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Abstract. In this paper we present a new characterization for the
classical discrete and q−classical (discrete) polynomials (in the Hahn’s
sense).

Introduction

The classical orthogonal polynomials are very interesting mathematical
objects that have attracted the attention not only of mathematicians since
their appearance at the end of the XVIII century connected with some phys-
ical problems. They are used in several branches of mathematical and physi-
cal sciences and they have a lot of useful properties: they satisfy a three-term
recurrence relation (TTRR), they are the solution of a second order linear
differential (or difference) equation, their derivatives (or finite differences)
also constitute an orthogonal family, their generating functions can be given
explicitly, among others (for a review see e.g. [2, 6, 15, 16] and the recent
[3]). Among such properties, a fundamental role is played by the so-called
characterization theorems, i.e., such properties that completely define and
characterize the classical polynomials. Obviously not every property char-
acterize the classical polynomials and as an example we can use the TTRR.
It is well known that, under certain conditions —by the so-called Favard
Theorem (for a review see [11])–, the TTRR characterizes the orthogonal
polynomials (OP) but there exist families of OP that satisfy a TTRR but not
a linear differential equation with polynomial coefficients, or a Rodrigues-
type formula, etc. For a more complete review on this see e.g. [1, 7, 12, 14]
or the more recent work [2]. In this paper we will complete the works [7, 14]
proving a new characterization for the classical discrete [7, 10] and the q-
classical [8, 14] polynomials.

1. Preliminaries

Let P be the linear space of polynomial functions in C with complex
coefficients and P∗ be its algebraic dual space, i.e., P∗ is the linear space of
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all linear functionals u : P → C. In general, we will represent the action of
a functional over a polynomial by

〈u, π〉, u ∈ P∗ , π ∈ P,
and therefore a functional is completely determined by a sequence of complex
numbers 〈u, xn〉 = un, n ≥ 0, the so-called moments of the functional.

Definition 1.1. Let (Pn)n≥0 be a basis sequence of P such that degPn = n.
We say that (Pn)n≥0 is an orthogonal polynomial sequence (OPS), if and
only if there exists a functional u ∈ P∗ such that

〈u, PmPn〉 = knδmn, kn �= 0, n ≥ 0 ,

where δmn is the Kronecker delta. If the leading coefficient of Pn is equal to
1 for all n, i.e., Pn(x) = xn + · · · , we say that the sequence (Pn)n≥0 is a
monic orthogonal polynomial sequence (MOPS) and denote it by (Pn)n≥0 =
mops(u).

It is very well known that a such OPS exists if and only if the linear
functional u is quasi-definite.

Next, we introduce the forward and backward difference operators defined
on P by

∆ : P 	→ P, ∆y(x) = y(x+ 1)− y(x),
∇ : P 	→ P, ∇y(x) = y(x)− y(x− 1).

For the ∆ operator we have the property

∆[f(x)g(x)] = f(x)∆g(x) + g(x+ 1)∆f(x). (1.1)

Also we will use the Jackson q-derivative operator Dq on P defined by

Dq : P 	→ P, Dqπ =
π(qx)− π(x)

(q − 1)x
, |q| �= 0, 1, (1.2)

Notice that in this case we have

Dq(π(x)ρ(x)) = ρ(x)Dqπ(x) + π(qx)Dqρ(x) = ρ(qx)Dqπ(x) + π(x)Dqρ(x) .
(1.3)

All the above operators are linear and

∆xn = nxn−1 + · · · , Dqxn = [n]qxn−1, n > 0, ∆1 = Dq1 = 0,

i.e., Dqπ,∆π ∈ P. Here, and throughout the paper, [n]q , n ∈ N, denotes
the basic q−number n defined by

[n]q :=
qn − 1
q − 1

= 1 + q + · · ·+ qn−1, n > 0, [0]q := 0 . (1.4)

Definition 1.2. Let u ∈ P
∗ and π ∈ P. We define the action of the

∆−difference operator ∆ on P
∗ by ∆ : P∗ → P

∗, 〈∆u, π〉 = −〈u,∆π〉.
We define the action of the q−derivatives Dq on P

∗ by Dq : P∗ → P
∗,

〈Dqu, π〉 = −〈u,Dqπ〉.
Definition 1.3. Let u ∈ P∗ and π ∈ P. We define a polynomial modification
of a functional u, the functional πu, by 〈πu, ρ〉 = 〈u, πρ〉, ∀ ρ ∈ P.
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From the above definition and the identities (1.1) and (1.3) it follows that

∆(π(x)u) = π(x− 1)∆u + ∆π(x− 1)u, (1.5)

Dq(π(x)u) = π(x/q)Dqu +Dqπ(x/q)u, (1.6)
for the discrete and the q-case, respectively.

