
ENTERPRISE INFORMATION
INTEGRATION

###
AN UNSUPERVISED PROPOSAL FOR WEB PAGE

CLASSIFICATION

INMA HERNÁNDEZ

UNIVERSITY OF SEVILLA, SPAIN

DOCTORAL DISSERTATION
SUPERVISED BY DR. DAVID RUIZ AND DR. RAFAEL CORCHUELO

SEPTEMBER, 2012

First published in September 2012 by
The Distributed Group
ETSI Informática
Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright c⃝ MMXII The Distributed Group
http://www.tdg-seville.info
contact@tdg-seville.info

In keeping with the traditional purpose of furthering science, education and
research, it is the policy of the publisher, whenever possible, to permit non-
commercial use and redistribution of the information contained in the documents
whose copyright they own. You however are not allowed to take money for the dis-
tribution or use of these results except for a nominal charge for photocopying,
sending copies, or whichever means you use redistribute them. The results in this
document have been tested carefully, but they are not guaranteed for any particu-
lar purpose. The publisher or the holder of the copyright do not offer any warranties
or representations, nor do they accept any liabilities with respect to them.

Classification (ACM 1998): H.5.1 [Multimedia Information Systems]: Hypertext
navigation and maps; H.5.4 [Hypertext/Hypermedia]: Navigation; I.2.6 [Learn-
ing] Concept learning, Induction; I.5.2 [Design Methodology]: Classifier design and
evaluation; I.5.3 [Clustering]: Algorithms.

Support: Supported by the European Commission (FEDER), the Spanish and the
Andalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-
4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E, and
TIN2010-09988-E, TIN2011-15497-E).

http://www.tdg-seville.info
mailto:contact@tdg-seville.info

UniversityofSevilla,Spain

The committee in charge of evaluating the dissertation presented by Inma
Hernández in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Software Engineering, hereby recommends

of this dissertation and awards the author the
grade .

José Miguel Toro Bonilla

Catedrático de Universidad

Univ. de Sevilla

Carlos Delgado Kloos

Catedrático de Universidad

Univ. Politécnica de Madrid

Juan Manuel Corchado Rodríguez

Catedrático de Universidad

Univ. de Salamanca

Manuel Lama Penín

Profesor Titular de Universidad

Univ. de Santiago de Compostela

Carlos Alberto Pan Bermúdez

Profesor Contratado Doctor

Univ. de A Coruña

To put record where necessary, we sign minutes in ,
.

Classification of geometrical shapes into patterns: triangles, diamonds, squares, and circles.

By Laura, aged four.

To Carlos, my sun and stars

Contents

Acknowledgements . xi

Abstract . xiii

Resumen . xv

I Preface

1 Introduction . 3
1.1 Research context . 4
1.2 Research rationale . 5

1.2.1 Hypothesis . 5
1.2.2 Thesis . 6

1.3 Summary of contributions . 6
1.4 Collaborations . 7
1.5 Structure of this dissertation . 7

2 Motivation . 9
2.1 Introduction . 10
2.2 Requirements . 10
2.3 Analysis of current solutions . 11
2.4 Our proposal . 15
2.5 Summary . 15

II Background Information

3 Enterprise web information integration 19

i

ii Contents

3.1 Introduction . 20
3.2 Mediators . 21
3.3 Wrappers . 24
3.4 Summary . 26

4 Automated web navigation . 27
4.1 Introduction . 28
4.2 Taxonomy of web pages . 29
4.3 Scripting proposals . 32

4.3.1 Script recorders . 32
4.3.2 Script learners . 35

4.4 Crawling proposals . 36
4.4.1 Blind crawling . 37
4.4.2 Focused crawling . 38

4.5 Usage mining proposals . 40
4.6 Summary . 41

5 Web page classification . 43
5.1 Introduction . 44
5.2 Contents-based proposals . 45
5.3 Link-based proposals . 47
5.4 Visual-based proposals . 48
5.5 URL-based proposals . 49
5.6 Structure-based proposals . 51
5.7 Summary . 53

III Our Proposal

6 Our crawler . 57
6.1 Introduction . 58
6.2 Architecture . 59
6.3 Algorithm . 61

6.3.1 Computing keywords . 64
6.3.2 Discarding empty hubs . 65
6.3.3 Other ancillary functions . 66

Contents iii

6.4 Analysis . 67
6.4.1 Ancillary functions . 67
6.4.2 Algorithm . 68

6.5 Summary . 69

7 Our pattern builder . 71
7.1 Introduction . 72
7.2 Architecture . 72
7.3 Algorithm . 74

7.3.1 Initialising the prefix set . 76
7.3.2 Computing siblings . 77
7.3.3 Computing p-estimators . 78
7.3.4 Wildcarding prefixes . 80
7.3.5 Updating the prefix set . 82

7.4 Analysis . 82
7.4.1 Ancillary functions . 82
7.4.2 Algorithm . 84

7.5 Summary . 87

8 Evaluation . 89
8.1 Introduction . 90
8.2 Experimental evaluation . 90

8.2.1 Experimentation environment . 90
8.2.2 Experimental results . 91

8.3 Statistical analysis . 97
8.4 Corroboration of conjectures . 99
8.5 Summary . 103

IV Final Remarks

9 Conclusions . 107

V Appendices

A Notation . 111

iv Contents

B Detecting outliers . 115

C Datasets . 117

D Web site model discovery using CALA 123

Bibliography . 131

ListofFigures

3.1 Sketch of an enterprise information integration solution. 20
3.2 Query reformulation using mediators and wrappers. 22
3.3 Structure of a web application wrapper. 25

4.1 Sample search form. 28
4.2 Sample hub page. 29
4.3 Sample detail page. 30
4.4 Sample no-results page. 30
4.5 Sample error page. 31
4.6 Sample disambiguation page. 31
4.7 Navigation using crawlers. 37
4.8 Navigation using focused crawlers. 38
4.9 Navigation using usage mining techniques. 40

5.1 Web page classification using template detection techniques. 51

6.1 Our crawler. 58
6.2 Class diagram of our crawler. 59
6.3 Sequence diagram of our crawler. 60
6.4 Hub page in the running example. 61
6.5 Search form page in our running example. 65
6.6 Empty hub in the running example. 66

7.1 Our pattern builder. 72
7.2 Class diagram of our pattern builder. 73
7.3 Sequence diagram of our pattern builder. 73
7.4 Partial view of the initial prefix set in the running example. 77
7.5 Wildcarding example. 80
7.6 Prefixes in the running example after building patterns. 81

v

vi List of Figures

8.1 Performance of CALA with regard to the other techniques. 95
8.2 Boxplot of the learning times of CALA, TPM, and SVC. 96
8.3 Distribution of p-estimators in our experiments. 100

B.1 Sample distribution and its symmetric. 116

D.1 XPathTree. 125
D.2 XPathTree, after compression. 126
D.3 Detail page of class Author. 126
D.4 Relationships for MsAcademic. 129
D.5 Model for MsAcademic. 129

ListofTables

2.1 Comparison of contents-based proposals. 11
2.2 Comparison of link-based proposals. 12
2.3 Comparison of visual-based proposals. 13
2.4 Comparison of URL-based proposals. 13
2.5 Comparison of structure-based proposals. 14

7.1 Patterns built for the running example. 76
7.2 P-estimators in our running example. 79

8.1 Results of the evaluation. 92
8.2 Number of classes/clusters created by each technique. 97
8.3 Results of our statistical ranking. 99
8.4 Number of pages from each web site in the experiment. 101

A.1 Some mathematical notation used throughout this dissertation. . . . 112

C.1 Datasets description . 118

D.1 Variability estimator values. 125

vii

viii List of Tables

ListofPrograms

6.1 Algorithm gatherHubset. 62

7.1 Algorithm buildPatterns. 75

ix

x List of Programs

Acknowledgements

I would maintain that thanks are the highest form of thought, and that

gratitude is happiness doubled by wonder.

Short History of England, 1917

Gilbert K. Chesterton, Writer (1874-1936)

I
should begin these lines by thanking the two people that led me to be-
coming a PHD student: Dr. Carlos Rivero, who first introduced me to
the world of academical research, and Dr. Rafael Corchuelo, who gave
me the opportunity to become a researcher. I would like to thank him

and Dr. David Ruiz, my advisors, who have helped, guided, adviced and
supported me throughout these years, and who have turned this disserta-
tion into a reality. I would also like to thank my fellow PHD students at
Geozoco, for giving me their help and support (and sometimes, a shoul-
der to cry on, as well), and the members of the TDG in Seville, Huelva and
Brazil, who have always been eager to lend me a hand whenever I needed it.
All of them have made this work a little less arduous and much more fun.

Thanks to Dr. Paolo Merialdo, who invited me to visit his group at the
University Roma Tre, where I had the opportunity to meet interesting peo-
ple (and thanks to Celine, for guiding me through Rome and making me feel
at home).

And last but not least, I would like to thank my whole family, spe-
cially my parents, who have dedicated their life to educating me, and making
me a better person; my sister Maca, for her unconditional support; my sis-
ter Ele, for her deep review of this dissertation, and my grandma, who is not
quite sure of what computers are for, but who is proud and happy when I ex-
plain her what I do. And finally, I thank Carlos, the love of my life, who
makes everything possible.

xi

xii Acknowledgements

Abstract

‘Say on’, said Don Quixote, ‘and be brief in thy discourse, for there is

no pleasure in one that is long’.

Don Quixote, 1605

Miguel de Cervantes Saavedra, soldier, novelist, poet, and playwright

(1547-1616)

I
ntegrating a web application into an automated business process re-
quires to design wrappers that get user queries as input and map
them onto the search forms that the application provides. Such wrap-
pers build, amongst other components, on automatic navigators which

are responsible for executing search forms that have been previously filled
and navigating to the pages that provide the information required to an-
swer the original user queries; this information is later extracted from those
pages by means of an information extractor. A navigator relies on a web page
classifier that allows to discern which pages are relevant and which are not.

In this dissertation, we address the problem of designing an unsuper-
vised web page classifier that builds solely on the information provided by
the URLs and does not require extensive crawling of the site being anal-
ysed. In the literature, there are many proposals to classify web pages. None
of them fulfills the requirements for a web page classifier in a navigator con-
text, namely: to avoid a previous extensive crawling, which is costly and
unfeasible in some cases, to be unsupervised, which relieves the user from
providing training information, or to use features from outside the page to be
classified, which avoids having to download it previously.

Our contribution is CALA, a new automated proposal to generate URL-
based web page classifiers. CALA builds a number of URL patterns that

xiii

xiv Abstract

represent the different classes of pages in a web site, and further pages can be
classified by finding a match between their URLs and one of the pat-
terns. Its salient features are that it fulfills all the previous requirements, it is
computationally tractable, and it has been validated by a number of experi-
ments using real-world top-visited web sites. Our validation suggests that
CALA is very effective and efficient in practice.

Resumen

‘Dílo’, dijo Don Quijote, ‘y se breve en tus razonamientos, que ninguno

es gustoso si es largo’.

El Ingenioso Hidalgo don Quijote de la Mancha, 1605

Miguel de Cervantes Saavedra, soldado, novelista, poeta y dramaturgo

(1547-1616)

L
a integración de aplicaciones web dentro de procesos automa-
tizados de negocio requiere el diseño de wrappers que permitan
ejecutar las consultas de un usuario usando los formularios de bús-
queda que ofrece cada aplicación. Dichos wrappers se basan, entre

otros componentes, en navegadores automáticos que se encargan de en-
viar los formularios de búsqueda rellenados previamente y navegar hacia las
páginas que contienen la información necesaria para responder las consul-
tas del usuario; posteriormente la información se extrae de dichas páginas
mediante un extractor de información. Los navegadores hacen uso de clasifi-
cadores de páginas web que les permiten distinguir las páginas que son
relevantes de las que no.

En esta tesis, tratamos el problema de cómo diseñar un clasificador de
páginas web no supervisado que utilice únicamente la información propor-
cionada por la URL de las páginas y que no requiere un crawling extensivo
del sitio analizado. En la bibliografía, existen muchas propuestas de clasifica-
ción de páginas web, pero presentan diversos inconvenientes, concretamente:
requieren realizar un crawling previo exhaustivo del sitio web, que es costo-
so e incluso inviable en algunos casos, son supervisados, lo que exige al
usuario que proporcione información de entrenamiento, o usan característi-
cas de dentro de las páginas para clasificarlas, lo que obliga a descargarlas
previamente.

xv

xvi Resumen

Nuestra contribución es CALA, una nueva propuesta automática de gene-
ración de clasificadores de páginas web basados en la URL. CALA genera un
conjunto de patrones de URL que representan las distintas clases de pági-
nas ofrecidas por un sitio web, de forma que una página puede ser clasificada
comparando su URL con los patrones y encontrando aquél con el que coinci-
de. Las principales características de CALA son que no tiene ninguno de los
inconvenientes anteriores, que es computacionalmente tratable y que ha si-
do validada mediante experimentos sobre algunos de los sitios web reales
más visitados. Nuestra validación sugiere que CALA es muy eficiente y
efectiva en la práctica

Part I

Preface

Chapter1

Introduction

The White Rabbit put on his spectacles. ‘Where shall I be-

gin, please your Majesty?’ he asked. ‘Begin at the beginning,’ the King

said gravely, ‘and go on till you come to the end: then stop.’

Alice in Wonderland, 1865.

Charles Lutwidge Dodgson (Lewis Carroll), writer and mathematician

(1832-1898)

T
his chapter introduces this dissertation. It is organised as follows: in
Section 1.1, we first introduce the context of our research work; Sec-
tion 1.2 presents the hypothesis that has motivated it and states the
thesis that we prove in this dissertation; Section 1.3 summarises our

main contribution; Section 1.4 introduces the collaborations we have con-
ducted throughout the development of this dissertation; finally, we describe
the structure of this dissertation in Section 1.5.

3

4 Chapter 1. Introduction

1.1 Research context
The computing infrastructure of a company that has been running for a

few years typically includes several heterogeneous, loosely coupled applica-
tions. Most companies have realised that integrating them or the data they
manage is very valuable to support business processes. In the beginning, the
integration was usually ad-hoc; however, as the number of applications to in-
tegrate increased, this soon proved not sustainable, which motivated many
researchers to work on principled approaches to engineer integration.

Enterprise information integration aims at providing a unified view over
different sources of information, including data stores and applications. Since
different data sources usually represent data using various formats and
following different schemata, there is a need to integrate them. Enterprise in-
formation integration systems provide a unified schema on which users can
pose their queries, which are answered using data from the different sources.

Nowadays, one of the main sources for enterprise information integra-
tion are web applications, which are software applications that are hosted on
a web site [34]. According to some experts [30, 59, 94], web applica-
tions that provide a search form constitute the largest source of information
in the Web. This information is valuable for companies and individuals alike.

Enterprise information integration systems rely on two main compo-
nents, namely: mediators [58], which are responsible for reformulating user
queries so that they can be executed on the different sources, and wrap-
pers [10, 88], which endow data sources that cannot deal natively with
queries with a programmatic interface that transforms them into the actions
required to gather the appropriate information to answer them. Web applica-
tion wrappers are composed of a number of modules that perform the
tasks needed to have access to the data behind search forms: first, an en-
quirer, which is responsible for translating and issuing the queries in the
search forms; then, a navigator, which navigates from the page returned from
a search form to the pages that provide the information required to answer
the user query. Usually, the former page is a hub, i.e., a web page that pro-
vides summaries and links to other pages [80]. Some of these links must be
followed to reach the pages that contain the relevant information. Then, these
pages are passed on to an information extractor, which extracts structured in-
formation from them; finally, a verifier is responsible for discarding the
information thas has been extracted erroneously.

Our focus in this dissertation are navigators. There have been many pro-
posals to solve the problem of web navigation [4, 9, 23, 38, 70, 89, 100,

1.2. Research rationale 5

105, 117, 128]. Furthermore, crawling [3, 5, 25–27, 39, 91, 95, 101,
106, 107, 109] and usage mining techniques [84, 136] can also be ap-
plied to solve this problem using a web page classifier to distinguish between
the pages that are relevant and irrelevant to the user query.

Web page classification has been extensively researched, and several tech-
niques have been applied with successful experimental results. The features
used to classify a web page can be either internal, i.e., extracted from inside
web pages, like the page contents [14, 71, 87, 116], the organisation of vi-
sual blocks in the page [47, 85, 138], or the disposition of links amongst
pages [18, 40, 52, 132, 139]; or external, i.e., computed from outside the
page, like the URL [7, 12, 13, 22, 77, 120, 128]. Furthermore, template de-
tection techniques can be applied to the problem of web classification by
associating each template to a class of pages [5, 8, 21, 36, 41, 129]. URL-
based classifiers are able to classify pages without downloading them, which
is specially desirable in enterprise web information integration systems, in
which the user is waiting for an answer and response time is an issue [126].

Since our research context is navigators for enterprise web information
integration, we focus on URL-based web page classification.

1.2 Research rationale

In this section, we present the hypothesis that has motivated our research
work in the context of non-supervised URL-based web page classification,
and state our thesis, which we prove in the rest of the dissertation.

1.2.1 Hypothesis

Nowadays, there is an increasing interest of individuals, organisations and
companies in offering their data through web applications that allow users to
have access to them using a search form interface [49, 69], and whose pages
are identified by URLs with a regular format [22]. According to some experts,
these applications are currently the largest source of web information [30, 59,
94]. Therefore, integrating their data is very valuable to support automated
business processes. However, these applications are designed to be used by
humans, which makes it necessary to design wrappers to integrate them.

According to the previous argumentation, we conclude that our
hypothesis is the following:

6 Chapter 1. Introduction

Most sites that publicly offer interesting information in the Web, do so
by means of keyword-based search forms and use regular URLs to
identify their pages. These sites are the largest source of web infor-
mation, therefore there is a need to design wrappers to integrate
the information provided by those sites into automated business
processes.

1.2.2 Thesis

There are a number of techniques that can be applied to classify web
pages and discern those that contain relevant information [5, 7, 8, 12–
14, 18, 21, 22, 36, 40, 41, 47, 52, 71, 77, 85, 87, 116, 120, 128, 129,
132, 138, 139]. Unfortunately, they do not fulfill a number of require-
ments for their use in an enterprise web information integration context,
namely: to avoid an extensive crawling of the site, which is costly and in
some cases, unfeasible; to be unsupervised, which relieves the user from pro-
viding training information; or to use external features to classify a web page,
which avoids having to download the pages beforehand. Enterprise web
information integration is an on-line process, therefore bandwidth and effi-
ciency are important issues, and minimising the amount of web traffic is
mandatory. Furthermore, URLs are good external features for classifica-
tion, since they are small and every web page possess one [77]. According to
the previous argumentation, we conclude that our thesis is the following:

It is possible to devise a technique that building on a relatively small
number of hubs can learn a classifier in a totally unsupervised man-
ner; the resulting classifier builds solely on features of the URLs of the
pages to be classified, but can achieve high precision and recall.

1.3 Summary of contributions
To prove our thesis, we have devised CALA, an unsupervised proposal to

learn a web page classifier that relies on features extracted from the URLs of a
small set of hubs. It is suitable for enterprise web information integration
since it does not require a page to be downloaded so that it can be classified.

CALA relies on two modules: a crawler, which gathers a set of hubs from
a web site, and a pattern builder, which uses the former set to build a set of
patterns that represent the URLs in that site. Then, the user must assign a se-
mantic class to each pattern. Note that the size of the set of patterns is

1.4. Collaborations 7

significantly smaller than the set of pages in a site, so the cost of anno-
tating them is negligible. Finally, the classifier uses the set of annotated
patterns to classify new web pages from the same site by finding which pat-
tern, if any, matches its URL. If no match is possible, this means that we have
found a page whose URL deviates largely from the URLs from which we
learned the patterns, which is likely to be due to a reorganisation of the web
site. In such cases, it is necessary to learn the patterns again.

We have performed a number of experiments to validate our contribu-
tion. To that purpose, we have compiled a number of datasets composed of
annotated web pages, which we have made available.

We have a number of papers describing our contribution in the follow-
ing conferences: WWW [65], ER [66], IWSSA [64], PAAMS [42], CAEPIA [63],
ICAI [67], WISM [68], and ZOCO [62]. Furthermore, we submitted an ex-
tended abstract of our contributions to the Knowledge Based Systems
journal.

1.4 Collaborations
A research visit was paid from June 1 until June 30, 2011 to the re-

search group of Dr. Paolo Atzeni from the Roma Tre University (Italy). The
visit was supervised by Dr. Paolo Merialdo, who is an expert in extract-
ing and integrating web data [17, 20, 21, 36], and Dr. Lorenzo Blanco, who is
an expert in web page classification [20–22]. We analysed our proposal, and
we paid special attention to its evaluation, and other proposals in the area of
URL-based web page classification. Furthermore, we studied some prob-
lems detected by the members of their group in that area, which were
considered during the research work presented in this dissertation.

1.5 Structure of this dissertation
This dissertation is organised as follows:

Part I: Preface. It comprises this introduction and Chapter 2, in which we
motivate our research work and conclude that current proposals to clas-
sify web pages do not fulfil a number of requirements to be used in the
context of navigators for enterprise web information integration.

Part II: Background Information. It provides information about enterprise
web information integration, automated web navigation, and web page

8 Chapter 1. Introduction

classification. In Chapter 3, we introduce the idea of enterprise informa-
tion integration, with an emphasis on data sources that are actually web
applications that provide a search form. In Chapter 4, we present differ-
ent proposals to deal with the problem of automated web navigation. In
Chapter 5, we describe the problem of web page classification and
present several proposals to classify web pages using different types of
features.

Part III: Our Proposal. It reports on the core contribution we made in this
dissertation. In Chapter 6, we present our crawler to automatically
gather a set of hub pages without supervision from a web site that pro-
vides a search form. In Chapter 7, we describe our pattern builder,
which uses the former set of pages to build a set of patterns that can
be used for web page classification. In Chapter 8, we present the
experimental evaluation of our proposal.

Part IV: Final Remarks. It concludes this dissertation and highlights a few
future research directions in Chapter 9.

Appendices. They provide extended details about some aspects of this dis-
sertation. In Appendix A we describe the dataypes that support our
proposal, and the mathematical notation that is used throughout the
dissertation. In Appendix B we provide an extended description of
the outlier detection technique on which our proposal is based. In
Appendix C.1 we describe in detail the datasets used in our experi-
ments.Finally, in Appendix D we provide some insight into web site
model discovery, which is one of our future research directions.

Chapter2

Motivation

It is proved by surveys that happiness does not come from love, wealth,

or power but the pursuit of attainable goals.

Bridget Jones’s Diary, 1996

Helen Fielding, writer (1958)

O
ur goal in this chapter is to present the requirements for web page
classifiers in enterprise web information integration contexts, to
detail to which extent current proposals fulfill these requirements,
and to motivate the need for a new proposal. The chapter is or-

ganised as follows: in Section 2.1, we introduce it; Section 2.2 presents the
requirements for web page classifiers in depth; in Section 2.3, we dis-
cuss the current proposals and we conclude that none of them fulfills
every requirement we have identified; Section 2.4 introduces our contribu-
tions and compares them to current proposals; finally, we summarise the
chapter in Section 2.5.

9

10 Chapter 2. Motivation

2.1 Introduction
Nowadays, there is an increasing interest in integrating the informa-

tion provided by web applications that offer their data through search forms,
which are the largest source of web information according to some ex-
perts [30, 59, 94]. To integrate this information, wrappers are needed to
provide a programmatic interface for executing queries on these applications.
The execution of a query implies filling and submitting the form, which re-
turns a web page as a response. The response page may or not contain
the information that is relevant to the query. In the latter case, a nav-
igator has to go through the web site following links and looking for
pages that contain the relevant information. Therefore, a web page classi-
fier is needed to make the distinction between relevant and irrelevant pages,
so that the navigator can avoid downloading the latter.

In the literature, there are different proposals to address the problem of
web page classification [5, 7, 8, 12–14, 18, 21, 22, 36, 40, 41, 47, 52, 71,
77, 85, 87, 116, 120, 128, 129, 132, 138, 139]. Unfortunately, none of these
proposals fulfill a number of requirements for their use in enterprise web in-
formation integration contexts. Consequently, it is still necessary to research
on web page classification in the context of integration, which is our purpose
in this dissertation.

2.2 Requirements
There are many proposals to classify web pages, and they rely on a variety

of features. However, there are some requirements that must be considered
when using web page classifiers in the context of enterprise web integration
information systems. Enterprise web integration information systems are on-
line, i.e., there is a user who must wait for the answer to his or her
queries. Therefore, response time is an issue, and navigators should conse-
quently minimise the amount of time that they spend downloading irrelevant
pages [126].

In this section, we present the requirements that a web page classifier
must fulfill, with an emphasis on the enterprise web information integration
context. These requirements are the following:

(R1) Lightweight crawling: Some proposals require to perform an exhaus-
tive crawling prior to learning a classifier. This is not usually feasible,
chiefly if we take into account that web sites change frequently [82] and

2.3. Analysis of current solutions 11

Proposals R1 R2 R3

Beil and others [14] Yes Yes No

Hotho and others [71] Yes Yes No

Hotho and others [72] Yes Yes No

Kwon and Lee [87] No No No

Selamat and Omatu [116] Yes Yes No

R1 = Lightweight crawling; R2 = Unsupervised; R3 = Classify without downloading.

Table 2.1: Comparison of contents-based proposals.

this requires the classifier to be learnt again. Therefore, any crawl-
ing that has to be performed on the site to learn the classifier must be
lightweight.

(R2) Unsupervised: Some proposals require the user to provide some train-
ing information to learn a classifier. The user may be required to
provide a training set, which is a collection of datasets in which each
web pages is assigned a semantic class (this process is commonly re-
ferred to as handcrafting annotations for the training set). He or she
may be also required to provide a dictionary of words that are spe-
cific to an application domain in a given language. In most cases, the
task of providing this additional information is cumbersome, prone
to errors, and very effort-consuming. It has been noted that super-
vised methods are not likely to scale well in the Web [95]. Therefore, the
classifier must be learn without supervision.

(R3) Classify without downloading: In some cases, it is necessary to down-
load a page before classifying it. This is problematic insofar pages that
are irrelevant need to be downloaded and discarded, which is ineffi-
cient. Therefore, the classifier must use features that allow classifying a
page without downloading it previously.

2.3 Analysis of current solutions
Table 2.1 summarises the contents-based web page classification propos-

als in the literature. These proposals represent each page as as a vector whose
components are the frequencies of each term in the page; the classifier assigns

12 Chapter 2. Motivation

Proposals R1 R2 R3

Bhagat and others [18] No No Yes

De Campos and others [40] No No Yes

Getoor and others [52] No No No

Zhu and others [139] No No No

Xie and others [132] No No No

R1 = Lightweight crawling; R2 = Unsupervised; R3 = Classify without downloading.

Table 2.2: Comparison of link-based proposals.

to a new page the class that corresponds to the nearest vector. Regard-
ing R1, Kwon and Lee [87] require to preprocess a web site by assigning each
of its pages a weight based on its number of incoming and outgoing links,
and use only the term vectors of the pages with a higher weight as a train-
ing set. Therefore, they must perform an extensive crawling of the site,
whereas the other proposals use a reduced training set. Regarding R2, Kwon
and Lee [87] require a training set of annotated term vectors, which makes it
supervised, whereas the other proposals are unsupervised. Finally, regard-
ing R3, Beil and others [14], Hotho and others [71, 72], Kwon and Lee [87]
and Selamat and Omatu [116] need to analyse the terms in the page that is
being classified, which require them to download it before it can be classified.

Table 2.2 summarises the link-based web page classification propos-
als in the literature. These proposals represent each web site as a graph in
which nodes are web pages, and edges are links from one web page to an-
other. They classify each page by assigning it a class that is computed from
the classes of its neighbours. Regarding R1, Bhagat and others [18], Getoor
and others [52], Xie and others [132], Zhu and others [139] and de Cam-
pos and others [40] have to analyse every page in a site to build the graph,
which requires a previous extensive crawling. Regarding R2, the former pro-
posals are based on classifying a page using the information of some example
pages that are already classified, which makes them supervised. Finally, re-
garding R3, Getoor and others [52], Zhu and others [139], and Xie and others
[132] use a combination of link-based and contents-based features, which
means that they have to download a page before classifying it.

Table 2.3 summarises the visual-based web page classification proposals
in the literature. These proposals are based on features that can only be com-

2.3. Analysis of current solutions 13

Proposals R1 R2 R3

Zhu and others [138] Yes No No

Fersini and others [47] Yes No No

Kovacevic and others [85] Yes No No

R1 = Lightweight crawling; R2 = Unsupervised; R3 = Classify without downloading.

