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Existence and uniqueness theorem
for slant immersions in Sasakian-space-forms

By JOSÉ LUIS CABRERIZO (Sevilla), ALFONSO CARRIAZO (Sevilla),

LUIS M. FERNÁNDEZ (Sevilla) and MANUEL FERNÁNDEZ (Sevilla)

Abstract. In this paper, we present the existence and uniqueness theorems for
slant immersions into Sasakian-space-forms. By applying the first result, we prove
several existence theorems for slant submanifolds. In particular, we prove the existence
theorems for three-dimensional slant submanifolds with prescribed mean curvature or
with prescribed scalar curvature.

0. Introduction

Slant immersions in complex geometry were defined by B.-Y. Chen

as a natural generalization of both holomorphic and totally real immer-
sions [3]. In a recent paper ([7]), A. Lotta has introduced the notion of
slant immersion of a Riemannian manifold into an almost contact metric
manifold. In [8], he has obtained examples of slant submanifolds in the
Sasakian-space-form R2m+1 as the leaves of a harmonic Riemannian three-
dimensional foliation. On the other hand, in [2], we have also studied and
characterized slant submanifolds of K-contact and Sasakian manifolds. In
particular, we have paid special attention to three-dimensional slant sub-
manifolds.
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The purpose of the present paper is to establish a general existence and
uniqueness theorem for slant immersions in Sasakian-space-forms, which
is similar to the result presented by B.-Y. Chen and L. Vrancken for
complex-space-forms in [5]. By applying the existence theorem, we prove
that there exist infinitely many three-dimensional proper slant submani-
folds with prescribed mean curvature (or with prescribed scalar curvature).
In [2], we have given examples of slant submanifolds in R2m+1 with its usual
Sasakian structure. It is well known that this manifold is a Sasakian-space-
form with constant φ-sectional curvature −3. In this paper, we show that
there are ample examples of proper slant submanifolds in Sasakian-space-
forms with constant φ-sectional curvature c, for any c < −3.

In Section 1 we review basic formulas and definitions for almost con-
tact metric manifolds and their submanifolds, which we shall use later. We
also review the definition and some properties given in [2], [7]. Moreover,
we develop the ground work which will allow us to present the existence
and uniqueness theorems in Section 2. In Section 3, we show the applica-
tions of the main theorem.

1. Preliminaries

Let (M̃, g) be an odd-dimensional Riemannian manifold and denote
by TM̃ the Lie algebra of vector fields in M̃ . Let φ be a (1, 1) tensor
field, ξ a global unit vector field (structure vector field), and η a 1-form
on M̃ . If we have φ2X = −X + η(X)ξ, g(X, ξ) = η(X) and g(φX, φY ) =
g(X,Y ) − η(X)η(Y ), for any X, Y ∈ TM̃ , then M̃ is said to have an
almost contact metric structure (φ, ξ, η, g) and it is called an almost contact
metric manifold . Let Φ denote the fundamental 2-form in M̃ , given by
Φ(X, Y ) = g(X,φY ) for all X, Y ∈ TM̃ . If Φ = dη, then M̃ is said to be a
contact metric manifold . Moreover, the contact metric structure is called
a K-contact structure if

(1.1) ∇̃Xξ = −φX,

for any X ∈ TM̃ , where ∇̃ denotes the Levi–Civita connection of M̃ .
The structure of M̃ is said to be normal if [φ, φ] + 2dη⊗ ξ = 0, where

[φ, φ] is the Nijenhuis torsion of φ. A Sasakian manifold is a normal contact
metric manifold. Every Sasakian manifold is a K-contact manifold. It is
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well-known that an almost contact metric manifold is a Sasakian manifold
if and only if (∇̃Xφ)Y = g(X,Y )ξ − η(Y )X, for any X, Y ∈ TM̃ .