Given a basis sequence of polynomials (Bn)n≥0 we define the so-called
dual basis of (Bn)n≥0 as a sequence of linear functionals (bn)n≥0 such that

〈bn, Bm〉 = δnm, n,m ≥ 0 ,

Furthermore, if (Pn)n≥0 is a MOPS associated to the quasi-definite func-
tional u ∈ P∗, then their corresponding dual basis (pn) ⊂ P∗ is given by

pn = k−1
n Pnu, kn = 〈u, P 2

n〉, n ≥ 0 . (1.7)

Definition 1.4. Let u ∈ P∗ be a quasi-definite functional and (Pn)n≥0 =
mops(u). We say that u (respectively (Pn)n≥0) is a ∆-classical functional
(respectively a ∆-classical MOPS), if and only if the sequence (∆Pn+1)n≥0

is also orthogonal. We say that u (respectively (Pn)n≥0) is a q−classical
functional (respectively a q−classical MOPS), if and only if the sequence
(DqPn+1)n≥0 is also orthogonal.

In the following (Qn)n≥0 will denote either the sequence of monic ∆-
differences or q−derivatives of (Pn)n≥0, i.e., either Qn = 1

n+1∆Pn+1, or
Qn = 1

[n+1]q
DqPn+1, respectively, for all n ≥ 0. It is known that

Proposition 1.5. [7, 14] Let (Pn)n≥0 = mops(u) and (Qn)n≥0 be the se-
quence of monic ∆-differences or q−derivatives. If (Qn)n≥0 = mops(v),
then v = φu where φ ∈ P, deg φ ≤ 2.

In the next Theorem we collect the characterizations already known of
the ∆-classical MOPS and the q−classical MOPS, respectively:

Theorem 1.6. Let u ∈ P∗ be a quasi-definite functional and (Pn)n≥0 =
mops(u). The following statements are equivalent [7]:

(a) u and (Pn)n≥0 are, respectively, a ∆−classical functional and a
∆−classical MOPS.

(b) There exist two polynomials φ and ψ, deg φ ≤ 2, degψ = 1, such
that

∆(φu) = ψu . (1.8)
(c) There exist two polynomials φ and ψ, deg φ ≤ 2, degψ = 1, and

λn ∈ C, λn �= 0, n ≥ 1 and λ0 = 0, such that

φ∆∇Pn + ψ∇Pn + λnPn = 0 , n = 0, 1, 2, ... . (1.9)

(d) (Pn)n≥0 satisfies the distributional Rodrigues formula, i.e., there ex-
ist a polynomial φ ∈ P, deg φ ≤ 2 and a sequence of complex numbers
rn, rn �= 0, n ≥ 1 such that

Pnu = rn∆n(φ(n)u) , n ≥ 1 where φ(n)(x) =
n−1∏
k=0

φ(x+ k) , (1.10)



4 M. ALFARO AND R. ÁLVAREZ-NODARSE

Whereas for the q-classical polynomials the following statements are equiva-
lent [14]:

(i) u and (Pn)n≥0 are, respectively, a q−classical functional and a q−classical
MOPS.

(ii) There exist two polynomials φ and ψ, deg φ ≤ 2, degψ = 1, such
that

Dq(φu) = ψu . (1.11)

(iii) There exist two polynomials φ and ψ, deg φ ≤ 2, degψ = 1, and
λn ∈ C, λn �= 0, n ≥ 1 and λ0 = 0, such that

φDqD1/qPn + ψD1/qPn + λnPn = 0 , n = 0, 1, 2, ... . (1.12)

(iv) (Pn)n≥0 satisfies the distributional Rodrigues formula, i.e., there ex-
ist a polynomial φ ∈ P, deg φ ≤ 2 and a sequence of complex numbers
rn, rn �= 0, n ≥ 1 such that

Pnu = rnDnq (φ(n)u) , n ≥ 1 where φ(n)(x) =
n−1∏
i=0

φ(qix) , (1.13)

Moreover, if

φ(x) = Ax2 +Bx+ C, ψ(x) =Mx+M1, M �= 0, (1.14)

and u is quasi-definite then we have the regularity condition nA +M �= 0
for the ∆-case and [n]qA+M �= 0 for the q-case, respectively.

