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Abstract

We give some inequalities of Hadamard and Jensen type for s-convex fuzzy processes.
We also give some applications.
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1 Introduction

In [1] the s-convex fuzzy processes were defined and some properties were
studied. In this work, we define the s-concave fuzzy processes and we also give
some useful inequalities for both, the s-convex and s-concave fuzzy processes.

The paper has the following structure. In Section 2, we fix some basic notation
and terminology. In Section 3, we define the s-concave fuzzy process and we
give some properties. In Section 4, we establish the Hadamard inequality. In
Section 5, we give a generalization of the Jensen inequality.
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2 Preliminaries

Let Rn denote the n-dimensional Euclidean space and let C ⊆ Rn denote a
convex set. Let s ∈ (0, 1] and let f : C ⊆ Rn → R be a function such that for
all a ∈ [0, 1] and for all x, y ∈ C, the following inequality holds

f {ax + (1− a)y} ≤ asf(x) + (1− a)sf(y). (1)

These functions are called s-convex and they have been introduced by Breckner
[2], where it is also possible to find examples of s-convex functions (see also
[3]).

Let P (Rn) denote the set of all nonempty subsets of Rn. In [4], Breckner
generalized the notion of s-convexity for a set-valued mapping F : C ⊆ Rm →
P (Rn). F is said to be a s-convex function on C if the following relation is
verified

(1− a)sF (x) + asF (y) ⊆ F {(1− a)x + ay} (2)

for all a ∈ [0, 1] and all x, y ∈ Rm.

We denote by K(Rm) the subset of P (Rm) whose elements are compact and
nonempty and by Kc(Rm) the subset of K(Rm) whose elements are convex. If
A ∈ K(Rm), then the support function σ(A, ·) : Rm → R is defined as

σ(A,ψ) = sup
a∈A

< ψ, a >, ∀ψ ∈ Rm.

It is important to remark that if A,B ∈ Kc(Rm), then, as a direct consequence
of the separation Hahn-Banach theorem, we obtain that σ(A, ·) = σ(B, ·) ⇔
A = B.

A fuzzy subset of Rn is a function u : Rn → [0, 1]. Let F(Rn) denote the set
of all fuzzy sets on Rn. We define the addition and the scalar multiplication
on F(Rn) by the usual extension principle as follows:

(u + v)(y) = sup
y1,y2: y1+y2=y

min{u(y1), v(y2)}

and

(λu)(y) =





u( y
λ
) if λ 6= 0,

χ{0}(y) if λ = 0,

where for any subset A ⊆ Rn, χA denotes the characteristic function of A.
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We can define a partial order ⊆ on F(Rn) by setting

u ⊆ v ⇔ u(y) ≤ v(y), ∀y ∈ Rn.

Let u ∈ F(Rn). For 0 < α ≤ 1, we denote by [u]α = {y ∈ Rn / u(y) ≥ α}
the α-level set of u. [u]0 = supp(u) = {y ∈ Rn / u(y) > 0} is called the
support of u.

A fuzzy set u is called convex if (see [5])

u {λy1 + (1− λ)y2} ≥ min{u(y1), u(y2)},

for all y1, y2 ∈ supp(u) and λ ∈ (0, 1). If u ∈ F(Rn) is convex, then [u]α is
convex for all α ∈ [0, 1].

A fuzzy set u : Rn → [0, 1] is said to be a fuzzy compact set if [u]α is compact
for all α ∈ [0, 1]. We denote by FK(Rn) (FC(Rn)) the space of all fuzzy
compact (compact convex) sets. Given u, v ∈ FK(Rn), it is verified that

(a) u ⊆ v ⇔ [u]α ⊆ [v]α, ∀α ∈ [0, 1],
(b) [λu]α = λ[u]α, ∀λ ∈ R, ∀α ∈ [0, 1],
(c) [u + v]α = [u]α + [v]α, ∀α ∈ [0, 1].

Any application F : Rm → F(Rn) is called a fuzzy process. For each α ∈ [0, 1]
we define the set-valued mapping Fα : Rm → P (Rn) by

Fα(x) = [F (x)]α.

