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Abstract. Let X be a nearly uniformly convex Banach space, C a convex
closed bounded subset of X and T : C → 2C a multivalued nonexpansive
mapping with convex compact values. We prove that T has a fixed point. This
result improves former results in [4] and solves an open problem appearing in
[17].

1. Introduction. In 1969 Nadler [15] extended the Banach Contraction
Principle to multivalued contractive mappings in complete metric spaces.
Namely, he proved: Let X be a complete metric space and T : X → 2X a
contraction with closed bounded values. Then T has a fixed point. Since
then, many authors have studied the possibility of extending classical fixed
point theorems for single-valued nonexpansive mappings to the setting of
multivalued nonexpansive mappings. Even though several authors have
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obtained fixed point results for Banach spaces satisfying some strong geo-
metric restriction (see [14], [2], [12] and the survey [17]) many problems
remain open in this theory. For instance the following very general problem
is still open [16]: Let X be a Banach space satisfying the fixed point prop-
erty (FPP), i.e. every nonexpansive single valued mapping defined from a
convex bounded closed subset of X into itself has a fixed point. Does X sat-
isfy the same property for multivalued nonexpansive mappings with closed
bounded values? The answer to this question could be strongly connected
with the problem of obtaining a nonexpansive selection for any nonexpansive
multivalued mapping. In spite of the well known Michael selection theorem
which gives a continuous selection for multivalued upper semicontinuous
mappings, almost nothing is known about obtaining a nonexpansive selec-
tion. A positive result in this direction was obtained by W.A. Kirk, M.A.
Khamsi and C. Mart́ınez Yañez [6] for a class of nonexpansive multivalued
mappings in hyperconvex metric spaces. However these problems are too
general and we cannot expect a positive answer for them. Thus, it seems
to be more convenient to study particular problems. For instance, the cele-
brated Kirk’s theorem [7] which states the FPP for reflexive Banach spaces
with normal structure yields to a very natural question: Do reflexive Banach
spaces with normal structure have the FPP for multivalued nonexpansive
mappings ? The answer is unknown, either. Since normal structure is im-
plied by different geometrical properties of Banach spaces, it is natural to
consider the following problem: Do these properties imply the FPP for mul-
tivalued mappings? Let us list some of the properties implying reflexivity
and normal structure:
(1) X is uniformly convex (UC),
(2) X is nearly uniformly convex (NUC),
(3) ε0(X) < 1 where ε0(X) is the characteristic of convexity,
(4) εα(X) < 1 where εα(X) is the characteristic of noncompact convexity
for the Kuratowski measure of noncompactness,
(5) εβ(X) < 1 where εβ(X) is the characteristic of noncompact convexity
for the separation measure of noncompactness.
Furthermore, we have the following relationships between these notions:

UC ⇒ NUC

⇓ ⇓

ε0(X) < 1 ⇒ εα(X) < 1 ⇒ εβ(X) < 1

Hence the following question arises: Does any of the above properties
imply the FPP for multivalued nonexpansive mappings? Of course, these
questions are scaled. A positive answer for the case εβ(X) < 1 solves all
cases.
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T.C. Lim [13] obtained a fixed point theorem for a multivalued nonex-
pansive self-mapping in a uniformly convex Banach space. W.A. Kirk [8]
gave an extension of Lim’s theorem proving the existence of a fixed point
in a Banach space for which the asymptotic center of a bounded sequence
in a closed bounded convex subset is nonempty and compact (note that
the asymptotic center is a singleton in UC spaces). First, he proved the
following result.

Theorem 1.1. Let C be a nonempty weakly compact and separable subset
of a Banach space X, T : C → 2C a nonexpansive mapping with compact
values and {xn} a sequence in C such that limn d(xn, Txn) = 0. Then, there
exists a subsequence {zn} of {xn} such that

Tx ∩A 6= ∅, ∀x ∈ A := A(C, {zn}).

Noting that we can reduce to a separable setting and using a fixed point
theorem for compact operators he proved that Banach spaces such that
asymptotic centers of bounded sequences are compact enjoy the FPP for
multivalued nonexpansive mappings with convex bounded closed values.
However, the asymptotic center of bounded sequences in NUC spaces can
be noncompact [11]. Thus, Kirk’s result does not solve the other questions
arisen above. Using some inequalities relating characteristic of noncompact
convexity, Chebyshev centers and asymptotic centers, the following partial
extension of Kirk’s result is obtained in [4].

