figure below). The result is given in [24], using extra

Figure 2: A splat singularity: regular curve with self-intersection along an arc.

cancelation of the operators that relates the velocity and the density in Darcy’s
law (5) for constant viscosity. They are given by singular integrals with even
kernels, yielding a velocity in L∞ for regular interfaces (see [8] where the extra
cancelation was found). The lack of squirt singularities was extended to the case
of viscosity jump in [28] showing that the interface becomes instantly analytic.
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A less severe type of singularity is given by the collapse at just a single
point while the interface preserves regularity. The term used for this scenario is
“splash” singularity. This type of blow-up can be removed for the case of equal
viscosities [36]. The proof is based on a cancelation in the kernel of the integral
in (18), which is of degree zero for bounded curvature contours. On the other
hand, for the dynamics of one fluid (µ1 = ρ1 = 0) it is possible to prove finite
time splash singularity formation for some particular geometries. In this case
the Rayleigh-Taylor condition holds all the way up to the blow-up time.

Figure 3: An appropriate geometry for a splash singularity in Muskat with a
dry region.

This result is achieved by two different ideas. First of all, it is possible to
convert the geometry problem with the “splash” singularity into a new contour
dynamics equation with a conformal map P . It transforms the equations with
P given by a square root in complex variables whose discontinuity branch passes
through the collision point xs. We denote this new problem by P (Muskat). The
transformation gives P (Muskat) with no self-intersecting points of the interface.
An important point here to have in mind is that before to the “splash” time
Muskat and P (Muskat) are equivalent, but at the “splash” singularity time
P (Muskat) makes sense. For this reason it is possible to find local existence
P (Muskat) and go further in time. We pick an initial contour zl(α, 0) for Muskat
with one pointwise collapse as a splash (see figure 3). We transform this initial
contour with P and use it as initial datum for P (Muskat). Next key idea is
to obtain a stability result for P (Muskat) which does not depend on the arc-
chord condition for zl(α, 0) but it may depend on the arc-chord condition of
the contour of P (Muskat). We denote this solution by P (zl(α, t)). Due to the
transformation, the arc-chord constant for P (zl(α, t)) is going to be big. Then,
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the stability reads

∥P (z(α, t))− P (zl(α, t))∥ ≤ C(t)∥P (z(α, 0))− P (zl(α, 0))∥
≤ C(t)∥z(α, 0)− zl(α, 0)∥,

where z(α, 0) is a zl(α, 0) perturbation, P (z(α, t)) is the P (Muskat) solution
with P (z(α, 0)) as initial datum, C(t) is a controlled constant and ∥ · ∥ is an
appropriate norm. It is possible to show that the velocity for zl(α, 0) gives
that the two branches on the interface with the common intersection point are
going to cross as time goes forward. Then we take an initial datum z(α, 0)
which is a small perturbation of zl(α, 0) but without pointwise intersection.
Because the time of existence for P (Muskat) is independent of the smallness of
∥z(α, 0)− zl(α, 0)∥ we can conclude that, due to the fact that zl self-intersects
at a point, there exists a finite time such that z has to break down with a splash
singularity.

4 The new estimate

This section is devoted to show a new inequality for weak Muskat solutions.
This result was announced at the Special Session“Analysis of free boundary
problems” in the 10th AIMS Conference on Dynamical Systems, Differential
Equations and Applications, in Madrid (Spain), July 2014. Below we provide
details.

We define the spaces L∞([0, T ];W 1,∞), L∞([0, T ];L2) and L2([0, T ];H1/2)
with norms

∥f∥L∞(0,T ;W 1,∞) = ess sup (0,T )(∥f∥L∞(t) + ∥∂αf∥L∞(t)),

∥f∥L∞(0,T ;L2) = ess sup (0,T )∥f∥L2(t),

∥f∥2L2(0,T ;H1/2) =

∫ T

0

(∥f∥2L2(t) + ∥Λ1/2f∥2L2(t))dt,

and C([0, T ]× R) is the space of continuous function with (t, α) ∈ [0, T ]× R.

Lemma 4.1 For f0 ∈ L2 and ∥∂αf0∥L∞ < 1, there exist weak solutions of (18)
with

f(α, t) ∈ C([0, T ]× R) ∩ L∞(0, T ;W 1,∞), ∀T > 0,

satisfying the following estimate

∥f∥2L2(t) +
g(ρ2 − ρ1)

4µπ

∫ t

0

∫
R

∫
R

(f(α, s)− f(β, s)

α− β

)2

dβdαds ≤ ∥f0∥2L2 , (23)

for any t ∈ [0, T ].