Later, we will use the next technical result:

Proposition 1.7. Let (Pn)n≥0 = mopsu and (Qn)n≥0 be the sequence of
their monic ∆-differences or q−derivatives, respectively. If u is either a
∆−classical functional or a q−classical functional then,

∆(Qn φu) = (M + nA)Pn+1 u, n ≥ 0, (1.15)

Dq(Qn φu) = q−n(M + [n]qA)Pn+1 u, n ≥ 0, (1.16)

for the discrete and q-cases, respectively, where M , A are as in (1.14).

Proof. Using (1.7), the Lemmas 1.7 and 1.8 in [7] for the discrete case, and
Corollary 2.3 in [14] for the q-case, and proposition 1.5 we find

∆(Qn φu) = −(n+ 1)
k′n
kn+1

Pn+1 u, Dq(Qn φu) = −[n+ 1]q
k′n
kn+1

Pn+1 u,
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respectively, where kn+1 = 〈u, P 2
n+1〉, k′n = 〈φu, Q2

n〉. Next we compute
k′n/kn+1. For the discrete case we have

k′n := 〈φu, Q2
n〉 =

1
n+ 1

〈φu, (x+ 1)n∆Pn+1〉

=
1

n+ 1
〈φu,∆(xnPn+1)−∆(xn)Pn+1)〉

= − 1
n+ 1

{〈∆(φu), xnPn+1)〉+ 〈φu,∆(xn)Pn+1)〉}

= − 1
n+ 1

{
〈u,Mxn+1Pn+1)〉+ 〈u, nAxn+1Pn+1)〉

}

= −M + nA
n+ 1

kn+1,

where we use the equation (1.1) in the second equality and (1.8), (1.14) in
the forth one. In the same way, but using (1.3) and (1.11) we find for the
q-case

k′n := 〈φu, Q2
n〉 =

q−n

[n+ 1]q
〈φu, (qx)nDqPn+1〉 = −q−nM + [n]qA

[n+ 1]q
kn+1,

�

2. Main result

In this Section, we prove the characterization Theorem in both situations.

2.1. Classical discrete polynomials.

Theorem 2.1. Let u ∈ P∗ be a quasi-definite functional and (Pn)n≥0 =
mops(u). Then, (Pn)n≥0 is a ∆-classical MOPS if and only if for every
n ≥ 1,

Pnu = ∆(αn−1φu), (2.1)
where αn−1 is a polynomial of degree n− 1 and φ is a polynomial of degree
less or equal to 2.

Proof. ⇐ Taking n = 1 we get

P1u = ∆(α0φu) = α0∆(φu),

thus by Theorem 1.6, u is a classical functional with ψ = P1/α0.

⇒ If u is classical then, by Theorem 1.6 (d),

Pnu = rn∆n(φ(n)u) , n ≥ 1 where φ(n)(x) =
n−1∏
k=0

φ(x+ k) .

Therefore, it is enough to show that rn∆n(φ(n)u) = ∆(αn−1φu) being αn−1

a (n−1)-degree polynomial. For doing that, let n be a fixed positive integer,
we prove that

rn∆n(φ(n)u) = ∆n−k(αkφ(n−k)u), k = 0, 1, . . . , n− 1, (2.2)
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where αk is a polynomial of degree k. Obviously the formula is correct for
k = 0 by taking α0(x) = rn. Let suppose that it is true for k = 0, 1, 2, . . . , p,
p < n− 1

rn∆n(φ(n)u) = ∆n−p(αpφ(n−p)u) = ∆n−(p+1)∆(αpφ(n−p)u).

Let show that

∆(αpφ(n−p)u) = αp+1φ(n−p−1)u, degαp+1 = p+ 1.