For any u ∈ FC(Rn) the support function of u, S(u, (·, ·)) : [0, 1] × Sm → R,
where Sm = {ψ ∈ Rm/ ‖ψ‖ ≤ 1}, is defined as

S(u, (α, ψ)) = σ([u]α, ψ).

For details about support functions see for example [6].

A fuzzy process F : Rm → F(Rn) is called convex if it satisfies the following
relation

F {(1− a)x1 + ax2} (y) ≥ sup
y1,y2:(1−a)y1+ay2=y

min{F (x1)(y1), F (x2)(y2)},

for all x1, x2 ∈ Rm, a ∈ (0, 1) and y ∈ Rn. This notion of convex fuzzy
processes was recently introduced in [7]. This definition extend the Matloka
definition given in [8].
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3 S-convex fuzzy processes

In [1] the authors introduced the definition of s-convex fuzzy processes as
follows.

Definition 1 Let s ∈ (0, 1]. A fuzzy process F : C ⊆ Rm → F(Rn) is said to
be a s-convex fuzzy process on C, if for all a ∈ (0, 1) and for all x, y ∈ C it
satisfies the condition

(1− a)sF (x) + asF (y) ⊆ F {(1− a)x + ay} .

This definition is a generalization of the notion of s-convexity for a set-valued
mapping given in (2), since if Γ : C ⊆ Rm → P (Rn) is a set-valued mapping,
then by putting F (x) = χΓ(x), we see that Definition 1 coincides with (2).

Usually, 1-convex fuzzy processes are simply called convex fuzzy processes (see
[7], [9]).

Example 1 Let us consider the fuzzy process F : (0,∞) → F(R) that asso-
ciates to each x ∈ (0,∞) the points of the real line ”much bigger than

√
x”.

Now, we define the fuzzy processes F1, F2 : (0,∞) → F(R) as follows

F1(x)(t) =





t√
x
− 1 if

√
x ≤ t ≤ 2

√
x,

1 if t ≥ 2
√

x,

0 if t ≤ √
x,

F2(x)(t) =





−
(

t−2
√

x√
x

)
+ 1 if

√
x ≤ t ≤ 2

√
x,

1 if t ≥ 2
√

x,

0 if t ≤ √
x.

For F1 and x = 4, we have that the points of the real line ”much bigger than√
4 = 2” is the fuzzy set

F1(4)(t) =





t
2
− 1 if 2 ≤ t ≤ 4,

1 if t ≥ 4,

0 if t ≤ 2,

this means that the points after 4 are ”much bigger than 2”, while the points in
the interval ]2, 4[ are partially ”much bigger than 2”, i.e., they have a degree of
membership to the fuzzy set F1(4). Similarly, we can see that F2(4) also models
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the fuzzy set of the points of the real line ”much bigger than 2”. Therefore,
both F1 and F2 model the fuzzy process F . Thus, we can find diverse fuzzy
process that define F . Note that F1 is 1

2
-convex, but F2 is not s-convex for all

s ∈ (0, 1].

4 S-concave fuzzy process

In this Section we introduce the concept of s-concave fuzzy process and we
establish some properties. This concept generalizes the definition of concave
set-valued function given in [4].

Definition 2 Let s ∈ (0, 1]. A fuzzy process F : C ⊆ Rm → F(Rn) is said to
be a s-concave fuzzy process on C, if for all a ∈ (0, 1) and for all x, y ∈ Rm it
satisfies the condition

F {(1− a)x + ay} ⊆ (1− a)sF (x) + asF (y).

1-concave fuzzy processes will be simply called concave fuzzy processes.

Example 2 Let us consider the fuzzy process F : [0,∞) → F(R), where
F (x) is the isosceles triangular fuzzy set with support [−f(x), f(x)] where f :
[0,∞) → R is a s-convex function. It is easy to see that F is s-concave.

Next we give a characterization for s-concave fuzzy processes by using the
membership.

Theorem 1 Let F : C ⊆ Rm → F(Rn) be a fuzzy process on C. Then, F is
s-concave if and only if

F ((1− a)x1 + ax2)(y) ≤ sup
y1,y2:(1−a)sy1+asy2=y

min{F (x1)(y1), F (x2)(y2)},

for all a ∈ (0, 1) and for all x, y ∈ C.

