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Abstract

We give some inequalities of Hadamard and Jensen type for s-convex fuzzy processes.
We also give some applications.
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1 Introduction

In [1] the s-convex fuzzy processes were defined and some properties were
studied. In this work, we define the s-concave fuzzy processes and we also give
some useful inequalities for both, the s-convex and s-concave fuzzy processes.

The paper has the following structure. In Section 2, we fix some basic notation
and terminology. In Section 3, we define the s-concave fuzzy process and we
give some properties. In Section 4, we establish the Hadamard inequality. In
Section 5, we give a generalization of the Jensen inequality.
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2 Preliminaries

Let R™ denote the n-dimensional Euclidean space and let C' C R™ denote a
convex set. Let s € (0,1] and let f: C' C R" — R be a function such that for
all a € [0,1] and for all z,y € C, the following inequality holds

fHazx+ (1 —a)y} <a’f(z) + (1 —a) f(y) (1)

These functions are called s-convex and they have been introduced by Breckner
2], where it is also possible to find examples of s-convex functions (see also

3])-

Let P(R") denote the set of all nonempty subsets of R™. In [4], Breckner
generalized the notion of s-convexity for a set-valued mapping F': C' C R™ —
P(R™). F is said to be a s-convex function on C' if the following relation is
verified

(1—a)’F(z) +a’F(y) € F{(1 - a)z + ay} (2)

for all @ € [0,1] and all z,y € R™.

We denote by KC(R™) the subset of P(R™) whose elements are compact and
nonempty and by K.(R™) the subset of IC(R™) whose elements are convex. If
A € K(R™), then the support function o(A4,-) : R™ — R is defined as

(A7) =sup < ¢,a >, Vip € R™.

acA

It is important to remark that if A, B € IC.(R™), then, as a direct consequence
of the separation Hahn-Banach theorem, we obtain that o(A4, ) = o(B,-) <
A=B.

A fuzzy subset of R" is a function u : R™ — [0, 1]. Let F(R™) denote the set
of all fuzzy sets on R™. We define the addition and the scalar multiplication
on F(R™) by the usual extension principle as follows:

(u+v)(y) = sup  min{u(y),v(y2)}

Y1,¥2: Y1+y2=y

and
u(t) if A£D,
X0y (y) if A=0,

where for any subset A C R", x4 denotes the characteristic function of A.

(Au)(y) =



We can define a partial order C on F(R™) by setting
uCveuly) <v(y), YyeR"
Let u € F(R™). For 0 < a < 1, we denote by [u]* ={y e R" / wu(y) > o}

the a-level set of u. [u]® = supp(u) = {y € R* / wu(y) > 0} is called the
support of u.

A fuzzy set u is called convex if (see [5])

u{dyn + (1= Aya} > min{u(yr), u(y2)},

for all y1,y2 € supp(u) and A € (0,1). If u € F(R™) is convex, then [u]* is
convex for all a € [0, 1].

A fuzzy set u : R™ — [0, 1] is said to be a fuzzy compact set if [u|* is compact
for all & € [0,1]. We denote by Fg(R") (Fc(R™)) the space of all fuzzy
compact (compact convex) sets. Given u,v € Fg(R"), it is verified that

(a) uCv<e [u]* Cv*, VYael1],
Au|® = Aul®, VA eR, Ya € [0,1],
u+v]* = [u]*+ [v]*, Va€]0,1].

+

Any application F': R™ — F(R") is called a fuzzy process. For each a € [0, 1]
we define the set-valued mapping F, : R™ — P(R") by

For any u € F¢(R"™) the support function of u, S(u, (+,-)) : [0,1] x S™ — R,
where S = {¢p € R™/ ||¢|| < 1}, is defined as

Su, (o, ) = o([u]*, ¥).

For details about support functions see for example [6].

A fuzzy process F' : R™ — F(R") is called convex if it satisfies the following
relation

F{(1—a)x, + azxs} (y) > sup min{ F(z1)(y1), F(x2)(y2)},

y1,y2:(1—a)y1+ay2=y

for all 21,29 € R™, a € (0,1) and y € R"™ This notion of convex fuzzy
processes was recently introduced in [7]. This definition extend the Matloka
definition given in [8].



