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Compact Bilinear Commutators: The Weighted Case

ARPAD BENYI, WENDOLIN DAMIAN,
KABE MOEN, & RopoLFO H. TORRES

ABSTRACT. Commutators of bilinear Calderén—Zygmund operators
and multiplication by functions in a certain subspace of the space of
functions of bounded mean oscillation are shown to be compact on
appropriate products of weighted Lebesgue spaces.

1. Introduction and Statements of Main Results

The study in harmonic analysis of commutators of singular integrals with point-
wise multiplication by functions in BMO started with the by now well-known
1976 work of Coifman, Rochberg, and Weiss [0]. A couple of years later, in an-
other classic work in the subject, Uchiyama [ 16] proved that the L”-boundedness
result in [6] can be refined to a compactness one if the space BMO is replaced
by the smaller space CMO. Recently, Bényi and Torres [2] revisited a notion of
compactness in a bilinear setting, which was first introduced by Calderén in his
fundamental paper on interpolation [3]. They showed in [2] that commutators
of bilinear Calderén—Zygmund operators with multiplication by CMO functions
are compact bilinear operators from LP! x LP2 — LP for 1 < py, p» < oo and
1/p1+1/p>=1/p < 1, thus giving an extension to the bilinear setting of result
in [16] for the linear case. In a subsequent joint work with Damidn and Moen
[11, the scope of the notion of compactness was expanded to include the commu-
tators of a larger family of operators that contains bilinear Calderén—-Zygmund
ones and several singular bilinear fractional integrals. All these compactness re-
sults rely on the Frechét—-Kolmogorov—Riesz characterization of precompact sets
in unweighted Lebesgues spaces L”; see Yosida’s book [17, p. 275] and the ex-
pository note of Hanche-Olsen and Holden [10].

What happens if we change the Lebesgue measure dx with weighted versions
w dx? This article originates in this natural question. Although seemingly simple,
the answer to this question turns out to be more delicate than in the unweighted
case. As we shall see, the compactness on products of weighted Lebesgue spaces
depends rather crucially on the class of weights w considered. We note that in
the linear case the compactness of the commutator on weighted spaces was not
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known until the recent work of Clop and Cruz [5]. We will rely on their work for
the selection of weights and some computations.

Let then T be a bilinear Calderén—Zygmund operator. For the purposes of
this article, this means that 7 is a bounded map from LP! x LP? to L?P with
1 < p1, p2p <ooand

1 1 1
—_ = (1)
Pt p2 p
and there exists a kernel K (x, y, z) defined away from the diagonal x =y =z
such that

1

(Ix =yl + |x —zh2’
1

(Jx =yl + [x — z})2+1°

|K(x,y, DI S @)

IVK(x,y, 2| S 3

and such that for f, g € L2°, we have

T(f, g)(X)=//R2n K(x,y,2)f(y)g(z)dydz, x ¢&suppfNsuppg. (4

See [8] and the references therein for more on this type of operators.

We will consider the commutators of bilinear Calderén—Zygmund operators
with functions in an appropriate subspace of BMO. Recall that BMO consists of
all locally integrable functions b with ||b||pyo < 00, where

||b||BM0:Sllp][ b(x)—][ b‘dx,
0 JO 0

the supremum is taken over all cubes Q € R”, and, as usual, JCQ b = by denotes

the average of b over Q:
1
][b:—/ b(x)dx.
0 101 Jo

The relevant subspace of BMO of multiplicative symbols of our focus is CMO,
which is defined to be the closure of C°(R") in the BMO norm.

Given a bilinear Calder6n—Zygmund operator 7" and a function b in BMO, we
consider the following commutators with b:

(b, Th(f.g) =T(bf g) —bT(f.8)

and
6, T12(f, ) =T(f,bg) —bT(f,g).

Furthermore, given b = (b1, by) in BMO x BMO, we consider the iterated com-
mutator

(b, T1=1[b2, [b1, T1i]2 = [b1, [b2, T]2]1.
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In fact, for bilinear Calderén—Zygmund operators 7 and b = (b, b2), we can
define [b, T'], for any multiindex o = (o1, @2) € N%, formally as

[b. T1u (/. )(x)
— / B1) = b1 (b2(2) — ba () K (x, v, ) f (1) (@) dy dz.