Theorem 1.2. Let X be a Banach space such that εβ(X) < 1 and X
satisfies the nonstrict Opial condition, C a convex bounded subset of X and
T : C → 2C a nonexpansive mapping with convex compact values. Then T
has a fixed point.

An open question in [4] is the possibility of removing the nonstrict Opial
property from the assumptions. We will prove in this paper that the above
result holds without any assumption on Opial conditions.

2. Notation. Let us fix the notation which will be used. Let C be a
nonempty bounded closed subset of a Banach space X and {xn} a bounded
sequence in X, we use r(C, {xn}) and A(C, {xn}) to denote the asymptotic
radius and the asymptotic center of {xn} in C, respectively, i.e.

r(C, {xn}) = inf
{

lim sup
n

‖xn − x‖ : x ∈ C

}
,

A(C, {xn}) =
{

x ∈ C : lim sup
n

‖xn − x‖ = r(C, {xn})
}

.

It is known that A(C, {xn}) is a nonempty weakly compact convex set as C
is.
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If D is a bounded subset of X, the Chebyshev radius of D relative to C
is defined by

rC(D) := inf {sup{‖x− y‖ : y ∈ D} : x ∈ C} .

Let X be a Banach space. We denote by CB(X) the family of all
nonempty closed bounded subsets of X and by K(X) (resp. KC(X)) the
family of all nonempty compact (resp. compact convex) subsets of X. On
CB(X) we have the Hausdorff metric H given by

H(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

, A, B ∈ CB(X)

where for x ∈ X and E ⊂ X, d(x,E) := inf{‖x−y‖ : y ∈ E} is the distance
from the point x to the subset E.
If C is a closed convex subset of X and k ∈ [0, 1), then a multivalued
mapping T : C → CB(X) is said to be k-contractive if

H(Tx, Ty) ≤ k‖x− y‖, x, y ∈ C,

and T is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖, x, y ∈ C.

A multivalued mapping T : C → 2X is called k-φ-contractive where φ is
a measure of noncompactness if, for each bounded subset B of C, we have

φ(T (B)) ≤ kφ(B).

Let us recall the definition of a nearly uniformly convex space.

Definition 2.1. X is said to be nearly uniformly convex (NUC) if it is
reflexive and its norm is uniformly Kadec-Klee, that is, for any positive
number ε there exists a corresponding number δ = δ(ε) > 0 such that for
any sequence {xn}

‖xn‖ ≤ 1 n = 1, 2, . . .
w- lim

n
xn = x

sep({xn}) := inf{‖xn − xm‖ : n 6= m} ≥ ε

 =⇒ ‖x‖ ≤ 1− δ.

Assume that C is a subset of a Banach space X. Looking at C as a
metric space we can consider the Hausdorff measure of noncompactness χC

defined for any bounded subset A of C by χC(A) = inf{ε > 0 : A can be
covered by finitely many balls centered at points in C with radii less than
ε}. It must be noted that this measure depends on C and it is, in general,
different from χ := χX . Furthermore, if C is a convex closed set, it is easy
to check that the usual arguments to prove χX(A) = χX(co(A)) (see, for
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instance [1, Theorem 2.4]) equally well apply to prove χC(A) = χC(co(A))
for any bounded subset A ⊂ C. Furthermore, if C is separable, for any
bounded subset A of C there exists B ⊂ A such that χC(B) = χC(A) and
B is χC-minimal, i.e. χC(B) = χC(D) for any infinite subset D of B (for
definition and properties of χC-minimal sets, see [10], Chapter 8). Apart
from χ and χC , we shall consider in this paper the separation measure of
noncompactness defined by

β(B)= sup{ε : there exists a sequence {xn} in B such that sep({xn})≥ ε}

for any bounded subset B of a Banach space X.

Definition 2.2. Let X be a Banach space. The modulus of noncompact
convexity associated to β is defined in the following way:

∆X,β(ε) = inf{1− d(0, A) : A ⊂ BX is convex, β(A) ≥ ε}

(BX is the unit ball of X).
The characteristic of noncompact convexity of X associated with the
measure of noncompactness β is defined by

εβ(X) = sup{ε ≥ 0 : ∆X,β(ε) = 0}.

When X is a reflexive Banach space we have the following alternative
expression for the modulus of noncompact convexity associated with β,

∆X,β(ε) = inf{1− ‖x‖ : {xn} ⊂ BX , x = w- lim
n

xn, sep({xn}) ≥ ε}.