3 S-convex fuzzy processes

In [1] the authors introduced the definition of s-convex fuzzy processes as
follows.

Definition 1 Let s € (0,1]. A fuzzy process F': C C R™ — F(R") is said to
be a s-convex fuzzy process on C, if for all a € (0,1) and for all x,y € C it
satisfies the condition

(1 - a)'F() + a*F(y) € F{(1 - a)z +ay}.

This definition is a generalization of the notion of s-convexity for a set-valued
mapping given in (2), since if I' : C' C R™ — P(R") is a set-valued mapping,
then by putting F'(x) = xr(), we see that Definition 1 coincides with (2).

Usually, 1-convex fuzzy processes are simply called convex fuzzy processes (see

(7], [9)-

Example 1 Let us consider the fuzzy process F : (0,00) — F(R) that asso-
ciates to each x € (0,00) the points of the real line "much bigger than /x”.
Now, we define the fuzzy processes Fy, Fy : (0,00) — F(R) as follows

=1 if Vo <t<2ya,

Fi(z)(t) =141 if t>2/x,
0 if t<
—(B2) 41 if Vr<t<2y7,

0 if t</z.
For Fy and x = 4, we have that the points of the real line "much bigger than
V4 =27 is the fuzzy set
—1 if 2<t <4,
if t>4,
if t<2,

F4)(t) =

@) — e

this means that the points after 4 are "much bigger than 27, while the points in
the interval |2, 4| are partially "much bigger than 27, i.e., they have a degree of
membership to the fuzzy set Fy(4). Similarly, we can see that Fy(4) also models



the fuzzy set of the points of the real line "much bigger than 2”. Therefore,
both Fy and Fy model the fuzzy process F. Thus, we can find diverse fuzzy
process that define F'. Note that F} is %—convez, but Fy is not s-convex for all
s € (0,1].

4 S-concave fuzzy process

In this Section we introduce the concept of s-concave fuzzy process and we
establish some properties. This concept generalizes the definition of concave
set-valued function given in [4].

Definition 2 Let s € (0,1]. A fuzzy process F': C C R™ — F(R") is said to
be a s-concave fuzzy process on C, if for all a € (0,1) and for all z,y € R™ it
satisfies the condition

F{1l—-a)z+ay} C(1—a)’F(z)+a*F(y).

1-concave fuzzy processes will be simply called concave fuzzy processes.

Example 2 Let us consider the fuzzy process F' : [0,00) — F(R), where
F(z) is the isosceles triangular fuzzy set with support [— f(x), f(x)] where f :
[0,00) — R is a s-convex function. It is easy to see that F' is s-concave.

Next we give a characterization for s-concave fuzzy processes by using the
membership.

Theorem 1 Let F: C CR™ — F(R") be a fuzzy process on C. Then, F is
s-concave if and only if

F((1 = a)zy + ax,)(y) < sup min{ F'(z1)(y1), F(x2)(y2)},

y1,92:(1—a)*y1+asy2=y

for all a € (0,1) and for all x,y € C.

Proof The result follows from Definition 2 and the addition and scalar mul-
tiplication on F(R™). O

Now, we present another characterization by using the concept of support
function of a fuzzy set.



Theorem 2 Let F': C CR™ — Fo(R™) be a fuzzy process on C. Then, F is
s-concave if and only if S(F(-), (o, ¢)) is a s-convex function, that is, if and

only if S(F(+), (a,v)) satisfies (1) for all (o, ) € [0,1] x S™.

Proof Suppose that F' is a s-concave fuzzy process. Let (o, ) € [0,1] x S™,
x1,22 € R" and a € (0,1). Then, from the properties of the support function,
we have that

S(F(ax1+ (1 —a)xs), (a,¥)) < S

Consequently,
S(F(axy + (1 = a)w), (. 9)) < a®S(F(x1), (@, ¢)) + (1 = a)*S(F(x2), (@, 9)).