Table 2.3: Comparison of visual-based proposals.

Proposals R1 R2 R3

Shih and Karger [120] Yes No Yes

Kan and Thi [77] No No Yes

Baykan and others [12] No No Yes

Baykan and others [11] No No Yes

Vidal and others [128] No No Yes

Bar-Yossef and others [7] No Yes Yes

Koppula and others [83] No Yes Yes

Blanco and others [22] No Yes No

R1 = Lightweight crawling; R2 = Unsupervised; R3 = Classify without downloading.

Table 2.4: Comparison of URL-based proposals.

puted when the web page is rendered by a browser, e.g., the position of an
image on the screen, its bounding box, or the distance amongst the different
elements in the page. Regarding R1, none of the proposals need to perform an
extensive crawling, since they use a small training set of pages. Regarding R2,
Fersini and others [47], Zhu and others [138] and Kovacevic and others [85]
are based on a training set of annotated pages and they classify a page by as-
signing it to the class of the most similar page, which makes them supervised.
Finally, regarding R3, the former proposals require each page to be rendered
to compute some features from it, so it has to be downloaded previously.

Table 2.4 summarises the URL-based web page classification proposals in
the literature. These proposals classify a page using features that are com-
puted from its URL. Regarding R1, Bar-Yossef and others [7], Baykan

14 Chapter 2. Motivation

Proposals R1 R2 R3

Crescenzi and others [36] Yes No No

Bar-Yossef and Rajagopalan [8] Yes Yes No

Arasu and Garcia-Molina [5] Yes Yes No

Blanco and others [21] Yes No No

De Castro Reis and others [41] Yes Yes No

Vieira and others [129] Yes Yes No

R1 = Lightweight crawling; R2 = Unsupervised; R3 = Classify without downloading.

Table 2.5: Comparison of structure-based proposals.

and others [11, 12], Kan and Thi [77], Koppula and others [83] and Blanco
and others [22] need a large collection of URLs to learn a classification model
for a site so that it can achieve good results, so they need to perform an exten-
sive crawling. Vidal and others [128] need to map the site previously, and
then select some of the paths in that map to learn the classifier, which requires
an extensive crawling as well. Regarding R2, Vidal and others [128] take a
sample annotated web page as input, and build a classification model to dis-
cern pages that either are similar to the sample page, or lead to pages that are
similar to it by following its links. Baykan and others [12], Kan and Thi [77]
and Baykan and others [11] are similar to contents-based proposals, but they
represent a web page using the terms in its URL, instead of its contents. They
require a dictionary of representative terms from each class that must be pro-
vided by the user. Shih and Karger [120] follows a different approach, in
which URL tokens are inserted in a tree, and it takes a training set of anno-
tated URLs as input. Bar-Yossef and others [7] and Koppula and others [83]
require a training set of both positive and negative samples. Therefore, the
previous proposals are supervised. Finally, regarding R3, Blanco and oth-
ers [22] uses some contents-based features together with the URL-based
features, which requires a page to be downloaded before classifying it.

Table 2.5 summarises the structure-based web page classification propos-
als in the literature. These proposals detect the template that is common to
every page in a class, and classify other pages by assigning them the
class that is associated to the most similar template. Regarding R1, none of
the proposals require an extensive crawling to learn a classifier. Regarding
R2, Crescenzi and others [36] and Blanco and others [21] require a train-

2.4. Our proposal 15

ing set of annotated pages of the same class to detect each template, which
makes them supervised. Notwithstanding, they require the smallest train-
ing sets we have found in the literature. Finally, regarding R3, Arasu and
Garcia-Molina [5], Bar-Yossef and Rajagopalan [8], Blanco and others [21],
Crescenzi and others [36], Vieira and others [129] and de Castro Reis and oth-
ers [41] classify pages by comparing their structure to those of the detected
templates, so they require to download a page before classifying it.

2.4 Our proposal

In this dissertation, we present a proposal called CALA. It helps learn a
web page classifier using a technique that fulfills every requirement we have
identified previously, cf. Section 2.2: it performs a lightweight crawling, it is
not supervised, and it does not require a page to be downloaded so that it can
be classified. It does not require an extensive crawling of the site to build the
classification model (R1), but only a small set of hub pages (e.g., in our ex-
periments 100 hub pages were enough to achieve a good effectiveness).
Furthermore, it is not supervised (R2), since we base on a set of non-
annotated pages that are automatically extracted from the web site to be
analysed. To fill in the forms, we use keywords that are extracted from the
same site automatically, hence no dictionary or user input is needed. Further-
more, it is based exclusively on URL features, so pages do not have to be
downloaded to be classified (R3).

2.5 Summary

In this chapter, we have motivated the reason for this piece of research
work. We have analysed the requirements for web page classifiers in enter-
prise web information integration contexts and the current proposals in the
literature to classify web pages, and we have concluded that none of these
proposals fulfills these requirements at a time. This motivated us to work on
a proposal to fulfill them and advance the state of the art a step forward.

16 Chapter 2. Motivation

Part II

BackgroundInformation

Chapter3

Enterprisewebinformation
integration

Your initial problem will be the breaking tensions arising from the diver-

gent assembly of minutiae/data on specialized subjects. Be warned.

Without mentat overlay integration, you can immersed in the Babel Prob-

lem, which is the label we give to the omnipresent dangers of achieving

wrong combinations from accurate information.

Children of Dune, 1976.

Franklin Patrick Herbert, Jr, writer (1920-1986)

I
n this chapter, we introduce the idea of enterprise information in-
tegration, with an emphasis on data sources that are actually web
applications that provide a search form. It is organised as follows: in
Section 3.1, we introduce it; Section 3.2 provides an overview on media-

tors, which are responsible for reformulating queries in enterprise integration
information systems; in Section 3.3, we describe web wrappers, which
provide a programmatic interface for web sites that lack one; finally, we
summarise the chapter in Section 3.4.

19

20 Chapter 3. Enterprise web information integration

Figure 3.1: Sketch of an enterprise information integration solution.

3.1 Introduction
Enterprise information integration has been quite an active research field

for years because the costs involved in integration are usually an important
component of almost every IT project [131]. The earliest approaches origi-
nated in the field of database management systems, and the goal was to
integrate several databases so that they looked as if they were a unique
database by means of so-called mediators [58] and peer data manage-
ment systems [44], which in turn relied on so-called mappings amongst the
integrated databases [97].

The idea behind enterprise information integration is to build a global
schema (aka mediated schema) that integrates the schemata used by the
sources of data that have been selected for integration. The global schema al-
lows querying the different independent sources using a high-level query
language as if they were a single database [58]. Since the integration is per-
formed on heterogeneous data sources, each data source has its own local
schema, with its data types and restrictions. The global schema is a generali-
sation of the different local schemata, therefore it may include restrictions
that do not exist in some of the data sources. Therefore, sometimes it is neces-
sary to filter the data returned by a data source a posteriori to apply those
restrictions.

3.2. Mediators 21

The key in enterprise information integration is the adjective “enter-
prise”, which conveys the idea that the information sources are actually
applications that are running in the software eco-system of a company.
This has implications insofar such applications cannot be expected to pro-
vide the appropriate programmatic interfaces to facilitate integrating the data
they manage but a user-friendly search form. Web applications are particu-
larly important nowadays, since they provide the majority of information
that is available in the Web [59]; we refer to the problems that involve such
applications as enterprise web information integration.

Some authors refer to the portion of the Web that is delivered through
search forms as the Deep Web or even the Hidden Web [94]. We, how-
ever, prefer not to use these terms since the pages that are delivered through a
search form need not necessarily be deep or hidden; for instance, Google re-
ports 45+ million pages from a site like Amazon.com. In this dissertation, we
focus on enterprise information integration techniques that integrate data
from web applications that offer their data through a search form without
providing a programmatic interface.

An example of an enterprise information integration solution is depicted
in Figure 3.1. The goal is to integrate data from four heterogeneous sources,
namely: a relational database, a web service that offers a programming inter-
face, a corpus of documents, and a web application that offers its data
only through search forms. This solution provides a global schema that re-
ceives user queries which are answered on-line using data from the different
data sources. Therefore, queries must be reformulated in terms of the differ-
ent local schemata by means of one or more mediators [57]. Then, they must
be executed by means of wrappers, which provide a query answering inter-
face for data sources that do not provide one. Once the wrappers return the
results, these must be composed into the global schema. So far, we have just
gathered the information required to answer the initial user query from the
sources; to answer it effectively, it must be executed on this information.

In the following sections we provide an insight into the two key compo-
nents of every enterprise information integration solution: mediators and
wrappers.

3.2 Mediators

The goal of a mediator is to reformulate a query posed over a global
schema into a number of queries that can be executed on the different

22 Chapter 3. Enterprise web information integration

Wrapper Wrapper Wrapper

Web Service Web AppDatabase

Mediator 2

G1 G2 G3

Sub-queries on
the global
schema

Query Plan

L1 L2 M3

Sub-queries on
local schemata

Query Splitter

Schema Translator

Query Planner

L2 L1 M3

Query

�

Mediator 1

Documents

Figure 3.2: Query reformulation using mediators and wrappers.

data sources to provide a minimal set of information on which the origi-
nal query can be executed. A mediator relies on three components: a query
splitter, a schema translator, and a query planner, cf. Figure 3.2.

The query splitter needs to identify the data sources that do not provide
any relevant information and then splits the original query into a number of
sub-queries, each of which involves a unique data source. Then, the schema
translator must transform each sub-query so that it can be send to the corre-
sponding data source, i.e., it must transform references to the entities in the
global schema to entities in the local schemata. The query planner is then re-
sponsible for producing a plan that allows to orchestrate the sub-queries
(possibly in parallel) so that they can be executed as efficiently as possible
[74]. Query planners aim to compute a maximally-contained query plan, i.e.,
a plan that retrieves the data that best answer the query using only the avail-
able data sources [2]. Once the execution plan is defined, the sub-queries are
sent to the sources. In cases in which they cannot deal natively with a query
(e.g., the web application with the search form), a wrapper must be designed.

As an example, in Figure 3.2, the query splitter in Mediator 1 splits the

3.2. Mediators 23

user query into three sub-queries G1, G2 and G3, which are posed over the
global schema. Then, they are transformed into sub-queries L1, L2, and M3,
which are posed on the local schemata of the database and the web ser-
vice, and the mediated schema provided by Mediator 2, respectively. Note
that Mediator 2 is seen by Mediator 1 as a data source with a schema, just like
the database or the web service. Then, the query planner in Mediator 1 gener-
ates an efficient plan, which consists of executing first L2, then L1, and then
M3. Finally, sub-queries L1 and L2 are sent to the database and the web ser-
vice wrapper to be executed, whereas sub-query M3 is sent to Mediator 2 to
be reformulated. This process is repeated in Mediator 2 with sub-query M3,
which is reformulated into two sub-queries L3 and L4 that are posed on the
local schemata of the corpus of documents and the web application.

The literature provides many proposals to implement mediators in the
context of relational and nested-relational data sources; unfortunately, the
work on semantic data is in its earliest stages [113].

The proposals to implement query splitters and schema translators rely on
so-called mappings, which are artefacts that identify which entities in a
schema correspond to others in another schema [110]. These proposals can be
classified into three groups [124], namely:

Global as View (GaV): The global schema is defined as a query over the lo-
cal schemata [31]. The main advantage of GaV is that reformulation
of queries is simple. Its main drawback is that adding or remov-
ing data sources is complex since it requires to redefine the global
schema. Therefore, it is suitable for systems in which data sources do
not change frequently.

Local as View (LaV): The local schemata are defined as a query over the
global schema [90]. The main advantage of LaV is that adding or remov-
ing data sources is simple, since the global schema does not change and
it only requires to create a new definition for each new source in terms
of the global schema. The main drawback of LaV is the complexity of
query reformulation, which can be unfeasible in some cases.

Global and Local as Vied (GLaV): Hybrid approaches deal with the draw-
backs of the previous ones [46, 133]. In these approaches, global and
local schemata are independent from each other and a number of map-
pings are created to translate from a view of the local schemata to the
global schema. Therefore, the addition or removal of new sources does
not require redefining the global schema, as in GaV, and query refor-
mulation is not as complex as in LaV. Schema matching techniques

24 Chapter 3. Enterprise web information integration

are usually applied to deal with the problem of creating the former
mappings automatically.

Regarding query planners, they follow the same approach as relational
databases query optimisers, which use information about the database con-
tents (such as table sizes or physical paths to data) to improve query
performance. However, integration solutions have access to data from het-
erogeneous sources, not only databases, and therefore this information is
not available in most cases. Therefore, other techniques have been pro-
posed to optimise queries in enterprise information integration contexts.
Adaptive query processing [54] refers to techniques that discover characteris-
tics about the data during query execution and exploit this knowledge to
improve performance [74]. Some of these techniques work between suc-
cessive executions of queries [24, 32]; these methods cause the initial
queries to show poor performance, whereas subsequent executions of simi-
lar queries are progressively more efficient. Other approaches allow queries
to be optimised during execution [74].

3.3 Wrappers
A wrapper helps instruct an application to answer a query in cases in

which it does not support this functionality natively or does not deliver it us-
ing the appropriate technology. The state of the art provides an array of
technologies to implement wrappers to interact with data sources that pro-
vide a programmatic interface [48]; the problem becomes more complex
when a web application that does not provide a programmatic interface
comes on the scene [23].

A typical wrapper for a web application consists of the components
presented in Figure 3.3, namely [42]:

Enquirer: An enquirer is a module that takes a query as input and maps it
onto the appropriate search forms provided by a web application. What
a query is may range from a set of field names and values to SQL-
like queries. In this dissertation, we are only interested in the latter,
since current technologies support the former sufficiently [1]. Cur-
rent research efforts include a few intelligent techniques to analyse
search forms and to extract their search capabilities, i.e., the goal is to
have a model that others can use to map high-level queries onto it [60,
137]. Unfortunately, the literature does not provide many other results
regarding this topic.

3.3. Wrappers 25

Figure 3.3: Structure of a web application wrapper.

Navigator: A navigator cares of executing the filled forms provided by an en-
quirer and navigating through the results to fetch relevant pages. Note
that this process may lead to a so-called hub, which is a web page that
provides short descriptions of the information in other pages and links
to them, to a detail page with information, a no-results page, an er-
ror page, or a dissambiguation page. Beyond navigators that rely on
navigational scripts [4, 9, 23, 38, 70, 89, 100, 105, 117, 128], the litera-
ture on crawling [5, 95] provides several techniques that can be applied
to solve this problem. Focused crawling improves on traditional crawl-
ing in that it tries to avoid crawling pages that do not lead to data pages
about a given topic of interest [3, 25–27, 39, 91, 101, 106, 107,
109]. Furthermore, usage mining techniques can also be applied to
implement navigators [84, 136].

Information extractor: An information extractor is a general algorithm that
can be configured by means of rules so that it extracts the informa-
tion of interest from a web page and returns it according to a structured
model. Rules range from regular expressions to context-free gram-
mars or first-order clauses, but they all rely on mark-up tags or natural
language properties to find which text corresponds to the data of inter-

26 Chapter 3. Enterprise web information integration

est. Beyond hand-crafting information extraction rules, the literature
provides a variety of proposals that can be used to learn them automati-
cally, both in cases in which the data of interest is buried into text that is
written in natural language [127] and cases in which it is buried into
tables, lists and other such layouts [29]. Recently, the problem of identi-
fying the regions of a web page in which the information of interest
resides is also atracting an increasing attention [121].

Information verifier: An information verifier is an algorithm that analy-
ses the data returned by an information extractor and attempts to find
data that deviates largely from data that is known to be correct. They
are necessary insofar the previous modules rely on intelligent tech-
niques that may fail if the structure of a site or a web page changes, i.e.,
if they are confronted with cases that were not seen previously. informa-
tion verifiers build on feature-based verification models. The literature
provides two probabilistic techniques [86, 97] and a goodness-of-fit
technique [81] to build them.

3.4 Summary

In this chapter, we have given an overview of the main ideas in the field of
enterprise information integration. We have presented an overall idea of
what it consists in, and then an insight into the two key component to imple-
ment an enterprise information integration solution, namely: mediators and
wrappers. Fortunately, the literature provides a number of proposals to im-
plement both mediators and wrappers. Unfortunately, more work seems to
be required regarding mediators that have to deal with semantic data and
wrappers that have to deal with web applications.

Chapter4

Automatedwebnavigation

Read the directions and directly you will be directed in the right

direction.

Alice in Wonderland, 1865.

Charles Lutwidge Dodgson (Lewis Carroll), writer and mathematician

(1832-1898)

T
he goal of automated web navigation is to sift through the pages
of a web site so as to implement repetitive tasks without user inter-
vention. In this chapter, we present several closely-related concepts
and some proposals that address this problem. It is organised as

follows: in Section 4.1, we provide an overall picture of web navigation; Sec-
tion 4.2 describes the different types of web pages with which a web
navigator must deal; in Section 4.3, we present the existing proposals to auto-
mate web navigation; Section 4.4 reports on some crawling proposals that
can be applied to the problem of web navigation; finally, we summarise the
chapter in Section 4.6.

27

28 Chapter 4. Automated web navigation

Figure 4.1: Sample search form.

4.1 Introduction
Automated web navigation refers to the problem of visiting web pages

and interacting with them automatically. This involves following links and
executing scripts to, for instance, test web applications, perform mainte-
nance tasks, create shortcuts to pages where repetitive tasks such as filling in
and submitting forms are required, or find the pages that are related to a
given user query. Since the focus of this dissertation is on enterprise web
information integration, we put an emphasis on the last application.

In enterprise web information integration systems, we deal with web ap-
plications that are based on search forms that must be filled in with the values
provided by a user query. Figure 4.1 reproduces the search form of Book-
ing.com, a hotel booking site that we use as a running example. The goal of
automated web navigation in enterprise web information integration systems
is to retrieve as many pages that are relevant to the query as possible. An au-
tomatic navigator must be able to follow the links on the page returned by a
search form in order to find pages that are relevant to the user query.

Automated web navigation has been paid much attention in the literature.
Usually, navigators are based on scripts, which can be either handcrafted
or learned automatically. These scripts define the sequence of steps the
navigator must perform to reach the relevant pages. Furthermore, other
proposals from the fields of blind and focused crawling, and web page
recommendation can be used to implement automated web navigators.

4.2. Taxonomy of web pages 29

Figure 4.2: Sample hub page.

4.2 Taxonomy of web pages
The response to a user query depends on the ability of a web application

to answer it, that is, on the availability of relevant information in its back-
end databases. We can distinguish between different types of responses,
being the most common the following:

Hub: Hubs are web pages that provide summaries and links to other
pages [80]. Hub pages usually provide more URLs than other pages in a
web site since their goal is to offer the users as many results that are re-
lated to their queries as possible. Figure 4.2 depicts a sample hub page
returned when searching for ‘Cádiz, Spain’.

Detail: Detail pages provide complete details about an item of information
offered by a web site. Figure 4.3 depicts a detail page that was returned
in response for query ‘Senator Spa Cádiz’. It shows the detailed informa-
tion about a hotel in Cádiz, including its address, photos, interesting
features, and the description and prices of the available rooms.

30 Chapter 4. Automated web navigation

Figure 4.3: Sample detail page.

Figure 4.4: Sample no-results page.

4.2. Taxonomy of web pages 31

Figure 4.5: Sample error page.

Figure 4.6: Sample disambiguation page.

32 Chapter 4. Automated web navigation

No result: When a web application does not have any information that is rel-
evant to a query, it usually returns a page with an informative message,
so that the user may change his or her query. Figure 4.4 depicts a
sample no-result page that results from query “...”.

Error: When an error occurs, web applications usually return a page with an
informative message. Figure 4.5 depicts a sample error page.

Disambiguation: In some cases, a user query can be ambiguous, e.g., it may
include polysemic or misspelled words. In such cases, some web appli-
cations return a page that presents some disambiguations so that the
user can refine his or her query. Figure 4.6 depicts a sample disam-
biguation page that was returned in response for query ’Cádiz’. It
requires disambiguation since there are three cities with that name lo-
cated in Spain, Ohio (USA), and Indiana (USA), as well as a province
with the same name in Spain; the page also reports on two places of
interest that refer to that name.

The relevancy of a page depends exclusively on the user query, i.e., in
some cases a hub page might be relevant if it provides enough information to
answer the query, whereas in other cases it is necessary to reach the de-
tail pages. No-result, error, or disambiguation pages are generally of little
interest, but must be dealt with appropriately by automatic web navigators.

4.3 Scripting proposals
Scripting proposals build on navigation patterns, aka navigation maps or

navigation sequences, which help navigate from a search form to relevant
pages. Navigation patterns define a sequence of pages that must be vis-
ited to reach relevant pages, as well as the interactions needed in each page
(e.g., the forms to be filled, the user events to simulate, or the links to be fol-
lowed). These proposals only download the pages that are defined in the
scripts, which either are relevant or lead to relevant pages. Therefore, they
minimise the number of irrelevant pages downloaded.

4.3.1 Script recorders

Some scripting proposals provide visual support for the user to de-
fine the scripts. The simplest proposals offer the user a recorder-like interface,
and they require the user to perform the navigation steps, such as select-
ing a search form, providing the keywords to fill it in, selecting the links that

4.3. Scripting proposals 33

must be followed from the resulting hubs, and so on. These steps compose
the scripts, which are recorded and later repeated step by step.

Davulcu and others [38] proposed a technique to extract information from
the Web, which included a navigator. In this technique, scripts are ex-
pressed using two declarative languages: F-logic to model objects, such as
web pages, forms and links, and transactional logic to model sequences of ac-
tions, such as submitting forms or following links. Their navigator includes a
Prolog-based module that learns the scripts from user examples, i.e., as the
user navigates the site, the system models the objects in the pages he or she
visits, and the actions he or she performs. In some cases, the user has to pro-
vide some additional information, like which fields are mandatory in each
form. Then, the scripts are executed by a transaction F-logic interpreter mod-
ule. This system is able to automatically update the scripts when minor
changes are made to web sites, such as the addition of new options in a select
field of a search form.

Anupam and others [4] proposed WebVCR, a recorder with a VCR-like in-
terface to record and replay a user’s navigation steps through a web site.
Scripts are XML-like documents in which the steps can be either follow-
ing a link or submitting a form with user-provided values. For each link to be
followed, the recorder stores some of its DOM attributes (name, href, tar-
get, and locator). For each form to be submitted, the recorder stores some of
its DOM attributes (name, method, action), as well as the list of form fields
and values that must be used to fill in the form. The recorder can be imple-
mented as a client applet to be loaded in a web browser, or as a web server
that acts as a proxy for the user requests. In the server version, the re-
play of a script is invisible to the user, who only receives the final page. The
authors propose some heuristics to update the script automatically after mi-
nor changes in web pages occur, and to optimise the replay of scripts by not
loading the images in the intermediate pages.

Pan and others [105] introduced the WARGO system to generate web
wrappers. WARGO uses a browser-based recorder that captures the user ac-
tions and creates a script that is written in a declarative language called
Navigation Sequence Language (NSEQL). NSEQL is based on the Web-
Browser Control, which is a module in Microsoft Internet Explorer that
supplies the functionalities associated to navigation. Therefore, NSEQL is
composed of commands that allow, for example, loading a web page, find-
ing a form in a web page by name, filling form fields, or clicking on links and
buttons. Often, it is necessary to leave some commands undefined until run-
time, e.g., the number of clicks on a “next” link, which depend on the results
returned.

34 Chapter 4. Automated web navigation

Baumgartner and others [9] proposed Lixto Visual Wrapper, a web wrap-
per generation tool. It provides an Eclipse-based interface which embeds a
Mozilla browser that captures user actions on a web page, stores them in an
XML-based script, and replays them when necessary. Scripts include actions
that involve mouse or keyboard user events, such as following a link, filling a
text field in a form, or selecting an option in a select field. The HTML ele-
ments that are involved in each action are identified by means of XPath
expressions. More complex actions can be also modelled using Elog, a logic-
based programming language. Their proposal includes some handlers to deal
with unexpected events, such as popup dialogues that did not pop while the
script was being recorded.

Montoto and others [100] proposed a recorder that captures user ac-
tions building on DOM events (e.g., clicking on a button, or filling a text
field). In contrast to the previous proposals, they consider every possible
DOM event that involves any HTML element (e.g., moving the mouse over
an element or entering a character in a text field), and they deal with AJAX re-
quests. Another difference is that the user has to explicitly select each element
and choose on a menu which of the events available he or she wishes to exe-
cute; this helps discern irrelevant events easily. The recorder implementation
is based on the Internet Explorer programming interface to record user ac-
tions, but the resulting scripts can be executed using either Internet Explorer
or Firefox. The authors proposed an algorithm to build robust XPath expres-
sions to identify HTML elements in the script. Actually, their technique is an
extension of the proposal by Pan and others [105].

Selenium [70] is a widely-used open-source project for testing automa-
tion. It provides Selenium IDE, a recorder that can be integrated in web
browsers to capture user actions and translate them into a script that can be
later executed by this tool. Scripts can also be handcrafted building on an
programming interface of predefined commands that is provided by the
recorder. These commands implement usual interactions with web pages,
such as opening a web page, typing text in a form field, or clicking on but-
tons and links. Scripts created in the recorder are stored in HTML format.
Furthermore, Selenium provides libraries for different programming lan-
guages such as Perl, PHP, C#, Java, Python, or Ruby, which allow defining
scripts that take advantage of the functionalities offered by those languages.
These scripts are executed on the Selenium server (Selenium Remote Con-
trol Server), which is reponsible for launching and shutting down browsers,
and acts as a proxy for the requests made to the browsers.

4.3. Scripting proposals 35

4.3.2 Script learners

Script learners analyse a web site to learn navigation scripts for that site.
They can be supervised, which requires the user to provide sample naviga-
tion sequences from which a script can be learned, or unsupervised, which
provide techniques to analyse a web site and learn navigation sequences with
no user intervention.

Blythe and others [23] proposed a supervised technique called EzBuilder.
To create a navigation script for a web site the user has to provide some ex-
amples, submitting forms, and navigating to several relevant pages. The
number of examples depends on the regularity of the site. User actions,
such as clicking buttons or filling forms, are captured by the system. Then,
EzBuilder generalises the user’s behaviour to create a script, i.e., the script is
not a repetition of the user steps, but a general sequence of steps that must be
performed to reach pages that are similar to the ones that were provided
as examples. The resulting scripts may require the user to provide addi-
tional data to fill in forms; the information extracted from the relevant pages
is returned in XML format.

Lage and others [89] proposed an unsupervised technique to learn naviga-
tion scripts in web sites that follow a common script template, e.g., scripts
start by filling a search form, which after submission returns a hub page,
which contains links to detail pages. This technique is supported by a reposi-
tory of sample relevant data, which consists of objects specified by a set of
attribute-value pairs. To create a script, their technique first performs a blind
search to find a search form; then, it tries to find a correspondence be-
tween the form labels and the attributes in the repository to fill in and submit
the form. The response page is analysed: if it contains any of the sam-
ple data, it is a detail page; otherwise, if it contains links with anchors similar
to “More” or “Next”, or links with non-alphabetical anchor text (e.g., “»”), it is
a hub, its links are followed and the target pages are characterised similarly.
Finally, the previous steps are encoded as a Java program.

Vidal and others [128] proposed an additional unsupervised technique
that receives a sample page as input, which represents the class of pages that
are considered relevant, and it returns a navigation pattern, which is com-
posed of the sequence of regular expressions that represent the URLs that
lead to relevant pages in a web site. In this context, relevant pages are
pages that are structurally similar to the sample page, and the similar-
ity is measured in terms of a tree-edit distance on DOM trees. Their proposal
involves two steps: site mapping and pattern generation. Site mapping con-
sists in building a map of the web site, which requires to crawl the entire site.

36 Chapter 4. Automated web navigation

They keep record of the paths in the map that lead (directly or indi-
rectly) to pages that are similar to the sample page (target pages). Then,
pattern generation consists in generalising the URLs of the pages in the for-
mer paths using regular expressions, and then selecting the best path, i.e., the
one that leads to the largest number of target pages.