Proof The result follows from Definition 2 and the addition and scalar mul-
tiplication on F(Rn). ¤

Now, we present another characterization by using the concept of support
function of a fuzzy set.

5



Theorem 2 Let F : C ⊆ Rm → FC(Rn) be a fuzzy process on C. Then, F is
s-concave if and only if S(F (·), (α, ψ)) is a s-convex function, that is, if and
only if S(F (·), (α, ψ)) satisfies (1) for all (α, ψ) ∈ [0, 1]× Sm.

Proof Suppose that F is a s-concave fuzzy process. Let (α, ψ) ∈ [0, 1]× Sm,
x1, x2 ∈ Rn and a ∈ (0, 1). Then, from the properties of the support function,
we have that

S(F (ax1 + (1− a)x2), (α, ψ))≤S(asF (x1) + (1− a)sF (x2), (α.ψ))

= σ(asFα(x1) + (1− a)sFα(x2), ψ)

= asσ(Fα(x1), ψ) + (1− a)sσ(Fα(x2), ψ).

Consequently,

S(F (ax1 + (1− a)x2), (α, ψ)) ≤ asS(F (x1), (α, ψ)) + (1− a)sS(F (x2), (α, ψ)).

Therefore, S(F (·), (α, ψ)) is s-convex. To prove the converse it suffices to show
that

S(F (ax1 + (1− a)x2), (α, ψ)) ≤ S(asF (x1) + (1− a)sF (x2), (α, ψ))

for all (α, ψ) ∈ [0, 1] × Sm, which is a consequence of the properties of the
support function of a fuzzy set. ¤

Example 3 Let us consider the fuzzy process F : [0,∞) → FC(R) given by

F (x)(t) =





t
xs si 0 ≤ t ≤ xs,

0 si t /∈ [0, xs],

for x 6= 0 and F (0) = χ{0}. We have that the fuzzy support function S(F (·),
(α, ψ)), for each (α, ψ) ∈ [0, 1] × S1, with S1 = {−1, 1}, is given by S(F (x),
(α, 1)) = αxs, which is a s-convex function and S(F (x), (α,−1)) = 0 which
is also s-convex. Then, from Theorem 2 we have that F is a s-concave fuzzy
process.

Proposition 1 Let F : C ⊆ Rm → F(Rn) be a fuzzy process on C such that

(a) F (x + y) ⊆ F (x) + F (y),
(b) F (tx) = tsF (x).

Then F is a s-concave fuzzy process on C.

Proof ¿From the addition and scalar multiplication on F(Rn), and from con-
ditions (a) and (b), we have that
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F (ax1 + (1− a)x2)(y)

≤ (F (ax1) + F ((1− a)x2))(y)

= sup
y1,y2:y1+y2=y

min{F (ax1)(y1), F ((1− a)x2)(y2)}
= sup

y1,y2:asy1+(1−a)sy2=y
min{F (ax1)(a

sy1), F ((1− a)x2)((1− a)sy2)}

= sup
y1,y2:asy1+(1−a)sy2=y

min{(asF (x1))(a
sy1), ((1− a)sF (x2))((1− a)sy2)}

= sup
y1,y2:asy1+(1−a)sy2=y

min{F (x1)(y1), F (x2)(y2)},

for all x1, x2 ∈ C, a ∈ (0, 1) and y ∈ Rn. Therefore, by Theorem 1, F is a
s-concave fuzzy process on C. ¤

Example 4 Let F : Rm → F(Rn) be a fuzzy quasilinear operator (see [10]),
then F satisfies the conditions in Proposition 1 for s = 1. Thus, every fuzzy
quasilinear operator is a concave fuzzy process.

5 Hadamard’s Inequality

In this Section, we present some inequalities of Hadamard type for s-convex
and s-concave fuzzy processes and we give some examples. With this aim,
we first recall some basic concepts and properties of fuzzy random variables.
A set-valued function F : [0, b] → K(Rn) is called Borel measurable, if its
graph, i.e., the set {(t, x)/ x ∈ F (t)}, is a Borel subset of [0, b]×Rn. Because
the Lebesgue measure is complete, the Borel measurability of the set-valued
mapping F is equivalent to the following condition: for every Borel set B ⊆ Rn,
F−1(B) = {t ∈ [0, b] / F (t) ∩ B 6= ∅} ∈ L, where L denotes the σ-algebra
of all Lebesgue-measurable subsets of interval [0, b]. We will say that F is
measurable if F is Borel measurable. Also, a measurable set-valued function
F : [0, b] → K(Rn) is called a random set.