Therefore, S(F(-), (o, 1)) is s-convex. To prove the converse it suffices to show
that

S(F(ary + (1 — a)zg), (a,¢)) < S(a°F(z1) + (1 — a)’ F(x2), (a,¢))

for all (o,%) € [0,1] x S™, which is a consequence of the properties of the
support function of a fuzzy set. [

Example 3 Let us consider the fuzzy process F : [0,00) — Fo(R) given by

Losi0<t<a’,
xr

F<x><t>{0 o

for x # 0 and F(0) = x0y. We have that the fuzzy support function S(F(-),
(a, ), for each (a,) € [0,1] x ST, with S* = {—1,1}, is given by S(F(z),
(o, 1)) = ax®, which is a s-convex function and S(F(x),(a,—1)) = 0 which
1s also s-convex. Then, from Theorem 2 we have that F' is a s-concave fuzzy
process.

Proposition 1 Let F': C C R™ — F(R") be a fuzzy process on C such that

(o) F(z+y) € F(x) + F(y),
(b) F(tx) =t°F(x).

Then F is a s-concave fuzzy process on C.

Proof ;From the addition and scalar multiplication on F(R"), and from con-
ditions (a) and (b), we have that



Flazy + (1 — a)z2)(y)
<(F(axy) + F((1 —a)xs))(y)
= sup  min{F(ax1)(y1), F((1 — a)z2)(y2)}

Y1,y2:y1+ty2=y

I ymm{F (azy)(@®yr), F((1 = a)z)((1 = a)°ya)}

(1 -
= sup min{(a’F(z1)) (@), (1 — a) F(22))((1 — a)°y2)}
(

y1,y2:0°y1+(1—a)sy2=y

= sup min{ F(21) (1), F(22)(y2)},

y1,y2:05y1+(1—a)sy2=y

for all z1,29 € C, a € (0,1) and y € R™. Therefore, by Theorem 1, F' is a
s-concave fuzzy process on C'. [J

Example 4 Let F : R™ — F(R") be a fuzzy quasilinear operator (see [10]),
then F' satisfies the conditions in Proposition 1 for s = 1. Thus, every fuzzy
quasilinear operator is a concave fuzzy process.

5 Hadamard’s Inequality

In this Section, we present some inequalities of Hadamard type for s-convex
and s-concave fuzzy processes and we give some examples. With this aim,
we first recall some basic concepts and properties of fuzzy random variables.
A set-valued function F : [0,b] — IC(R™) is called Borel measurable, if its
graph, i.e., the set {(t,z)/ x € F(t)}, is a Borel subset of [0,b] x R". Because
the Lebesgue measure is complete, the Borel measurability of the set-valued
mapping F' is equivalent to the following condition: for every Borel set B C R",
F1(B) ={t €[0,b] /| F(t)Nn B # 0} € L, where L denotes the o-algebra
of all Lebesgue-measurable subsets of interval [0,b]. We will say that F' is
measurable if F' is Borel measurable. Also, a measurable set-valued function
F :[0,b] — IC(R™) is called a random set.

The integral of a measurable set-valued function F' : [0,b] — IC(R") is defined
by

/det = {/bf(t)dt/ fe S(F>},

where [? f(t)dt is the Bochner-integral and S(F) is the set of all integrable
selectors of F, i.e.,

S(F) = {f € L'([0,b,R")/ f(t) € F(t) a.e.}.



This definition was introduced by Aumann [11] as a natural generalization of
the integration of single-valued functions.

A measurable set-valued function F' : [0,b] — K(R") is said to be integrably
bounded, if there exists a single-valued integrable function A : [0, b] — R™ such
that ||z|| < h(t) for all x and ¢ such that x € F(t).

If F:]0,b] — IC(R™) is an integrably bounded random set, then the Aumann
integral of F'is a nonempty subset of R"™.

If e Rand F, Fy, F, : [0,b] — Kc(R™) are integrably bounded random set,
then

a) [y Fdt € Ko(R™)
b) Jy(A\Fy+ Fo)dt = A Jg Fydt + [ Fadt .

For details see Hiai and Umegaki [12].

Let F : [0,b] — Fx(R™) be a fuzzy process and define F, : [0,b] — KC(R™) by
F,(xz) =[F(2)]* Ya € [0,1]. Then F is called measurable if F,, is measurable
for all @ € [0,1]. Also, F' is called integrably bounded if F}, is an integrably
bounded set-valued function for every o € [0,1]. If F' is a measurable fuzzy
process, then F' is called a fuzzy random variable (f.r.v.) (see [13]).