Senkul and Salin [117] proposed a page recommendation system that uses
semantic information to improve the recommendations. They analyse data
from web application logs, which provide sequences of pages requested by
users during a single navigation session of a maximum of 20 minutes. Their
system uses a mining technique that is based on SPADE, a sequential associa-
tion rule mining algorithm, to generate navigation sequences. Regarding
semantic information, they use a handcrafted ontology to model the infor-
mation provided by each site, and they handcraft annotations that help
establish a correspondence between every web page and the ontology con-
cepts that describe the information it provides. When users start navigating a
site, the system shows them the ontology that models the information in that
site, and they choose the concepts that they think are relevant. Then, the sys-
tem generates navigation sequences using exclusively the information about
web pages that correspond to the relevant concepts selected by the users.

4.4 Crawling proposals
The goal of a web crawler is to download a subset of pages from a web

site. They can be either blind or focused crawlers. The former start with a so-
called seed page and follows the links it provides transitively until every
page that is reachable from the seed has been downloaded; the latter make an
attempt to download as few irrelevant pages as possible, which implies that
they do not follow every link, but only those that are likely to lead to rele-
vant pages. To implement an automatic web navigator based on a crawler, an
a posteriori classifier has to be used to discern which of the pages that were
retrieved are actually relevant to the user query.

Web page classifiers assign each page to one or more classes after
analysing some of its features. Regarding the location, the features are usu-
ally internal [5, 8, 14, 21, 36, 41, 47, 52, 71, 85, 116, 129, 132, 138, 139]; or
external [7, 12, 13, 18, 22, 40, 77, 87, 120, 128]. Regarding the types of fea-
tures, we distinguish between contents-based classifiers [14, 71, 87, 116],
link-based classifiers [18, 40, 52, 132, 139], visual-based classifiers [47, 85,
138], URL-based classifiers [7, 12, 13, 22, 77, 120, 128] and structure-based
classifiers [5, 8, 21, 36, 41, 129]

4.4. Crawling proposals 37

Figure 4.7: Navigation using crawlers.

4.4.1 Blind crawling

Blind crawlers aim to collect as many pages as possible from a web site. If
we consider a web site as a graph in which its pages are the nodes and the
links between pairs of pages are the edges, blind crawling a site amounts to
traversing every node in the graph that is connected to a previously traversed
node, starting from a number of seeds, cf. Figure 4.7.

Initially, blind crawlers were designed to retrieve static pages from web
sites. Later, web applications that offered their data only through search
forms progressively became the main source of data in the Web. There-
fore, an effort was made to develop crawlers that were able to retrieve pages
behind web forms. To achieve this, many form filling techniques were pro-
posed to analyse forms and determine a subset of form fields and a set of
values to fill them [92, 95].

Raghavan and Garcia-Molina [112] proposed HiWE, a blind crawler to ex-
tract information from pages behind web forms. HiWE behaves as a regular
blind crawler; it iterates through a list of URLs and downloads every
page that can be reached transitively from these seeds. Whenever a down-
loaded page contains a form, it is analysed and filled automatically to reach
the pages that are behind it. Every form is composed of a set of fields, some of
which have a descriptive label. Form submission is supported by a repository
of user-provided sample labelled values. HiWE tries to find correspondences
between the form field labels and the labels in the repository, using a match-
ing algorithm that is based on minimising string-edit distances. When a

38 Chapter 4. Automated web navigation

Figure 4.8: Navigation using focused crawlers.

match is found between a form label and a repository label, the value
associated to the latter is used to fill in the corresponding form fields.

Madhavan and others [95] proposed a blind crawler to retrieve pages be-
hind web forms, so that they could be indexed by Google’s search engine.
The goal is not to retrieve as many hubs as possible, but to retrieve a set of
hubs from which the majority of pages in a web site are reachable. They pro-
posed a technique to discover informative query templates, i.e., combinations
of input fields such that filling them results in sufficiently distinct response
pages. Each possible query template in a form is evaluated in terms of the
number of dissimilar web pages that result from filling its fields and submit-
ting the form. The similarity between two web pages is measured using a
contents-based web page classifier, cf. Section 5.2. Query templates that re-
turn a number of dissimilar pages higher than a threshold are considered
informative. Then, informative query templates are filled in and the result-
ing hubs are used as seeds by a blind crawler to retrieve the rest of the pages
from the site.

4.4.2 Focused crawling

Focused crawlers are similar to blind crawlers, but they classify the pages
retrieved into a number of topics. If a page belongs to a given topic, then its
links are used as seeds to crawl new pages; otherwise, if a page is out of
topic, it is classified as irrelevant and its links are not followed, cf., Fig-
ure 4.8. The process is repeated until no more links are available or a
given number of pages has been retrieved. Recent research in this field fo-

4.4. Crawling proposals 39

cuses on improving the efficiency of the crawling process by minimising the
number of irrelevant pages that are downloaded [3, 91, 101, 107].

Chakrabarti and others [26] proposed one of the earliest focused crawlers.
It uses a initial set of seeds gathered from the results of a keyword-based
search using a set of user-provided words that define some topics. Then, the
pages that are linked from pages in the initial set, or that link to them,
are added to the set. The pages in the resulting set are assigned a score
building on an iterative procedure that is similar to Kleinberg’s HITS algo-
rithm [80], which is based on the hub and authority concepts, i.e., a hub is a
web page that contains many links to other pages and an authority is a web
page that is linked by many other pages. Recall that a hub page is usually re-
turned as a response to a query on a search form. Basically, a hub score is
computed as the weighted sum of the authority scores of the pages to which
it links, which are in turn computed from the scores of the hubs from which
they are linked. Weights are computed considering the quantity of topic-
related text that surrounds each link. After some iterations, the pages with
the highest hub and authority scores are selected as relevant.

Chakrabarti [25], Chakrabarti and others [27], de Assis and others [39],
Pant and Srinivasan [106] and Partalas and others [109] proposed several
focused crawling techniques that measure the relevance of a page as it is re-
trieved by a crawler. When the relevance of a downloaded page is low, it is
considered out of topic and its links are discarded; otherwise, they are added
to the seed set. These techniques build on contents-based classifiers that are
based on internal features of the pages being crawled. Contrarily, the propos-
als by Li and others [91], Aggarwal and others [3] and Pant and Srinivasan
[107] explore the idea of using external features, i.e., features computed on the
pages from which they are linked. This is appealing insofar it helps to classify
a web page without downloading it. The external features are based on words
in the text surrounding a link, the anchor text, or even in the URL address.

Mukherjea [101] proposed two heuristics to improve the efficiency of
focused crawlers. Their proposal relies on the idea that web applications or-
ganise their web pages internally as a tree-like hierarchical directory. The
heuristics are based on the following observations: first, pages that are close
in the hierarchy are more likely to provide similar contents, so a link should
not be followed if it refers to a page that is not close; second, pages in the
same directory are likely to provide similar contents; therefore, if a signifi-
cant number of out-of-topic pages are found in a directory, we may safely
discard every page in that directory.

40 Chapter 4. Automated web navigation

Usage mining

ISP
Logs

Recommendations

Web
App
Logs

Navigation Script

Relevant pages

Figure 4.9: Navigation using usage mining techniques.

4.5 Usage mining proposals
Usage mining techniques are based on mining real-world web application

logs or Internet Service Providers (ISP) records to learn navigation pat-
terns that are common to a number of users. Usually, these techniques are
used to generate page recommendations that provide orientation for users
when navigating a web site. These techniques can be used to learn, for exam-
ple, which is the usual page users start navigating or which the most frequent
action in each page is. As a conclusion, these techniques help implement nav-
igators that find what the crowd think are the more relevant pages in a web
site, cf. Figure 4.9.

Yao and others [136] proposed PagePrompter, a system to generate intelli-
gent agents for page recommendation. PagePrompter collects information
from different sources: web application logs (e.g., visitor statistics), the web
site itself (e.g., page updates or changes in the web site layout), and user feed-
back (e.g., explicit recommendations). PagePrompter is based on association
rule mining to compute associations of web pages that are frequently ac-
cessed together, and clustering algorithms to refine the former associations.
Web pages are clustered according to their contents and the log information
about users visiting them, to create clusters of pages that are semanti-
cally related and visited together. Both association rules and clusterings are
considered when making recommendations. PagePrompter offers the visi-
tor of a web page recommendations such as: the most visited pages in
the site, the most recently created or updated pages, and pages that are
commonly visited after/together with the current page.

4.6. Summary 41

Korfiatis and Paliouras [84] proposed CANUMGI, a technique to model
user navigation for page recommendation. It performs an offline analy-
sis of data from different web sites across the Web, using data from Internet
Service Providers logs. These logs offer information about commonly vis-
ited sequences of pages. CANUMGI performs usage mining on these data
and learns a probabilistic regular grammar in which web pages are the sym-
bols and page sequences are the strings. This grammar is used to create page
recommendations for users, i.e., when the user is visiting a certain page,
CANUMGI recommends him or her the pages that have a higher probability
of being reached from the current page according to the grammar. To cre-
ate more useful recommendations, the probability between two pages in the
grammar is computed considering the similarity between their contents as
well, using a vector of keywords to represent each page.

4.6 Summary

In this chapter, we have presented an overview of automated web naviga-
tion proposals. First, we have described the different types of pages that must
be dealt with by a navigator, and then we have presented current proposals
that implement automated navigation in different contexts. We also pro-
vide an insight into how recommender systems and crawlers can be used to
implement automatic web navigators.

42 Chapter 4. Automated web navigation

Chapter5

Webpageclassification

It is clear that there is no classification of the Universe that is not arbi-

trary and full of conjectures. The reason for this is very simple: we do not

know what kind of thing the universe is.

The Analytical Language of John Wilkins, 1942.

Jorge Francisco Isidoro Luis Borges, writer (1899-1986)

W
eb page classification refers to the problem of automatically as-
signing a web page to one or more classes after analysing its
features. In this chapter, we present an overview of web page
classification proposals and describe the different techniques

that have been proposed to classify web pages in the literature. The chapter is
organised as follows: in Section 5.1, we introduce the concept of web page
classification; Section 5.2 reports on the existing proposals that classify web
pages according to their contents; Section 5.3 reports on the proposals that
classify web pages according to the links between them and other pages; Sec-
tion 5.4 reports on the proposals that classify web pages according to visual
features; Section 5.5 reports on the proposals that classify web pages accord-
ing to their URL address; Section 5.4 reports on some techniques that detect
the template behind a web page, which can be applied to the problem of web
page classification; finally, we summarise the chapter in Section 5.7.

43

44 Chapter 5. Web page classification

5.1 Introduction
Web page classification has been extensively researched and several tech-

niques have been applied with successful experimental results. They usually
have leveraged previous results in the field of text classification. How-
ever, web pages present some peculiarities that require a more specific
processing, e.g., the existence of links amongst pages.

In general, we distinguish between binary classifiers, which are able to de-
termine if a page belongs to a certain class or not, and multiclass classifiers,
which can classify a page in one (or more) classes out of a set of classes.

Classifiers are learned from a training set, which is a dataset of selected
web pages. Depending on whether the pages in the training set have a pre-
defined class or not, the techniques to learn classifiers are catalogued as
supervised or unsupervised. Note that it is very common to use the ex-
pression “a supervised classifier” or an “unsupervised classifier” to refer
to classifiers that where learned using supervised or unsupervised tech-
niques, respectively. In this dissertation we use these expressions since they
are so common that they cannot induce any confusion.

Supervised classifiers require the user to annotate the training set, i.e.,
they require the user to analyse every page in the training set and as-
sign it to one or more classes; the goal of the technique used to learn the
classifier is to infer the intuition behind this process. This is usually consid-
ered one of the main problems with supervised classifiers, since analysing the
training set is usually tedious, time-consuming, and error-prone.

Unsupervised classifiers, aka clustering classifiers, work on a training set
in which the web pages have not been pre-classified by the users [75]. This
problem is far more difficult to solve since there is no information about the
classes, aka clusters in this field. These techniques are based on the concept of
distance between the elements to be classified [43]; in general, they try to find
a set of classes such that the pages that belong to a class are as close as possi-
ble to each other, but as distant as possible from the pages in other classes
[134]. Unsupervised classifiers are appealing insofar they relieve the user
from the burden of analysing the training set, but require him or her to anal-
yse the resulting classes and assigning a meaning to them (which hopefully
requires much less effort than annotating a training set).

The most usual clustering algorithms are either partitional or hierarchical.
Partitional algorithms such as k-means [93] or k-medoid [78, 108] con-
sider mutually disjoint clusters of elements, whereas hierarchical algorithms

5.2. Contents-based proposals 45

such as Single-Link [122] or Average-Link [115] consider a hierarchy of clus-
ters, in which elements in a parent cluster are the union of the elements in its
child clusters [78]. Hierarchical algorithms can take a bottom-up or top-down
approach. Bottom-up algorithms are agglomerative, i.e., they start with an
initial clustering in which each element is in a different cluster, and they re-
cursively merge pairs of clusters to create a parent cluster. On the other
hand, top-down algorithms start with every element in the same clus-
ter, and they recursively split each parent cluster into child clusters. There are
also hybrid approaches, e.g., Scatter/Gather, which first creates a hierarchical
clustering and then refines it using the k-means algorithm [37].

An additional dimension to catalogue web page classifiers is regarding
the location and the type of the features on which they rely.

Regarding the location, the features are usually internal, i.e., they are com-
puted from the contents of the page to be classified, including the frequency
of words [71], tag paths [21], or sets of words that frequently appear to-
gether [14]; this, obviously, requires the pages to be downloaded before they
can be classified. Some classifiers use external features, i.e., features that are
computed from neighbouring pages, which includes the words in the an-
chors, the words in the paragraph that surrounds the anchors [33], or a
combination of them [50]. If the link is surrounded by a descriptive para-
graph or the link itself contains descriptive words, it is possible to decide the
topic of the page before downloading it.

Regarding the types of features, we distinguish contents-based, link-
based, visual, and URL-based [111]. Furthermore, there are some techniques
to detect the template behind a web page that can be used for classification
purposes, as well.

5.2 Contents-based proposals
Contents-based classifiers categorise a web page according to the words it

contains. The proposals in this area do not actually work with the words as
they are presented in a web page, but with their stems in order to reduce the
number of features to be analysed; similarly, stop words like articles, preposi-
tions, or conjunctions are usually discarded. The resulting strings are usually
referred to as the page terms.

The authors in this area do not usually refer to words, but to terms,
which are basically words that have been preprocessed, e.g., applying stem-
ming and/or discarding stop words. Some of these proposals are based on

46 Chapter 5. Web page classification

the well-known bag of terms approach that is frequently used in text process-
ing. According to it, a page is represented as a map from terms onto
their frequency; later, a proposal to learn a classifier from these frequen-
cies can be used, such as neural networks [135], k-nearest neighbours [87], or
Support Vector Machines [45].

However, most proposals apply the vector space model to represent pages
as vectors. In this model, we keep a list of every possible term in the set of
documents and each page is represented as the vector of term frequen-
cies. Then, they measure the distance between two pages as the cosine of the
angle between their corresponding vectors [96]. Since each page usually con-
tains a large number of terms, the vector space has a high dimensionality,
but the majority of components are zeroes. Some authors have noted that
contents-based classification can be improved by using a brief summary of
the page instead of the whole document [118].

Beil and others [14] proposed a technique to cluster web pages that is
based in the frequent terms set concept. A frequent term set is a set of terms
that frequently co-occur in every input page more than a pre-defined number
of times. Frequent term sets are used as descriptions for candidate clus-
ters, i.e., each term set represents a cluster, and pages that contain every
term in that term set belong to the corresponding cluster. Since this defini-
tion produces overlapping clusters that diminish clustering precision, they
propose two greedy algorithms to compute a clustering with a minimal over-
lapping: FTC, which computes a partitional clustering, and HTC, which
computes a hierarchical clustering.

Hotho and others [71] proposed COSA, a technique to represent web
pages as a vector of concepts. Their technique takes a set of input web pages
that are represented as vectors of terms, and it is supported by a handcrafted
hierarchical ontology that models the concepts. Then, they use a text proces-
sor to automatically map the terms in each vector onto concepts in the
ontology, thus creating vectors of concepts. These vectors are then used as in-
put to a k-means clustering algorithm. Since several terms refer to the same
concept, the former transformation reduces the dimensionality of the vec-
tor space. They apply some heuristics based on the support of a concept,
which is computed as the frequency of the terms mapped onto that concept
that appear in pages in the input set. To reduce further the space dimension-
ality, they discard concepts that have the smallest support and split concepts
with the largest support into their child concepts. The authors extended this
proposal using WordNet [72].

Kwon and Lee [87] proposed a supervised technique to classify web
pages based on the k-nearest neighbour algorithm [135]. Their technique

5.3. Link-based proposals 47

takes the URL of a web site as input, and it assigns each page in the site a
weight based on its number of incoming and outgoing links, and the num-
ber of intermediate links that must be followed to reach it from the home
page. Pages with a high weight are more representative, so the user is re-
quired to assign a class to their term vectors them so that they can be used as
a training set. Term vectors are reduced by discarding terms that are not rep-
resentative of any classes. To classify a test page, the algorithm estimates the
average class of its k-nearest training pages. The similarity between two
pages is measured as the standard cosine similarity multiplied by a weight
that depends on the number of terms co-occurring in both pages.

Selamat and Omatu [116] proposed WPCM, another supervised web
page classification method based on neural networks that uses the term vec-
tor representation. It takes a set of pre-classified terms vectors as input,
which are preprocessed using two feature selection algorithms: first, the well-
known Principal Component Analysis algorithm [76] is used to discern the
principal terms, i.e., the terms that are most useful for classification. Then, the
resulting vectors are augmented with the N terms with the highest en-
tropy in the input set. Then, these vectors are used as the input to train a
neural network using the well-known back-propagation method [61].

5.3 Link-based proposals

Some authors have proposed techniques to classify web pages that not
only consider the web page themselves, but the links to and from other web
pages. Usually, these techniques represent the Web as a graph in which nodes
are web pages, and edges are links from one web page to another.

Following this approach, Bhagat and others [18] proposed a semi-
supervised link-based classifier that focuses on blogs, i.e., web pages in
which users publish personal information about their lives and interests.
It is based on the idea that people usually include in their blogs links
to the blogs of other people with whom they share some common in-
terests or demographical attributes (e.g., age, location, or gender). Their
technique takes a web page graph in which some nodes are pre-classified
as input, and they propose two algorithms to use the information pro-
vided by classified nodes to predict the classes of the other nodes. These
algorithms are based on relational learning [102] and the k-nearest neigh-
bour technique [135]. De Campos and others [40] explored the same idea to
classify web pages (not only blogs) using a Bayesian network.

48 Chapter 5. Web page classification

Finally, some proposals do not use link-based features in isolation, but
together with other types of features to improve the classification. As an ex-
ample, Getoor and others [52], Zhu and others [139] and Xie and others
[132] included link-based features into a contents-based web page classi-
fier, which helped them achieve significant improvements regarding the
precision of their classifier.

5.4 Visual-based proposals
Some authors have worked on techniques to classify web pages using vi-

sual features, i.e., features that can only be computed when a web page is
rendered by a browser, e.g., the position of an image on the screen, its
bounding box, the distance to the other elements in the page, and so on.

Visual features are used to distinguish between different areas or vision
blocks in a web page, which are sections of the page that represent a sin-
gle unit with a certain functionality or topic. Then, the classification of web
pages is based on the idea that pages that belong to the same class usually or-
ganise their vision blocks similarly. Therefore, to classify a web page, it is
compared against other annotated pages, and assigned the class of the page
that distributes its vision blocks more similarly.

Zhu and others [138] proposed a technique to classify links according to
their functionality; it relies on a predefined taxonomy of functionalities that
includes navigational, indexing and directories, recommendations and ex-
panding information, or advertising. Their classifier was based on two types
of features: structural, such as the position of the link in the DOM tree, vi-
sual, such as the position of the link in the page rendered by the browser, and
the position and size of the vision block that contains the link. They used
these features to build two classifiers (a support vector machine and a
decision tree).

Fersini and others [47] proposed a technique to classify web pages that
assigns a measure of importance to the elements of the page. Their measure is
based on the idea that images are used in web pages to attract the user’s at-
tention, and therefore the text in the same vision block as an image usually
has more importance than the text in other sections of the page. An analy-
sis of visual features is performed to detect which sections of text are
included in the same vision block as an image.

Kovacevic and others [85] proposed a technique to distinguish between
different areas of a web page. They analyse the screen position of each ele-
ment in a web page, where the screen is assumed to be a maximised browser

5.5. URL-based proposals 49

window on a standard monitor with a resolution of 1024 × 768 pixels. Then,
their technique uses some heuristics to identify standard screen areas, such as
header, footer, left menu, right menu or centre (e.g., the left menu is identi-
fied as the area in the leftmost part of the screen, which occupies the 30% of
the total screen width).

5.5 URL-based proposals
Classifying a web page building on features of its URL is appealing inso-

far it can be classified without actually downloading it, which has a positive
impact on performance [12]. The classification features in this case are the
segments of which it is composed.

To classify a page based on its URL, it is not necessary to analyse the page
itself, but only pages that link to it. Classification features are extracted from
those links, such as the link URL [22, 128] or the URL parts [12, 13, 77, 120].
There are some proposals to classify web pages according to their URL.

Shih and Karger [120] proposed a supervised web page classification
technique that is based on the idea that two visually nearby elements proba-
bly belong to the same class and, likewise, similar URLs probably have
similar pages as target. The technique tokenises a set of training URLs us-
ing the characters ‘/’,‘&’, and ‘?’ as separators, and inserts the tokens in a tree
structure. The root of the tree contains the first token (e.g., http:), and the other
tokens are progressively inserted in order in the tree, each of them as a child
of the previous tokens. Then, the technique builds a Bayesian network from
the tree as follows: they initially assign a class to each node of the tree so that
the probability of a token belonging to the same class as the parent token is
maximised; to prevent overfitting, they introduce a mutation probability that
allows a child token to change its class. Then, some leaves in the tree are as-
signed the class they have in a trained set of annotated URLs, and the classes
of other nodes in the tree are updated according to their mutation probability.
Finally, each URL is assigned the class of its associated leaf node.

Kan and Thi [77] proposed a supervised web page classifier for pages in
different web sites that is based exclusively on features computed from their
URLs. The URLs are tokenised using the standard RFC 3986 format for URIs,
and their tokens are used as features; then, more features are computed, such
as the position of each token in the URL, the length of the URL, or the lexi-
cal kind of token (e.g., if it represents a number, a word, or a non-alphabetical
symbol). These features are used as input to an entropy maximization algo-
rithm, a well-known machine learning approach usually applied to text

50 Chapter 5. Web page classification

classification [16, 103]. To build the classifier, they use large training sets
of URLs to achieve good precision and recall, which requires a previous
extensive crawling of the sites that are being analysed.

Baykan and others [11, 12] presented a supervised web page classifica-
tion proposal that builds exclusively on URLs. They create feature vectors by
tokenising URLs and then use those features to build both a support vec-
tor machine and a naïve bayes classifier. In their experiments, they use large
training sets of URLs, and they require the user to provide a list of words and
URLs that are representative of every class; furthermore, they also require the
user to provide sample URLs that are not representative of each class.

Vidal and others [128] proposed a supervised technique to classify web
pages building on their URL. Their proposal takes a sample page as in-
put, and returns a set of URL patterns that match the URLs of pages that are
structurally similar to the sample page. It is based on two steps: site map-
ping and pattern generation. Site mapping consists in building a map of the
web site, which requires to crawl the entire site starting from its home page
and following every possible path. They keep a record of the paths in the
map that lead (directly or indirectly) to pages that are similar to the sam-
ple page. The similarity is measured using a tree-edit distance between the
DOM trees underlying the pages. Then, pattern generation consists of gener-
alising the URLs of the pages in the former paths using regular expressions,
and then selecting the path that leads to the largest number of target pages.

Bar-Yossef and others [7] proposed a supervised technique to detect web
pages with different URLs that have the same contents, which has a nega-
tive impact on crawling efficiency. To solve this problem, they classify URLs
according to the contents of their target, and they build regular expres-
sions to define each class of URLs. Then, some rules are generated to
normalise those URLs, using a rule mining algorithm. They need to have a
large collection of URLs to achieve good results, which means that a previ-
ous extensive crawling of the web site must be performed to gather them. A
similar proposal was presented by Koppula and others [83].

Blanco and others [22] proposed an unsupervised algorithm to classify
web pages that combines both internal and external features. Their proposal
is based on the idea that every web site is created by populating a num-
ber of HTML templates with data from a database, and that the URLs of those
pages are created by populating a URL template with data from the same
database. Therefore, pages created from the same HTML template have simi-
lar contents and URLs generated from the same URL template link to pages

5.6. Structure-based proposals 51

Figure 5.1: Web page classification using template detection techniques.

with similar contents. They proposed an algorithm that combines web page
contents and its URL as features to cluster web pages so that each cluster con-
tains pages that were created using a certain template. Their algorithm is
based on the well-known minimum description length method [55]. They re-
quire a large training set, so they crawl the entire site in their experiments.
Note that to improve the classification efficiency, internal features are used,
which means that in some cases the page must be downloaded previously.

5.6 Structure-based proposals
Structure-based classifiers build on the idea of template. Web pages are

usually generated by means of a server-side templates that provide the struc-
ture of the pages and have placeholders that must be filled in with data by
means of server-side scripts [8, 53]. As a consequence, web pages that are
generated by the same template are likely to belong to the same class. This
implies that the proposals in the literature to learn templates can be eas-
ily leveraged to learn web page classifiers: first a template for each class is
learned; when a web page needs to be classified it is compared to the differ-
ent templates and assigned to the class whose template is more similar,
cf. Figure 5.1.

52 Chapter 5. Web page classification

Crescenzi and others [36] proposed RoadRunner, a technique to automat-
ically generate wrappers to extract structured information from web pages.
RoadRunner includes a supervised template detection technique. It starts us-
ing one of the pages in the training set as an initial template and then tries to
match the other pages of the same class to the template. Whenever a mis-
match is found, they generalise the template so that it can account for it. The
generalisation process consists in changing some literal parts of the template
into regular expressions that account for the variability found in the pages in
the training set. This process is not always possible, which happens when a
page is not actually generated using the same template as the others. As a
conclusion, the structural feature is a regular expression that characterises the
template used to generate the pages that belong to a given class.

Bar-Yossef and Rajagopalan [8] proposed an unsupervised template de-
tection technique that is based on pagelets, i.e., non-overlapping sections of a
web page that provide information about a single topic. Their technique de-
tects pagelets as nodes in the DOM tree of a web page such that none of its
children has more than k links (an element with less than k links is proba-
bly not an independent pagelet, but part of a parent pagelet), and that none of
their ancestors is another pagelet. A template is defined as a collection of
pagelets with the same contents that are shared by several pages in the collec-
tion. Therefore, to find the common template of a set of pages, these are split
into pagelets, which are grouped by their contents.

Arasu and Garcia-Molina [5] proposed ExAlg, an algorithm to de-
tect the common template behind a set of pages. ExAlg takes a set of pages as
input, which are tokenised into words and HTML tags. First, the algo-
rithm computes equivalence classes of tokens, i.e., sets of tokens that occur
with the same frequency in every web page in the input set. ExAlg keeps
classes that have a sufficiently large number of tokens whose frequency is
high and discards the rest. Then, each equivalence class is split accord-
ing to the context in which the tokens appear, e.g., the path from the root of
the DOM tree to the token. The template is characterised by the equivalence
classes that result from this process.

Blanco and others [21] proposed a technique to detect page templates that
are expressed as sets of paths in the DOM tree of the input pages. Their tech-
nique takes a set of pages of a given class as input. They group their DOM
nodes according to their frequency and select the ones that belong to the tem-
plate using four strategies: Template Page Model (TPM), which selects the
leaves with a higher frequency; Advanced TPM, which excludes leaves
that are shared by every page in the input set; Link Page Model (LPM),

5.7. Summary 53

which considers only leaves that represent links; and Advanced LPM, which
excludes the link nodes that are shared by every page in the input set.

De Castro Reis and others [41] devised a technique that builds on RTDM,
a tree-edit distance that is limited to edits on the leaves. It takes a set of pages
as input and represents them using their DOM trees. First, the trees are
clustered using a hierarchical clustering algorithm that uses RTDM as the
similarity measure. Each resulting cluster is generalised to a template by cre-
ating a tree that contains the nodes that are common to every tree in
the cluster; some nodes are wildcarded to abstract away from the differ-
ences in the trees. Vieira and others [129] proposed a variation in which
nodes that are identical in every DOM tree in the training set are immediately
considered a part of the template.