The integral of a measurable set-valued function F : [0, b] → K(Rn) is defined
by

b∫

0

Fdt =





b∫

0

f(t)dt/ f ∈ S(F )



 ,

where
∫ b
0 f(t)dt is the Bochner-integral and S(F ) is the set of all integrable

selectors of F , i.e.,

S(F ) =
{
f ∈ L1([0, b],Rn)/ f(t) ∈ F (t) a.e.

}
.
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This definition was introduced by Aumann [11] as a natural generalization of
the integration of single-valued functions.

A measurable set-valued function F : [0, b] → K(Rn) is said to be integrably
bounded, if there exists a single-valued integrable function h : [0, b] → Rn such
that ||x|| ≤ h(t) for all x and t such that x ∈ F (t).

If F : [0, b] → K(Rn) is an integrably bounded random set, then the Aumann
integral of F is a nonempty subset of Rn.

If λ ∈ R and F , F1, F2 : [0, b] → KC(Rn) are integrably bounded random set,
then

a)
∫ b
0 Fdt ∈ KC(Rn)

b)
∫ b
0 (λF1 + F2)dt = λ

∫ b
0 F1dt +

∫ b
0 F2dt .

For details see Hiai and Umegaki [12].

Let F : [0, b] → FK(Rn) be a fuzzy process and define Fα : [0, b] → K(Rn) by
Fα(x) = [F (x)]α, ∀α ∈ [0, 1]. Then F is called measurable if Fα is measurable
for all α ∈ [0, 1]. Also, F is called integrably bounded if Fα is an integrably
bounded set-valued function for every α ∈ [0, 1]. If F is a measurable fuzzy
process, then F is called a fuzzy random variable (f.r.v.) (see [13]).

Proposition 2 (Puri and Ralescu [13]) If F : [0, b] → FK(Rn) is an inte-
grably bounded f.r.v., then there exists a unique fuzzy set u ∈ FK(Rn) such
that [u]α =

∫ b
0 Fαdt ∀α ∈ [0, 1].

The element u ∈ FK(Rn) in Proposition 2 defines the integral of the fuzzy
random variable F by

∫ b
0 Fdt = u ⇔ [u]α =

∫ b
0 Fαdt, for every α ∈ [0, 1].

Theorem 3 If F1, F2 : [0, b] → FC(Rn) are integrably bounded f.r.v. and
λ ∈ R, then

b∫

0

(λF1 + F2)dt = λ

b∫

0

F1dt +

b∫

0

F2dt.

For more details and properties about the integral of f.r.v. see [13].

If f : [a, b] → R is a convex function, then following inequalities hold,

f

(
a + b

2

)
≤ 1

b− a

b∫

a

f(x)dx ≤ f(a) + f(b)

2
. (3)

These inequalities are known in the literature as Hadamard’s inequalities. Next
we extend them. We first prove an inequality of Hadamard type for a s-convex
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fuzzy process and afterwards for s-concave fuzzy process.

Theorem 4 Let F be a s-convex integrably bounded fuzzy process on an in-
terval I ⊆ [0,∞) and let a, b ∈ I, with a < b. Then

(s + 1)−1 {F (a) + F (b)} ⊆
b∫

a

F (x)dx/(b− a) ⊆ 2s−1F

(
a + b

2

)
. (4)

Proof Since F is s-convex on I we have that

tsF (a) + (1− t)sF (b) ⊆ F {ta + (1− t)b}

for all t ∈ [0, 1]. Integrating this relation we get

1∫

0

F {ta + (1− t)b} dt⊇
1∫

0

{tsF (a) + (1− t)sF (b)} dt

= F (a)

1∫

0

tsdt + F (b)

1∫

0

(1− t)sdt

= (s + 1)−1 {F (a) + F (b)} .