Proposition 2 (Puri and Ralescu [153]) If F : [0,b] — Fr(R™) is an inte-
grably bounded f.r.v., then there exists a unique fuzzy set u € Fr(R™) such
that [u]* = [} F,dt Vo € [0,1].

The element u € Fx(R™) in Proposition 2 defines the integral of the fuzzy
random variable F by [ Fdt = u & [u]* = [0 F,dt, for every a € [0, 1].

Theorem 3 If Fi, Fy : [0,b] — Fo(R") are integrably bounded f.r.v. and
A €R, then

b b b
/()\Fl + R)dt = )\/Fldt + /Fth.
0 0 0

For more details and properties about the integral of f.r.v. see [13].

If f:]a,b] — R is a convex function, then following inequalities hold,

f(a”)sbiajf(x)dxsw. 3)

2 2

These inequalities are known in the literature as Hadamard’s inequalities. Next
we extend them. We first prove an inequality of Hadamard type for a s-convex



fuzzy process and afterwards for s-concave fuzzy process.

Theorem 4 Let F be a s-convex integrably bounded fuzzy process on an in-
terval I C [0,00) and let a,b € I, with a <b. Then

(s+ 1) {F(a)+ F(b)} C /F(x)dx/(b —a) C25'F (“ ; b) .4

a

Proof Since F' is s-convex on I we have that

t°F(a) + (1 —t)°F(b) C F {ta+ (1 —t)b}

for all ¢ € [0, 1]. Integrating this relation we get

/F{ta—l— (1 —1t)b} dtQ/{tSF(a) +(1—=¢t)°F(b)}dt

a)/tsdtJrF(b)/(l —t)dt
—(s+ 1) {F(a) + F(b)}.

Now, making the change of variable z = tb + (1 — t)a, it follows the first
relation in (4).

To prove the second relation in (4), observe that for all z,y € I we have that

F(5E0) 2 (R @) + F)}- 9

Then taking x = ta + (1 —t)b and y = tb+ (1 — t)a, from (5) we obtain

F(a;b> > 218[F{ta—l—(l—t)b}+F{tb+(1—t)a}].

Integrating this relation we get

/1 <a+b> /121F{ta+ (1 —t)b} + F{tb+ (1 — t)a}] dt

/F{ta+(1—t b}dt+/F{tb+(1—t)a}dt}



Since

[ F a0 =0yt = [ F i+ (1~ jayde = bia/F(x)dx,

a

it follows that
b

/F(a:)da:/(b ) C2F (“ ; b) 0

a

Theorem 5 Let F' be a s-concave integrably bounded fuzzy process on an in-
terval I C [0,00) and let a,b € I, with a < b. Then

2571 (a ;_ b) C a/F(:c)dx/(b —a) C (s+1)"YF(a) + F(b)}. (6)

Proof The proof is analogous to that of Theorem 4. [J

Corollary 1 Let F be a s-concave integrably bounded fuzzy process on an
interval I C [0,00) and let a,b € I, with a < b. Then

25711 (a ; b) < a/F(x)dx/(b —a) < (s+1)"YT'(a) + (b)),

where I' = S(F(+), (a,v)).

Proof The result follows from Theorem 5 and the properties of the fuzzy
support function. [

Example 5 Let us consider s = 1/2 and the 1/2-concave fuzzy process F :
(1/2,1) — F(R) as in Example 3. Then

P(z) = S(F(x), (e, 1)) = av/a

for each o € [0,1]. Thus, by Corollary 1 we have

—a < [ I(x)dr < 3

3 Q.

V6 /1 24+/2
/2

1
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5.1 Applications

(a) For an integrably bounded fuzzy process F : [0,b] — Fo(R™), the fuzzy
integral mean of F' is a fuzzy process Mp : (0,b] — F(R™) defined by

Mp(x) = i/mF(t)dt, Va € (0,0].

This concept was introduced in [9], where some properties are also studied.
In [1] is studied the s-convexity of the fuzzy integral mean. The following
Proposition gives a new relationship for the fuzzy integral mean, which is
obtained by using the Hadamard inequality in Theorem 4.