Recall that a bilinear operator is said to be (jointly) compact if the image of the
bi-unit ball

{(f,8): I flleer = 1, lIgllLra < 1}

under its action is a precompact set in L?. (The only notion of compactness in the
bilinear setting used here is referred to as joint compactness in the related previous
works, to differentiate it from the weaker notion of separate compactness. The
latter being the compactness of the linear operators obtained when one of the
entries in the bilinear one is kept fixed.) When 1 < p1, po < o0, p = p1p2/(p1 +
p2) > 1, 01,00 =0o0r 1,and b in CMO x CMO, we have that

[b,T]y: LP' x LP2 - LP

is a compact bilinear operator; see [2]. In this note we will consider what happens
on weighted Lebesgue spaces.
Given p = (p1, p2) € (1,00) x (1, 00) and a vector weight w = (wy, wy), let
Vw = Vy.p = wf/pl wé?/pz.

The vector weight w belongs to the class Ap, provided that

I p/p o p/rh
— Py 123
0 0] 9] 9]

In [12], Lerner et al. proved that
1
WEA, & o1 =w, GAZP/I, (®)]

Recall that the classical Muckenhoupt class A, consists of nonnegative weights
w that are locally integrable and such that

NP/
[wla, = Sup(][ w) <][ wl_p) < 00. 6)
0o 0 0]

The weights in the class Ap characterize the boundedness of the maximal function
M LPY(wy) x LPY(wy) — LP (vy),

, = d dz ).
M(f, )(x) 2‘22<J[Q O] y)(fQ 12| z)

From (5) we can see that when p > 1, we have

Ap X Ap S Amin(p;,ps) X Amin(p1,p) & Ap) X Ap, & Ap. (N

where
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The first two containments follow from well-known properties of the (scalar) A,
classes, and the last containment is proved in [12] (see Section 3 for a new exam-
ple of the strictness of this containment). Moreover, we also note that

WEA,xA, = vy€A, (8)

Indeed, by Holder’s inequality

-1
1-p b r/p1 p/p2
Vw,p Vw,p f[wl]Ap [wZ]AP .
0 0

It was shown in [12] that if w € Ap and T is a bilinear Calder6n—Zygmund
operator, then 7 is bounded from L”!(w;) x LP2(wy) into L? (vy,), and the same
result holds for the first-order commutator. The boundedness of the iterated com-
mutator on weighted Lebesgue spaces in the case of A weights was obtained by
Pérez et al. [13]. The case of product of classical weights was considered also by
Tang [15].

The goal of this paper is to show that the improving effect of the bilinear com-
mutators caries over to the weighted setting when we consider the “appropriate”
class of weights. We have the following theorem.

THEOREM 1.1. Suppose that p € (1,00) x (1,00), p=p1p2/(p1+p2)>1,b€
CMO, and w € A, x Ap. Then [b, Ty and [b, T, are compact operators from
LPt(wy) x LP2(wy) to LP (vy).

A similar result holds also for the iterated commutator.

THEOREM 1.2. Suppose that p € (1,00) x (1,00), p = p1p2/(p1 + p2) > 1,
b € CMO x CMO, and w € A, x Aj,. Then [b, T] is a compact operator from
LP(wy) x LP2(wy) to LP (vy).

The remainder of the paper is structured as follows. In Section 2 we give the
proofs of Theorems and , whereas in Section 3 we provide a discussion
regarding the class of weights assumed in our main results.

2. Proofs of Theorems

As pointed out in [5], in the linear setting the idea of considering truncated opera-
tors to prove compactness results goes back to Krantz and Li [ 1]. We will follow
this approach too, but we find convenient to introduce a smooth truncation. (This
approach could also be used to simplify some of the computations in [5] in the
linear case.)

