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1. Introduction

The generalized Hermite polynomials were introduced by Szegő [12] as

H
(µ)
2n (x) := (−1)n 22n n!L(µ−1/2)

n (x2),

H
(µ)
2n+1(x) := (−1)n 22n+1 n!xL

(µ+1/2)
n (x2) ,

(1.1)

where µ > −1/2, L
(α)
n (x) are the Laguerre polynomials,

L(α)
n (z) :=

(α + 1)n
n!

1F1

(

−n
α + 1

∣

∣

∣

∣

z

)

=
(α + 1)n

n!

n
∑

k=0

(−n)k
(α + 1)k

zk

k!
, (1.2)

and (a)n = Γ(a + n)/Γ(a), n = 0, 1, 2, . . . , is the shifted factorial. Observe that
the zero value of the parameter µ in (1.1) corresponds to the ordinary Hermite

polynomials Hn(x), i.e., H
(0)
n (x) = Hn(x).

The generalized Hermite polynomials (1.1) are orthogonal with respect to
the weight function |x|2µe−x2

, x ∈ R, i.e.,

∫ ∞

−∞

H(µ)
n (x)H(µ)

m (x)|x|2µe−x2

dx

= 22n
[n

2

]

! Γ

([

n + 1

2

]

+ µ +
1

2

)

δnm, (1.3)

where [x] denotes the greatest integer not exceeding x. They satisfy a three-
term recurrence relation

2xH(µ)
n (x) = H

(µ)
n+1(x) + 2(n + 2µ θn)H

(µ)
n−1(x), n ≥ 0, (1.4)

and a second-order differential equation

[

x
d2

dx2
+ 2(µ − x2)

d

dx
+ 2nx − 2µ θnx−1

]

H(µ)
n (x) = 0, n ≥ 0, (1.5)

with θn := n − 2[n/2] (see Szegő [12], Chihara [4]). A detailed discussion of

other properties of H
(µ)
n (x) can be found in Markett [9], Rosenblum [11].
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The reason for interest in studying the generalized Hermite polynomials
(1.1) is twofold. Pure mathematically they are of interest as an explicit exam-
ple of the complete orthonormal set in L2

µ(R), the Hilbert space of Lebesgue
measurable functions f(x), x ∈ R, with

||f ||µ :=

(
∫ ∞

−∞

|f |2 |x|2µ dx

)1/2

< ∞ . (1.6)

Hence one can build the Bose-like oscillator calculus in terms of these poly-
nomials, which generalizes the well-known calculus, based on the quantum-
mechanical harmonic oscillator in physics (see, for example, Rosenblum [11]).
So we try to make one step further by considering a generalization of the clas-
sical Hermite polynomials Hn(x) with two additional parameters, µ and q.

The aim of this paper is to investigate in detail a q-extension of the gen-
eralized Hermite polynomials (1.1) with the continuous orthogonality property
on R (the case of discrete orthogonality requires a different technique, see, for

example, Berg et al [3]). In Section 2 we introduce this family {H
(µ)
n (x; q)} in

terms of the q-Laguerre polynomials and find a relevant q-difference equation

for it. In Section 3 the continuous orthogonality property for {H
(µ)
n (x; q)} with

respect to the positive weight function on R is explicitly formulated. Section 4
is devoted to the derivation of a three-term recurrence relation for this family
of q-polynomials.

2. Generalized Hermite Polynomials

It is known from Hahn [7], Exton [5], and Moak [10] that the q-Laguerre poly-

nomials L
(α)
n (x; q) are explicitly given as

L(α)
n (x; q) :=

(qα+1; q)n
(q; q)n

1φ1
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q,−qn+α+1 x

)

=
1

(q; q)n
2φ1

(

q−n,−x
0

∣

∣

∣

∣

∣
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,

(2.1)
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where (a; q)0 = 1 and (a; q)n =
∏n−1

j=0 (1 − aqj), n = 1, 2, . . . , is the q-shifted
factorial, and

rφp

(

q−n, a2, · · · , ar

b1, b2, · · · , bp

∣

∣

∣

∣

q , z

)