5.7 Summary

In this chapter, we have presented an overview of the many propos-
als in the literature regarding web page classification. We have grouped them
into several categories according to the kinds of features on which they rely,
namely: contents-based, link-based, visual-based, and URL-based. Further-
more, we have reported on some template-detection techniques and we have
provided some clues on how they can be applied to the problem of web page
classification. Most of the techniques presented are based on internal fea-
tures, i.e., features that are computed from the page to be classified, which
requires the page to be downloaded beforehand. On the contrary, URL-
based techniques are based exclusively on page URLs, which allows to
classify them without downloading them.

54 Chapter 5. Web page classification

Part III

OurProposal

Chapter6

Ourcrawler

Different roads sometimes lead to the same castle

A Game of Thrones, 1996.

George Raymond Richard Martin, writer (1948)

I
n this chapter, we describe the architecture of our crawler and re-
port on the algorithms that implement it. The chapter is organised
as follows: in Section 6.1, we introduce it; Section 6.2 describes the ar-
chitecture of the crawler; Section 6.3 presents the main algorithm that

orchestrates the crawler and the ancillary functions that support it; Sec-
tion 6.4 reports on the complexity analysis of the previous algorithm and
functions; finally, we summarise the chapter in Section 6.5.

57

58 Chapter 6. Our crawler

Figure 6.1: Our crawler.

6.1 Introduction
In this chapter, we describe our proposal to crawl a site and automati-

cally gather a set of hubs from it. Our crawler takes the URL of a web page
with a keyword-based search form and is able to fill in the forms us-
ing words from the site itself, discern which of the response pages are not
empty (i.e., they contain some information related to the query), and gather
them. First, our crawler downloads the form page and analyses it to compute
some keywords. Then, these keywords are used to fill in the form and gather
the response hubs. The hubs are similarly analysed to gather more key-
words, which in turn are used to gather more hubs. This process is repeated
until a number of hubs have been gathered, cf. Figure 6.1.

In addition, we prove that our crawler is computationally tractable, since
O(n log n) is an upper bound to its worst-case time complexity, where n de-
notes the size of the largest web page in the web site being analysed, which is
measured in words.

Throughout the rest of this chapter, we use Microsoft Academic Search as
a running example. It is an scholarly web site that offers information about
items that include papers, authors, citations, and publishing hosts, i.e., jour-
nals and conferences. We also use a number of data types (URL, Token,

6.2. Architecture 59

Figure 6.2: Class diagram of our crawler.

Separator, Word, WebPage, Pattern, Hub, and Hubset) and a number of sim-
ple functions to work with sets, bags, and sequences. They are formally
defined in Appendix A.

6.2 Architecture
The architecture of the crawler is presented in Figure 6.2. Class Crawler,

which provides function gatherHubset to gather a set of hubs, has to interact
with a keyword-based search form. Therefore, it needs a number of key-
words, which are provided by class KeywordAnalyser. This class provides a
method to analyse the pages of a web site and computes their keywords. The
tokenisation is provided by class Tokeniser. The interaction with a web site is
performed by interface IDownloader, which is responsible for handling the
HTML requests. Finally, an outlier detection technique is needed to discard
empty hubs, i.e., hubs that do not contain any result that is relevant to the
query, which is provided by class OutlierDetector. This outlier detector is
based on the Cantelli inequality, which is described in depth in Appendix B.

We tested two different implementations for interface IDownloader using
Selenium and WebDriver. WebDriver [1] belongs to the Selenium project [70],

60 Chapter 6. Our crawler

IDownloader OutlierDetectorKeywordAnalyserCrawler

hp

wp

loop [until enough pages have been gathered]

Q

loop [for each element r in R]

1: wp = download(u)

2: Q = computeKeywords(wp)

6: Q.add(compute unused keywords(hp))
5: R.add(hp)

8: Result.add(computePatterns(r))

4: hp = submit(wp, kw)
3: kw = get one keyword from Q()

loop [until enough pages have been gathered]

7: R = getNonEmptyHubs(R)
7.1: lowerThreshold()

Figure 6.3: Sequence diagram of our crawler.

but instead of injecting Javascript functions into the browsers to execute the
scripts, it calls their native programming interface. An additional difference is
that WebDriver executes the scripts on a built-in non-graphical user interface.

Function gatherHubset orchestrates the other elements of the architec-
ture. We illustrate how it works using a sequence diagram, cf. Figure 6.3. It
takes the URL of a page from a web site that provides a keyword-based
search form with one text field as input (usually, the web site home page ful-
fills this requirement). First, the downloader downloads the page and the
keyword analyser computes the words with a lower frequency in the page as
keywords that can be used to issue queries to the search form. Then, the
downloader finds a text field in the form, fills it with the keywords and sub-
mits the form, which yields some response pages. These pages are processed
to compute more keywords. This process is repeated until enough pages (po-

6.3. Algorithm 61

Figure 6.4: Hub page in the running example.

tential hubs) have been retrieved. Then, the crawler applies our outlier-based
technique to discard empty hubs. Since this may reduce the number of hubs
gathered, the whole process must be repeated again until enough not-empty
potential hubs have been retrieved. Finally, the potential hubs are processed
to create hubs by transforming each of their URLs into a pattern. The result is
a hubset that contains a representative collection of URLs from the web site.

As an example, Figure 6.4 depicts one of the hubs that can be gathered
from our running example web site.

6.3 Algorithm

The crawler is responsible for retrieving a set of hubs from a web site, us-
ing the URL of a page with a search form as input. Our focus are search forms
that provide a unique text box since they are very common in the Web nowa-
days. Typically, the response to such a query is a hub page, i.e., a web page

62 Chapter 6. Our crawler

1: algorithm gatherHubset

2: input u : URL

3: output Result : Hubset

4: variables wp,hp : WebPage;P,Q : seq Word;R : seq WebPage, n : N
5: constants M,T : N
6:

7: n := 0

8: P := ∅
9: R := ∅

10: Result := ∅
11: – Step 1: Download initial page
12: wp := download(u)

13: – Step 2: Compute keywords from the page contents
14: Q := computeKeywords(wp, P)

15: while n ≤ T ∧ Q ̸= ∅ ∧ #Result < M do
16: while Q ̸= ∅ ∧ #Result < M do
17: – Step 3: Submit the form in wp using a keyword from Q

18: kw := get one keyword from Q

19: P := P ∪ {kw}

20: Q := Q \ {kw}

21: hp := submit(wp, kw)

22: – Step 4: Add new page to set
23: R := R ∪ {hp}

24: – Step 5: Update the set of keywords
25: Q := Q ∪ computeKeywords(hp, P)

26: end while
27: – Step 6: Keep only non-empty hubs
28: R := getNonEmptyHubs(R)

29: n := n + 1

30: end while
31: for each r ∈ R do
32: – Step 7: Create a new hub using the patterns in r

33: Result := Result ∪ {computePatterns(r)}

34: end for

Program 6.1: Algorithm gatherHubset.

6.3. Algorithm 63

that provides summaries and links to other pages [80]. Hub pages usu-
ally contain a larger number of URLs than other pages in a web site since
their goal is to offer the users as many results related to their queries as possi-
ble. Therefore, the probability that they contain a sufficiently representative
set of URLs is higher than for other pages. Recall from Section 4.2 that the
submission of search form may also result in a detail page, a no-results page,
an error page, or a disambiguation page. A detail page or a disambigua-
tion page are not likely to provide as many links as a hub page, but they are,
in general, expected to be relevant. Contrarily, no-results pages and er-
ror pages are not likely to provide many relevant links, which implies that the
crawler must be able to discard them.

The crawler is based on the algorithm in Program 6.1. It takes the URL of
a page with a keyword-based search form as input and outputs a hub-
set. We assume that the user has set the following constants before executing
this algorithm: M, which refers to the number of hubs the algorithm is ex-
pected to return, T , which refers to the maximum number of attempts that
the algorithm is allowed to make in order to gather M hubs, L, which
refers to the minimum size that a word must have to be chosen as a key-
word, and N, which refers to the number of keywords that we select from
each page. We formally define these constants as follows:

M,T, L,N : N

We make the following conjecture regarding these constants (These con-
jectures and others that we establish throughout this dissertation are
corroborated by our experimental results in Section 8.4):

Conjecture 6.1 (Value of M) A relatively small number of hubs suffices to
achieve a high precision and recall in our proposal.

Conjecture 6.2 (Value of T) A relatively small number of attempts suffices to
gather M hubs.

Conjecture 6.3 (Value of L) Discarding words with a size lower than L

suffices to gather enough non-stop words to be used as keywords.

Conjecture 6.4 (Value of N) A relatively small number of keywords from
each page suffices to gather M hubs.

The algorithm first downloads the page with the search form at line 12,
and then computes an initial set of keywords at line 14. These keywords are

64 Chapter 6. Our crawler

the N less frequent words in the search page whose size is greater than L; this
very often prevents us from returning typical stop words without committing
to a language-specific dictionary. The loop at lines 15–30 iterates as long as
the maximum number of attempts has not been reached, the set of keywords
is not empty, and we have not collected the desired number of hubs.

The inner loop at lines 16–26 selects a keyword from the set of key-
words we have computed previously, and uses it to fill in and submit the
search form, which results in a web page, which is added to the set of poten-
tial hubs R. Next, we update the set of keywords at line 25 by analysing the
result page using the same procedure that we described previously. Note that
we keep set P updated with the keywords that are used to fill in the search
form, so that we avoid using the same keyword more than once.

The inner loop finishes either because no more keywords are available or
set R has the desired number of potential hubs. There can be keywords that
return a so-called empty hub, which is a term that we use to designate no-
results or error pages. Since we wish our technique to be independent from
the web site to which it is applied, we use a simple technique that has proven
to work well in practice [128]: we discard the pages in R whose num-
ber of links can be considered a lower outlier, which we implement at line 28.
As a result, the collection of pages collected in the inner loop might not con-
tain as many useful hubs as expected, which is the reason why we need to
re-start the outer loop in order to make a new attempt to find new poten-
tial hubs. Note that this loop must eventually terminate, since we define a
limit T to the maximum number of attempts that we make to gather the de-
sired number of pages. If we cannot collect enough pages after T attempts,
then we would have to discard the web site being analysed.

Finally, the algorithm computes a hub from each page in R at line 33,
which consists of tokenising the URLs found in the links from the page and
transforming them into patterns.

In our running example, we set M = 100 and gathered 100 hubs in 5

attempts, one of which is illustrated in Figure 6.4.

In the following subsections, we describe the ancillary functions on which
the algorithm relies.

6.3.1 Computing keywords

Function computeKeywords takes a web page and a set of words as in-
put, and returns a set with the N least frequent words in the page that are not

6.3. Algorithm 65

Figure 6.5: Search form page in our running example.

included in the set and whose size is greater than L. We formally define this
function as follows:

computeKeywords : WebPage × seq Word → seq Word

∀wp : WebPage, P : setWord •
let K == subseq((sortBag computeWords(wp) \ P), 1, N) •

computeKeywords(wp, P) = {k : Word | k ∈ K ∧ #k ≥L}

To compute the frequencies of each word in wp, we compute the bag of
words using function computeWords, and then we sort them according to
their frequency using function sortBag. Note that P denotes the set of pro-
cessed keywords in Algorithm gatherHubset and that it is passed on to
this function as a parameter to check if any of the N least frequent key-
words has already been used. This way, only the keywords that have not
been considered before and have a lower frequency are considered.

In our running example, we set L = 3 and gathered the following
keywords from the form page, cf. Figure 6.5: authors, Advanced, Search, publi-
cations, last, updated, Explore, week, and and, all of which appeared once in the
page. Then, when we used authors as a keyword, and we gathered the follow-
ing keywords from the resulting hub, cf. Figure 6.4: Welch, Environment,
authority, Group, Miller, Kesselman, Tuecke, appendix, assumptions, and Pearl-
man, all of which appear once in the page, whereas the other words have a
higher frequency, such as authorization (5), Computer (2), system (6), or Citations
(10), to mention a few examples.

6.3.2 Discarding empty hubs

Empty hubs are usually very similar: they display an image and/or a
message to inform the user that his or her query did not produce any results,
that it was incorrect, or that an unrecoverable error happened, and, option-
ally, a few links to recommended items. This implies that their size, in terms

66 Chapter 6. Our crawler

Figure 6.6: Empty hub in the running example.

of number of patterns, tends to be smaller than usual and that they can be
discarded by looking for lower outliers. We formally define this function as
follows:

getNonEmptyHubs : Hubset 7→Hubset

∀hs : Hubset | hs ̸= ∅ •
let t == lowerThreshold({h : Hub | h ∈ hs • #h}) •

getNonEmptyHubs(hs) = {h : Hub | h ∈ hs ∧ #h ≥ t}

In our running example, non-empty hubs have sizes of around 130 pat-
terns, whereas empty hubs have sizes around 19 patterns. If we have a mean
size of 130.43 and a standard deviation of 25.43, choosing α = 0.05 we get a
lower threshold of 19.58, which leaves out every empty hub. Figure 6.6 il-
lustrates an empty hub from our running example that is returned as a
response to query “supercalifragilisticexpialidocious classifier”. It contains 5 pat-
terns that result from transforming the links with anchor texts Advanced
Search, Academic, face detection, decision tree, and neural network.

6.3.3 Other ancillary functions

Our crawler relies on a few more functions that are straightforward, but
difficult to present within a formal framework. We describe them below:

download : URL → WebPage. This function takes a URL as input and re-
turns a copy of the document therein located. A typical web page

6.4. Analysis 67

usually requires a number of resources so that it can be rendered,
e.g., images, style sheets, or scripts. These resources are not neces-
sary at all in our proposal, so this function can discard them safely and
return the HTML text only.

computeWords : WebPage → bag Word. This function takes a web page as
input and returns a bag with the words in that page, excluding tags,
scripts, and in-line style definitions. In order to keep our proposal
language-independent, we used the following unicode regular expres-
sion to implement this function: ((\p{L}\p{N}+)|\p{N}+\p{L})|\p{L})+, where
\p{L} is a regular expresion that represents unicode characters that are
letters and \p{N} unicode characters that are numbers.

submit : WebPage × Word → WebPage. This function takes a web page
with a keyword-based search form, and a word as input. It is responsi-
ble for finding the keyword-based search form, filling its unique text
field using the word, submitting it, and returning the response hub
page.

computePatterns : WebPage → Hub. This function takes a web page as
input and returns a hub with the patterns in that page, which are ex-
tracted from its links. Pattern extraction is supported by a tokeniser
based on RFC 3986 recommendation for URIs

6.4 Analysis
In the following subsections, we analyse the upper bounds to the worst-

case complexity of the previous ancillary functions and the algorithm
gatherHubset, to prove that they are computationally tractable. In our
proofs, we assume that simple arithmetical and set operations can be imple-
mented in O(1) time with respect to the other operations. Furthermore, we
assume that O(n log n) is an upper bound to the worst case complex-
ity of the algorithm used to sort a set or a bag, e.g., using Merge Sort. Finally,
we assume that network operations such as downloading a page or submit-
ting a form can be implemented in O(1) time since the operating system sets a
timeout to the maximum time a user can wait on these operations.

6.4.1 Ancillary functions

Proposition 6.1 (computeKeywords) Let wp be a web page and P be a set of
words. Function computeKeywords(wp, P) terminates in O(k log k) in the

68 Chapter 6. Our crawler

worst case, where k denotes the size of the largest web page in a web site. The
size of a web page is measured in words.

Proof Function computeKeywords has to chunk the web page into a bag of
words Q using function computeWords. We assume that delimiting the
words in a web page can be implemented in O(k) time, where k denotes the
size of a page in tokens. Then, it has to sort the words in Q accord-
ing to their frequency, which can be accomplished in O(k log k). Then, it
must compute the difference between the former ordered bag and the in-
put set P, which can be accomplished in O(1) time. Then, it must compute the
subsequence of the first N keywords, which is a basic operation that termi-
nates in O(1) time. As a conclusion, computeKeywords(wp, P) terminates in
O(k log k) in the worst case. 2

Proposition 6.2 (computePatterns) Let hp be a web page. Function
computePatterns(hp) terminates in O(k) time in the worst case, where k de-
notes the size of the largest web page in a web site. The size of a web page is
measured in words.

Proof Function computePatterns scans hp to find HTML anchors, and re-
trieve their URLs. Therefore, its execution time depends on the size of hp. As
a conclusion, computePatterns(hp) terminates in O(k) in the worst case. 2

Proposition 6.3 (getNonEmptyHubs) Function getNonEmptyHubs(hs) ter-
minates in O(k) in the worst case, where hs denotes a hubset and k denotes
the size of hs.

Proof Function getNonEmptyHubs has to compute the lower outliers from
a set of values that represent the sizes of the hubs in hs, for which it
calls function lowerThreshold. This function calculates the mean and stan-
dard deviation of a distribution of values, both of which operations terminate
in O(k), being k the size of the distribution. Then, the function has to iter-
ate through hs to discard the hubsets whose size s smaller than the threshold,
which requires O(k) time, as well. As a conclusion, getNonEmptyHubs(hs)

terminates in O(k) time in the worst case. 2

6.4.2 Algorithm

Theorem 6.1 (gatherHubset) Let u be a URL that references a web page
with a keyword-based search form. O(n log n) is an upper bound to the
worst-case time complexity of Algorithm gatherHubset(u), where n de-
notes the size of the largest web page in the web site being analysed. The size
of a page is measured in words.

6.5. Summary 69

Proof Algorithm gatherHubset first downloads a web page, which requires
O(1) time. It then computes keywords from the web page contents. Accord-
ing to Proposition 6.1, O(n log n) is an upper bound to the time required to
extract the keywords, where n denotes the size of the largest page in a site
(measured in words). Then, it has to iterate through lines 15–30 a maxi-
mum of T times. In each iteration, the inner loop at lines 16–26 iterates until
there are not any keywords in set Q or we have gathered the maximum num-
ber of hubs, which means M iterations in the worst case. Inside the inner
loop, the algorithm performs different set operations and a form is submit-
ted to the server, which terminates in O(1) time. Afterwards, new keywords
are computed from the contents of the page and added to the keywords set,
which terminates in O(n log n) time according to Proposition 6.1. Therefore,
the execution time for the inner loop is O(M (1 + n log n)). After the in-
ner loop, the algorithm has to discard empty hubs, which terminates in
O(k) time, according to Proposition 6.3, where k is the size of the in-
put set. In the worst case, hs has the maximum size M, so it terminates in
O(M) time. Therefore, O(T M (n log n + 1)) is an upper bound to the worst-
case time the outer loop requires to execute. Finally, for each web page in the
potential hubs set a new hub is created by computing its patterns, which ter-
minates in O(n) time according to Proposition 6.2. Since the potential hubs
set size is M in the worst case, the execution time for the last loop is O(nM).

Therefore, O(n log n + T (M (n log n + 1) + M) + nM) is an upper bound
to the time required by gatherHubset(u) to terminate. Since T and M denote
constants, we can simplify this upper limit to O(n log n), which concludes
the proof. 2

6.5 Summary

In this chapter, we have described our crawler, which is responsible for
gathering a set of hubs from a web site, by filling in forms using keywords
computed from the site itself. This hubset is then passed onto the pat-
tern builder to build the patterns for URL classification. We have proved that
our proposal is computationally tractable.

70 Chapter 6. Our crawler

Chapter7

Ourpatternbuilder

There is in all things a pattern that is part of our universe. It has symme-

try, elegance, and grace - those qualities you find always in that which the

true artist captures. You can find it in the turning of the seasons, in the

way sand trails along a ridge, in the branch clusters of the creosote bush

or the pattern of its leaves. We try to copy these patterns in our lives and

our society, seeking the rhythms, the dances, the forms that comfort.

Dune, 1965.

Frank Patrick Herbert, writer (1920-1986)

I
n this chapter, we describe the architecture of our pattern builder
and provide the algorithms and functions that implement it. The chap-
ter is organised as follows: in Section 7.1, we introduce it; Section 6.2
describes the architecture of the crawler; Section 7.3 defines the main al-

gorithm that orchestrates the pattern builder, and the ancillary functions
that support the algorithm; Section 7.4 reports on the complexity analy-
sis of the former algorithm and functions; finally, we summarise the chapter
in Section 7.5.

71

72 Chapter 7. Our pattern builder

Figure 7.1: Our pattern builder.

7.1 Introduction

In this chapter, we describe our proposal to automatically build a set of
patterns that represent the URLs of the different classes of pages of a site. Our
pattern builder takes a set of hubs that contain a set of initial patterns as input
and uses a statistical criteria to discern which parts of the patterns should be
abstracted to learn more general patterns. First, our pattern builder creates a
set with every possible prefix of every pattern in the input hubset. Then, it it-
erates the prefixes in that set in increasing order of length, and compares each
prefix with its siblings to detect which siblings do not have a significantly
high frequency and should be abstracted. Then, the siblings that are not sig-
nificant are wildcarded, i.e., their last element is replaced with a wildcard.
The result is a set of patterns in which some of their elements are wildcards.

We use a tree notation that is based on PATRICIA trees to represent sets of
prefixes and patterns; it allows to represent a large collection of patterns and
prefixes compactly, cf. Figure 7.1.

In addition, we prove that our crawler is computationally tractable, since
O(n3) is an upper bound to its worst-case time complexity, where n denotes
the number of patterns in the input hubset.

Throughout this chapter, we use the same running example as in the pre-
vious one. The data types and simple functions to work with bags, sets, or
sequences are formally defined in Appendix A.

7.2 Architecture

The architecture of the pattern builder is presented in Figure 7.2. Class
PatternBuilder provides the functions needed to build a set of patterns. We

7.2. Architecture 73

Figure 7.2: Class diagram of our pattern builder.

 : PatternBuilder : OutlierDetector

1: P = initialisePrefixSet(hs)

loop 2: p = select shortest prefix(P)

3: S = computeSiblings(p)

4: t = upperThreshold(p-estimators of prefixes in S)

5: S' = select prefixes p-estimator below t()

6: W = compute wildcard prefixes(S')

7: W' = wildcardPrefixes(W, s)

8: P = updatePrefixSet(P, S, W, W')

Figure 7.3: Sequence diagram of our pattern builder.

apply an outlier-based statistical technique to build the patterns. There-
fore, an outlier detection method is needed, which is provided by class
OutlierDetector.

We illustrate how function buildPatterns works using a sequence dia-

74 Chapter 7. Our pattern builder

gram, cf. Figure 7.3. It takes the hubset gathered by the crawler as input.
First, it extracts the set of prefixes for every pattern in every hub from the
hubset. Then, it iterates on the set of prefixes and computes the set of sib-
lings of each prefix, i.e., prefixes that share a common prefix with it. Then, it
computes their probability estimators building on their frequencies. Finally,
prefixes with a probability estimator smaller than a threshold are wild-
carded; the threshold is computed by the outlier detector. The result is a set of
URL patterns that represent the URLs of the different classes of pages in the
web site.

As an example, our running example provides pages with
information about authors. Some examples of the URLs of
this pages are http://academic.research.microsoft.com/Author/10851937/edward-
s-reynolds, http://academic.research.microsoft.com/Author/516258/peter-j-burt, or
http://academic.research.microsoft.com/Author/1697139/edward-h-adelson. It is not
difficult to see than all these URLs follow a common pattern, which consists
of the prefix http://academic.research.microsoft.com/Author/ followed by a num-
ber that identifies the author in the internal database of the site, and then
by the author’s name. Since the URLs of authors share the same prefix,
its frequency is significantly high, in comparison to other prefixes. Algo-
rithm buildPatterns is able to discern the prefixes whose frequency is
not significant and abstract them to learn the pattern ⟨̂ , http, ://, aca-
demic.research.microsoft.com, /, Author, /, ⋆, /, ⋆, $⟩. Finally, any web page can be
classified as an author page by finding a match between its URL and this pat-
tern; otherwise, if this match cannot be found, the page is probably not an
author page.

7.3 Algorithm
The pattern builder relies on the algorithm in Program 7.1. It takes a hub-

set hs as input and outputs a set of patterns. The algorithm starts by creating
the set of prefixes P at line 8; this set contains every prefix in hs whose size is
greater than one in hs, ordered by size. Then, the loop at lines 9–32 iterates
until P is empty. In each iteration, the algorithm selects the shortest prefix in P

at line 10. If the selected prefix ends with $, which marks the end of a pattern,
it means that every prefix in the pattern has already been processed, and it can
then be added to the output set of patterns at line 13. Otherwise, the prefix
has to be processed along with its siblings at line 16; the siblings are the pre-
fixes that share a common prefix with p, excluding its last element. Then, the
algorithm computes the probability estimators of the siblings and calculates
the threshold above which such estimator is considered an upper outlier at

7.3. Algorithm 75

1: algorithm buildPatterns

2: input hs : Hubset

3: output Result : seq Pattern

4: variables P, S, S′,W,W′ : seq Prefix;p, q : Prefix; pe, t : R
5:

6: Result := ∅
7: – Step 1: Initialise prefix set
8: P := initialisePrefixSet(hs)

9: while P ̸= ∅ do
10: p := shortest prefix in P

11: if last p = $ then
12: P := P \ {p}

13: Result := Result ∪ {p}

14: else
15: – Step 2: Compute siblings
16: S := computeSiblings(hs, p)

17: – Step 3: Compute upper-outlying siblings
18: t := upperThreshold({q : Prefix | q ∈ S • p-estimator(hs, q)})

19: S′ := ∅
20: for each q ∈ S do
21: pe := p-estimator(hs, q)

22: if pe ≤ t ∧ pe ̸≈ 1.00 then
23: S′ := S′ ∪ {q}

24: end if
25: end for
26: – Step 4: Wildcard prefixes
27: W := {v,w : Prefix | v ∈ S′ ∧ w ∈ P ∧ v prefix w • w}

28: W′ := wildcardPrefixes(W, #p)

29: – Step 5: Update prefix set
30: P := updatePrefixSet(P, S, W,W′)

31: end if
32: end while

Program 7.1: Algorithm buildPatterns.

line 18. We refer to probability estimators as p-estimators for short, and they
refer to the probability of finding a URL that begins with that prefix in hubs
from hs. The goal of the loop at lines 20–25 is to select a subset of siblings that
are not frequent enough to be wildcarded. We only select siblings that can be
considered lower outliers as long as their p-estimators are not close to 1.00.

Conjecture 7.1 (Wildcarding criterion) Wildcarding prefixes with a p-

76 Chapter 7. Our pattern builder

Pattern Class

⟨̂ , http, ://, <MSAS>, /, Publication, /, ⋆, /, ⋆, $⟩ Paper

⟨̂ , http, ://, <MSAS>, /, Author, /, ⋆, /, ⋆, $⟩ Author

⟨̂ , http, ://, <MSAS>, /, Journal, /, ⋆, /, ⋆, $⟩ Journal

⟨̂ , http, ://, <MSAS>, /, Detail, ?, entityType, =, 1, &, searchType, =, 5, &, id, =, ⋆, $⟩ Citation

Table 7.1: Patterns built for the running example.

estimator that are not significantly higher than the p-estimators of their
siblings and whose distance to 1.00 is higher than 0.05 is an appropriate crite-
rion to build patterns, i.e., patterns built using this criterion allow classifying
URLs achieving high precision and recall.

The siblings that fulfill the wildcarding criterion are added to the set of
frequent siblings S′ for further processing at line 23. These siblings and their
descendants, i.e., the prefixes that have an element of S′ as a prefix, are added
to the set of prefixes to be wildcarded W at line 27. Afterwards, these pre-
fixes are wildcarded at line 28 by replacing the element at position #p with
a wildcard. Finally, the prefix set P is updated by withdrawing the pre-
fixes that have already been processed in this iteration and adding those of
their descendants that have been wildcarded at line 30.

In our running example, algorithm buildPatterns outputs four pat-
terns from our running example, cf. Table 7.1, where <MSAS> denotes domain
name academic.research.microsoft.com:

In the following subsections, we describe the ancillary functions on which
the algorithm relies.