Let ¢ = ¢(x, y, z) be a nonnegative function in C2° (R3") such that

suppe C {(x, y,z): max(|x|,[yl, |z]) <1}

/ oWw)du=1.
R3n

and
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For § > 0, let x® = x%(x, y, z) be the characteristic function of the set

36
{(x,y,Z)i max(|x —y|, |x —z[) = 7},

and let
Yo =5k x°,
where
05(x,,2) = (8/4) "5 (4x/8,4y/8,42/9).
Clearly, we have that 1//‘S € C™,
supp¥® C {(x.y.2): max(lx — y|, |x —z]) > 8},

V¥o(x,y,z) =1if max(|x — y|, |x —z|) > 28, and [|%®| 2 < 1. Moreover, V°
is not zero only if max(|x — y|, |x —z[) &~ 8 and ||V¢?||z~ < 1/8. Given a kernel
K associated to a Calderén—Zygmund operator 7', we define the truncated kernel

Ko(x,y,2) =¥°(x,y, DK (x,y,2).

It follows that K satisfies the same size and regularity estimates of K, (2) and
(3), with a constant C independent of §. We let T‘S( f, g) be the operator defined
pointwise by K? through (4), now for all x € R”. We have the following lemma.

LEMMA 2.1. Ifb e C° x C2°, then

(b, T°1a (f, 8)(x) — [b, T1o (f. &) ()| S IVIL VB I28 M, g)(x).
Consequently, if w € Ay, then we have

lim [I[b, T°1o — [b, Tla |l L1 wy)x L2 () L (vy) = O-
§—0

Proof. We adapt the proof given in [5, Lemma 7] for the linear version of the
result. For simplicity, we consider the case o = (1, 0); the other cases are similar.
We have:

(b, T°11(f, &)(x) — [b, T (f, 8)(x)]
5// |b(y) —bX)||K(x,y,2) f(¥)g2)|dydz
max(|x—yl,|x—z[) <28

+// b(y) = bOIIK®(x, v, 2) f (1)g(2)| dy dz
d<max(|x—yl|,lx—z|) <28

Sivelos [ SO
max(jx—y|,lx—zp<2s (Ix — ¥+ [x —z])*"~

< |IVb|| g Z//T Lf(WIlg )] dydz

S0 M2 s <max(lx—yl lx—zh =2+ (Jx — y[+ [x — z[)?~!

snwanZ(/l . Blf(y)ldy/z 3G
x—y|<2-i+]

) te le — 2120—1
0 —is<|x—z]<2-i+15 |X — 2|

L f I
[ B =00 IO
2-is<|x—y|<2-i+1s |x — ¥ [x—z|<2-i8
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SIVblLe Y 27782
j=0

X(/ _ If(y)ldy/ _ Ig(z)ldz>
-y S2I+1s lz—y|S2i+15

SIVbLes Y 27T M( £, g)(x),
Jj=0
and the rest of the result follows from the boundedness properties of the maximal
function M. O

Lemma shows that [b, T%], converges in operator norm to [b, 79,, provided
that the functions b1 and b, are smooth enough. Therefore, in order to prove that
any of the commutators [b, T'], is compact, it suffices (as in the linear case, the
limit in the operator norm of compact operators is compact) to work with [b, 7?1,
for a fixed §, and our estimates may depend on §. Moreover, since the bounds of
the commutators with BMO functions are of the form

b, Tl (f, L) S 101115310 102115350 F I Lr1 gy 1€ 1 272 ()

to show compactness when working with symbols in CMO, we may also assume
that b € C2° x C2° and the estimates may depend on b too.

A relevant observation made in [5, Theorem 5] is that there exists a sufficient
condition for precompactness in L" (w) when the weight is assumed, crucially for
the argument to work, in A,. By adapting the arguments in [10] and, in particular,
circumventing the nontranslation invariance of L" (w), the authors in [5] obtained
the following weighted variant of the Frechét—Kolmogorov—Riesz result:

Let1l <r <ocoand w € A, and let K C L" (w). If

(1) K is bounded in L" (w),

(i) limg_ oo flx|>A | f ()| w(x)dx = 0 uniformly for f € IC, and
(ii)) limy—o | £ (- 4+ 1) = fllLr @) = O uniformly for f € K,
then IC is precompact in L (w).

Let us immediately note now that our choice for the class of vector weights in
Theorems and is dictated by the previous compactness criterion. In both
our results we will need the weight vy p € A, to apply the above version of the
Frechét—Kolmogorov—Riesz theorem. In general, if w € A, x Ap, or W € Ap,
then the best class that vy, belongs to is Az,. However, as we noticed in (8),
if we A, x Ap, then vy p is actually in A,. We also point out that there exist
examples with w e Ay and vy € A, but w ¢ A, x A, (see Section 3).