Given a Sasakian manifold M̃ , a plane section π in TpM̃ is called a
φ-section if it is spanned by X and φX, where X is a unit tangent vector
field orthogonal to ξ. The sectional curvature K(π) of a φ-section π is
called φ-sectional curvature. If a Sasakian manifold M̃ has constant φ-
sectional curvature c, M̃ is called a Sasakian-space-form. It can be shown
that R2m+1 with its usual Sasakian structure is a Sasakian-space-form
with c = −3. Moreover, if we denote the usual contact metric structure
on S2m+1 by (φ, ξ, η, g) and we consider the deformed structure given by
the D-homothetic deformation

(1.2) φ∗ = φ, ξ∗ =
1
a
ξ, η∗ = aη, g∗ = ag + a(a− 1)η ⊗ η,

where a is a positive constant, then S2m+1 with this structure is a Sasakian-
space-form with c = 4/a − 3 > −3. Given a simply connected bounded
domain Bm in Cm and a negative constant k, a different method can be
followed to endow Bm × R with a Sasakian structure with constant φ-
sectional curvature c = k − 3 < −3 (see [1, 10]). Actually, it was proved
by S. Tanno in [10] that these three types of model spaces are unique up
to isomorphisms, where an isomorphism means a diffeomorphism which
maps the structure tensors into the corresponding structure tensors, and
so, they represent every Sasakian-space-form.

We denote by M̃2m+1(c) the complete simply-connected Sasakian-
space-form with dimension 2m + 1 and constant φ-sectional curvature c.
The curvature tensor R̃ of M̃2m+1(c) is given by

(1.3)

R̃(X,Y )Z =
c + 3

4
(g(Y,Z)X − g(X,Z)Y ) +

c− 1
4

(η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ Φ(Z, Y )φX − Φ(Z, X)φY + 2Φ(X, Y )φZ),

for any X, Y, Z ∈ TM̃ . For more details and background, we refer to the
standard reference [1].

Now, let M be a submanifold immersed in (M̃, φ, ξ, η, g). We also
denote by g the induced metric on M . Let TM be the Lie algebra of vector
fields in M and T⊥M the set of all vector fields normal to M . Denote by ∇
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the Levi–Civita connection of M . Then, the Gauss–Weingarten formulas
are given by

∇̃XY = ∇XY + σ(X, Y ), ∇̃XV = −AV X + DXV,

for any X, Y ∈ TM and any V ∈ T⊥M , where D is the connection in
the normal bundle, σ is the second fundamental form of M and AV is the
Weingarten endomorphism associated with V .

Denote by R the curvature tensor of M and by RD the curvature
tensor of the normal connection D. Then the equation of Gauss and the
equation of Ricci are given respectively by

R̃(X, Y ; Z, W ) = R(X, Y ; Z, W ) + g(σ(X, Z), σ(Y, W ))(1.4)

− g(σ(X,W ), σ(Y, Z)),

RD(X, Y ;U, V ) = R̃(X, Y ; U, V ) + g([AU , AV ](X), Y ),(1.5)

for any X, Y, Z, W ∈ TM and any U, V ∈ T⊥M .
For the second fundamental form σ, we define the covariant derivative

∇σ of σ with respect to the connection on TM ⊕ T⊥M by

(1.6) (∇Xσ)(Y, Z) = DX(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ),

for any X, Y, Z ∈ TM . The equation of Codazzi is given by

(1.7) (R̃(X, Y )Z)⊥ = (∇Xσ)(Y,Z)− (∇Y σ)(X, Z),

for any X, Y, Z ∈ TM , where (R̃(X, Y )Z)⊥ denotes the normal component
of R̃(X, Y )Z.

For any X ∈ TM and any V ∈ T⊥M , we write

(1.8) φX = TX + NX, φV = tV + nV,

where TX (resp. tV ) is the tangential component of φX (resp. φV ) and
NX (resp. nV ) is the normal component of φX (resp. φV ).

From now on, we suppose that the structure vector field ξ is tan-
gent to M . Hence, if we denote by D the orthogonal distribution to ξ in
TM , we can consider the orthogonal direct decomposition TM = D⊕〈ξ〉.
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In particular, from (1.1), (1.4) and (1.8) we obtain ∇Xξ = −TX and
σ(X, ξ) = −NX.

For each nonzero vector X tangent to M at p, such that X is not
proportional to ξp, we denote by θ(X) the Wirtinger angle of X, that is,
the angle between φX and TpM . Then, M is said to be slant ([7]) if the
Wirtinger angle θ(X) is a constant, which is independent of the choice of
p ∈ M and X ∈ TpM , linearly independent from ξp. The Wirtinger angle
θ of a slant immersion is called the slant angle of the immersion. Invariant
and anti-invariant immersions are slant immersions with slant angle θ = 0
and θ = π/2 respectively. A slant immersion which is neither invariant
nor anti-invariant is called a proper slant immersion.