=
n
∑

k=0

(q−n; q)k(a2; q)k · · · (ar; q)k
(b1; q)k(b2; q)k · · · (bp; q)k

zk

(q; q)k

[

(−1)kqk(k−1)/2
]p−r+1

(2.2)

is the basic hypergeometric polynomial of degree n in the variable z (throughout
this paper, we will employ the standard notations of the q-special functions
theory, see Gasper et al [6] or Andrews et al [2]). The q-Laguerre polynomials
(2.1) satisfy two kinds of orthogonality relations, an absolutely continuous one
and a discrete one. The former orthogonality relation, in which we are interested
in the present paper, is given by

∫ ∞

0

xα

Eq(x)
L(α)

m (x; q)L(α)
n (x; q) dx = d−1

n (α) δmn , α > −1 , (2.3)

where Eq(x) is the Jackson q-exponential function,

Eq(z) :=
∞
∑

n=0

qn(n−1)/2

(q; q)n
zn = (−z; q)∞, (2.4)

and the normalization constant dn(α) is equal to

dn(α) =
1

π
sinπ(α + 1)

qn (q; q)n
(qα+1; q)n

(q; q)∞
(q−α; q)∞

. (2.5)

The q-Laguerre polynomials (2.1) are defined in such a way that in the limit as

q → 1 they reduce to the ordinary Laguerre polynomials L
(α)
n (x), i.e.,

lim
q→1

L(α)
n ((1 − q)x; q) = L(α)

n (x). (2.6)

We can now define, in complete analogy with the relationship (1.1), a q-

extension of the generalized Hermite polynomials H
(µ)
n (x) of the form

H
(µ)
2n (x; q) := (−1)n (q; q)n L(µ−1/2)

n (x2; q),

H
(µ)
2n+1(x; q) := (−1)n (q; q)n xL

(µ+1/2)
n (x2; q) ,

(2.7)
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which are orthogonal on the real line R. Indeed, since

lim
q→1

(qa; q)n
(1 − q)n

= (a)n , (2.8)

with the aid of (2.6) one readily verifies that

lim
q→1

(1 − q)−n/2 H(µ)
n (
√

1 − q x; q) = 2−n H(µ)
n (x). (2.9)

Observe also that the zero value of the parameter µ in (2.7) corresponds to

polynomials Hn(x; q) ≡ H
(0)
n (x; q). The sequence {Hn(x; q)} can be expressed

either in terms of the q-Laguerre polynomials L
(α)
n (x; q), α = ±1/2 (as it obvi-

ous from definition (2.7) itself), or through the discrete q-Hermite polynomials
h̃n(x; q) of type II:

Hn(x; q2) = qn(n−1)/2 h̃n(x; q) . (2.10)

A detailed discussion of the properties of the polynomials Hn(x; q) can be found
in our previous paper Álvarez-Nodarse et al [1] on this subject.

A q-difference equation for the introduced polynomials H
(µ)
n (x; q) is, in fact,

an easy consequence of the known q-difference equation

qα (1 + x)L(α)
n (q x; q) + L(α)

n (q−1x; q)

= [1 + qα(1 + qn x)] L(α)
n (x; q) (2.11)

for the q-Laguerre polynomials (see, for example, formula (3.21.6) in Koekoek
et al [8]). Indeed, from this q-difference equation and definition (2.7) it follows
immediately that

qµ−1/2 (1 + x2)H(µ)
n (q1/2 x; q) + H(µ)

n (q−1/2 x; q)

=
[

q−θn/2 + qµ+(θn−1)/2 (1 + q[n/2] x2)
]

H(µ)
n (x; q) ,

(2.12)

where, as before, θn = n − 2[n/2]. Taking into account that the dilations x →

q±1 x are represented by the operators q±x d

dx , that is, q±x d

dx f(x) = f(q±1x),
one now readily verifies that the q-difference equation (2.12) coincides with the
second-order differential equation (1.5) in the limit as q → 1.
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3. Orthogonality Relation