Proof of Theorem 1.1. We will work with the commutator in the first variable;
by symmetry, the proof for the other commutator is identical. As already pointed
out, we may fix § > 0, assume that b € C2°, and study [b, T‘S]l. Suppose that f,
g belong to

Bi(LP'(w1)) x Bi(LP?(w2)) ={(f. &)+ I fllLerqwyys 181Lr2awy) < 1}

with wy and w; in A,. We need to show that the following conditions hold:
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(@) [b, T*11(Bi(LP (wy)) x B (LP2(wy))) is bounded in L (vy);
(b) limg—oo fi- glb T°11(f. ) ()P vy dx = 0;
(©) lim—o 16, T°11(f, @)+ 1) — [b, T11(f. @)l Lr(uy) = 0.
It is clear that the first condition (a) holds since
[b, T?1y : LP'(wy) x LP2(wp) — L (vy)

is bounded when we A, x A, CA,.

We now show that the second condition (b) holds. It is worth pointing out that
for our calculations to work, we need the restrictive assumption vy € A, which
holds since w € A, x A,. Let A be large enough so that suppb C B4(0), and let
R > max(2A, 1). Then, for |x| > R, we have

116, T°11(f. ) ()] < Ibllso /Dlle@)

suppb J R" (Ix =yl +lx — z])?

2|
<l / yor [ — B8R g
= Jsuppb TN Tl e —ape @

, ()]
< b 1 (w01 (Ba(0) /71 Tl 4 1r — 21
= 1Bllooll e o1 (Ba@) | oo o

e
(lx] =+ [x —z])"
Now, since |x| > 1, it follows that |z| + 1 < |z — x| + |x| and

18(2)] 02(2) e
4z S8l —rdz :
wr (%] + [x —2]) ®e (14 2"

Since wy € A, C Ap,, we have 03 € Apé’ and hence

/ 02(2)
———dz < o0
R (1 + |z])"P2

see, for example, [7, p. 412] or [14, p. 209]. It follows that for |x| > R,
b, T°h(f, ©) ()] S

dydz

_ bl

= hp £ 1221 )01 (Ba(0)) /71

x|
Raising both sides of the last inequality to the power p and integrating over
|x| > R, we have

/II R b, T°11(f, ) (X)|P vy dx Sb,p,W/ Dy (X)

Ix|=R |x|"P

where we used again the fact that for v € A, r > 1,

dx —0, R— oo,

v(x)
———dx
re (L4 [x )"
We now show the uniform equicontinuity estimate (c). Note that

(b, T° 1 (f, ©)(x + 1) — [b, T*11 (f, ) (x)

- //Rzn (b(y) —blx+ t))Ké(x +t,y,2f(g@dydz

< Q.
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- //]R 6~ bE)K (5,3, 9 F (8 Q) dy dz
= (b(x) — b(x +t))//RZn K°(x,y,2) f(»)g(z)dydz

+ [ 60 = b+ K 13,9 = K w3, ) 5@ dyds
=1, x)+ L(t x).
To estimate I;, we first observe that
L (2, )] < 1] [1VBlloo T (f, 8) (),

where T, ( f, g) denotes the maximal truncated bilinear singular integral operator

//]RZn K (x, v,2) f(y)gz)dydz

Note that with arguments similar to those used in the proof of Lemma 2.1,

T“(f,g)(x)—// K@) v
max(|x—y|,|x—z[)=

< ‘// |l f (gl dydz‘ < M(f. 9)).
S

<max(jx—y|,lx—zp<2s (Ix — y[+|x —z)?"
It follows then that

T.(f, g)(x) = sup |T° (f, g)(x)| = sup
>0 §>0

To(f, ) (%) ST (f, ) (x) + M(f, &) (x), ()
where now
T.(f, 8)(x) = sup // K(x,y,2)f(y)g(2)dydz|.
8>0|J/ max(jx—y|,|x—z])>$8

By the pointwise estimate [9, (2.1)], for all > 0,
To(f. 8)(x) Sy (MAT(f, )M NY + Mf (x) Mg (x), (10)

where M is the Hardy-Littlewood maximal function. From (9) and (10) (with
n =1 in our current situation) it easily follows that