Now, making the change of variable x = tb + (1 − t)a, it follows the first
relation in (4).

To prove the second relation in (4), observe that for all x, y ∈ I we have that

F
(

x + y

2

)
⊇ 1

2s
{F (x) + F (y)} . (5)

Then taking x = ta + (1− t)b and y = tb + (1− t)a, from (5) we obtain

F

(
a + b

2

)
⊇ 1

2s
[F {ta + (1− t)b}+ F {tb + (1− t)a}] .

Integrating this relation we get

1∫

0

F

(
a + b

2

)
dt⊇

1∫

0

1

2s
[F {ta + (1− t)b}+ F {tb + (1− t)a}] dt

=
1

2s




1∫

0

F {ta + (1− t)b} dt +

1∫

0

F {tb + (1− t)a} dt


 .
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Since

1∫

0

F {ta + (1− t)b} dt =

1∫

0

F {tb + (1− t)a} dt =
1

b− a

b∫

a

F (x)dx,

it follows that
b∫

a

F (x)dx/(b− a) ⊆ 2s−1F

(
a + b

2

)
. ¤

Theorem 5 Let F be a s-concave integrably bounded fuzzy process on an in-
terval I ⊆ [0,∞) and let a, b ∈ I, with a < b. Then

2s−1F

(
a + b

2

)
⊆

b∫

a

F (x)dx/(b− a) ⊆ (s + 1)−1{F (a) + F (b)}. (6)

Proof The proof is analogous to that of Theorem 4. ¤

Corollary 1 Let F be a s-concave integrably bounded fuzzy process on an
interval I ⊆ [0,∞) and let a, b ∈ I, with a < b. Then

2s−1Γ

(
a + b

2

)
≤

b∫

a

Γ(x)dx/(b− a) ≤ (s + 1)−1(Γ(a) + Γ(b)),

where Γ = S(F (·), (α, ψ)).

Proof The result follows from Theorem 5 and the properties of the fuzzy
support function. ¤

Example 5 Let us consider s = 1/2 and the 1/2-concave fuzzy process F :
(1/2, 1) → F(R) as in Example 3. Then

Γ(x) = S(F (x), (α, 1)) = α
√

x

for each α ∈ [0, 1]. Thus, by Corollary 1 we have

√
6

8
α ≤

1∫

1/2

Γ(x)dx ≤ 2 +
√

2

3
α.
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5.1 Applications

(a) For an integrably bounded fuzzy process F : [0, b] → FC(Rn), the fuzzy
integral mean of F is a fuzzy process MF : (0, b] → F(Rn) defined by

MF (x) =
1

x

x∫

0

F (t)dt , ∀x ∈ (0, b].

This concept was introduced in [9], where some properties are also studied.
In [1] is studied the s-convexity of the fuzzy integral mean. The following
Proposition gives a new relationship for the fuzzy integral mean, which is
obtained by using the Hadamard inequality in Theorem 4.

Proposition 3 Let F : [0, b] → FC(Rn) be a measurable integrably bounded
fuzzy process. If F is s-convex then MF is s-convex and

(s + 1)−1 {F (0) + F (x)} ⊆ MF (x) ⊆ 2s−1F
(

x

2

)
. (7)

Proof As F is s-convex, then from Theorem 4.5 in [1] MF is s-convex. The
relation (7) is an immediate consequence of Theorem 4. ¤

(b) With the aim of establishing some refinements of (3), Dragomir [14] intro-
duced the mapping

H(t) =
1

b− a

b∫

a

f

(
tx + (1− t)

a + b

2

)
dx,

and showed that if f : [a, b] → R is a convex function, then H(t) is convex
and that

f

(
a + b

2

)
≤ H(t) ≤ 1

b− a

b∫

a

f(x)dx, ∀t ∈ [0, 1].

Next, we extend this results for s-convex bounded fuzzy processes. Let F :
[a, b] → FC(Rn) be an integrably bounded fuzzy process and define

HF (t) =
1

b− a

b∫

a

F {tx + (1− t)(a + b)/2} dx,

11



for t ∈ [0, 1].