7.3.1 Initialising the prefix set

Function initialisePrefixSet takes a hubset as input and returns a se-
quence with the prefixes of the patterns in flat hs, ordered in increasing order
of size. We formally define this function as follows:

initialisePrefixSet : Hubset → seq Prefix

∀hs : Hubset •
initialisePrefixSet(hs) ==

sortSet{p : Prefix | #p ≥ 2 ∧ (∃q : Pattern | q ∈ flat hs • p prefix q)}

7.3. Algorithm 77

n46, $

n45, $n44, $n43, $
n42 , $n41, $n40, $n39 , $n38, $n37 , $n36 , $n35, $n34 , $

n1, httpn2 , <MSAS>
n10, Authorn11 , 38181n12 , tim-berners-lee

n3, Publicationn4, 417664 n6,5638047 n8, 1242380 n13, 43723n14,tom-heath
n15 , 255707n16 , christian-bizer

n17, 3535385n18, s-ren-auer
n19, Journaln20 , 870n21 , ijswis

n22 , 889n23, jws
n24, Detailn25, entitytypen26, 1n27, searchtypen28, 5n29 , idn31,5638047 n32,4117664n30,1242380

n7 ,linked-data n9, named-graphsn5, dbpedia
n33 , CFP

s1, ://s2, /
s3, /s4, / s6, / s8, /s5, / s7, /s9, / s10, / s11, / s13, /

s15 , ?s12, /s14, / s16 , =s17 , &s18 , =s19 , &s20 , =

n0, ⌃

Figure 7.4: Partial view of the initial prefix set in the running example.

As an example, Figure 7.4 represents a subset of prefixes in our run-
ning example, using our tree notation. It is not possible to show the complete
set since it has thousands of prefixes. Every node in the tree has a label,
which we denote as ni or si. Nodes labelled with ni correspond to to-
kens, whereas nodes labelled with si correspond to separators. Each node,
actually, represents a prefix, which is the sequence of tokens and separa-
tors in the path from the tree root n0 to the node itself. Note that each path
from the tree root to a leaf represents a pattern. In the following examples, we
refer to prefixes in the tree by means of its corresponding node.

7.3.2 Computing siblings

Function computeSiblings takes a hubset hs and a prefix p as in-
put and returns the set of prefixes in flat hs that share a common prefix with p

up to its penultimate element, including p itself. We formally define this
function as follows:

78 Chapter 7. Our pattern builder

computeSiblings : Hubset × Prefix 7→ seq Prefix

∀hs : Hubset, p : Prefix | hs ̸= ∅ ∧ #p ≥ 2 •
computeSiblings(hs, p) = {q : Prefix; r : Pattern |

r ∈ flat hs ∧ q prefix r ∧ last q ̸= ⋆ ∧ (front p) prefix q •
subseq(q, 1, #p)}

In our running example, prefix n4 = ⟨̂ ,http, ://, <MSAS>, /, Publication, /,
4117664⟩ has siblings n6 = ⟨̂ ,http, ://, <MSAS>, /, Publication, /, 5638047⟩ and
n8 = ⟨̂ ,http, ://, <MSAS>, /, Publication, /, 1242380⟩. In Figure 7.4, it is easy to
find the siblings of a prefix represented by a node ni by looking for nodes that
share an ancestor with ni.

7.3.3 Computing p-estimators

Function p-estimator takes a hubset hs and a prefix p as input and re-
turns an estimator of the probability of finding at least one pattern prefixed
by p in a hubset. Since the underlying distribution of prefixes is unknown
and heavily dependent on the web site being analysed, we can compute the
p-estimator as the relative frequency of every prefix in hs [56]. We formally
define this function as follows:

p-estimator : Hubset × Prefix 7→R

∀hs : Hubset, p : Prefix | hs ̸= ∅ •
let H == {h : Hub | h ∈ hs ∧ (∃q : Pattern • q ∈ h ∧ p prefix q)} •

p-estimator(hs, p) = #H/#hs

P-estimators range from 0.00 to 1.00. The more frequent a prefix, the
higher its corresponding p-estimator. We state the following conjecture
regarding p-estimators:

Conjecture 7.2 (Distribution of p-estimators) P-estimators that are not near
1.00 are most probably near 1/#hs, whose limit is 0.00 as the number of hubs
increases. In other words, the distribution of p-estimators has two peaks at
0.00 and 1.00.

In our running example, the p-estimators computed for the pre-
fixes in Figure 7.4 are shown in Table 7.2. As an example, prefix
n3 = ⟨̂ , http, ://, <MSAS>, /, Publication⟩ appears in every hub in hs since this
prefix refers to publications and every hub in our running example in-
cludes links to publications. Therefore, its p-estimator is 1.00. Every hub

7.3. Algorithm 79

Node Last element P-estimator Node Last token P-estimator

n1 http 1.00 s1 :// 1.00

n2 <MSAS> 1.00 s2 / 1.00

n3 Publication 0.99 s3 / 1.00

n4 4117664 0.01 s4 / 1.00

n5 dbpedia 0.01 n6 5638047 0.01

s5 / 1.00 n7 linked-data 0.01

n8 1242380 0.01 s6 / 1.00

n9 named-graphs 0.01 n10 Author 0.99

s7 / 1.00 n11 38181 0.01

s8 / 1.00 n12 tim-berners-lee 0.01

n13 43723 0.02 s9 / 1.00

n14 tom-heath 0.02 n15 255707 0.01

s10 / 1.00 n16 christian-bizer 0.01

n17 3535385 0.01 s11 / 1.00

n18 s-ren-auer 0.01 n19 Journal 0.89

s12 / 1.00 n20 870 0.01

s13 / 1.00 n21 ijswis 0.01

n22 889 0.01 s14 / 1.00

n23 jws 0.01 n24 Detail 1.00

s15 ? 1.00 n25 entityType 1.00

s16 = 1.00 n26 1 1.00

s17 & 1.00 n27 searchType 1.00

s18 = 1.00 n28 5 1.00

s19 & 1.00 n29 id 1.00

s20 = 1.00 n30 1242380 0.01

n31 5638047 0.01 n32 4117664 0.01

n33 CFP 0.17

Table 7.2: P-estimators in our running example.

80 Chapter 7. Our pattern builder

n34 , $
w1, �n3, Publicationn4, 417664 n6, 5638047 n8 , 1242380n5,dbpedia n36 , $n35, $n7, linked-data n9 , named-graphs

n1, httpn2, <MSAS>
����������	

s1, ://s2, /s3 , /s4, / s6, /s5, /
n3, Publication
n1, httpn2, <MSAS>s1, ://s2, /s3, /

n34, $n5,dbpedia n36 , $n35 , $n7, linked-data n9 , named -graphss4, / s6 , /s5, /

n0, ⌃ n0, ⌃

Figure 7.5: Wildcarding example.

includes a list of publications, and each publication has at least one author,
which means that we can find at least one pattern prefixed by n3 in ev-
ery hub. Contrarily, some publications are published in journals and some
others are published in conferences, which means that only some of the
hubs contain patterns prefixed by n19. Therefore, the p-estimator of pre-
fix n19 = ⟨̂ , http, ://, <MSAS>, /, Journal⟩ is not 1.00, but 0.89 in this case; this
estimator is significantly high, but not as high as the p-estimator of prefix n3.

7.3.4 Wildcarding prefixes

Function wildcardPrefixes takes a set of prefixes and a natural num-
ber i as input, and it returns a set in which the input prefixes have been
wildcarded at the i-th position. We formally define this function as follows:

wildcardPrefixes : seq Prefix × N 7→ seq Prefix

∀C : seq Prefix; i : N | i ≥ 1 •
wildcardPrefixes(C, i) = {p : Prefix | p ∈ C ∧ #p ≥ 2 ∧ i ≤ #p •

subseq(p, 1, i − 1) ⌢ ⟨⋆⟩ ⌢ subseq(p, i + 1, #p)}

In our running example, the p-estimator of prefix n4 = ⟨̂ ,http, ://, <MSAS>,
/, Publication, /, 4117664⟩ and its siblings n6 = ⟨̂ ,http, ://, <MSAS>, /, Publication,

7.3. Algorithm 81

n46, $

n43, $
n41, $n37, $n34, $

n1, http

n2, <MSAS>

n10,
Author

w3, �
w6, �

n3,
Publication

w2, � n19,
Journal

w4, �
w7, �w5, �

n24,
Detail
n25,entityType

n26, 1
n27, searchType

n28, 5
n29, id
w8, �

w1, �
s1, ://
s2, /

s3, /
s4, / s7, /

s8, / s12, /
s13, / s15, ?

s16, =
s17, &
s18, =
s19, &
s20, =

n0, ⌃

Figure 7.6: Prefixes in the running example after building patterns.

/, 5638047⟩ and n8 = ⟨̂ ,http, ://, <MSAS>, /, Publication, /, 1242380⟩ is 0.01 ac-
cording to Table 7.2. Since they all have the same value, their mean value is
0.01, and their standard deviation is 0.00. Therefore, the upper thresh-
old is 0.01 in this case. Since none of the siblings has a p-estimator higher
than the threshold, they are added to the set of prefixes to be wildcarded, in-
cluding the prefixes that have them as a prefix, namely s4, s5, s6, n5, n7, n9,
n34, n35, and n36. Figure 7.5 shows the siblings of n4 and their descendants af-
ter wildcarding them. Note that we change the name of node n4 to w1 to
emphasise the fact that the last tokens in prefixes n4, n6, and n8 have been re-
placed with a wildcard, i.e., they three have become a single new prefix that
is represented by node w1. The descendants of former prefixes n4, n6, and n8

now share the same prefix w1.

Figure 7.6 presents the tree with the resulting prefix set after executing al-
gorithm buildPatterns on the running example. Some the prefixes in the tree
are the result of wildcarding one or more of the original prefixes using func-

82 Chapter 7. Our pattern builder

tion wildcardPrefixes. Note that every path from the tree root to a leaf
represents a different pattern.

7.3.5 Updating the prefix set

Function updatePrefixSet takes four set of prefixes as input: P, S, W, and
W′. In each iteration of algorithm buildPatterns these sets represent, respec-
tively, the ordered prefix set in algorithm buildPatterns, the set of siblings
that have been processed, the set of prefixes to be wildcarded, and another
set in which the prefixes have already been wildcarded. The function re-
turns a prefix set that is the result of updating P by replacing the prefixes to
be wildcarded with their wildcarded version, and subtracting the sibling pre-
fixes that have been processed in that iteration. We formally define this
function as follows:

updatePrefixSet : seq Prefix × seq Prefix × seq Prefix → seq Prefix

∀P, S, W,W′ : seq Prefix •
updatePrefixSet(P, S,W,W′) =

sortSet((P \ W \ S) ∪ {q : Prefix | q ∈ W′ \ S})

7.4 Analysis
In the following subsections, we analyse the worst-case complexity of the

previous ancillary functions and algorithm buildPatterns. In our proofs, we
make the same assumptions regarding arithmetical and set operations as in
the previous chapter, i.e., that they can be implemented in O(1) time with re-
spect to the other operations. Likewise, we assume that O(k log k) is an upper
bound to the worst case complexity of the algorithm used to sort a set of size
k, e.g., using Merge Sort.

7.4.1 Ancillary functions

Proposition 7.1 (initialisePrefixSet) Let hs be a hubset. The size of the set
of every possible prefix in the patterns of flat hs is mn in the worst case,
where m and n denote the number of patterns and the maximum size of a
pattern in flat hs, respectively.

Proof Function initialisePrefixSet(hs) computes a new prefix for each sub-
sequence of tokens in each pattern in flat hs, starting from the beginning of

7.4. Analysis 83

each pattern. Therefore, for each pattern the function computes as many
prefixes as the size of the pattern. In the worst case, all subsequences are dif-
ferent (i.e., there does not exist two patterns with a common subsequence), so
the total number of prefixes is the sum of all of the patterns sizes. The worst
case happens when every pattern has the maximum length, which we denote
as m. As a conclusion, the number of prefixes is mn in the worst case. Finally,
the function has to order this set, which can be implemented in O(k log k)

time, where k is the size of the set. As a conclusion, initialisePrefixSet

terminates in O(mn + mn log(mn)) time in the worst case. 2

Proposition 7.2 (computeSiblings) Let hs be a hubset and p be a pre-
fix of a pattern in flat hs. computeSiblings(hs, p) terminates in O(k) time in
the worst case, where k denotes the number of patterns in flat hs.

Proof Function computeSiblings(hs, p) has to iterate through the set of pat-
terns of flat hs and check whether they have a common prefix with p up
to its penultimate token. Therefore, it has to process each of the k pat-
terns of flat hs. As a conclusion, function computeSiblings(hs, p) terminates
in O(k) time in the worst case. 2

Proposition 7.3 (Number of siblings) Let hs be a hubset and p be a pre-
fix of a pattern in flat hs. computeSiblings(hs, p) has k prefixes in the worst
case, where k denotes the number of patterns in flat hs.

Proof Function computeSiblings(hs, p) has to iterate through the set of pat-
terns of flat hs and check whether they have a common prefix with p up to its
penultimate token. In the worst case, every pattern in flat hs shares that com-
mon prefix. As a conclusion, function computeSiblings(hs, p) returns k

prefixes in the worst case. 2

Proposition 7.4 (upperThreshold) Let R be a set of real numbers and let
k = #R. Function upperThreshold(R) terminates in O(k) time in the worst
case.

Proof The function has to compute the mean and standard deviation of R,
which we can safely assume terminate in O(k) time in both cases. Then, it has
to perform several arithmetical operations, which terminate in O(1) time. As
a conclusion, function upperThreshold terminates in O(k) time, in the worst
case. 2

Proposition 7.5 (p-estimator) Let hs be a hubset, and p be a prefix of a pat-
tern in flat hs. Function p-estimator(hs, p) terminates in O(k) time in the
worst case, where k denotes the number of patterns in flat hs.

84 Chapter 7. Our pattern builder

Proof Function p-estimator(hs, p) has to calculate the ratio of hubs in flat hs

that have at least one pattern whose prefix is p. It has to iterate through ev-
ery hub in hs. In each hub, it must find at least one pattern of which p is a
prefix. In the worst case, the function needs to iterate through the com-
plete set of patterns of flat hs. As a conclusion, this function terminates in
O(k) time in the worst case. 2

Proposition 7.6 (wildcardPrefixes) Let S′ be a set of prefixes, and i ∈ N be a
number. Function wildcardPrefixes(S′, i) terminates in O(k) time in the
worst case, where k denotes the size of S′.

Proof Function wildcardPrefixes must iterate through the k elements in S′.
In each iteration, the function concatenates three subsequences, which can be
implemented in O(1) time. As a conclusion, wildcardPrefixes terminates in
O(k) time, in the worst case. 2

Proposition 7.7 (updatePrefixSet) Let P, S, W and W′ be sets of prefixes,
and k be the maximum size of set P. Function updatePrefixSet(P, S, W,W′)

terminates in O(k log k) time in the worst case.

Proof Function updatePrefixSet must update the prefix set P by subtracting
a number of elements in S and W, and adding the elements in W′. Accord-
ing to Proposition 7.8, after this update, P has decreased its size in at least one
element, i.e., it has size k − 1 in the worst case. The former set opera-
tions can be implemented in O(1) time. Finally, the function sorts P, which
can be implemented in O((k − 1) log(k − 1)) ⊆ O(k log k) time. As a conclu-
sion, O(k log k) is an upper bound to the worst-case time complexity of
updatePrefixSet(P, S, W,W′). 2

7.4.2 Algorithm

Proposition 7.8 (Iterations in algorithm buildPatterns) Let hs be a hubset,
n = # flat hs, and m the size of the longest pattern in flat hs. Algorithm
buildPatterns(hs) terminates in mn iterations in the worst case.

Proof Algorithm buildPatterns has to iterate until the whole prefix set P is
empty. Initially, P has nm elements in the worst case, according to Proposi-
tion 7.1; in each iteration, a prefix p is removed from P and processed. On the
one hand, if the last element of p is $ (lines 12 and 13), then one element is
withdrawn from P and no elements are added, so P decreases its size in one
element. On the other hand, if the last element of p is not $, P it is modified by
function updatePrefixSet, at line 30. We can distinguish between two cases:

7.4. Analysis 85

Case 1: If the set of prefixes to be wildcarded W is empty, no elements are
added to P at line 30. W can be empty when none of the siblings of p

that are being analysed have a significantly high p-estimator. The worst
case is that p has no siblings, so the set of siblings S contains only p (re-
call that every prefix is a sibling of itself). Therefore, in this case only
one element is withdrawn from P at line 30. W′ has the same size as W,
since the wildcarding function at line 28 creates a new wildcarded pre-
fix for each prefix in the original set. Therefore, W′ is also empty, and no
elements are added to P.

Case 2: If W is not empty, let k = #W. The worst case is that the set of siblings
S has size 1 (as we proved before), so a total of k + 1 elements are with-
drawn from P at line 28. The size of W′ is k, as seen before. The prefixes
in W′ that have not been processed in this iteration (W′ \ S′) are added
to P at line 28. An upper bound to the number of elements in W′ \ S′ is
the size of W, in which case we add k elements to P. Therefore, at the
end of the iteration, P has decreased its size in (k + 1) − k = 1 element.

As a conclusion, in each iteration the size of P decreases in at least one pre-
fix. Since P is a set whose initial size is nm, we can conclude that, in the
worst case, the main loop of algorithm buildPatterns (lines 9–32) iterates a
maximum of nm times. 2

Theorem 7.1 (buildPatterns) Let hs be a hubset.
O((m + 2 m2)n3 + (3m + m2 log(mn))n2 + (2m + m log n)n) is an
upper bound to the worst-case time complexity of Algorithm
buildPatterns(hs), where n denotes the number of patterns in flat hs, and m

denotes the size of the longest pattern.

Proof Algorithm buildPatterns starts by initialising the set of prefixes in
flat hs, which terminates in O(m n + mn log(mn)) time in the worst case ac-
cording to Proposition 7.1. Then, it has to iterate until the prefix set P is
empty (lines 9–32). In the worst case, that means mn iterations, accord-
ing to Proposition 7.8. In each iteration, the worst case is that the last token in
the prefix is not $, so that it has to perform the following steps:

• Select the shortest prefix in the prefix set P, which terminates in O(1)
time.

• Compute the siblings of a prefix at line 16, which terminates in O(n)

time in the worst case according to Proposition 7.2.

86 Chapter 7. Our pattern builder

• Calculate the threshold for p-estimators that are upper outliers at
line 18. The algorithm calls function upperThreshold on the set of p-
estimators of the prefixes in the set of siblings S. First, the algorithm has
to call function p-estimator to compute the p-estimator of each prefix
in S, which has n prefixes in the worst case. Function p-estimator ter-
minates in O(n) time in the worst case according to Proposition 7.5.
Therefore, the computation of p-estimators terminates in O(n2) time in
the worst case. Then, function upperThreshold terminates in O(n) time
according to Proposition 7.4, since n is the size of the set of siblings S in
the worst case according to proposition 7.3. Therefore, the computation
of the threshold terminates in O(n2 + n) time in the worst case.

• For each prefix in the set of siblings, the algorithm has to check if the p-
estimator of the prefix is lower than the threshold and, in that case, add
the prefix to the set of non-frequent siblings S′ at line 23. Since the p-
estimators of each prefix were already computed in the previous step, it
is not necessary to compute them again, so we assume that the opera-
tions in the loop at lines 20–25 terminate in O(1) time, and the loop itself
terminates then in O(n) time in the worst case.

• Then, the algorithm computes the set of prefixes that must be wild-
carded (W) at line 27. The algorithm compares each element in S′

to each element in P to check if the former is a prefix of the lat-
ter. Since S′ is a subset of S and S has a maximum size of n, S′ has a
maximum size of n, in the worst case. In addition, P has a maxi-
mum size of m n according to Proposition 7.1, so the total number of
elements in W is the cartesian product of the two sets, i.e., m n2.

• Then, the elements in W are wildcarded at line 28, which termi-
nates in O(k) time according to Proposition 7.6, where k is the size of
the input set. The size of W is always less or equal than mn2 as we
proved in the previous step, so the execution of wildcardPrefixes(W, i)

terminates in O(mn2) time in the worst case.

• Finally, the set of prefixes P is updated by function updatePrefixSet at
line 30, which terminates in O(k log k) time in the worst case accord-
ing to Proposition 7.7, where k is the maximum size of P. Therefore,
updatePrefixSet terminates in O((mn) log(mn)) time in the worst
case.

Therefore, O(mn + mn log(mn) + mn(1 + n + n2 + n + n + m n2 +

mn2 +(m n) log(mn))) = O((m+ 2m2)n3 +(3 m+m2 log(mn))n2 +(2m+

7.5. Summary 87

m log n)n) is an upper bound to the worst-case time complexity of
Algorithm buildPatterns. 2

Corollary 7.1 Let hs be hubset. O(n3) is an upper bound to the worst-
case time complexity of Algorithm buildPatterns(hs), where n denotes the
number of patterns in hs.

Proof Since the size of an URL is always significantly smaller than the number
of URLs in a hub page, i.e., m ≪ n, we can conclude that the time com-
plexity is O((m + 2m2)n3 + (3m + m2 log(mn))n2 + (2m + m log n)n) ⊆
O(3+n2 log n + n log n) ⊆ O(n3) is an upper bound to the worst-case time
complexity of the algorithm. 2

7.5 Summary

In this chapter, we have described our pattern builder, which is responsi-
ble for building a set of patterns that represent the URLs of a web site. We use
a statistical approach to discern which parts of a URL are significant and
should be a part of the pattern, and which parts are not significant and can be
abstacted. We have proved that our proposal is computationally tractable.

88 Chapter 7. Our pattern builder

Chapter8

Evaluation

Cleverly designed experiments are the key.

Wonder and Skepticism, 1995.

Carl Edward Sagan, astrophysicist (1934-1996)

I
n this chapter, we present the evaluation of our proposal and cor-
roborate the conjectures on which it is based. It is organised as follows:
in Section 8.1, we introduce it; Section 8.2 describes the experimen-
tal design, the results of the experiments, and draws some intuitive

conclusions from them; Section 8.3 presents some statistical tests that corrob-
orate our conclusions; Section 8.4 corroborates the conjectures on which our
proposal is based; finally, we summarise the chapter in Section 8.5.

89

90 Chapter 8. Evaluation

8.1 Introduction
The goals of our evaluation are threefold: first, we aim to prove that

our technique is able to classify web pages with good precision and re-
call, with regard to other baseline classification techniques; second, we aim to
prove that our technique is very efficient with regard to other techniques;
finally, we aim to corroborate the conjectures on which our proposal relies.

8.2 Experimental evaluation
In this section, we present the results of the experiments we have car-

ried out to compare our proposal to other techniques in the literature from an
empirical point of view. We first describe our experimentation environ-
ment, then we present the experimental results, and finally we corroborate
this results with a number of statistical tests.

8.2.1 Experimentation environment
The experiments were run on a cloud computer that was equipped with a

four-threaded 64-bit 2.93 GHz Intel i7 processor, 16 GiB of RAM, Oracle Java
Development Kit 1.6.0_25, and Windows 7 Pro 64-bit.

We have carried out our experimentation with a collection of datasets that
were gathered from the top 41 web sites according to Alexa on February 14,
2011, excluding search engines since their hubs provide links to exter-
nal sites; the dataset included four additional academical sites, namely: TDG
Scholar, Google Scholar, Microsoft Academic Search, and Arxiv.org. A de-
tailed description of our datasets can be found in Appendix C.1. A demo of
our technique and the datasets used are available at the author’s web site†1.

We also compared our technique to two state-of-the-art classification
techniques. We did not find any available implementation of the URL-
based techniques described in section 5.5. We had to resort to the following
baselines:

Template Page Model Classification Scheme, or TPM for short [21]: It is a
supervised structural web page classifier, that detects common tem-
plates in a small set of training pages. We implemented this proposal in
the lab using Java. We used four randomly-selected pages in each
dataset to train a classifier, 50 randomly-selected pages to evalu-
ate it, and set the similarity threshold to 0.75; these figures were
recommended by the authors in their article.

†1http://tdg-seville.info/inmahernandez

http://tdg-seville.info/inmahernandez

8.2. Experimental evaluation 91

Support Vector Clustering, or SVC for short [15]: It is an unsupervised clus-
tering technique that is based on Support Vector Machines. We chose
this clustering technique because it does not require the user to set a
number of clusters beforehand. Note that SVC is particularly suitable
for clustering web pages since it can deal with large sets of classification
features efficiently; in this context, each feature corresponds to a to-
ken in a pattern and counts its frequency in the datasets. We used the
implementation provided by RapidMiner [99] using the suggested pa-
rameters values: radial kernel with γ = 1.00, a kernel cache of size 200,
a minimum of 2 pages per cluster, a convergence of 0.001, and a
maximum of 100 000 iterations.

Our goal was to prove that our technique is able to perform as well as a
supervised technique without needing a training set of annotated pages, and
that it performs better than other unsupervised classification techniques. Fur-
thermore, we aimed to prove that our technique is as effective as other
techniques that use internal features, which need to download the pages
before classifying them.

8.2.2 Experimental results
For each dataset, we used our pattern builder and evaluated its effective-

ness. We used 50% of the hubs in each dataset to infer a set of patterns
(training set) and the remaining 50% to validate our proposal (test set). We set
both the confidence level for calculating outliers and the similarity thresh-
old to 0.05. Regarding the confidence level, recall that it defines the fraction of
data in a distribution that are considered outliers; we selected the stan-
dard value in the literature. Regarding the similarity threshold, recall that it is
a small value that allows to consider two close numbers equal; there is not a
standard in the literature, but we found out through repeated experimenta-
tion that setting it to other values had a slight negative impact on the
effectiveness of our proposal.

Regarding effectiveness, we computed precision (P), recall (R), and the F1

measure (F1); regarding efficiency, we computed the CPU learning times in
seconds (T). Precision, recall and F1 were measured for each class. However,
the learning time could not be measured for each class in the unsuper-
vised techniques, since the number of classes is not known beforehand;
therefore, the time is measured for each site.

In the case of TPM, it was easy to compute the precision and recall since
it is a supervised technique, i.e., it requires the user to provide anno-
tated web pages for each class. Contrarily, CALA and SVC are unsupervised,

92 Chapter 8. Evaluation

CALA TPM SVC

Summary P R F1 T P R F1 T P R F1 T

Mean 0.98 0.91 0.92 9.24 1.00 0.65 0.70 4.17 0.66 0.93 0.72 10 613.52

Std. Deviation 0.09 0.19 0.18 10.80 0.00 0.39 0.38 5.81 0.31 0.20 0.26 32 019.15

Site Class P R F1 T P R F1 T P R F1 T

Amazon
Products 1.00 0.94 0.97

34.06
1.00 0.46 0.63

16.78
- - -

-Reviews 1.00 0.99 1.00 1.00 0.22 0.36 - - -

Authors 1.00 1.00 1.00 1.00 1.00 1.00 - - -

Daily Motion Videos 1.00 1.00 1.00 2.78 1.00 0.50 0.67 1.53 0.73 1.00 0.85 587.00
User Profiles 1.00 1.00 1.00 1.00 0.91 0.95 0.24 1.00 0.38

Ehow Articles 1.00 0.99 0.99 2.06 1.00 0.00 0.00 0.86 1.00 0.78 0.88 1 113.00

Answers Topics 0.92 0.99 0.95 5.06 1.00 0.50 0.67 6.03 0.22 1.00 0.36 33 553.00
Questions 1.00 1.00 1.00 1.00 0.98 0.99 0.76 1.00 0.86

Digg
Authors 0.99 1.00 1.00

3.80
1.00 0.49 0.66

6.59
0.26 1.00 0.42

453.00Articles 1.00 1.00 1.00 1.00 0.00 0.00 0.26 1.00 0.42

Comments 1.00 1.00 1.00 1.00 0.33 0.49 0.33 1.00 0.49

India Times Articles 1.00 0.45 0.62 5.42 1.00 0.00 0.00 0.53 0.99 0.70 0.82 1 240.00

Daily Mail Authors 1.00 1.00 1.00 9.48 1.00 0.50 0.67 7.19 0.10 0.99 0.19 203 114.00
Articles 1.00 0.45 0.62 1.00 1.00 1.00 0.45 0.99 0.62

Deviantart Photos 1.00 1.00 1.00 8.86 1.00 1.00 1.00 4.44 0.86 1.00 0.92 11 059.00
Tags 0.94 0.31 0.47 1.00 0.50 0.67 0.12 0.98 0.21

Filestube Files 1.00 0.94 0.97 7.97 1.00 1.00 1.00 0.34 0.91 1.00 0.95 175.00

The Huffington Post Articles 1.00 0.18 0.31 3.73 1.00 0.83 0.90 5.30 0.99 0.99 0.99 858.00

Sourceforge Projects 1.00 1.00 1.00 8.02 1.00 0.96 0.98 0.84 0.61 1.00 0.76 420.00
Reviews 1.00 1.00 1.00 1.00 0.49 0.66 0.36 1.00 0.53

Squidoo Articles 1.00 0.99 1.00 2.08 1.00 0.00 0.00 2.27 0.58 1.00 0.73 137.00
User Profiles 1.00 1.00 1.00 1.00 0.49 0.66 0.36 1.00 0.53

Torrentz Files 1.00 1.00 1.00 3.33 1.00 1.00 1.00 0.17 0.98 1.00 0.99 914.00

The Guardian Authors 0.65 1.00 0.99 20.94 1.00 1.00 1.00 7.55 0.35 0.97 0.51 6 028.00
Articles 0.35 1.00 0.02 1.00 0.87 0.93 0.56 0.72 0.63

Archive Articles 1.00 0.98 0.99 13.28 1.00 0.98 0.99 0.23 0.98 1.00 0.99 263.00

Isohunt Files 1.00 0.97 0.98 4.94 1.00 0.98 0.99 2.69 0.49 1.00 0.66 524.00
Comments 1.00 1.00 1.00 1.00 1.00 1.00 0.49 1.00 0.66

Yelp Businesses 1.00 0.79 0.88 7.59 1.00 1.00 1.00 24.61 1.00 1.00 1.00 899.00

Metacafe
Videos 1.00 0.76 0.86

4.20
1.00 0.25 0.40

4.41
0.50 1.00 0.67

2 647.00Topics 1.00 0.97 0.99 1.00 1.00 1.00 0.28 1.00 0.44

User Profiles 1.00 0.91 0.95 1.00 0.48 0.65 0.19 1.00 0.32

Etsy Products 1.00 0.95 0.97 21.55 1.00 0.52 0.69 2.78 - - - -
Stores 1.00 1.00 1.00 1.00 0.42 0.60 - - -

BBC News 1.00 0.57 0.73 3.66 1.00 0.00 0.00 2.31 0.39 0.97 0.56 37.00
Videos 1.00 1.00 1.00 1.00 0.00 0.00 0.43 1.00 0.60

Alibaba Products 1.00 0.89 0.94 22.23 1.00 1.00 1.00 4.36 0.97 0.25 0.39 3 746.00

P = Precision; R = Recall; F1 = F1-measure; T = CPU learning time;

Table 8.1: Results of the evaluation.