We begin this section with the following theorem:

Theorem 1. The sequence of the q-polynomials {H
(µ)
n (x; q)}, which are

defined by the relations (2.7), satisfies the orthogonality relation

∞
∫

−∞

H(µ)
m (x; q)H(µ)

n (x; q)
|x|2µ dx

Eq(x2)

=
π

cos πµ

(q1/2−µ; q)∞
(q; q)∞

q−
n

2
−µθn (q; q)[ n

2
] (q

µ+1/2; q)[ n+1

2
] δmn ,

(3.1)

on the whole real line R with respect to the continuous positive weight function
w(x) = 1/Eq(x

2).

Proof. Since the weight function in (3.1) is an even function of the in-

dependent variable x and H
(µ)
n (−x; q) = (−1)n H

(µ)
n (x; q) by the definition

(2.7), the q-polynomials of an even degree H
(µ)
2m(x; q) and of an odd degree

H
(µ)
2n+1(x; q), m, n = 0, 1, 2, . . ., are evidently orthogonal to each other. Conse-

quently, it suffices to prove only those cases in (3.1), when degrees of polyno-
mials m and n are either simultaneously even or odd. Let us consider first the
former case. From (2.7) and (2.3) it follows that

∞
∫

−∞

H
(µ)
2m(x; q)H

(µ)
2n (x; q)

|x|2µ dx

Eq(x2)

= (−1)m+n (q; q)m(q; q)n

∞
∫

−∞

L(µ−1/2)
m (x2; q)L(µ−1/2)

n (x2; q)
|x|2µ dx

Eq(x2)

= 2(−1)m+n (q; q)m(q; q)n

∞
∫

0

L(µ−1/2)
m (x2; q)L(µ−1/2)

n (x2; q)
x2µ dx

Eq(x2)

= (−1)m+n(q; q)m(q; q)n

∞
∫

0

L(µ−1/2)
m (y; q)L(µ−1/2)

n (y; q)
yµ−1/2 dy

Eq(y)

= (q; q)2n d−1
n (µ − 1/2) δmn ,
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where the normalization constant dn(α) is defined in (2.5). Thus

∞
∫

−∞

H
(µ)
2m(x; q)H

(µ)
2n (x; q)

|x|2µ dx

Eq(x2)

=
π

cos πµ

(q1/2−µ; q)∞
(q; q)∞

q−n (q; q)n (qµ+1/2; q)n δmn . (3.2)

Likewise, one finds that in the latter case

∞
∫

−∞

H
(µ)
2m+1(x; q)H

(µ)
2n+1(x; q)

|x|2µ dx

Eq(x2)

= 2(−1)m+n (q; q)m (q; q)n

∞
∫

0

L(µ+1/2)
m (x2; q)L(µ+1/2)

n (x2; q)
x2(µ+1) dx

Eq(x2)

= (−1)m+n (q; q)m (q; q)n

∞
∫

0

L(µ+1/2)
m (y; q)L(µ+1/2)

n (y; q)
yµ+1/2 dy

Eq(y)

= (q; q)2n d−1
n (µ + 1/2) δmn.

Consequently,

∞
∫

−∞

H
(µ)
2m+1(x; q)H

(µ)
2n+1(x; q)

|x|2µ dx

Eq(x2)

=
π

cos πµ

(q1/2−µ; q)∞
(q; q)∞

q−n−µ−1/2 (q; q)n (qµ+1/2; q)n+1 δmn .

(3.3)

Putting (3.2) and (3.3) together results in the orthogonality relation (3.1).
The positivity of Jackson q-exponential function Eq(x

2) for x ∈ R and
q ∈ (0, 1) is obvious from its definition (2.4): for it is represented as an infinite
sum of positive terms (or an infinite product of positive factors). This completes
the proof.