Tyt LPY(wy) x LP2(wy) — LP (vy)
forwe A, x A,. We obtain then
111, ) Lr ) S 2l
To estimate I, we observe that, if r < §/4, then
K%(x +1, y,2) — K‘s(x,y, 7)=0

when max(|x — y|, |[x — z|) < §/2. Therefore, with what are by now familiar ar-
guments,

/ (b(y) —b(x + ) K (x +1,y,2) — K (x, y,2) fF (Mg (z)dydz

< 1blloolt] // SO
max{|x—y|,|x—z|}>8/2 (Ix =yl +x =2zl nt
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FWllg@)]
Stolir Y [ SWllg dydz
=0 271§ <max{

[x=yl,lx—z[}<2/8 (Ix =yl +lx — Z|)2n+1

_ IBlloolt]
~ 8

M(f, &) (x).
From the boundedness properties of M we obtain the desired estimate

120t ) Lry S It O

We concentrate now on the compactness of the iterated commutator. We will show
that [b, T?] satisfies the corresponding conditions (a), (b), and (c) listed at the
beginning of the proof of Theorem | .1. The proof is similar to that of Theorem 1.1,
but it is worth pointing out that for the iterated commutator, these conditions hold
under the weakest assumption on the class of weights, thatis, w € Ap,. We indicate
the needed modifications in the proof below.

Proof of Theorem 1.2. As before, we may assume that b € C° x C2°, fix § > 0,
and study [b, T9]. Once again, condition (a) holds since [b, 797 is bounded from
LP1(wy) x LP2(w3) to LP (vyw) when w € Ap,. Next, we show that condition (b)
holds. Let A be large enough so that supp by U suppby C B4 (0), and let R > 2A.
Then, for |x| > R, we have

(b, T°1(f, &) (x)]

<161 llsol1b2lloo |l fMIlg ()]

suppb; Jsupp by (Ix =yl+lx— z))?n

If(y)ldy/ 1g(2)dz
supp b>

dydz

1
= CINTN

supp by

S

< L

S 151 leo1b21lco Il F Il 21 (i) 18 1 2P2 ()

x a1 (suppby) "/ PLoy (supp ba) /7>

We can raise the previous pointwise estimate to the power p and integrate over
|x] > R to get

/| - I[b, T°1(f, &) ()P vy (x) dx

<N llgllzez (ws) o1 (suppb1)/Proy (supp by) '/ 72)P

Uy (%)
X/ e 4
Ix|>R |x|="P

which tends to zero as R — oo even if vy, € A, and gives (b).
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To show that condition (c) also holds, we write

b, T°1(f, &) (x) — [b, T°1(f, &) (x +1)]|
= ‘//RZH (b1 (») — b1 () (b2(z) — by (X)) K’ (x, y,2) f (1) g (2) dy dz

+//R2n(b1(y) —b1(x + D)) (ba(z) — ba(x +1))

x Ko(x +1,9,2) f(0)g() dydz

=, 0+ 2(x, 1)l

where
Li(x,t)=(1(x +1) — b1 (x)) //Rzn (b2(2) — ba () K2 (x, v, 2) F ()8 (2) dy dz
and
L(x,t)
= //Rzn(Ka(x, ¥, 2)(02(2) = ba(x)) — K2 (x + 1,9, 2)(b2(2) — ba(x +1)))
x (b1(y) = bi(x + 1) f(y)g(z)dydz.

The pointwise estimate of I1(x,t) can be obtained as in the proof of Theo-
rem |.1:

11 e, D) < 1HIVB oo (T (f, b28) () + b2l T*(f: 8) ().
To invoke now the boundedness of

T, : LPY(wy) x LP2(w;) = L? (vy)

forall w € Ap and not justw € A, x A, we can use instead of (10) a strengthened
version of it. Namely,

Tu(f, ©)(X) Sy (MAT (£, 1NN + M(f, @) (), an

which is implicit in the arguments in [9] and explicit in the article by Chen [
(2.1)]. Thus, as || — 0,