For doing that, notice that φ(n−p)(x) = φ(x)φ(n−p−1)(x + 1), and therefore
using (1.5)

∆(αp(x)φ(n−p)(x)u) = ∆(αp(x)φ(n−p−1)(x+ 1)φ(x)u)

= αp(x− 1)φ(n−p−1)(x)∆(φ(x)u) + ∆(αp(x− 1)φ(n−p−1)(x))φ(x)u

= {αp(x− 1)φ(n−p−1)(x)ψ(x) + ∆(αp(x− 1)φ(n−p−1)(x))φ(x)}u
To complete the proof it suffices to show that

Λ(x) := αp(x− 1)φ(n−p−1)(x)ψ(x) + ∆(αp(x− 1)φ(n−p−1)(x))φ(x)

= {αp(x− 1)ψ(x) + φ(x)∆αp(x− 1)}φ(n−p−1)(x)

+ αp(x)φ(x)∆φ(n−p−1)(x)

= αp+1(x)φ(n−p−1)(x),

being αp+1 a polynomial of degree p+ 1. Using that

∆φ(n−p−1)(x) =
φ(x+ n− p− 1)− φ(x)

φ(x)
φ(n−p−1)(x)

we finally obtain

Λ(x) = {αp(x−1)ψ(x)+αp(x)φ(x+n−p−1)−αp(x−1)φ(x)}φ(n−p−1)(x).

To prove that the above quotient is a polynomial of degree p+1 we substitute
(1.14), αp(x) = apxp+· · · , and equate the coefficients of the xp+1. This gives
ap{M + A(2n − p − 2)} �= 0, due to the regularity condition (see Theorem
(1.6)) and the fact that ap �= 0 since the polynomial αp has degree equal to
p. This prove (2.2). Now putting k = n− 1, the result follows. �

To conclude this section notice that comparing (2.1) and (1.15) we obtain
that

αn−1(x) =
Qn−1(x)

M +A(n− 1)
=

∆Pn(x)
n(M +A(n− 1))

.

2.1.1. Examples. As examples we will take the monic polynomials of Hahn
h

(α,β)
n (x,N), Meixner m(ν,µ)

n (x), Kravchuk k(p)
n (x,N), and Charlier c(a)n (x),

(see [4]). So we have
• Hahn case: Since φ(x) = (x+ β + 1)(N − x− 1), ψ(x) = −(α+ β +

2)x− (β + 1)(N − 1), thus

αn−1(x) =
∆h(α,β)

n (x,N)
n(n+ α+ β + 1)

=
h

(α+1,β+1)
n−1 (x,N − 1)
n+ α+ β + 1

.
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• Meixner case: Now φ(x) = µx + µν, ψ(x) = −(1 − µ)x + µν, and
then

αn−1(x) =
∆m(ν,µ)

n (x)
n(µ− 1)

=
m

(ν+1,µ)
n−1 (x)
µ− 1

.

• Kravchuk case: Since φ(x) = − p
1−p(x−N), ψ(x) = −x+Np

1−p , thus

αn−1(x) =
∆k(p)

n (x,N))
n(µ− 1)

= (p− 1)k(p)
n−1(x,N − 1).

• Charlier case: Since φ(x) = a, ψ(x) = −x+ a, therefore

αn−1(x) = −∆c(a)n (x)
n

= c(a)n−1(x).

2.2. q-Classical polynomials.

Theorem 2.2. Let u ∈ P∗ be a quasi-definite functional and (Pn)n≥0 =
mops(u). Then, (Pn)n≥0 is a q-classical if and only if for every n ≥ 1,

Pnu = Dq(αn−1φu), (2.3)

where αn−1 is a polynomial of degree n− 1 and φ is a polynomial of degree
less or equal to 2.

Proof. ⇐ Taking n = 1 we get

P1u = Dq(α0φu) = α0Dq(φu),

thus by Theorem 1.6 (iv), u is a classical functional with ψ = P1/α0.

⇒ If u is classical then, by Theorem 1.6 then

Pnu = rnDnq (φ(n)u) , n ≥ 1 where φ(n)(x) =
n−1∏
k=0

φ(qkx) .