8.2. Experimental evaluation 93

CALA TPM SVC

Site Class P R F1 T P R F1 T P R F1 T

Target Products 1.00 1.00 1.00 47.50 1.00 1.00 1.00 12.77 0.98 1.00 0.99 31 917.00

TDG Scholar
Authors 1.00 1.00 1.00

6.03
1.00 1.00 1.00

1.38
0.60 1.00 0.75

38 081.00Hosts 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.92 0.83

Papers 1.00 0.25 0.40 1.00 0.00 0.00 1.00 0.88 0.93

MS Academic Authors 1.00 0.85 0.92 7.89 1.00 0.96 0.98 2.83 0.73 1.00 0.85 354.00
Papers 1.00 0.98 0.99 1.00 0.50 0.67 0.21 1.00 0.35

Google Scholar Citations 1.00 1.00 1.00 5.28 1.00 1.00 1.00 1.23 1.00 1.00 1.00 66.00

Arxiv
Authors 1.00 1.00 1.00

20.81
1.00 0.25 0.40

9.53
0.73 0.18 0.29

3 124.00Papers 1.00 1.00 1.00 1.00 0.00 0.00 0.17 0.18 0.17

Abstracts 1.00 0.88 0.94 1.00 0.92 0.96 0.10 0.19 0.13

Livejournal News 1.00 0.64 0.78 3.30 1.00 0.00 0.00 1.22 1.00 1.00 1.00 6 372.00

Xing User Profiles 1.00 1.00 1.00 2.08 1.00 1.00 1.00 0.77 1.00 1.00 1.00 1 300.00

Odesk User Profiles 1.00 1.00 1.00 4.70 1.00 0.49 0.66 2.61 0.55 1.00 0.71 22 414.00
Skills 1.00 1.00 1.00 1.00 1.00 1.00 0.41 1.00 0.58

Articles Base Authors 1.00 1.00 1.00 3.41 1.00 1.00 1.00 2.00 0.91 1.00 0.95 133.00

Freelancer Projects 1.00 1.00 1.00 4.47 1.00 1.00 1.00 26.33 1.00 0.92 0.96 26 560.00

Plenty Of Fish User Profiles 1.00 1.00 1.00 6.16 1.00 0.85 0.92 0.25 1.00 1.00 1.00 3 766.00

Slideshare Files 0.92 1.00 0.96 3.00 1.00 1.00 1.00 1.30 0.92 1.00 0.96 171.00

Netlog User Profiles 1.00 1.00 1.00 3.72 1.00 0.85 0.92 0.59 1.00 1.00 1.00 49.00

Drupal Projects 1.00 0.68 0.81 3.14 1.00 0.00 0.00 1.14 0.53 1.00 0.70 854.00
Authors 1.00 1.00 1.00 1.00 1.00 1.00 0.34 1.00 0.50

Newegg Products 1.00 1.00 1.00 47.38 1.00 0.91 0.95 3.02 1.00 1.00 1.00 3 068.00

Overblog Articles 1.00 0.78 0.88 0.66 1.00 1.00 1.00 0.53 0.91 1.00 0.96 80.00

Chip Articles 1.00 1.00 1.00 6.75 1.00 0.98 0.99 2.48 1.00 1.00 1.00 19.00

Battle.net Forum Posts 1.00 1.00 1.00 1.95 1.00 0.74 0.85 3.36 1.00 1.00 1.00 179.00

Fiverr Ads 0.96 1.00 0.98 4.16 1.00 0.91 0.95 3.36 0.96 1.00 0.98 1 798.00

Fotolia Photos 1.00 1.00 1.00 12.00 1.00 1.00 1.00 0.84 1.00 1.00 1.00 14 324.00

People

Styles 1.00 0.70 0.74

4.25

1.00 0.00 0.00

3.77

0.52 0.92 0.66

8 439.00Babies 1.00 0.69 0.73 1.00 0.00 0.00 0.48 0.96 0.64

Covers 1.00 1.00 1.00 1.00 0.33 0.50 0.61 0.87 0.71

Articles 1.00 0.84 0.84 1.00 1.00 1.00 0.91 0.94 0.93

Indeed Jobs 1.00 1.00 1.00 4.27 1.00 0.00 0.00 2.45 1.00 1.00 1.00 2 271.00

Game FAQs Boards 1.00 1.00 1.00 8.61 1.00 0.98 0.99 0.48 1.00 1.00 1.00 12 662.00

Table 8.1: Results of the evaluation. (Cont’d)

94 Chapter 8. Evaluation

i.e., they cluster web pages, give each cluster a computer-generated class, and
it is the responsibility of the user to assign a meaning to these classes. To vali-
date CALA and TPM, we handcrafted annotations for every web page in our
test sets, so we could find which cluster was the closest to each anno-
tation. To do so, we compared each web page in each cluster to every
annotation, and computed the number of true positives (tp), false nega-
tives (fn), and false positives (fp), since this allowed us to compute precision
as P = tp

tp+fp
, recall as R = tp

tp+fn
, and the F1 measure as F1 = 2 P R

P+R
. Given an

annotation, we can consider that the precision and recall to classify it
corresponds to the cluster with the highest F1 measure.

Table 8.1 reports on the results of our experiments. The columns report on
the number of URLs of each class in each dataset (U), average page size in
KiB (S), precision (P), recall (R), the F1 measure (F1), and learning time in
CPU seconds (T). The first two rows provide a summary of these measures in
terms of mean values and standard deviations. A dash in a cell means that the
corresponding technique was not able to learn an extraction rule in one week.

Figure 8.1(a) illustrates the effectiveness measures in a scatter plot; in-
tuitively, the closer the points to (1.00, 1.00) the higher the F1 measure;
similarly, the closer to (0.00, 0.00) the lower the F1 measure. Figures 8.1(b)
and 8.2 illustrate the efficiency measures in a histogram and a box plot,
respectively; intuitively, this helps compare the learning times taking into ac-
count the whole range of values. Note that the X axis in the former histogram
is expressed in logarithmic scale because of its large extension.

According to Table 8.1, CALA outperforms the other techniques re-
garding F1; Figure 8.1(a) illustrates this conclusion since the majority of
points that correspond to CALA are very close the upper right corner,
whereas the points that correspond to the other techniques are more scat-
tered. Note too that the results in Table 8.1 support the idea that CALA is
more effective regarding learning time than the other unsupervised tech-
nique (SVC), and that it is comparable to TPM which is supervised and
requires to download a page before classifying it. Figures 8.1(b) and 8.2 illus-
trate this idea. Note that for CALA, times range from 0.53 to 49.00 seconds
and for TPM, they range from 0.17 to 26.33 seconds. Therefore, in both cases
the learning times are below 60 seconds. On the contrary, for SVC learn-
ing times range from 19.00 to 203, 114 seconds (more than 2 days). Therefore,
CALA and TPM behave more homogeneously regarding learning times, and
their learning times are significantly lower than those of SVC.

The drawbacks and the weak points of the other techniques were re-
flected in their effectiveness. TPM classifies pages according to the sequences

8.2. Experimental evaluation 95

������������������������������	���
���������

���� ���� ���� ���� ��
� ����
������

���������
��������

(a) Trade-off precision-recall of the three techniques.

����
�������
��

���������
���������	
���

��	�
����
(b) Histogram with the execution times.

Figure 8.1: Performance of CALA with regard to the other techniques.

96 Chapter 8. Evaluation

Figure 8.2: Boxplot of the learning times of CALA, TPM, and SVC.

of tags in their DOM trees, therefore, it is highly influenced by small changes
in the DOM trees (e.g., an advertisement that is present in one page but not in
another one); this is the reason why its recall is relatively low and the stan-
dard deviation is relatively high. SVC learns a degenerated clustering in
many cases, i.e., a clustering that consists in a single cluster that includes ev-
ery page, cf., Table 8.2; therefore, its precision is relatively low, its recall
deceptively high, and the standard deviation relatively high in both cases.

Their drawbacks were also reflected in the efficiency results achieved.
TPM is able to learn a classifier in less time than CALA, but it needs to down-
load a page before classifying it, which increases the classification time. SVC

relies on a Support Vector Machine that needs too much time to create a clus-
tering in some cases, depending on the size of the training set. That is the
reason why SVC failed to create a clustering for Amazon and Etsy after one
week.

8.3. Statistical analysis 97

Site CALA TPM SVC

Amazon 5 3 -

Daily Motion 2 2 1

eHow 2 1 3

Answers 4 2 3

Digg 3 3 1

India Times 5 1 5

Daily Mail 10 2 2

Deviantart 2 2 2

Filestube 2 1 2

The Huffington Post 4 1 3

Sourceforge 2 2 1

Squidoo 3 2 1

Torrentz 1 1 1

The Guardian 2 2 5

Archive 3 1 1

Isohunt 2 2 1

Yelp 4 1 2

Metacafe 7 3 2

Etsy 3 2 -

BBC 5 2 3

Alibaba 3 1 2

Table 8.2: Number of classes/clusters created by each technique.

8.3 Statistical analysis
To confirm that the conclusions we have drawn from our empirical

evaluation are valid, we need to perform a statistical ranking [51, 119].

The first step is to determine if the evaluation results are normally
distributed and have equal variances; in such a case we must perform a para-
metrical analysis and in other case a non-parametrical analysis. We have
conducted a Shapiro-Wilk test at the standard significance level α = 0.05 on
every measure and we have found out that none of them behaves normally.
For instance, Shapiro-Wilk’s statistic regarding the normality of CALA’s pre-
cision is W = 0.22, whose p-value is 0.00; this is a strong indication that the

98 Chapter 8. Evaluation

Site CALA TPM SVC

Target 2 1 2

TDG Scholar 3 3 4

MS Academic 6 2 1

Google Scholar 1 1 2

Arxiv 4 3 2

Livejournal 3 1 2

Xing 1 1 2

Odesk 4 2 2

Articles Base 1 1 1

Freelancer 1 1 2

Plenty Of Fish 1 1 2

Slideshare 1 1 1

Netlog 2 1 1

Drupal 5 2 2

Newegg 2 1 3

Overblog 1 1 1

Chip 1 1 3

Battle.net 1 1 2

Fiverr 2 1 2

Fotolia 1 1 2

People 8 4 4

Indeed 2 1 2

Game FAQs 1 1 2

Table 8.2: Number of classes/clusters created by each technique. (Cont’d)

data is not distributed normally. This is not surprising at all; a quick look at
the scatter plot in Figure 8.1(a) makes it clear that these cloud of points are far
from a Gaussian circle.

As a conclusion, we have performed a non-parametric analysis, which
consists of the following steps: i) compute the rank of each technique from
the evaluation data; ii) determine if the differences in ranks are signifi-
cant or not using Iman-Davenport’s test; iii) if the differences are significant,
then compute the statistical ranking using Bergmann-Hommel’s test on every

8.4. Corroboration of conjectures 99

Sample Ranking Iman-Davenport Bergmann-Hommel’s Statistical Ranking

Tech Rank P-value Tech CALA TPM SVC Tech Rank

P

TPM 1.56
8.71E-18

CALA - 4.47E-01 2.32E-10 TPM 1

CALA 1.68 TPM - 3.76E-12 CALA 1

SVC 2.76 SVC - SVC 2

R

SVC 1.71
7.95E-06

CALA - 3.28E-04 4.22E-01 SVC 1

CALA 1.84 TPM - 3.33E-05 CALA 1

TPM 2.45 SVC - TPM 2

F1

CALA 1.53
2.41E-06

CALA - 3.86E-04 8.17E-06 CALA 1

TPM 2.13 TPM - 2.54E-01 TPM 2

SVC 2.33 SVC - SVC 2

T

TPM 1.18
2.61E-36

CALA - 0.28E-02 2.97E-08 TPM 1

CALA 1.81 TPM - 2.97E-08 CALA 2

SVC 3.00 SVC - SVC 3
Tech = Technique;

Table 8.3: Results of our statistical ranking.

pair of techniques.

Table 8.3 presents the results of the analysis. Note that the p-value of
Iman-Davenport’s statistic is nearly zero in every case, which is a strong indi-
cation that there are statistically significant differences in the ranks we
have computed from our experiments. It then proceeds to rank the tech-
niques pairwise using Bergmann-Hommel’s test. For the sake of readability,
we also provide an explicit ranking in the last column. Note that our pro-
posal ranks the first regarding F1, which means that it achieves a better
trade-off between precision and recall than the other techniques. Regard-
ing P and R the differences with TPM and SVC (which are the proposals that
ranks the first in each variable, respectively) do not seem to be statistically
significant. Regarding efficiency, our proposal is faster than SVC a thou-
sand orders of magnitude. Although it is slower than TPM, note that since
TPM uses structure-based features, it has to download a page before classify-
ing it. Therefore, although the learning time is faster, the classification time
is slower. As a conclusion, our experiments prove that there is enough
statistical evidence to conclude that our proposal outperforms the others.

8.4 Corroboration of conjectures
In this section, we corroborate the conjectures on which our proposal

relies.

100 Chapter 8. Evaluation

1

10

100

1000

10000

100000

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Fre
qu

en
cy

P-estimator

Amazon Daily Motion Ehow Answers Digg
India Times Daily Mail Deviantart Filestube The Huffington Post
Sourceforge Squidoo Torrentz The Guardian Archive
Isohunt Yelp Metacafe Etsy BBC
Alibaba Target TDG Scholar MS Academic Google Scholar
Arxiv Live Journal Xing Odesk Articles Base
Freelancer Plenty Of Fish Slideshare Netlog Drupal
Newegg Overblog Chip Battle.net Fiverr
Fotolia People Indeed Game FAQs

Figure 8.3: Distribution of p-estimators in our experiments.

Conjecture 6.1 (Value of M): We conjectured that a relatively small number
of hubs suffices to achieve a good effectiveness. Our experiments cor-
roborate this hypothesis since examining more than 100 hubs did not
result in better efficiency.

Conjecture 6.2 (Value of T): We set a maximum number of attempts in Algo-
rithm gatherHubset and conjectured that a relatively small number of
attempts suffices to gather enough hubs. In our experiments, we man-
aged to gather 100 hubs per site in a maximum of five attempts, which
corroborates our conjecture.

Conjecture 6.3 (Value of L) We conjectured that discarding words with a size
lower than L suffices to gather enough words (excluding stop words) to
be used as keywords. Our experiments corroborate this hypothesis
since we got enough keywords to gather 100 hubs per site in every case.

8.4. Corroboration of conjectures 101

Site h e p

Amazon 100 451 000 000 ∼ 0.00

Daily Motion 100 67 600 000 ∼ 0.00

eHow 100 3 700 000 ∼ 0.00

Answers 100 106 000 000 ∼ 0.00

Digg 100 13 000 000 ∼ 0.00

India Times 100 20 600 000 ∼ 0.00

Daily Mail 100 237 000 ∼ 0.04

Deviantart 100 237 000 000 ∼ 0.00

Filestube 100 184 000 000 ∼ 0.00

The Huffington Post 100 9 320 000 ∼ 0.00

Sourceforge 100 17 200 000 ∼ 0.00

Squidoo 100 552 000 ∼ 0.02

Torrentz 100 86 100 000 ∼ 0.00

The Guardian 100 90 800 000 ∼ 0.00

Archive 100 18 600 000 ∼ 0.00

Isohunt 100 25 800 000 ∼ 0.00

Yelp 100 73 000 000 ∼ 0.00

Metacafe 100 6 750 000 ∼ 0.00

Etsy 100 155 000 000 ∼ 0.00

BBC 100 24 100 000 ∼ 0.00

Alibaba 100 630 000 000 ∼ 0.00

h = Number of hubs gathered; e = Estimated number of pages; p = Percentage of pages
gathered.

Table 8.4: Number of pages from each web site in the experiment.

Conjecture 6.4 (Value of N): We conjectured that a relatively small number
of keywords from the initial search page and subsequent hubs suffices
to gather enough hubs. Our experiments corroborate this hypothe-
sis since we managed to gather 100 hubs per site using 10 keywords in
every case.

Conjecture 7.1 (Wildcarding criterion): We conjectured that wildcarding
prefixes with a p-estimator that deviates from the p-estimators of their
siblings and whose distance to 1.00 is higher than 0.05 suffices to build

102 Chapter 8. Evaluation

Site h e p

Target 100 6 090 000 ∼ 0.00

TDG Scholar 100 452 000 ∼ 0.02

MS Academic 100 83 800 ∼ 0.12

Google Scholar 100 7 520 000 ∼ 0.00

Arxiv 100 2 110 000 ∼ 0.00

Live Journal 100 189 000 000 ∼ 0.00

Xing 100 8 930 000 ∼ 0.00

Odesk 100 11 200 000 ∼ 0.00

Articles Base 100 3 420 000 ∼ 0.00

Freelancer 100 4 720 000 ∼ 0.00

Plenty Of Fish 100 15 100 000 ∼ 0.00

Slideshare 100 47 700 000 ∼ 0.00

Netlog 100 434 000 000 ∼ 0.00

Drupal 100 2 910 000 ∼ 0.00

Newegg 100 14 000 000 ∼ 0.00

Overblog 100 31 200 000 ∼ 0.00

Chip 100 3 320 000 ∼ 0.00

Battle.net 100 20 400 000 ∼ 0.00

Fiverr 100 1 040 000 ∼ 0.01

Fotolia 100 110 000 000 ∼ 0.00

People 100 345 000 ∼ 0.03

Indeed 100 161 000 000 ∼ 0.00

Game FAQs 100 27 400 000 ∼ 0.00

h = Number of hubs gathered; e = Estimated number of pages; p = Percentage of pages
gathered.

Table 8.4: Number of pages from each web site in the experiment. (Cont’d)

patterns that allow classifying URLs achieving high precision and
recall. Our experiments corroborate this hypothesis, cf. Table 8.1.

Conjecture 7.2 (Distribution of p-estimators): We conjectured that the dis-
tribution of p-estimators has two peaks at 0.00 and 1.00, and that it is
more dense at these peaks than in between them. Figure 8.3 depicts the
distribution of p-estimators in our datasets; roughly 94.62% of the val-

8.5. Summary 103

ues range from 0.00 to 0.05, 1.63% range from 0.05 to 0.10 and 2.24%
range from 0.95 to 1.00.

8.5 Summary

In this chapter, we have presented the evaluation of our proposal. First,
have we described the experimental design and presented the results of
the experiments. From the previous results, we could draw some prelimi-
nary conclusions regarding the effectiveness and efficiency of our proposal.
Then, we have described the statistical tests we performed to test the for-
mer conclusions. Regarding effectiveness, the tests confirm that our proposal
achieves a better trade-off between precision and recall than the other tech-
niques. Regarding efficiency, the tests confirm that its learning time is slightly
slower than that of the supervised technique, and significantly faster than
that of the unsupervised technique. However, its execution time is faster than
that of the supervised technique, which requires downloading each page
before classifying it.

104 Chapter 8. Evaluation

Part IV

FinalRemarks

Chapter9

Conclusions

Everything has to come to an end, sometime

The Marvelous Land of Oz, 1900.

Lyman Frank Baum, writer (1856-1919)

In this dissertation, we present CALA, a proposal to automatically gener-
ate URL-based web page classifiers that can be used to implement navigators
for enterprise web information integration. Our proposal takes the URL of
a web page with a search form as input, and it outputs a set of pat-
terns that represent the URLs of pages that belong to each semantic class. It is
based on a statistical outlier detection technique to decide which parts of an
URL are significantly representative from each URL pattern and which parts
can be abstracted.

We have validated our proposal using datasets gathered from 44 real-
world web sites that we have made publicly available. We have built a set
of patterns for each web site, and we have used them to classify fur-
ther pages; we achieved an average precision of 98% and average recall of
91%. The times required to build those patterns were reasonable, similar to
those of a supervised technique with which we compare ours. These re-
sults suggest that our proposal seems promising enough for real-world web
page classification, that it is efficient in practice, that the patterns it builds are
able to classify web pages accurately, and that it minimises the number of ir-
relevant pages that are downloaded, which makes it suitable for enterprise
web information integration contexts.

In addition to enterprise web information integration, the patterns built
by our proposal have more potential uses in other fields, and it is our plan to

107

108 Chapter 9. Conclusions

research on them as future work: in the context of web site model discovery,
the patterns built from a web site can be used as a first approach for the enti-
ties in a web site model. Then, other algorithms are needed to detect the
relationships between those entities, to create the complete model. More de-
tails can be found in Appendix D. We have presented preliminary results
elsewhere [66].

As a future work, we think that the following problems deserve further
research: joining two different patterns that actually represent the same class,
splitting a pattern that represents two different classes into two more cohe-
sive patterns, and discarding patterns that do not improve classification (for
example, patterns that match only a few URLs). Other research directions in-
clude considering extended features for classification. Since we get the URLs
for learning the patterns from hubs, some other features might be computed
from them, like the anchor text of the link, or the text surrounding the link.

PartV

Appendices

AppendixA

Notation

Throughout this dissertation, we use a simple notation to present formal
definitions. It builds on a subset of the Z mathematical language stan-
dard (ISO/IEC 13568:2002) [73] that is presented in Table A.1. We also rely on
a number of data types that we describe below.

Our proposal relies on the analysis of the URLs of the web pages pro-
vided by a number of hubs. Generally speaking, a URL describes the access
protocol and the location of a resource. The URL syntax was defined by
the IETF in RFC 3986 [130]. According to this recommendation, a URL
like http://academic.research.microsoft.com/Detail?entitytype=1&searchtype=5&id=
48814179#stats is composed of the following segments: first, a protocol (http);
then, an authority or domain name (academic.research.microsoft.com); after-
wards a sequence of path segments separated by slash characters (Detail); and
two optional sections: a question mark symbol followed by a query string,
and/or a sharp symbol followed by a fragment. A query string provides in-
formation about the names and the values of a number of parameters sent to
the web server (entitytype=1&searchtype=5&id=48814179 includes parameters
entityType, searchType and id with values 1, 5 and 48814179, respectively). Fi-
nally, the fragment is a sequence of characters that indicates a specific section
inside a page (stats).

We define a token as a subsequence of characters in a URL that is delim-
ited by separators ‘://’, ‘/’, ‘?’, ‘&’, ‘=’, and ‘#’. In other words, a token is a
string of characters that denotes a protocol, a path segment, a parameter, a
value of a parameter, or a fragment. We introduce URLs and tokens as three
given sets in our framework since we need not delve into their structure:

Separator == {://, /, ?, &, =, #}

[URL, Token]

111

112 Appendix A. Notation

Notation Description

N Set of natural numbers, including zero.

R Set of real numbers.

[A] Introduces a given set A.

seq A Finite set of elements of type A.

bag A Finite bag of elements of type A.

seq A Sequence of elements of type A.

⟨a⟩ Sequence consisting of element a.

A \ B Creates a new bag with the elements of bag A (their
frequency is not altered) that are not in set B.

#A Size of set or sequence A.

flat A Flattening of the set of sets A.

last S Last element in sequence S.

front S Subsequence of S without its last element.

P prefix Q Sequence P is a prefix for sequence Q.

subseq(S, i, j) Subsequence of sequence S between positions i and j.

sortSet P Sorting of P, a set of sequences, by size in ascending
order.

sortBag Q Sorting of Q, a bag of elements, by frequency in
ascending order.

S ⌢ T Concatenation of sequences S and T .

mean A Mean of the non-empty set of reals A.

stdev A Standard deviation of the non-empty set of reals A.

a ≈ b Numerical values a and b are approximately equal, i.e,
a = b ± β, where β is close to 0.0.

f : A 7→B Function f is a partial mapping defined from domain A

to range B.

f : A → B Function f is a total mapping defined from domain A to
range B.

{a : A | p(a)} Subset of elements of A that satisfy predicate p. If
omitted, p(a) is assumed to be true.

{a : A | p(a) • f(a)} Subset of elements of A that satisfy predicate p

transformed by function f.

Table A.1: Some mathematical notation used throughout this dissertation.

113

We define a pattern as a sequence of tokens, separators, and wild-
cards that ends with a $ symbol. A wildcard, which we denote as ⋆, is a
placeholder that accounts for any token. Note that given a URL, it is straight-
forward to transform it into a pattern; thus, we do not provide any additional
details on this procedure.

A prefix refers to a subsequence of a pattern that starts at the first to-
ken and extends up to any token in the pattern, but the last one. Note that a
pattern is similar to a prefix, since both of them are sequences of tokens, sepa-
rators, and wildcards; the only difference between them is that a pattern ends
with a $. We formally define the previous concepts as follows:

Marker == {⋆, ̂ , $}

Prefix == {p : seq(Token ∪ Separator ∪ Marker) |

#p ≥ 1 ∧ p(1) = ̂ ∧ (∀i : N | i > 1 ∧ i ≤ #p − 1 • p(i) ̸∈ {̂ , $}))}

Pattern == {p : Prefix | last p = $}

A hub page is a web page that results from submitting a keyword-
based search form using some keywords as query, and provides summaries
and links to other web pages [80]. Note that hub pages usually contain a
larger number of URLs than other pages since their goal is to offer the users
as many results related to their queries as possible. Regarding our pro-
posal, a hub can be abstracted as a set of patterns that result from the URLs in
the links provided by that hub page. A hubset is a collection of hubs that re-
sult from submitting a search form using different words. We formally define
the previous concepts as follows:

[Word,WebPage]

Hub == seq Pattern

Hubset == seq Hub

114 Appendix A. Notation

AppendixB

Detectingoutliers

An outlier is a value in a set that deviates markedly from other mem-
bers of the sample in which it occurs [28]. The simplest technique to identify
them in unidimensional sets builds on the Cantelli inequality, according to
which for any random variable X with finite mean µ and finite non-zero
standard deviation σ it holds that:

P(X − µ ≥ kσ) ≤ 1

1 + k2

or, otherwise,

P(X ≥ µ + kσ) ≤ 1

1 + k2

µ + kσ is an upper threshold that defines the frontier from the values of X

that can be considered “normal” to the values that can be considered up-
per outliers. We generally wish this frontier to help identify values whose
probability is very low, typically less than or equal to α = 0.05. If we set

α =
1

1 + k2
,

we then can conclude that

k =

√
1 − α

α
.

Therefore, every value that is greater or equal than

µ +

√
1 − α

α
σ

115

116 Appendix B. Detecting outliers

Figure B.1: Sample distribution and its symmetric.

can be considered an upper outlier.