To conclude this section, we note the obvious fact that in the limit as q → 1
the (3.1) reduces to the orthogonality relation (1.3) for the generalized Hermite
polynomials (1.1). This follows immediately from the limit relations (2.8) and
(2.9), upon using the fact that

lim
q→1

Eq((1 − q)z) = ez . (3.4)



338 R. Álvarez-Nodarse, M.K. Atakishiyeva, N.M. Atakishiyev

Also, in the event the parameter µ is zero, then the (3.1) coincides with the
orthogonality relation for the polynomials (2.10), derived in Álvarez-Nodarse
et al [1].

4. Recurrence Relation

In this section we derive a three-term recurrence relation for the q-extension
of the generalized Hermite polynomials (2.7). Since an arbitrary family of
orthogonal polynomials pn(x) satisfies a recurrence relation of the form (see
Chihara [4, p.19])

(anx + bn)pn(x) = pn+1(x) + cnpn−1(x) , n ≥ 0 , (4.1)

one needs to find coefficients an, bn, and cn, which correspond to the case under
discussion.

Before starting this derivation we note that in what follows it proves con-
venient to use the following form

L(α)
n (x; q) =

(qα+1; q)n
(q; q)n

n
∑

k=0

qk(k+α)

(qα+1; q)k

[

n
k

]

q

(−x)k (4.2)

of the q-Laguerre polynomials L
(α)
n (x; q), which comes from the first line in

definition (2.1), upon using the relation

(q−n; q)k
(q; q)k

= (−1)kqk(k−1)/2−nk

[

n
k

]

q

. (4.3)

Let us first consider the case when n in (4.1) is even. Then from (2.7) and
(4.2) we find that

H
(µ)
2n+1(x; q) + c2n(q)H

(µ)
2n−1(x; q)

= (−1)n x (qµ+3/2; q)n

n
∑

k=0

qk(k+µ+1/2)

(qµ+3/2; q)k

[

n
k

]

q

(−x2)k

+ (−1)n−1 c2n(q)x (qµ+3/2; q)n−1

n−1
∑

k=0

qk(k+µ+1/2)

(qµ+3/2; q)k

[

n − 1
k

]

q

(−x2)k .

(4.4)

The next step is to employ the relation

(1 − qα) (qα+1; q)n = (1 − qn+α) (qα; q)n (4.5)
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in order to rewrite the quotient (qµ+3/2; q)n/(qµ+3/2; q)k from the first term in
the right side of (4.4) as

(qµ+3/2; q)n

(qµ+3/2; q)k
=

1 − qn+µ+1/2

1 − qk+µ+1/2

(qµ+1/2; q)n

(qµ+1/2; q)k
. (4.6)

In the second term in the right side of (4.4) one can use the evident relation
(qµ+3/2; q)n−1 = (qµ+1/2; q)n/(1 − qµ+1/2) and the same formula (4.5) for the
factor (qµ+3/2; q)k. We recall also the property of the q-binomial coefficient

[

n − 1
k

]

q

=
1 − qn−k

1 − qn

[

n
k

]

q

. (4.7)

Putting this all together, we obtain

H
(µ)
2n+1(x; q) + c2n(q)H

(µ)
2n−1(x; q) = (−1)n x (qµ+1/2; q)n ×

n
∑

k=0

qk(k+µ+1/2)

(qµ+1/2; q)k

[

n
k

]

q

(−x2)k

1 − qk+µ+1/2

{

1 − qn+µ+1/2 − c2n(q)
1 − qn−k

1 − qn

}

.