It is known that X is NUC if and only if εβ(X) = 0. The above-mentioned
definitions and properties can be found in [1].

3. Fixed point results. In the sequel we are going to use the following
result.

Theorem 3.1 ([3, Lemma 11.5]). Let X be a Banach space and ∅ 6= D ⊂ X
be compact convex. Let F : D → 2X be upper semicontinuous with closed
convex values. If Fx ∩ ID(x) 6= ∅ on D then F has a fixed point. (Here
ID(x) is called the inward set at x defined by ID(x) := {x + λ(y − x) : λ ≥
0, y ∈ D}.)

The following lemma is the key of this paper, stating a relationship be-
tween k-contractive and k-χC-contractive mappings.

Theorem 3.2. Let C be a weakly compact convex separable subset of a
Banach space X. Assume that T : C → 2C is a multivalued k-contractive
mapping with compact values. Then, T is k-χC-condensing.
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Proof. Let A be a bounded subset of C. Since C is separable there exists
a χC-minimal subset B ⊂ T (A) such that χC(B) = χC(T (A)). We can
assume that B is countable, i.e. B = {yn : n ∈ N}. Since C is separable,
taking a subsequence, we can assume that lim ‖yn−x‖ exists for any x ∈ C.
Then χC({yn : n ∈ N}) = r(C, {yn}). Indeed, denote h = χC({yn : n ∈
N}). For any ε > 0 there exist a1, . . . , aN ∈ C such that {yn : n ∈ N} ⊂⋃N

i=1 B(ai, h + ε) where B(a, r) denotes the open ball centered at a with
radius r. Thus, for a subsequence {zn} of {yn} and some i ∈ {1, . . . , N} we
have lim supn ‖zn − ai‖ = limn ‖yn − ai‖ ≤ h + ε. Hence r(C, {yn}) ≤ h + ε
and, since ε is arbitrary, we have r(C, {yn}) ≤ h. On the other hand,
denote r = r(C, {yn}). We know that the asymptotic center A(C, {yn})
is nonempty. Take a ∈ A(C, {yn}) and ε > 0. There exists n0 such that
‖yn− a‖ < r + ε for n > n0. Thus χC({yn : n ∈ N}) = χC({yn : n > n0}) ≤
r + ε and we obtain the opposite inequality.
Choose xn ∈ A such that yn ∈ Txn. Taking again a subsequence we can
assume that the set {xn : n ∈ N} is χC-minimal and limn ‖xn−x‖ exists for
every x ∈ C. The same argument as above proves that χC({xn : n ∈ N}) =
r(C, {xn}). Let u ∈ A(C, {xn}), i.e. limn ‖xn − u‖ = χC({xn : n ∈ N}).
Since T is compact valued, we can take un ∈ Tu such that ‖yn − un‖ =
d(yn, Tu). Using the compactness of Tu and taking again a subsequence we
can assume that {un} converges strongly to a point v ∈ Tu. Hence, we have

χC(T (A)) = r(C, {yn}) ≤ lim
n
‖yn − v‖ = lim sup

n
‖yn − un‖

= lim sup
n

d(yn, Tu) ≤ lim sup
n

H(Txn, Tu)

≤ k lim
n
‖xn − u‖ = kχC({xn : n ∈ N})

≤ kχC(A).

�

Theorem 3.3. Let C be a weakly compact convex separable subset of a
Banach space X. Assume that T : C → 2C is a multivalued k-contractive
(k < 1) mapping with convex compact values. Assume that A is a convex
closed subset of C such that Tx ∩ A 6= ∅ for every x ∈ A. Then, T has a
fixed point in A.

Proof. According to Theorem 3.2, the mapping T is k-χC-condensing. We
could check that the arguments in the proof of [3, Theorem 11.5] equally well
work for the measure χC when we assume that T (C) ⊂ C. However, we are
going to prove that Theorem 3.1 can be directly applied to obtain the fixed
point. To do that, we follow an induction argument. Denote A1 = A and
assume that we have defined a finite decreasing sequence of convex closed
sets An ⊂ An−1 ⊂ . . . ⊂ A1 such that Tx ∩ Ak 6= ∅ for every x ∈ Ak and
for all k = 1, . . . , n. Define An+1 = [co T (An)]∩An. Then, An+1 is a closed
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convex subset of An. Furthermore, for every x ∈ An+1 we have Tx∩An 6= ∅.
Since Tx ⊂ T (An) we obtain that Tx ∩An+1 is nonempty. Furthermore

χC(An+1) = χC([co T (An)] ∩An) ≤ χC(T (An)) ≤ kχC(An).