Proposition 3 Let F : [0,b] — Fo(R"™) be a measurable integrably bounded
fuzzy process. If F is s-convex then Mp is s-convex and

(s + 17 {F(0) + F(a)} € Me(w) C27'F (5. (7)

Proof As F' is s-convex, then from Theorem 4.5 in [1] M is s-convex. The
relation (7) is an immediate consequence of Theorem 4. [

(b) With the aim of establishing some refinements of (3), Dragomir [14] intro-
duced the mapping
a+b

H(t) = b_a/bf (m+ (1- t)2> dz,

and showed that if f : [a,b] — R is a convex function, then H(t) is convex
and that

f(a;b) <H{) < biaa/bf(ac)dx, vt € [0,1].

Next, we extend this results for s-convex bounded fuzzy processes. Let F' :
la,b] — Fc(R™) be an integrably bounded fuzzy process and define

Hrp(t) = b_la/F{t:c + (1 —t)(a+0b)/2} dx,

11



for ¢t € [0, 1].

Theorem 6 Let F' be a s-convex integrably bounded fuzzy process on an in-
terval [a,b]. Then Hp is s-convez on [0,1] and

Hp(t) C 2°7'F <CL;FZ)> , vtelo,1]. (8)

Proof Let t1,t; € [0,1] and o, f > 0 with o + 3 = 1. Then

Hp(aty + Bts)

- bia / Fl(aty + Bta)z + {1 — (at; + Bta)} (a +b) /2] dx

= [Flaf{ta+ (1= 0)(+)/2} + 5 {tz + (1 - ) (a +)/2}] do

b
=8 ! o F {te + (= 1)@+ b)/2} do +

—a
a

b

! / BF {toz + (1 — Bts)(a + b)/2} da

b—a J
= OCSHF(tl) + 68HF<752),

which shows that Hp is s-convex. Now, let ¢ € (0, 1]. Taking r = tx + (1 —
t)(a + b)/2 we obtain

)= [ Fo)ar/(p - a)

where p =tb+ (1 —t)(a+b)/2 and ¢ = ta + (1 — t)(a + b)/2. By Theorem 4
we have that

p
[ F@)r/(p—q) c 2 1F<p;q>:28—1F<a+b>,
q

2
what proves (8).0

Remark 1 Proceeding as in the proof of Theorem 6, it can be also shown that
if F'is a s-concave integrably bounded fuzzy process on an interval |a,b], then

12



6 Jensen’s Inequality

In this Section we give a generalization of the Jensen inequality for s-convex
and s-concave fuzzy processes.

Theorem 7 Let F: C CR™ — F(R™) be a s-convex fuzzy process on C and
s > 0. Then we have the relation

Zp )CF (ZPM’2> : (9)

=1

whenever p; > 0, z; € C and X_7' p; = 1. If F' is a s-concave fuzzy process on
C and s > 0. Then we have the relation

F (zp) WL (10)

whenever p; > 0, z; € C and .7 ;p; = 1.

Proof We first show (9). To do this, we proceed by induction on n. For
n =2, (9) is the definition of s-convexity of F. Now, suppose that (9) holds
for n = k—1 and given p; > 0, z; € C and ¥, p; = 1, we may and do assume
that all p; > 0. Let ¢; = p;j/(p1+... +pe-1), 1 <j <k.Theng¢ +...+q—1 =1
and thus

qu(.Tl) + ...+ QZ—lF(xkfl) - F(ql$1 + ...+ qkfll'k,l). (11)

Put P =p; + ... + px_1, then

F(pizy + ... + pray) :F{P (2;31 pP ) +pk$k}
S PF (’j;xl bt B 1)+ piF ()
S pe (pl F(xl) Pict (i, 1)) + PP ()
- Ps Ps

which establishes (9) for n = k, and hence for all n € N. The proof of (10)
follows the same steps and so we omit it. [J

13



Corollary 2 Let F': C C R™ — F(R"™) a s-convexr fuzzy process on C and
s > 0. Then

n_szn:F(xi) CF (mlf:lx) (12)

i=1

whenever x; € C, 1 < i <n.

Example 6 We consider the 1/2-convex fuzzy process Fy from Ezample 1.
Thus, from Corollary 2, for each o € [0, 1] we have that

(14 ), nléxi ,oo) D n1/2(1+a)§;[\/x_i,oo).
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