(4.8)
The right-hand side of (4.8) should match with

H
(µ)
2n (x; q) = (−1)n (qµ+1/2; q)n

n
∑

k=0

qk(k+µ−1/2)

(qµ+1/2; q)k

[

n
k

]

q

(−x2)k , (4.9)

multiplied by a2n(q)x + b2n(q). This means that the coefficient c2n(q) can be
found from the equation

1 − qn+µ+1/2 − c2n(q)
1 − qn−k

1 − qn
= dn(q) q−k (1 − qk+µ+1/2) , (4.10)

where dn(q) is some k-independent factor. It is not difficult to verify that the
only solution of the equation (4.10) is c2n(q) = 1 − qn and dn(q) = qn. Thus

H
(µ)
2n+1(x; q) + (1 − qn)H

(µ)
2n−1(x; q) = qn xH

(µ)
2n (x; q) . (4.11)

Similarly, in the case of an odd n from (4.8) we have

H
(µ)
2n+2(x; q) + c2n+1(q)H

(µ)
2n (x; q)

= (−1)n+1 (qµ+1/2; q)n+1

n+1
∑

k=0

qk(k+µ−1/2)

(qµ+1/2; q)k

[

n + 1
k

]

q

(−x2)k

+ (−1)n c2n+1(q) (qµ+1/2; q)n

n
∑

k=0

qk(k+µ−1/2)

(qµ+1/2; q)k

[

n
k

]

q

(−x2)k . (4.12)
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In this case it is even easier to find the coefficient c2n+1(q). Indeed, one will

obtain from (4.12) an expression [a2n+1(q)x + b2n+1(q)]H
(µ)
2n+1(x; q) only if the

two constant terms in (4.12) with k = 0 cancel each other. This means that
the c2n+1(q) should satisfy the equation

(qµ+1/2; q)n+1 − (qµ+1/2; q)n c2n+1(q)

≡ (qµ+1/2; q)n[1 − qn+µ+1/2 − c2n+1(q)] = 0 . (4.13)

Consequently, c2n+1(q) = 1 − qn+µ+1/2 and, therefore, by (4.12) one obtains

H
(µ)
2n+2(x; q) + (1 − qn+µ+1/2)H

(µ)
2n (x; q) = (−1)n+1 (qµ+1/2; q)n+1

×

n
∑

k=0

q(k+1)(k+µ+1/2)

(qµ+1/2; q)k+1

{

[

n + 1
k + 1

]

q

−

[

n
k + 1

]

q

}

(−x2)k

= qn+µ+1/2 xH
(µ)
2n+1(x; q) , (4.14)

upon using the q-Pascal identity
[

n + 1
m + 1

]

q

−

[

n
m + 1

]

q

= qn−m

[

n
m

]

q

, (4.15)

for the q-binomial coefficient

[

n
k

]

q

. From (4.11) and (4.14) it thus follows that

the q-polynomials H
(µ)
n (x; q) satisfy a three-term recurrence relation of the form

(θn := n − 2[n/2])

H
(µ)
n+1(x; q) + (1 − qn/2+µθn)H

(µ)
n−1(x; q) = qn/2+µθn xH(µ)

n (x; q) . (4.16)

With the aid of (2.9) one now readily verifies that the (4.16) coincides with the
three-term recurrence relation (1.4) for the generalized Hermite polynomials

H
(µ)
n (x) in the limit as q → 1.

5. Concluding Remarks

We conclude this exposition with the following remark. It is well-known that
the Hermite functions Hn(x) e−x2/2 (or the wave functions of the linear har-
monic oscillator in quantum mechanics) are eigenfunctions of the Fourier inte-
gral transform (with respect to the kernel eixy) with eigenvalues in. One can
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introduce the generalized Fourier transform operator

Fµ f(x) := c−1
µ

∫ ∞

−∞

eµ(−ixt) f(t) |t|µ dt , (5.1)

with a kernel

eµ(−ix) :=
cµ

2

Jµ−1/2(x) − iJµ+1/2(x)

xµ−1/2
, (5.2)

where the constant cµ := 2µ+1/2 Γ(µ+1/2) and Jα(x) is the Bessel function. The
generalized Hermite polynomials (1.1) are the eigenfunctions of the generalized
Fourier transform operator (5.1), see Rosenblum [11]. It is of interest to find a
q-extension of (5.1) and (5.2). This study is under way.
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