We also need to identify lower outliers. Unfortunately, the Cantelli in-
equality does not provide a lower threshold, but it is not difficult to compute
building on the following idea: instead of studying variable X, we need to fo-
cus on variable −X whose mean value is −µ and standard deviation is σ,
cf. Figure B.1. If we apply the Cantelli inequality to variable −X, we conclude
that

P(−X − (−µ) ≥ kσ) ≤ 1

1+k2

P(µ − X ≥ kσ) ≤ 1

1+k2

P(X ≤ µ − kσ) ≤ 1

1+k2

In other words, µ − kσ is the lower extreme value, where k is computed as
previously.

Building on the previous argumentation, we formally define the following
functions that help us identify both lower and upper outliers:

lowerThreshold : seq R 7→R
upperThreshold : seq R 7→R

∀R : seq R | R ̸= ∅ •
let µ == mean R; σ == stdev R;k ==

√
(1 − α)/α •

lowerThreshold(R) = µ − kσ

upperThreshold(R) = µ + kσ

AppendixC

Datasets

In our experimentation we created 44 datasets, each of them composed of
100 hubs from real-world web sites. The sites were chosen from the top 500

most visited sites according to Alexa directory. We give a detailed descrip-
tion of each dataset in Table C.1. The datasets, together with the keywords
that were used to fill in the forms in each case, are available at the author’s
web site†1.

†1http://tdg-seville.info/inmahernandez

117

http://tdg-seville.info/inmahernandez

118 Appendix C. Datasets

Class XPath URLs Tokens/URL Page size

amazon.com

Products //a[@class="title"]|//div[@class="image"]//a 6273 28.08 ± 0.02 242.69

Reviews //div[@class="starsAndPrime"]//a 7846 24.34 ± 0.05 149.90

Authors //span[@class="ptBrand"]//a 1558 24.02 ± 0.01 140.64

dailymotion.com

Videos //div[@id="dual_list"]/div/h3//a |
//div[@class="dmpi_video_preview
image_border "]//a

2632 10.00 ± 0.00 63.91

User Profiles //a[@class="login name"] 855 8.00 ± 0.00 68.56

eHow.com

Articles //li[@class="item"]//a|//a[@id="search"] 869 10.00 ± 0.00 47.45

wiki.answers.com

Topics //div[@id="search-results"]/div/p[3]/a 1510 12.00 ± 0.00 136.63

Questions //div[@id="search-
results"]//a[@class="internal"]

4898 10.15 ± 0.02 55.43

digg.com

Articles //h3[@class="story-item-title"]//a |
//a[@class="story-item-thumb"]

1366 10.00 ± 0.00 70.34

Authors //li[@class="story-item-submitter"]//a 1011 6.00 ± 0.00 64.13

Comments //li[@class="story-item-comments"]//a 1366 10.00 ± 0.00 14.45

search.indiatimes.com

Articles id(’netspidersosh’)/tbody/tr[2]/td/table
/tbody/tr[4]/td/table/tbody/tr/td/table[2]/tbody
/tr/td/table[3]/tbody/tr/td/table/tbody/tr/td/a[1]

631 15.18 ± 0.26 70.63

dailymail.co.uk

Articles //h3[@class="sch-res-title"]//a |
//div[@class="sch-res-content"]/h2/a |
//a[@class="boxed-image"]

1976 16.37 ± 0.03 124.95

Authors //h4[@class="sch-res-info"]//a 468 18.43 ± 0.03 104.44

deviantart.com

Photos //a[@class="thumb"] | //a[@class="t"] 3677 10.00 ± 0.00 115.08

Tags //span[@class="tt-w"]/small//a 524 13.61 ± 0.13 86.22

filestube.com

Files //a[@class="resultsLink"] |
//div[@id="newresult"]/div/a[2]

1033 12.19 ± 0.06 26.16

Table C.1: Datasets description

119

Class XPath URLs Tokens/URL Page size

huffingtonpost.com

Articles //a[@property="f:title"] 754 14.55 ± 0.17 204.09

sourceforge.net

Projects //td[@class="description"]//a 2195 10.00 ± 0.00 32.11

Reviews //div[@class="recommended"]//a 1294 8.00 ± 0.01 27.61

squidoo.com

Articles //dl[@class="searchresults
search_list_dl"]/dt/a

969 8.00 ± 0.01 137.56

User profiles //dd[@class="search_results_url"]/a[2] 613 10.00 ± 0.01 58.67

torrentz.eu

Files //div[@class="results"]/dl//a 4739 6.00 ± 0.00 16.60

guardian.co.uk

Authors //li[@class="l1"]/p/a 315 16.00 ± 0.00 82.46

Articles 682 22.92 ± 0.10 143.03

archive.org

Articles //h3[@class="t2"]//a[@class="link-text"] 4981 10.08 ± 0.02 19.09

isohunt.com

Files //table[@id="serps"]//td/a[2] 1996 14.00 ± 0.00 57.33

Comments //table[@id="serps"]/tbody/tr/td[3]/a[1] 1996 14.00 ± 0.00 59.59

yelp.com

Businesses //div[@class="businessresult
clearfix"]/div/h4/a

995 10.97 ± 0.06 159.49

metacafe.com

Videos //h3[@class="itemtitle"]//a |
//p[@class="itemtitle"]//a

1971 13.17 ± 0.04 102.19

Topics //h3[@class="itemtitle"]//a |
//p[@class="itemtitle"]//a

1109 11.45 ± 0.07 68.75

User Profiles //h3[@class="itemtitle"]//a |
//p[@class="itemtitle"]//a

750 11.31 ± 0.10 55.67

etsy.com

Products //p[@class="listing-title"]//a |
//a[@class="listing-thumb"]

4170 38.97 ± 0.15 86.93

Stores //p[@class="listing-maker"]//a 4120 33.01 ± 0.15 110.65

Table C.1: Datasets description (Cont’d)

120 Appendix C. Datasets

Class XPath URLs Tokens/URL Page size

bbc.co.uk

News //div[@id="news-content"]//a 220 12.21 ± 0.17 69.85

Videos 233 17.03 ± 0.03 49.89

alibaba.com

Products //a[@class="qrptitle"] 3912 14.30 ± 0.03 93.33

target.com

Products //span[@class="producttitle"]//a 3713 14.01 ± 0.00 245.09

scholar.tdg-seville.info

Authors //span[@class="person"]//a 2061 15.16 ± 0.04 29.36

Papers //span[@class="title"]//a 759 14.98 ± 0.26 65.32

Hosts //span[@class="host"]//a 336 15.09 ± 0.07 38.96

academic.research.microsoft.com

Authors //a[@class="author-name-tooltip"] 3767 14.00 ± 0.00 98.81

Papers //div[@class="title-download"]//h3/a 1160 14.01 ± 0.01 78.90

scholar.gooogle.com

Citations //span[@class="gs_fl"]//a[1] 1014 25.99 ± 0.03 102.87

arxiv.org

Authors //div[@class="list-authors"]//a 15529 27.00 ± 0.00 41.42

Papers //a[@title="download pdf"] |
//a[@title="download postscript"]

3681 10.00 ± 0.00 826.72

Abstracts //a[@title="Abstract"] 2094 10.00 ± 0.00 14.65

livejournal.com

News //ol[@class="tagged-list"]/li/dl/dt/a 1333 11.33 ± 0.10 55.58

xing.com

User profiles //table[@class="data-
table"]/tbody/tr[string-
length(@style)=0]/td/a

993 10.00 ± 0.00 33.31

odesk.com

User profiles //div[@class="searchresult"]/div/div/h3/a 902 22.00 ± 0.00 31.44

Skills //a[@class="skill"] 761 13.73 ± 0.14 44.32

articlesbase.com

Authors //span[@class="name"]//a 1008 12.00 ± 0.00 66.19

Table C.1: Datasets description (Cont’d)

121

Class XPath URLs Tokens/URL Page size

freelancer.com

Projects //div[@class="title"]/a 2207 14.06 ± 0.05 174.16

pof.com

User profiles //a[@class="mic"] 6542 14.00 ± 0.00 19.59

slideshare.net

Files //ol[@class="searchresults"]/li/a 1190 10.04 ± 0.02 82.55

en.netlog.com

User profiles //table[@class="searchresults"]//h4/a1 968 8.00 ± 0.00 36.28

drupal.org

Projects //dt[@class="title"]//a 2464 8.37 ± 0.03 24.89

Authors //p[@class="submitted"]//a 1514 8.00 ± 0.00 14.59

newegg.com

Products //div[@class="itemtext"]/a 1832 16.00 ± 0.00 153.62

over-blog.com

Articles //h2[@class="title"]//a 1063 10.13 ± 0.04 53.02

chip.de

Articles //span[text()=’Artikel’]/../../span//a 161 12.22 ± 0.11 112.93

battle.net

Forum Posts //div[@class="results post-results"]//h4/a 476 16.11 ± 0.06 87.34

fiverr.com

Ads //div[@class="gig-title"]//a 2428 8.01 ± 0.01 42.47

fotolia.com

Photos //div[@class="list"]/div/a 4161 10.00 ± 0.00 39.92

people.com

Articles //div[@id="resultsNews"]
//a[@class="entry-permalink"]

311 19.53 ± 0.14 39.12

Babies //div[@id="resultsBabies"]
//a[@class="entry-permalink"]

301 15.00 ± 0.00 76.97

Covers //div[@id="resultsCovers"]
//a[@class="entry-permalink"]

219 21.00 ± 0.00 35.14

Styles //div[@id="resultsStyleWatch"]
//a[@class="entry-permalink"]

336 15.09 ± 0.13 54.55

indeed.com

Jobs //h2[@class="jobtitle"]//a 993 14.00 ± 0.00 21.05

gamefaqs.com

Boards //tr/td[11]/a 3371 10.00 ± 0.00 20.77

Table C.1: Datasets description (Cont’d)

122 Appendix C. Datasets

AppendixD

Websitemodeldiscoveryusing
CALA

The Web comprises a number of web sites that expose data stored
in a back-end database, publishing them in a friendly format [30]. En-
try points to these web sites are submittable query forms, which return as
a response a number of web pages that are generated by filling a tem-
plate with data [19, 79]. The data that fill each template is the result of
executing a view over the back-end database [6].

Since query forms are the unique entry points to most sites in the Web, the
different views that provide the data to fill each template are not accessible.
Therefore, the conceptual model of the database, which comprises a num-
ber of entities and a number of relationships amongst these entities, remains
hidden.

Having access to the conceptual model of a web site is mandatory to per-
form several tasks, such as integrating different (semantic or non-semantic)
web sites [6, 110, 114], extracting information from the web without
supervision [5, 29, 79], or creating ontologies by means of query forms [123].

As a consequence, there are many proposals in the literature that deal
with discovering conceptual models behind web sites [5, 6, 19, 21, 22, 35,
65, 79, 98, 104, 123]. Some of these proposals deal with models com-
posed solely of entities, without taking the relationships between them into
account [19, 21, 22, 65, 98, 104]. Other proposals discover models with enti-
ties and relationships [6, 123], but they are supervised and require the
intervention of the user, providing expert knowledge about each web site. Fi-
nally, the rest of the proposals focus on a single template, discovering only
one view of the model [5, 35, 79].

123

124 Appendix D. Web site model discovery using CALA

As an application of our proposal, we propose a technique to discover the
conceptual model behind a web site. The model our technique is able to dis-
cover from each web site does not represent the complete, hidden conceptual
model of the back-end database, but the union of the views over that concep-
tual model, composed of those entities and relationships that are exposed in
the web site.

Our technique takes a set of URL patterns as input, each of which repre-
sents an entity in a particular web site. It follows a statistical approach to
detect relationships between those entities. Our hypothesis is that each rela-
tionship is materialised in HTML links that go from pages of one class to
pages of another class, so an XPath pattern targeting those links is created
to represent each relationship. The URL patterns that support our tech-
nique can be either handcrafted by the user, or automatically built by any of
the former proposals [7, 22, 65, 104].

Our proposal presents some advantages: it creates a conceptual model
consisting not only of entities, but also of relationships between those enti-
ties; it is not supervised, which saves the user a significant amount of time in
annotating training sets, and does not require the user to have expert knowl-
edge; and it integrates different views from the different templates in the site.
Furthermore, our proposal discovers all the possible anonymous relation-
ships in the model, and we leave the user the task of annotating those
relationships with an appropriate name and selecting those relationships that
are useful for his or her model. Therefore, the set of relationships we auto-
matically discover can be used as a first approach to the model, which can be
refined by an expert data modeller, with a significant reduction in time in-
vestment [125]. Our technique takes a set of URL patterns that describe
all classes of information offered in a web site as input, and discovers
relationships between the classes.

We base the discovery of relationships between two classes on the detec-
tion of HTML links in pages of one class whose target is a page of another
class. We extract the XPath locators of those links, and we apply a statistical-
based technique to estimate the variability of each token in each locator.
Then, we abstract the tokens with a high variability (again, using a statisti-
cal criterion), learning XPath patterns. Finally, each XPath pattern represents
a particular relationship between the former classes.

There is an abstract relationship between two classes a and b, if there are
links to pages of class b in most pages of class a. However, more than one
type of relationship may exist between any given pair of classes a and b. For

125

n1, //div
n2, [@id
n3,='ctl00_divCenter ']
n4, /div

n55, [6]
n56, /ul

n7, /lin6, /ul
n5, [5]

n9, /div n24, /div n31,/div n39, /div
n38, [4]n30,[3]n23, [2]n8, [1]

n10, [2] n25, [2] n32,[2] n40, [2]
n11, /a

n12,
[1]

n26, /a
n27,
[1]

n33, /a
n34,
[1]

n41, /a
n42,
[1]

n13,
[2]

n14,
[3]

n35
,[2]

n43,
[2]

n44,
[3]

n45,
[4]

n59, /div n68, /div n76, /div n84, /div
n83, [4]n75, [3]n67, [2]n58, [1]

n60, [2] n69, [2] n77, [2] n85 , [2]
n61, /a

n62,
[1]

n78, /a
n79,
[1]

n86, /a
n87,
[1]

n63,
[2]

n64,
[3]

n80,
[2]

n88,
[2]

n57, /li
n46, [5]

n48, [2]
n49, /an47, /div

n90, [5]

n92, [2]
n93, /an91, /div

n20,
[9]

n21,
[10]

n22,
[11]

n28,
[2]

n29,
[3]

n36
,[3]

n37
,[4] n50,

[1]
n51,
[2]

n52,
[3]

n53,
[4]

n54,
[5]

n65,
[4]

n66,
[5]

n71,
[1]

n72,
[2]

n73,
[3]

n74,
[4]

n70, /a
n81,
[3]

n82,
[4]

���

n94,
[1]

n95,
[2]

n96,
[3] ���

n89,
[2]

Figure D.1: XPathTree.

Node token Ω V(ni)

n11 /a 11, 3, 3 4.62

n26 /a 3, 4, 3 0.58

n33 /a 4, 3, 3 0.58

n41 /a 2, 4, 1 1.53

n49 /a 1, 5, 2 2.08

n61 /a 4, 5, 5 0.58

n70 /a 4, 3, 4 0.58

n78 /a 3, 4, 3 0.58

n86 /a 3, 3, 2 0.58

n93 /a 4, 5, 8 2.08

Table D.1: Variability estimator values.

example, pages of class Author in MsAcademic contain both a list of publica-
tions, which include coauthors of the publication, and a list of citations,
which includes authors that cited this author, as shown in Figure D.3. There-
fore, there are two different types of relationships in this model between class
Author and itself: 1) isCoauthorOf and 2) cites.

126 Appendix D. Web site model discovery using CALA

n1, //div
n2, [@id
n3,='ctl00_divCenter ']
n4, /div

n55, [6]
n56, /ul

n7, /lin6, /ul
n5, [5]

n9,
/div

n24,
/div

n31,
/div

n39,
/div

n38,
[4]

n30,
[3]

n23,
[2]

n8,
[1]

n10,
[2]

n25,
[2]

n32,
[2]

n40,
[2]

n11,
/a

w1,
[�]

n26,
/a

w2,
[�]

n33,
/a
w3,
[�]

n41,
/a

w4,
[�]

n59,
/div

n68,
/div

n76,
/div

n84,
/div

n83,
[4]

n75,
[3]

n67,
[2]

n58,
[1]

n60,
[2]

n69,
[2]

n77,
[2]

n85, [2]
n61,
/a

w6,
[�]

n78,
/a
w8,
[�]

n86,
/aw9,
[�]

n57, /li
n46,
[5]

n48,
[2]
n49,
/a

n47,
/div

n90,
[5]

n92,
[2]
n93,
/a

n91,
/div

w5,
[�]

w7,
[�]

n70,
/a

w10,
[�]

Figure D.2: XPathTree, after compression.

Figure D.3: Detail page of class Author.

127

Using only URL patterns, we are not able to discern between these differ-
ent types of relationships, since all URLs match the same pattern, regardless
of the type of relationship they represent. Therefore, other features must be
extracted from the URLs to classify them according to their role.

We assume that links whose URL matches the same URL patterns may ap-
pear in different locations in the page, but all links representing the same
relationship appear in similar locations. Therefore, we use the XPath of the
different links, which denotes their location in the page. We apply a tech-
nique to build patterns for those XPath, which starts by tokenising all XPath
locators and inserting all their tokens in order in an XPathTree. Then, we use
some criterion to discern tokens that must be abstracted (replaced by a
wildcard), based on the concept of variability of a token.

The variability of a token refers to how spread the numbers of to-
kens that follow that token in different XPath locators in different pages of the
same class (i.e., the different numbers of children of the node represent-
ing that token in each page) are. Since we do not analyse all pages of a site,
but only a representative sample, we estimate the variability by means of the
following definition.

Definition D.1 (Variability estimator:) Let Dc be a set of detail pages of class
c, x an XPath expression and ni be a tree node referring a token t, we define
the variability estimator of node ni, and we denote it as V(n) as the standard
deviation of the numbers of children of node ni in the different pages of Dc.

Based on these variability estimators, we define a process to generate
XPath patterns. For each node ni in the XPathTree, we check if its variabil-
ity estimator is significatively high, and in that case, all of its children nodes
have their token replaced with a wildcard, and the subtrees rooted at them
are merged. Contrarily, children of nodes with a low variability are probably
part of a pattern, so they are not abstracted, but kept as literals.

Our technique to mine relationships between classes a and b consists of
two steps: XPathTree building and XPathTree compressing.

In the first step, we extract all URLs matching pattern Φ(b) in pages from
Da, and we calculate an XPath locator for each of them. XPath locators are
tokenised, and each token is inserted in an XPathTree as a node with a vari-
ability estimator. An example of an XPathTree built using this technique is
presented in Figure D.1. It contains XPath expressions of URLs matching
Φ(Author) in the running example, extracted from detail pages of class Author.

128 Appendix D. Web site model discovery using CALA

In the second step, we apply a compressing algorithm that performs a
depth-first traversal on the XPathTree, and for each visited node, uses its vari-
ability estimator to discern nodes with a variability higher than a given
parameter θ > 0. Those nodes have their token abstracted into a wildcard (⋆).
As an example, nodes with variability higher than 0.5 are presented in
Table D.1.

After the whole tree has been traversed and processed, each of the result-
ing tree branches represents a different pattern. Furthermore, each pattern
refers to a different type of relationship between classes a and b. As an exam-
ple, in Figure D.2 we show the example tree containing XPath expressions of
links between class Author and itself, after processing all of its nodes. The tree
contains ten branches, which correspond to ten XPath patterns.

At the end of this process, for each pair of classes a and b, we have
learnt a set of XPath patterns, that represent the different relationships be-
tween them. These relationships are anonymous, and it is left to the user the
task of assigning them to an appropriate class. Furthermore, we have identi-
fied all the possible relationships, but some of them might be duplicated (i.e.,
we discover a relationship between a and b, which is the same as another re-
lationship between b and a). Therefore, the user has the opportunity to select
the relationships that are most suitable for his or her model, discarding the
rest. Therefore, although we are indeed automatically discovering the rela-
tionships between entities, the user still has the complete control over the
final model.

As an example, consider the former patterns discovered in Figure D.2.
The first five patterns correspond to links to authors that co-author, respec-
tively, the five most recent papers of an author. Meanwhile, patterns sixth to
tenth correspond to links to authors of, respectively, the five most recent pa-
pers that cite the author. Therefore, the five first patterns correspond to a
particular relationship between class Author and itself(isCoauthorOf), while the
five last patterns correspond to a different relationship (cites).

We performed an experiment to validate our technique. Microsoft Aca-
demic Search was analysed to discover the conceptual model behind it, by
means of two steps: in the first step, we discovered the entities in the model,
using the URL patterns obtained by CALA; in the second step we discov-
ered the relationships between these entities, with the former URL patterns as
input, and using the technique described in this paper.

We show the relationships discovered for this site in Figure D.4, using a
UML class diagram. After the intervention from the user, a possible model

129

���
���
���
���
���

���
���
���
���
���
���

Author
���
���
���
���
���
���

���
���
���
���
���
���

Paper
���
���
���
���
���

���
���
���
���
���
���

Journal
���
���
���
���
���

���
���
���
���
���
Conference���

���
���
���
���

���
���
���
���
���
���

Citation

r3, r4, r5, r6, r7
r8, r9, r10, r11, r12

r16 r15r14r13
r1 r2 r23r24r22r21r18r25 r17 r19

r27r28r29 r26
r20

Figure D.4: Relationships for MsAcademic.

���
���
���
���
���

��
��
��
��
��
��

Author
��
��
��
��
��

��
��
��
��
��
��

Paper
���
���
���
���
���

���
���
���
���
���
���

Journal

���
���
���
���
���
���

��
��
��
��
��
��

Conference
��
��
��
��
��
��

��
��
��
��
��
��

Citation

isCoauthorOfcites authorsCitingwrites / isWrittenBypublishesIn / includesPublicationFrompublishedIn / includescites publishedIn / includeshas / referencescites / hasCitations cites / hasCitationspublishesIn / includesPublicationFrom
Figure D.5: Model for MsAcademic.

obtained from the former relationships is presented in Figure D.5. For exam-
ple, relationships r3, r4, r5, r6 and r7, represent respectively the co-authors of
the most recent paper of an author, the co-authors of the second most re-
cent paper, and so on. The user analyses these relationships and decides that
all these relationships are actually the same, and labels it isCoauthorOf.

Using our technique, it is also possible to infer hierarchical relationships

130 Appendix D. Web site model discovery using CALA

between classes, by identifying classes that share a common group of rela-
tionship with other classes. For example, in the former example model for
MsAcademic, classes Journal and Conference both share exactly the same
types of relationships (Journal is related to Paper by means of r23 and r24, to
Author by means of r1 and r2 and to Citations by means of r19 and r20.
Similarly, Conference is related to the same set of classes, with two rela-
tionships with each class). Therefore, our technique proposes the user the
generalisation of Journal and Conference into another class, and lets the
user name it (e.g., Host).

Bibliography

[1] Webdriver. http://seleniumhq.org/docs/03_webdriver.html, 2012.

[2] S. Abiteboul and O. M. Duschka. Complexity of answering queries
using materialized views. In PODS, pages 254–263, 1998.

[3] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu. On the design of a learn-
ing crawler for topical resource discovery. ACM Trans. Inf. Syst., 19(3):
286–309, 2001.

[4] V. Anupam, J. Freire, B. Kumar, and D. F. Lieuwen. Automating web
navigation with the WebVCR. Computer Networks, 33(1-6):503–517,
2000.

[5] A. Arasu and H. Garcia-Molina. Extracting structured data from web
pages. In SIGMOD Conference, pages 337–348, 2003.

[6] P. Atzeni, G. Mecca, and P. Merialdo. Managing web-based data:
Database models and transformations. IEEE Internet Computing, 6(4):
33–37, 2002.

[7] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl in the DUST:
Different URLs with similar text. TWEB, 3(1):3, 2009.

[8] Z. Bar-Yossef and S. Rajagopalan. Template detection via data mining
and its applications. In WWW, pages 580–591, 2002.

[9] R. Baumgartner, M. Ceresna, and G. Ledermuller. Deep Web navigation
in web data extraction. In CIMCA/IAWTIC, pages 698–703, 2005.

[10] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information
extraction with Lixto. In VLDB, pages 119–128, 2001.

[11] E. Baykan, M. Henzinger, L. Marian, and I. Weber. A comprehen-
sive study of features and algorithms for url-based topic classification.
TWEB, 5(3):15, 2011.

131

http://doi.acm.org/10.1145/275487.275516
http://doi.acm.org/10.1145/275487.275516
http://dx.doi.org/10.1145/502115.502119
http://dx.doi.org/10.1145/502115.502119
http://dx.doi.org/10.1016/S1389-1286(00)00073-6
http://dx.doi.org/10.1016/S1389-1286(00)00073-6
http://dx.doi.org/10.1145/872757.872799
http://dx.doi.org/10.1145/872757.872799
http://www.computer.org/internet/ic2002/w4033abs.htm
http://www.computer.org/internet/ic2002/w4033abs.htm
http://dx.doi.org/10.1145/1462148.1462151
http://dx.doi.org/10.1145/1462148.1462151
http://dx.doi.org/10.1145/511446.511522
http://dx.doi.org/10.1145/511446.511522
http://www.vldb.org/conf/2001/P119.pdf
http://www.vldb.org/conf/2001/P119.pdf
http://dx.doi.org/10.1145/1993053.1993057
http://dx.doi.org/10.1145/1993053.1993057

132 Bibliography

[12] E. Baykan, M. R. Henzinger, L. Marian, and I. Weber. Purely URL-based
topic classification. In WWW, pages 1109–1110, 2009.

[13] E. Baykan, M. R. Henzinger, and I. Weber. Web page language
identification based on URLs. PVLDB, 1(1):176–187, 2008.

[14] F. Beil, M. Ester, and X. Xu. Frequent term-based text clustering. In
KDD, pages 436–442, 2002.

[15] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector
clustering. Journal of Machine Learning Research, 2:125–137, 2001.

[16] A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A maximum entropy ap-
proach to natural language processing. Computational Linguistics, 22
(1):39–71, 1996.

[17] C. Bertoli, V. Crescenzi, and P. Merialdo. Crawling programs for
wrapper-based applications. In IRI, pages 160–165, 2008.

[18] S. Bhagat, G. Cormode, and I. Rozenbaum. Applying link-based clas-
sification to label blogs. In WebKDD/SNA-KDD, pages 97–117,
2007.

[19] L. Blanco, M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti. Auto-
matically building probabilistic databases from the Web. In WWW,
pages 185–188, 2011.

[20] L. Blanco, V. Crescenzi, and P. Merialdo. Efficiently locating collections
of web pages to wrap. In WEBIST, pages 247–254, 2005.

[21] L. Blanco, V. Crescenzi, and P. Merialdo. Structure and seman-
tics of data-intensive web pages: An experimental study on their
relationships. J. UCS, 14(11):1877–1892, 2008.

[22] L. Blanco, N. Dalvi, and A. Machanavajjhala. Highly efficient algo-
rithms for structural clustering of large websites. In WWW, pages
437–446. ACM, 2011.

[23] J. Blythe, D. Kapoor, C. A. Knoblock, K. Lerman, and S. Minton.
Information integration for the masses. J. UCS, 14(11):1811–1837, 2008.

[24] N. Bruno and S. Chaudhuri. Exploiting statistics on query expressions
for optimization. In SIGMOD Conference, pages 263–274, 2002.

http://dx.doi.org/10.1145/1526709.1526880
http://dx.doi.org/10.1145/1526709.1526880
http://www.vldb.org/pvldb/1/1453880.pdf
http://www.vldb.org/pvldb/1/1453880.pdf
http://dx.doi.org/10.1145/775047.775110
http://www.jmlr.org/papers/v2/horn01a.html
http://www.jmlr.org/papers/v2/horn01a.html
http://dx.doi.org/10.1109/IRI.2008.4583023
http://dx.doi.org/10.1109/IRI.2008.4583023
http://dx.doi.org/10.1007/978-3-642-00528-2_6
http://dx.doi.org/10.1007/978-3-642-00528-2_6
http://dx.doi.org/10.1145/1963192.1963285
http://dx.doi.org/10.1145/1963192.1963285
http://flint.dia.uniroma3.it/pdf/webist2005.pdf
http://flint.dia.uniroma3.it/pdf/webist2005.pdf
http://www.jucs.org/jucs_14_11/structure_and_semantics_of/jucs_14_11_1877_1892_blanco.pdf
http://www.jucs.org/jucs_14_11/structure_and_semantics_of/jucs_14_11_1877_1892_blanco.pdf
http://www.jucs.org/jucs_14_11/structure_and_semantics_of/jucs_14_11_1877_1892_blanco.pdf
http://dx.doi.org/10.1145/1963405.1963468
http://dx.doi.org/10.1145/1963405.1963468
http://www.isi.edu/integration/papers/blythe08-jucs.pdf
http://dx.doi.org/10.1145/564691.564722
http://dx.doi.org/10.1145/564691.564722

Bibliography 133

[25] S. Chakrabarti. Focused web crawling. In Encyclopedia of Database
Systems, pages 1147–1155. 2009.