Then, A∞ :=
⋂∞

n=1 An is a nonempty compact convex subset of A. Let
x ∈ A∞ and take an ∈ Tx ∩ An which is nonempty. The sequence {an},
which lies in a weakly compact set, has some cluster points for the weak
topology. Assume that a is a weak cluster point. Then a ∈ A∞. Since Tx
is weakly closed and the sequence {an} lies in Tx we have that a ∈ Tx and
a ∈ A∞ which implies that Tx ∩ A∞ 6= ∅. Since A∞ is compact we obtain
from Theorem 3.1 that T has a fixed point in A∞ ⊂ A. �

Next, we present a theorem which gives a connection between the asymp-
totic center of a sequence and the modulus of noncompact convexity.

Theorem 3.4 ([4, Theorem 3.1]). Let C be a closed convex separable subset
of a reflexive Banach space X and let {yn} be a bounded sequence in C.
Then, there exists a subsequence {xn} such that

rC(A(C, {xn})) ≤ (1−∆X,β(1−))r(C, {xn}).

We can prove now that all conditions (1)–(5), assuring normal structure,
in the introduction, imply the FPP for multivalued nonexpansive mappings
with compact convex values. In particular, NUC spaces enjoy this property
solving an open problem appearing in [17].

Theorem 3.5. Let C be a nonempty closed bounded convex subset of a Ba-
nach space X such that εβ(X) < 1, and T : C → KC(C) be a nonexpansive
mapping. Then T has a fixed point.

Proof. From [11] we can assume that C is separable. We claim that for
any bounded closed subset A of C such that Tx ∩ A 6= ∅ for every x ∈ A,
there exists an approximated fixed point sequence of T in A, i.e. there exists
{xn} ⊂ A such that d(xn, Txn) → 0. Indeed, let x0 ∈ A be fixed and, for
each n ≥ 1, define

Tnx :=
1
n

x0 +
(

1− 1
n

)
Tx, x ∈ C.

Then, Tn is (1 − 1/n)-contractive and from Theorem 3.3 has a fixed point
xn. It is easily seen that limn d(xn, Txn) = 0. Using this fact, we can follow
the proof as in [4, Theorem 4.1]. To do that we consider A1 = C. Assume
that sets A1, . . . , Am and approximated fixed point sequences {xk

n} ⊂ Ak are
constructed where Ak = A(C, {xk−1

n }) and rC(Ak) ≤ (1−∆X,β(1−))krC(A1)
for k = 2, . . . ,m. Defining Am+1 = A(C, {xm

n }) and choosing a suitable
approximated fixed point sequence {xm+1

n } in Am+1 we obtain rC(Am+1) ≤
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(1−∆X,β(1−))rC(Am) and we can continue the induction process. As in [4,
Theorem 4.1] it can be proved that the diagonal sequence {xn

n} converges
to a fixed point of T . �

Remark. According to [13], every uniformly convex space has the FPP for
multivalued nonexpansive mappings with compact values. In Theorem 3.5,
we need to assume, in addition, that T has convex values. We do not know
if this assumption can be removed, but our method in the proof does not
work without convexity. Indeed, the main tool in our proof is to obtain an
approximated fixed point sequence for T in a set A such that Tx∩A 6= ∅. To
do that, we cannot use fixed point results for contractive mappings, because
these results do not hold for mappings which are not self-mappings. The
following example illustrates this fact: Assume X = R, A = [0, 1] and define
T : A → 2X by

Tx = [−1, 2] \
(

3x

4
− 1

2
,
3x

4
+

1
2

)
.

Then, T is 3/4-contractive and satisfies Tx ∩ A 6= ∅ for every x ∈ A.
However, T is fixed point free. Thus, in the proof of Theorem 3.5 we need
to use a fixed point result for compact mappings. On the other hand,
we cannot expect such a result without convexity assumptions. Indeed,
consider the following easy example. Assume that X = R2 and D is the
closed unit disk. Define T (0) = ∂D and T (x) = ∂D \ B(x/‖x‖, ‖x‖) for
x 6= 0. Then T is a continuous and fixed point free mapping.
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