Theorem 6 Let F be a s-convex integrably bounded fuzzy process on an in-
terval [a, b]. Then HF is s-convex on [0, 1] and

HF (t) ⊆ 2s−1F

(
a + b

2

)
, ∀t ∈ [0, 1]. (8)

Proof Let t1, t2 ∈ [0, 1] and α, β ≥ 0 with α + β = 1. Then

HF (αt1 + βt2)

=
1

b− a

b∫

a

F [(αt1 + βt2)x + {1− (αt1 + βt2)} (a + b)/2] dx

=
1

b− a

b∫

a

F [α {t1x + (1− t1)(a + b)/2}+ β {t2x + (1− βt2)(a + b)/2}] dx

⊇ 1

b− a

b∫

a

αsF {t1x + (1− t1)(a + b)/2} dx +

1

b− a

b∫

a

βsF {t2x + (1− βt2)(a + b)/2} dx

= αsHF (t1) + βsHF (t2),

which shows that HF is s-convex. Now, let t ∈ (0, 1]. Taking r = tx + (1 −
t)(a + b)/2 we obtain

HF (t) =

p∫

q

F (r)dr/(p− q)

where p = tb + (1− t)(a + b)/2 and q = ta + (1− t)(a + b)/2. By Theorem 4
we have that

p∫

q

F (r)dr/(p− q) ⊆ 2s−1F
(

p + q

2

)
= 2s−1F

(
a + b

2

)
,

what proves (8).¤

Remark 1 Proceeding as in the proof of Theorem 6, it can be also shown that
if F is a s-concave integrably bounded fuzzy process on an interval [a, b], then

2s−1F

(
a + b

2

)
⊆ HF (t).
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6 Jensen’s Inequality

In this Section we give a generalization of the Jensen inequality for s-convex
and s-concave fuzzy processes.

Theorem 7 Let F : C ⊆ Rm → F(Rn) be a s-convex fuzzy process on C and
s > 0. Then we have the relation

n∑

i=1

ps
iF (xi) ⊆ F

(
n∑

i=1

pixi

)
, (9)

whenever pi ≥ 0, xi ∈ C and
∑n

i=1 pi = 1. If F is a s-concave fuzzy process on
C and s > 0. Then we have the relation

F

(
n∑

i=1

pixi

)
⊆

n∑

i=1

ps
iF (xi) (10)

whenever pi ≥ 0, xi ∈ C and
∑n

i=1 pi = 1.

Proof We first show (9). To do this, we proceed by induction on n. For
n = 2, (9) is the definition of s-convexity of F . Now, suppose that (9) holds
for n = k−1 and given pi ≥ 0, xi ∈ C and

∑k
i=1 pi = 1, we may and do assume

that all pi > 0. Let qj = pj/(p1 + ...+pk−1), 1 ≤ j < k. Then q1 + ...+qk−1 = 1
and thus

qs
1F (x1) + ... + qs

k−1F (xk−1) ⊆ F (q1x1 + ... + qk−1xk−1). (11)

Put P = p1 + ... + pk−1, then

F (p1x1 + ... + pkxk) = F
{
P

(
p1

P
x1 + ... +

pk−1

P
xk−1

)
+ pkxk

}

⊇P sF
(

p1

P
x1 + ... +

pk−1

P
xk−1

)
+ ps

kF (xk)

⊇P s
(

ps
1

P s
F (x1) + ... +

ps
k−1

P s
F (xk−1)

)
+ ps

kF (xk)

=
∑

ps
iF (xi),

which establishes (9) for n = k, and hence for all n ∈ N. The proof of (10)
follows the same steps and so we omit it. ¤
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Corollary 2 Let F : C ⊆ Rm → F(Rn) a s-convex fuzzy process on C and
s > 0. Then

n−s
n∑

i=1

F (xi) ⊆ F

(
n−1

n∑

i=1

xi

)
, (12)

whenever xi ∈ C, 1 ≤ i ≤ n.

Example 6 We consider the 1/2-convex fuzzy process F1 from Example 1.
Thus, from Corollary 2, for each α ∈ [0, 1] we have that


(1 + α)

√√√√n−1
n∑

i=1

xi ,∞

 ⊇ n−1/2(1 + α)

n∑

i=1

[
√

xi,∞) .
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