11l e o)y STV DL oo 1B21loo | £l 2t ) 1€ 1222 (y) — O.
Now, we split /> in two other terms as follows:
Dh(x,t)= //2 (K’S(x, v,2) — Ko(x +1, v,2))(02(2) — ba(x +1))
R n

x (b1(y) —bi1(x +1) f(y)gz)dydz
+ (b2(x +1) — ba(x))

X //Rzn (b1(y) —=b1(x +))K (x, v, 2) f(»)g(z)dydz
=Di(x,t) + Ia(x,1).
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As in Theorem 1.1, the estimate of I for ¢ sufficiently small reduces to

[1>1(x, )]
Il fOIg@)]
< 11111 oo b2l // dydz
T (il x—zly=5/2 (X — |+ |x — z[) 2!

S —|||b1 loo 16200 M (f, ) (%),

|t
1)
which is again an appropriate estimate to obtain (c). Finally,
|122(x, 1)

=|tlIVb2lleo

X

// (x—yl,lx—z]) a(bl(y)_bl(xﬂ))XK(S(Ly’Z)f(y)g(z)dydz
max(|x—y|,[x—z])>

<[tlIVballoo (T* (b1 f, &) (X) + b1 loo T*(f, £) (X)).

Therefore, as |t| — 0,

12211 L oy S 1EHIVE2 oo D1 oo Il | L2t ) 181122 () —> O O

3. Closing Remarks

1. Our results on bilinear commutators highlight one more time the fact that the
higher the order of the commutator with CMO symbols, the less singular the oper-
ators. In this article this is reflected in the less restrictive class of weights needed
to achieve estimates (a), (b), and (c). Indeed, in Theorem 1.1, the assumption
Ap x Ap on the weight is needed both to check condition (b) and to guarantee
that the target weight falls in the right class. However, to obtain bilinear com-
pactness in Theorem 1.2, we require the A, x A, assumption about the vector
weight only because the sufficient condition from [5] on L? (vy) precompactness
requires vy € Aj. As already mentioned, this last condition fails if w is only as-
sumed to belong to Ap. Actually, our techniques can be used to obtain a more
general theorem by assuming that w € A and vy, € A, instead of w e A, x A.

THEOREM 3.1. Suppose that p € (1,00) x (1,00), p=p1p2/(p1+p2) >1,be
CMO, and w € Ap with vy, € A. Then [b, Ty and |b, T |2 are compact operators
from LPY(wy) x LP2(wy) to LP (vy).

THEOREM 3.2. Suppose that p € (1,00) x (1,00), p=p1p2/(p1+p2)>1,be
CMO x CMO, and w € Ap with vy, € A, Then [b, T'] is a compact operator from
LP'(w1) x LP2(wy) to LP (vy).

As mentioned in the Introduction,

wWeA,xA, = WwWeAp, and vy €A,

To see that the assumption w € Aj, and vy, € A, is indeed weaker, consider the
example wy(x) = |x|™* where | <a < p1/p=1+ p1/p2 and wa(x) =1 on R.
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Then o1 (x) = |x|°‘(P/1*1) belongs to Azp/l since

/
a<1+ﬂ<1+p1=£.
P2 pi—1
Moreover, vy (x) = |x|~%P/PD belongs to A1(C Ap) since a(p/p1) < 1. How-
ever, the weight w; does not belong to any A, class since it is not locally inte-
grable. This vector weight also provides a new example of the properness of the
containment A, x Ap, C Ap from [12, Section 7].

2. It is natural to ask whether the sufficient condition about L?(w) precom-
pactness in [5] may be extended to include weights w € A, with g > p. A simple
modification of the argument in [17. p. 275] gives the following result in this
setting:

Let1l <r <00, W € Ao, and K C L" (w). If

(D K is bounded in L" (w),
II) limg—co f|x|>A | £ ()" wdx = 0 uniformly for f € K, and
A IfC+1) = fFCH)Lrw) — 0 uniformly for f € K as |t — | = 0,

then IC is precompact.

This is different from the sufficient condition we employed in the proofs of our
main theorems, specifically in the third assumption about equicontinuity. Note
that, in general, the nontranslation invariance of the measure deems our last con-
dition strictly stronger than the corresponding one in [5]. Unfortunately, the argu-
ments we used to prove Theorem 1.2 do not seem to hold anymore in this setting.
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