Therefore, it is enough to show that rnDnq (φ(n)u) = Dq(αn−1φu) being αn−1

a (n− 1)-degree polynomial. For doing that we prove that

rnDnq (φ(n)u) = Dn−kq (αkφ(n−k)u), k = 0, 1, . . . , n− 1, (2.4)

where αk is a polynomial of degree k. Obviously the formula is correct for
k = 0 just taking α0(x) = rn. Let suppose that it is true for k = 0, 1, 2, . . . , p,
p < n− 1

Dnq (φ(n)u) = Dn−pq (αpφ(n−p)u) = Dn−(p+1)
q Dq(αpφ(n−p)u).

Let show that

Dq(αp(x)φ(n−p)(x)u) = αp+1(x)φ(n−p−1)(x)u, degαp+1 = p+ 1.
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For doing that, notice that φ(n−p)(x) = φ(x)φ(n−p−1)(qx), and therefore
using (1.6)

Dq(αp(x)φ(n−p)(x)u) = Dq(αp(x)φ(n−p−1)(qx)φ(x)u)

= αp(x/q)φ(n−p−1)(x)Dq(φ(x)u) +Dq(αp(x/q)φ(n−p−1)(x))φ(x)u

= {αp(x/q)φ(n−p−1)(x)ψ(x) +Dq(αp(x/q)φ(n−p−1)(x))φ(x)}u
To complete the proof let show that

Λ(x) := αp(x/q)φ(n−p−1)(x)ψ(x) +D(αp(x/q)φ(n−p−1)(x))φ(x)

= {αp(x/q)ψ(x) + φ(x)Dqαp(x/q)}φ(n−p−1)(x) + αp(x)φ(x)Dqφ(n−p−1)(x)

= αp+1(x)φ(n−p−1)(x),

where αp+1 is a polynomial of degree p+ 1. Using that

Dqφ(n−p−1)(x) =
φ(qn−p−1x)− φ(x)

(q − 1)x
φ(n−p−1)(x)
φ(x)

we finally obtain

Λ(x) =
{
αp(x/q)ψ(x) +

αp(x)φ(qn−p−1x)− αp(x/q)φ(x)
(q − 1)x

}
φ(n−p−1)(x).

First of all notice that Λ is a polynomial. To prove that the expression on
the brackets is a polynomial of degree p + 1 we substitute (1.14), αp(x) =
apx

p + · · · , and equate the coefficients of the xp+1. This leads to the value
apq
−p{M+A[2n−p−2]q}, that is different from zero because of the regularity

condition (see Theorem (1.6)) and the fact that the polynomial αp has degree
equal to p, and then ap �= 0. This prove (2.4). Now putting k = n− 1, the
result follows. �

Observe that comparing (2.3) and (1.16) we obtain that

αn−1(x) =
qnQn−1(x)

M +A[n− 1]q
=

qnDqPn(x)
[n]q(M +A[n− 1]q)

.

2.2.1. Examples. In this case we have 12 families of classical q-polynomials
(see [4]). We will take two representatives examples corresponding to the
big q-Jacobi polynomials Pn(x, a, b, c; q) and the little q-Jacobi polynomials
pn(x; a, b|q). So we have

• Big q-Jacobi polynomials: Since φ(x) = aq(x − 1)(bx − c), ψ(x) =
1−abq2
(1−q)q x+ a(bq−1)+c(aq−1)

1−q , therefore

αn−1(x) =
qn

[n]q
Dqpn(x, a, b|q)

1−abq2
(1−q)q + abq[n− 1]q

=
(1− q)qn+1

1−abq2
(1−q)q + abq[n− 1]q

Pn−1(qx, qa, qb, qc; q).
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• Little q-Jacobi polynomials: In this case φ(x) = ax(bqx−1), ψ(x) =
1

(1−q)q
{
(1− abq2)x+ aq − 1

}
, and thus

αn−1(x) =
(1− q)qn+1

[n]q
Dqpn(x, a, b, c; q)

1−abq2
(1−q)q + abq[n− 1]q

=
qn

1−abq2
(1−q)q + abq[n− 1]q

pn−1(x, qa, qb|q).

The other ten cases can be obtained in an analogous way or by taking
appropriate limits (see e.g. [4, 9]).
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genügen. Math. Zeit. 78 (1962), 439-445.
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