Remark 4.2 With this estimate we reproduce an analogous feature to the lin-
earized system (see (19)), giving a solution with f ∈ L∞(0, T ;L2)∩L2(0, T ;H1/2).
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Proof: Using the method in [16], it is easy to find the weak solution of
Muskat in the space C([0, T ]× R) ∩ L∞(0, T ;W 1,∞). It is given passing to the
limit into the regularized system

f ϵ
t (α, t) =

g(ρ2 − ρ1)

2µπ
∂αPV

∫
R
arctan

(f(α, t)− f(α− β, t)

β|β|−ε

)
dβ

− εCΛ1−εf ϵ(α, t) + εf ϵ
αα(α, t),

(24)

where C > 0 is a universal constant, the operator Λ1−εf is given by

Λ1−εf(α) = c1(ε)

∫
R

f(α)− f(α− β)

|β|2−ε
dβ,

with 0 < cm ≤ c1(ε) ≤ cM , and ε > 0 small enough. The initial data f0 ∈
L2 with ∥∂xf0∥L∞(R) < 1 is regularized with a mollifier to find global-in-time
regular solutions of (24). The convergence as ε → 0+ is, up to a subsequence,
strong in L∞ on compact sets of [0, T ]× R and weak-start in L∞(0, T ;W 1,∞).
Furthermore, it is possible to find (see discussion in [16] above Remark 4.4 for
more details)

d

dt
∥fε∥2L2(t) = −g(ρ2 − ρ1)

2µπ

∫
R

∫
R

1− ε

|α− β|ε
ln

(
1 +

(fε(α, t)−fε(β, t)

(α− β)|α− β|−ε

)2)
dβdα

− 2Cε∥Λ(1−ε)/2fε∥2L2(t)− 2ε∥fε
α∥2L2(t).

Therefore, integration in time provides

∥fε∥2L2(t)+
g(ρ2−ρ1)

2µπ

∫ t

0

∫
R

∫
R

1−ε

|α−β|ε
ln
(
1+

(fε(α, s)−fε(β, s)

(α−β)|α−β|−ε

)2)
dβdαds

≤ ∥f0∥2L2 .

The strong convergence of a subsequence of ε and Fatou’s lemma allows us to
find that identity (20) is satisfied for the weak Muskat solution in an inequality
form

∥f∥2L2(t)+
g(ρ2 − ρ1)

2µπ

∫ t

0

∫
R

∫
R
ln
(
1+

(f(α, s)−f(β, s)

α−β

)2)
dαdβds≤∥f0∥2L2 .

In general, this inequality does not yield any gain of regularity as it is disclosed
in (21). But in this case, due to

∥∂αf∥L∞(t) ≤ ∥∂αf0∥L∞ < 1

it is possible to expand the ln(1 + x2) function, to find

S = ln
(
1 +

(f(α, s)− f(β, s)

α− β

)2)
=

∞∑
j=1

(−1)j+1 1

j

(f(α, s)− f(β, s)

α− β

)2j

.

13



In the infinite sum we gather terms so that

S =
∞∑
j=1

[ 1

2j − 1

(f(α, s)− f(β, s)

α− β

)4j−2

− 1

2j

(f(α, s)− f(β, s)

α− β

)4j]
and therefore

S =
∞∑
j=1

1

2j − 1

(f(α, s)− f(β, s)

α− β

)4j−2[
1− 2j − 1

2j

(f(α, s)− f(β, s)

α− β

)2]
. (25)

At this point it is easy to get

1

2j
≤ 1− 2j − 1

2j
∥∂αf∥2L∞(s) ≤ 1− 2j − 1

2j

(f(α, s)− f(β, s)

α− β

)2

and therefore all the addends in S given by (25) are positive. Then

1

2

(f(α, s)− f(β, s)

α− β

)2

≤ S.

This yields finally

∥f∥2L2(t) +
g(ρ2 − ρ1)

4µπ

∫ t

0

∫
R

∫
R

(f(α, s)− f(β, s)

α− β

)2

dαdβds ≤ ∥f0∥2L2 .
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[15] P. Constantin, D. Córdoba, F. Gancedo, L. Rodriguez-Piazza and R.M.
Strain. On the Muskat problem: global in time results in 2D and 3D.
ArXiv:1310.0953, 2014.
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