[26] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gibson, and
J. M. Kleinberg. Automatic resource compilation by analyzing hyper-
link structure and associated text. Computer Networks, 30(1-7):65–74,
1998.

[27] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A
new approach to topic-specific web resource discovery. Computer
Networks, 31(11-16):1623–1640, 1999.

[28] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, 2009.

[29] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A sur-
vey of web information extraction systems. IEEE Trans. Knowl. Data
Eng., 18(10):1411–1428, 2006.

[30] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Struc-
tured Databases on the Web: Observations and Implications. SIGMOD
Record, 33(3):61–70, 2004.

[31] S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Pa-
pakonstantinou, J. D. Ullman, and J. Widom. The TSIMMIS project:
Integration of heterogeneous information sources. In IPSJ, pages 7–18,
1994.

[32] C.-M. Chen and N. Roussopoulos. Adaptive selectivity estimation
using query feedback. In SIGMOD Conference, pages 161–172, 1994.

[33] W. W. Cohen. Improving a page classifier with anchor extraction and
link analysis. In NIPS, pages 1481–1488, 2002.

[34] J. Conallen. Modeling web application architectures with UML.
Commun. ACM, 42(10):63–70, 1999.

[35] V. Crescenzi and G. Mecca. Automatic information extraction from
large websites. J. ACM, 51(5):731–779, 2004.

[36] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards auto-
matic data extraction from large web sites. In VLDB, pages 109–118,
2001.

http://dx.doi.org/10.1007/978-0-387-39940-9_165
http://dx.doi.org/10.1016/S0169-7552(98)00087-7
http://dx.doi.org/10.1016/S0169-7552(98)00087-7
http://dx.doi.org/10.1016/S1389-1286(99)00052-3
http://dx.doi.org/10.1016/S1389-1286(99)00052-3
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/TKDE.2006.152
http://dx.doi.org/10.1109/TKDE.2006.152
http://dx.doi.org/10.1145/1031570.1031584
http://dx.doi.org/10.1145/1031570.1031584
http://ilpubs.stanford.edu:8090/66/1/1994-32.pdf
http://ilpubs.stanford.edu:8090/66/1/1994-32.pdf
http://dx.doi.org/10.1145/191839.191874
http://dx.doi.org/10.1145/191839.191874
http://books.nips.cc/papers/files/nips15/AP11.pdf
http://books.nips.cc/papers/files/nips15/AP11.pdf
http://dx.doi.org/10.1145/317665.317677
http://dx.doi.org/10.1145/1017460.1017462
http://dx.doi.org/10.1145/1017460.1017462
http://www.vldb.org/conf/2001/P109.pdf
http://www.vldb.org/conf/2001/P109.pdf

134 Bibliography

[37] D. R. Cutting, J. O. Pedersen, D. R. Karger, and J. W. Tukey. Scat-
ter/gather: A cluster-based approach to browsing large document
collections. In Research and Development in Information Retrieval,
pages 318–329, 1992.

[38] H. Davulcu, J. Freire, M. Kifer, and I. V. Ramakrishnan. A layered archi-
tecture for querying dynamic web content. In SIGMOD Conference,
pages 491–502, 1999.

[39] G. T. de Assis, A. H. F. Laender, M. A. Gonçalves, and A. S. da Silva.
Exploiting genre in focused crawling. In SPIRE, pages 62–73, 2007.

[40] L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, and A. E. Romero.
Probabilistic methods for link-based classification at INEX 2008. In
INEX, pages 453–459, 2008.

[41] D. de Castro Reis, P. B. Golgher, A. S. da Silva, and A. H. F. Laen-
der. Automatic web news extraction using tree edit distance. In WWW,
pages 502–511, 2004.

[42] I. F. de Viana, I. Hernández, P. Jiménez, C. R. Rivero, and H. A. Sleiman.
Integrating deep-web information sources. In PAAMS, pages 311–320,
2010.

[43] M. M. Deza and E. Deza. Encyclopedia of distances. Springer, edition 3,
2012.

[44] A. Doan and A. Y. Halevy. Semantic integration research in the
database community: A brief survey. AI Magazine, 26(1):83–94, 2005.

[45] S. T. Dumais and H. Chen. Hierarchical classification of web content. In
SIGIR, pages 256–263, 2000.

[46] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: se-
mantics and query answering. Theor. Comput. Sci., 336(1):89–124,
2005.

[47] E. Fersini, E. Messina, and F. Archetti. Enhancing web page classifica-
tion through image-block importance analysis. Inf. Process. Manage.,
44(4):1431–1447, 2008.

[48] R. Z. Frantz, A. M. R. Quintero, and R. Corchuelo. A domain-specific
language to design enterprise application integration solutions. Int. J.
Cooperative Inf. Syst., 20(2):143–176, 2011.

Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections
Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections
Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections
http://dx.doi.org/10.1145/304182.304225
http://dx.doi.org/10.1145/304182.304225
http://dx.doi.org/10.1007/978-3-540-75530-2_6
http://dx.doi.org/10.1007/978-3-642-03761-0_47
http://dx.doi.org/10.1145/988672.988740
http://dx.doi.org/10.1007/978-3-642-12433-4_37
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1801
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1801
http://dx.doi.org/10.1145/345508.345593
http://dx.doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1016/j.ipm.2007.11.003
http://dx.doi.org/10.1016/j.ipm.2007.11.003
http://dx.doi.org/10.1142/S0218843011002225
http://dx.doi.org/10.1142/S0218843011002225

Bibliography 135

[49] T. Friedman, D. Newman, D. Feinberg, and W. Andrews. Cool vendors
in data management and integration. Gartner Research, 2007.

[50] J. Fürnkranz. Hyperlink ensembles: a case study in hypertext
classification. Information Fusion, 3(4):299–312, 2002.

[51] S. García, A. Fernández, J. Luengo, and F. Herrera. Advanced nonpara-
metric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining. Inf. Sci., 180(10):
2044–2064, 2010.

[52] L. Getoor, E. Segal, B. Taskar, and D. Koller. Probabilistic Models of Text
and Link Structure for Hypertext Classification. In IJCAI Workshop on
Text Learning: Beyond Supervision, 2001.

[53] T. Gottron. Clustering template based web documents. In European
Colloquium on IR Research, pages 40–51, 2008.

[54] A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakellariou.
Adaptive query processing: A survey. In BNCOD, pages 11–25, 2002.

[55] P. Grünwald. Advances in minimum description length: Theory and
applications. MIT Press, 2005.

[56] I. Hacking. An Introduction to Probability and Inductive Logic.
Cambridge University Press, 2001.

[57] A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):
270–294, 2001.

[58] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data integration: The
teenage years. In VLDB, pages 9–16, 2006.

[59] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the deep web.
Commun. ACM, 50(5):94–101, 2007.

[60] H. He, W. Meng, Y. Lu, C. T. Yu, and Z. Wu. Towards deeper under-
standing of the search interfaces of the deep web. In WWW, pages
133–155, 2007.

[61] R. Hecht-Nielsen. Neural networks for perception (vol. 2). chapter The-
ory of the backpropagation neural network, pages 65–93. Harcourt
Brace & Co., 1992.

http://dx.doi.org/10.1016/S1566-2535(02)00090-8
http://dx.doi.org/10.1016/S1566-2535(02)00090-8
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://www.seas.upenn.edu/unhbox voidb@x penalty @M taskar/pubs/ijcai01-ws.pdf
http://www.seas.upenn.edu/unhbox voidb@x penalty @M taskar/pubs/ijcai01-ws.pdf
http://dx.doi.org/10.1007/978-3-540-78646-7_7
http://dx.doi.org/10.1007/3-540-45495-0_2
http://link.springer.de/link/service/journals/00778/bibs/1010004/10100270.htm
http://www.vldb.org/conf/2006/p9-halevy.pdf
http://www.vldb.org/conf/2006/p9-halevy.pdf
http://dx.doi.org/10.1145/1230819.1241670
http://dx.doi.org/10.1007/s11280-006-0010-9
http://dx.doi.org/10.1007/s11280-006-0010-9
http://dl.acm.org/citation.cfm?id=140639.140643

136 Bibliography

[62] I. Hernández, C. R. Rivero, D. Ruiz, and J. L. Arjona. An experi-
ment to test url features for web page classification. In PAAMS, pages
109–116, 2012.

[63] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo. A tool for
link-based web page classification. In CAEPIA, pages 443–452, 2011.

[64] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo. An architecture
for efficient web crawling. In CAiSE Workshops, pages 228–234, 2012.

[65] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo. A statistical ap-
proach to url-based web page clustering. WWW Companion, pages
525–526. ACM, 2012.

[66] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo. Towards
discovering conceptual models behind web sites. In ER, 2012. TBP.

[67] I. Hernández, H. A. Sleiman, D. Ruiz, and R. Corchuelo. A con-
ceptual framework for efficient web crawling in virtual integration
contexts. In WISM, pages 282–291, 2011.

[68] I. Hernández, H. A. Sleiman, D. Ruiz, and R. Corchuelo. A tool for web
links prototyping. In ICAI, pages 951–957, 2011.

[69] L. Hirsch. How big is e-commerce? 2002.

[70] A. Holmes and M. Kellogg. Automating functional tests using
selenium. In AGILE, pages 270–275, 2006.

[71] A. Hotho, A. Maedche, and S. Staab. Ontology-based text document
clustering. KI, 16(4):48–54, 2002.

[72] A. Hotho, S. Staab, and G. Stumme. WordNet improves text document
clustering. In SIGIR Semantic Web Workshop, pages 541–544, 2003.

[73] Z formal specification notation: syntax, type system and semantics,
2002.

[74] Z. G. Ives, A. Y. Halevy, and D. S. Weld. Adapting to source proper-
ties in processing data integration queries. In SIGMOD Conference,
pages 395–406, 2004.

[75] A. K. Jain and R. C. Dubes. Algorithms for clustering data.
Prentice-Hall, 1988.

http://dx.doi.org/10.1007/978-3-642-28795-4_13
http://dx.doi.org/10.1007/978-3-642-28795-4_13
http://dx.doi.org/10.1007/978-3-642-25274-7_45
http://dx.doi.org/10.1007/978-3-642-25274-7_45
http://dx.doi.org/10.1007/978-3-642-31069-0_20
http://dx.doi.org/10.1007/978-3-642-31069-0_20
http://dx.doi.org/10.1145/2187980.2188109
http://dx.doi.org/10.1145/2187980.2188109
http://dx.doi.org/10.1007/978-3-642-23982-3_35
http://dx.doi.org/10.1007/978-3-642-23982-3_35
http://dx.doi.org/10.1007/978-3-642-23982-3_35
http://world-comp.org/p2011/ICA8251.pdf
http://world-comp.org/p2011/ICA8251.pdf
http://dx.doi.org/10.1109/AGILE.2006.19
http://dx.doi.org/10.1109/AGILE.2006.19
http://dx.doi.org/10.1145/1007568.1007613
http://dx.doi.org/10.1145/1007568.1007613

Bibliography 137

[76] I. T. Jolliffe. Principal Component Analysis. Springer, 2002.

[77] M.-Y. Kan and H. O. N. Thi. Fast webpage classification using URL
features. In CIKM, pages 325–326, 2005.

[78] L. Kaufman and P. J. Rousseeuw. Finding groups in data: An
introduction to cluster analysis. John Wiley and Sons, 1990.

[79] M. Kayed and C.-H. Chang. Fivatech: Page-level web data extrac-
tion from template pages. IEEE Trans. Knowl. Data Eng., 22(2):249–263,
2010.

[80] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632, 1999.

[81] C. A. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately and
reliably extracting data from the web: A machine learning approach.
IEEE Data Eng. Bull., 23(4):33–41, 2000.

[82] W. Koehler. An analysis of web page and web site constancy and
permanence. JASIS, 50(2):162–180, 1999.

[83] H. S. Koppula, K. P. Leela, A. Agarwal, K. P. Chitrapura, S. Garg, and
A. Sasturkar. Learning URL patterns for webpage de-duplication. In
WSDM, pages 381–390. ACM, 2010.

[84] G. Korfiatis and G. Paliouras. Modeling web navigation using gram-
matical inference. Applied Artificial Intelligence, 22(1&2):116–138,
2008.

[85] M. Kovacevic, M. Diligenti, M. Gori, and V. M. Milutinovic. Recogni-
tion of common areas in a web page using visual information: a
possible application in a page classification. In IEEE International
Conference on Data Mining, pages 250–257, 2002.

[86] N. Kushmerick. Wrapper verification. World Wide Web, 3(2):79–94,
2000.

[87] O.-W. Kwon and J.-H. Lee. Text categorization based on k-nearest
neighbor approach for web site classification. Inf. Process. Manage., 39
(1):25–44, 2003.

[88] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teix-
eira. A brief survey of web data extraction tools. SIGMOD Record, 31
(2):84–93, 2002.

http://www.worldcat.org/isbn/0387954422
http://dx.doi.org/10.1145/1099554.1099649
http://dx.doi.org/10.1145/1099554.1099649
http://dx.doi.org/10.1109/TKDE.2009.82
http://dx.doi.org/10.1109/TKDE.2009.82
http://dx.doi.org/10.1145/324133.324140
http://sites.computer.org/debull/A00DEC-CD.pdf
http://sites.computer.org/debull/A00DEC-CD.pdf
http://dx.doi.org/10.1002/(SICI)1097-4571(1999)50:2<162::AID-ASI7>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1097-4571(1999)50:2<162::AID-ASI7>3.0.CO;2-B
http://dx.doi.org/10.1145/1718487.1718535
http://dx.doi.org/10.1080/08839510701853267
http://dx.doi.org/10.1080/08839510701853267
http://computer.org/proceedings/icdm/1754/17540250abs.htm
http://computer.org/proceedings/icdm/1754/17540250abs.htm
http://computer.org/proceedings/icdm/1754/17540250abs.htm
http://dx.doi.org/10.1023/A:1019229612909
http://dx.doi.org/10.1016/S0306-4573(02)00022-5
http://dx.doi.org/10.1016/S0306-4573(02)00022-5
http://dx.doi.org/10.1145/565117.565137

138 Bibliography

[89] J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F. Laender. Auto-
matic generation of agents for collecting hidden web pages for data
extraction. Data Knowl. Eng., 49(2):177–196, 2004.

[90] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous in-
formation sources using source descriptions. In VLDB, pages 251–262,
1996.

[91] J. Li, K. Furuse, and K. Yamaguchi. Focused crawling by exploiting
anchor text using decision tree. In WWW, pages 1190–1191, 2005.

[92] S. W. Liddle, D. W. Embley, D. T. Scott, and S. H. Yau. Extracting data
behind web forms. In ER (Workshops), pages 402–413, 2002.

[93] J. B. MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, volume 1, pages 281–297.
University of California Press, 1967.

[94] J. Madhavan, L. Afanasiev, L. Antova, and A. Y. Halevy. Harnessing the
deep web: Present and future. In CIDR, 2009.

[95] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Y.
Halevy. Google’s deep web crawl. PVLDB, 1(2):1241–1252, 2008.

[96] L. M. Manevitz and M. Yousef. One-class SVMs for document
classification. Journal of Machine Learning Research, 2:139–154, 2001.

[97] R. McCann, B. K. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan.
Mapping maintenance for data integration systems. In VLDB, pages
1018–1030, 2005.

[98] G. Mecca, S. Raunich, and A. Pappalardo. A new algorithm for
clustering search results. Data Knowl. Eng., 62(3):504–522, 2007.

[99] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE:
rapid prototyping for complex data mining tasks. In KDD, pages
935–940, 2006.

[100] P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. Lopez. Web navi-
gation sequences automation in modern websites. In DEXA, pages
302–316, 2009.

[101] S. Mukherjea. Discovering and analyzing world wide web collections.
Knowl. Inf. Syst., 6(2):230–241, 2004.

http://dx.doi.org/10.1016/j.datak.2003.10.003
http://dx.doi.org/10.1016/j.datak.2003.10.003
http://dx.doi.org/10.1016/j.datak.2003.10.003
http://dx.doi.org/10.1145/1062745.1062933
http://dx.doi.org/10.1145/1062745.1062933
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2784&spage=402
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2784&spage=402
https://database.cs.wisc.edu/cidr/cidr2009/Paper_115.pdf
https://database.cs.wisc.edu/cidr/cidr2009/Paper_115.pdf
http://www.vldb.org/pvldb/1/1454163.pdf
http://www.jmlr.org/papers/v2/manevitz01a.html
http://www.jmlr.org/papers/v2/manevitz01a.html
http://www.vldb2005.org/program/paper/fri/p1018-mccann.pdf
http://dx.doi.org/10.1016/j.datak.2006.10.006
http://dx.doi.org/10.1016/j.datak.2006.10.006
http://dx.doi.org/10.1007/978-3-642-03573-9_25
http://dx.doi.org/10.1007/978-3-642-03573-9_25
http://www.springerlink.com/index/10.1007/s10115-003-0112-y

Bibliography 139

[102] J. Neville, D. Jensen, and B. Gallagher. Simple estimators for relational
bayesian classifiers. In ICDM, pages 609–612, 2003.

[103] K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell. Text classifica-
tion from labeled and unlabeled documents using em. In Machine
Learning, pages 103–134, 1999.

[104] D. P and D. Khemani. Unsupervised learning from URL corpora. In
COMAD, pages 128–139, 2006.

[105] A. Pan, J. Raposo, M. Álvarez, J. Hidalgo, and Á. Viña. Semi-automatic
wrapper generation for commercial web sources. In Engineering
Information Systems in the Internet Context, pages 265–283, 2002.

[106] G. Pant and P. Srinivasan. Learning to crawl: Comparing classification
schemes. ACM Trans. Inf. Syst., 23(4):430–462, 2005.

[107] G. Pant and P. Srinivasan. Link contexts in classifier-guided topical
crawlers. IEEE Trans. Knowl. Data Eng., 18(1):107–122, 2006.

[108] H.-S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids
clustering. Expert Syst. Appl., 36(2):3336–3341, 2009.

[109] I. Partalas, G. Paliouras, and I. P. Vlahavas. Reinforcement learn-
ing with classifier selection for focused crawling. In ECAI, pages
759–760, 2008.

[110] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin.
Translating web data. In VLDB, pages 598–609, 2002.

[111] X. Qi and B. D. Davison. Web page classification: Features and
algorithms. ACM Comput. Surv., 41(2), 2009.

[112] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In
WWW, 2001.

[113] C. R. Rivero, I. Hernández, D. Ruiz, and R. Corchuelo. Benchmark-
ing data exchange amongst semantic-web ontologies. In TKDE, pages
1613–1618, 2011.

[114] C. R. Rivero, I. Hernández, D. Ruiz, and R. Corchuelo. Generat-
ing SPARQL executable mappings to integrate ontologies. In ER, pages
118–131, 2011.

http://dx.doi.org/10.1109/ICDM.2003.1250989
http://dx.doi.org/10.1109/ICDM.2003.1250989
http://www.cse.iitb.ac.in/comad/2006/proceedings/128.pdf
http://dx.doi.org/10.1145/1095872.1095875
http://dx.doi.org/10.1145/1095872.1095875
http://dx.doi.org/10.1109/TKDE.2006.12
http://dx.doi.org/10.1109/TKDE.2006.12
http://dx.doi.org/10.1016/j.eswa.2008.01.039
http://dx.doi.org/10.1016/j.eswa.2008.01.039
http://dx.doi.org/10.3233/978-1-58603-891-5-759
http://dx.doi.org/10.3233/978-1-58603-891-5-759
http://www.vldb.org/conf/2002/S17P02.pdf
http://dx.doi.org/10.1145/1459352.1459357
http://dx.doi.org/10.1145/1459352.1459357
http://www10.org/cdrom/posters/1049.pdf
http://dx.doi.org/10.1145/2063576.2063810
http://dx.doi.org/10.1145/2063576.2063810
http://dx.doi.org/10.1007/978-3-642-24606-7_10
http://dx.doi.org/10.1007/978-3-642-24606-7_10

140 Bibliography

[115] H. Schütze and C. Silverstein. Projections for efficient document
clustering. In SIGIR, pages 74–81, 1997.

[116] A. Selamat and S. Omatu. Web page feature selection and classification
using neural networks. Inf. Sci., 158:69–88, 2004.

[117] P. Senkul and S. Salin. Improving pattern quality in web usage mining
by using semantic information. Knowl. Inf. Syst., 30(3):527–541, 2012.

[118] D. Shen, Z. Chen, Q. Yang, H.-J. Zeng, B. Zhang, W.-Y. Ma, and
Y. Lu. Web-page classification through summarization. In SIGIR, pages
242–249, 2004.

[119] D. J. Sheskin. Handbook of parametric and nonparametric statistical
procedures. Chapman and Hall/CRC, edition 5, 2011.

[120] L. K. Shih and D. R. Karger. Using urls and table layout for web
classification tasks. In WWW, pages 193–202, 2004.

[121] H. A. Sleiman and R. Corchuelo. A survey on region extractors from
web documents. IEEE Trans. Knowl. Data Eng., 99, 2012. TBP.

[122] P. Sneath and R. Sokal. Numerical taxonomy. the principles and
practice of numerical classification. Freeman, 1973.

[123] C. Tao, D. W. Embley, and S. W. Liddle. Focih: Form-based ontology
creation and information harvesting. In ER, pages 346–359, 2009.

[124] S. Thakkar, J. L. Ambite, and C. A. Knoblock. Composing, optimiz-
ing, and executing plans for bioinformatics web services. VLDB J., 14
(3):330–353, 2005.

[125] O. Thonggoom, I.-Y. Song, and Y. An. Semi-automatic conceptual data
modeling using entity and relationship instance repositories. In ER,
pages 219–232, 2011.

[126] R. Trillo, L. Po, S. Ilarri, S. Bergamaschi, and E. Mena. Using semantic
techniques to access web data. Inf. Syst., 36(2):117–133, 2011.

[127] J. Turmo, A. Ageno, and N. Català. Adaptive information extraction.
ACM Comput. Surv., 38(2), 2006.

[128] M. L. A. Vidal, A. S. da Silva, E. S. de Moura, and J. M. B. Caval-
canti. Structure-based crawling in the Hidden Web. J. UCS, 14(11):
1857–1876, 2008.

http://dx.doi.org/10.1016/j.ins.2003.03.003
http://dx.doi.org/10.1016/j.ins.2003.03.003
http://dx.doi.org/10.1007/s10115-011-0386-4
http://dx.doi.org/10.1007/s10115-011-0386-4
http://dx.doi.org/10.1145/1008992.1009035
http://dx.doi.org/10.1145/988672.988699
http://dx.doi.org/10.1145/988672.988699
http://dx.doi.org/10.1109/TKDE.2012.135
http://dx.doi.org/10.1109/TKDE.2012.135
http://dx.doi.org/10.1007/978-3-642-04840-1_26
http://dx.doi.org/10.1007/978-3-642-04840-1_26
http://dx.doi.org/10.1007/s00778-005-0158-4
http://dx.doi.org/10.1007/s00778-005-0158-4
http://dx.doi.org/10.1007/978-3-642-24606-7_17
http://dx.doi.org/10.1007/978-3-642-24606-7_17
http://dx.doi.org/10.1016/j.is.2010.06.008
http://dx.doi.org/10.1016/j.is.2010.06.008
http://dx.doi.org/10.1145/1132956.1132957
http://www.jucs.org/jucs_14_11/structure_based_crawling_in/jucs_14_11_1857_1876_vidal.pdf

Bibliography 141

[129] K. Vieira, A. S. da Silva, N. Pinto, E. S. de Moura, J. M. B. Caval-
canti, and J. Freire. A fast and robust method for web page template
detection and removal. In CIKM, pages 258–267, 2006.

[130] W3C. Uniform resource identifier URI: Generic syntax.
http://www.ietf.org/rfc/rfc3986.txt, 2005.

[131] J. Weiss. Aligning relationships: Optimizing the value of strategic
outsourcing. Technical report, IBM, 2005.

[132] W. Xie, M. A. Mammadov, and J. Yearwood. Using links to aid web
classification. In ACIS-ICIS, pages 981–986, 2007.

[133] L. Xu and D. W. Embley. Combining the best of global-as-view and
local-as-view for data integration. In ISTA, pages 123–136, 2004.

[134] R. Xu and D. C. W. II. Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645–678, 2005.

[135] Y. Yang and X. Liu. A re-examination of text categorization methods. In
SIGIR, pages 42–49, 1999.

[136] Y. Y. Yao, H. J. Hamilton, and X. Wang. Pageprompter: An intelli-
gent web agent created using data mining techniques. In Rough Sets
and Current Trends in Computing, pages 506–513, 2002.

[137] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web query inter-
faces: Best-effort parsing with hidden syntax. In SIGMOD Conference,
pages 107–118, 2004.

[138] M. Zhu, W. Hu, O. Wu, X. Li, and X. Zhang. User oriented link function
classification. In WWW, pages 1191–1192, 2008.

[139] S. Zhu, K. Yu, Y. Chi, and Y. Gong. Combining content and link for clas-
sification using matrix factorization. In Research and Development in
Information Retrieval, pages 487–494, 2007.

http://dx.doi.org/10.1145/1183614.1183654
http://dx.doi.org/10.1145/1183614.1183654
http://dx.doi.org/10.1109/ICIS.2007.191
http://dx.doi.org/10.1109/ICIS.2007.191
http://subs.emis.de/LNI/Proceedings/Proceedings48/article3000.html
http://subs.emis.de/LNI/Proceedings/Proceedings48/article3000.html
http://dx.doi.org/10.1109/TNN.2005.845141
http://dx.doi.org/10.1007/3-540-45813-1_67
http://dx.doi.org/10.1007/3-540-45813-1_67
http://dx.doi.org/10.1145/1007568.1007583
http://dx.doi.org/10.1145/1007568.1007583
http://dx.doi.org/10.1145/1367497.1367721
http://dx.doi.org/10.1145/1367497.1367721
http://dx.doi.org/10.1145/1277741.1277825
http://dx.doi.org/10.1145/1277741.1277825

142 Bibliography

This document was typeset on October 1, 2012 at 09:59 using class RC–BOOK α2.14
for LATEX2ϵ. As of the time of writing this document, this class is not publicly available

since it is in alpha version. Only members of The Distributed Group are using it to type-
set their documents. Should you be interested in giving forthcoming public versions a try,

please, do contact us at contact@tdg-seville.info

mailto:contact@tdg-seville.info

	Enterprise Information Integration
	Document Lists
	Contents
	List of Figures
	List of Tables
	List of Programs

	Front Matter
	Acknowledgements
	Abstract
	Resumen

	Preface
	Introduction
	Research context
	Research rationale
	Hypothesis
	Thesis

	Summary of contributions
	Collaborations
	Structure of this dissertation

	Motivation
	Introduction
	Requirements
	Analysis of current solutions
	Our proposal
	Summary

	Background Information
	Enterprise web information integration
	Introduction
	Mediators
	Wrappers
	Summary

	Automated web navigation
	Introduction
	Taxonomy of web pages
	Scripting proposals
	Script recorders
	Script learners

	Crawling proposals
	Blind crawling
	Focused crawling

	Usage mining proposals
	Summary

	Web page classification
	Introduction
	Contents-based proposals
	Link-based proposals
	Visual-based proposals
	URL-based proposals
	Structure-based proposals
	Summary

	Our Proposal
	Our crawler
	Introduction
	Architecture
	Algorithm
	Computing keywords
	Discarding empty hubs
	Other ancillary functions

	Analysis
	Ancillary functions
	Algorithm

	Summary

	Our pattern builder
	Introduction
	Architecture
	Algorithm
	Initialising the prefix set
	Computing siblings
	Computing p-estimators
	Wildcarding prefixes
	Updating the prefix set

	Analysis
	Ancillary functions
	Algorithm

	Summary

	Evaluation
	Introduction
	Experimental evaluation
	Experimentation environment
	Experimental results

	Statistical analysis
	Corroboration of conjectures
	Summary

	Final Remarks
	Conclusions

	Appendices
	Notation
	Detecting outliers
	Datasets
	Web site model discovery using CALA

	Bibliography