Now, suppose M is θ-slant in M̃2m+1(c). Then, for any X,Y ∈ TM ,
we have (cf. [2]):

T 2X = − cos2 θ(X − η(X)ξ),(1.9)

g(TX, Y ) + g(X, TY ) = 0,(1.10)

(∇XT )Y = tσ(X, Y ) + ANY X + g(X,Y )ξ − η(Y )X,(1.11)

DX(NY )−N(∇XY ) = nσ(X, Y )− σ(X, TY ).(1.12)

If θ 6= 0, we will denote, for each X ∈ TM ,

(1.13) X∗ =
1

sin θ
NX.

We define the symmetric bilinear TM -valued form α on M given by

(1.14) α(X, Y ) = tσ(X, Y ),

for any X,Y ∈ TM . In particular, it is easy to prove that, for any X ∈
TM ,

(1.15) α(X, ξ) = sin2 θ(X − η(X)ξ).

Equations (1.8), (1.13) and (1.14) imply:

(1.16) φα(X, Y ) = Tα(X, Y ) + sin θα∗(X, Y ).

Moreover, (1.8) and (1.14) imply

(1.17) φσ(X,Y ) = α(X, Y ) + β∗(X, Y ),
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where β is a symmetric bilinear D-valued form on M . From (1.16) and
(1.17), we have

(1.18) −σ(X, Y ) = Tα(X, Y ) + (sin θ)α∗(X,Y ) + φβ∗(X, Y ),

since η(σ(X, Y )) = 0. It is easy to see that:

(1.19) φβ∗(X, Y ) = −(sin θ)β(X,Y )− (Tβ(X, Y ))∗.

Thus, from (1.18) and (1.19) it follows that β(X,Y ) = (csc θ) ·
Tα(X, Y ) and σ(X,Y ) = −(csc θ)α∗(X, Y ). This second formula is equiv-
alent to:

(1.20) σ(X, Y ) = csc2 θ(Tα(X,Y )− φα(X, Y )).

Given that g(ANY X, Z) = −g(α(X, Z), Y ) for any X, Y, Z ∈ TM , we
obtain from (1.11) and (1.14):

g((∇XT )Y,Z) = g(α(X, Y ), Z)− g(α(X, Z), Y )(1.21)

+ g(X, Y )η(Z)− g(X, Z)η(Y ).

For a θ-slant submanifold in M̃2m+1(c) with θ 6= 0, (1.3), (1.6), (1.8),
(1.9)–(1.12), (1.14) and (1.20) imply that the equations of Gauss (1.4) and
Codazzi (1.7) of M in M̃2m+1(c) are given respectively by

R(X, Y ; Z, W ) = csc2 θ(g(α(X, W ), α(Y, Z))− g(α(X, Z), α(Y,W )))

+
c + 3

4
(g(X, W )g(Y, Z)− g(X, Z)g(Y, W ))

+
c− 1

4
(η(X)η(Z)g(Y, W )− η(Y )η(Z)g(X, W )(1.22)

+ η(Y )η(W )g(X, Z)− η(X)η(W )g(Y, Z)

+ g(TX, W )g(TY, Z)− g(TX, Z)g(TY, W )

+ 2g(X, TY )g(TZ, W )),
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(∇Xα)(Y, Z)− g(α(Y, Z), TX)ξ

+ csc2 θ{Tα(X, α(Y, Z)) + α(X,Tα(Y,Z))}

+ (sin2 θ)
c− 1

4
{g(X,TY )(Z − η(Z)ξ) + g(X, TZ)(Y − η(Y )ξ)}(1.23)

= (∇Y α)(X,Z)− g(α(X, Z), TY )ξ

+ csc2 θ{Tα(Y, α(X, Z)) + α(Y, Tα(X, Z))}

+ (sin2 θ)
c− 1

4
{g(Y, TX)(Z − η(Z)ξ) + g(Y, TZ)(X − η(X)ξ)}.

In the following section we show how equations (1.9), (1.10), (1.15),
(1.21), (1.22) and (1.23) allow us to establish the existence theorem for
slant immersions into Sasakian-space-forms. We will also need Theorem 1
of [6] (which was previously proved in [11]). We recall its formulation:

Theorem 1.1. Let S be a manifold with complete connection D with

parallel torsion and curvature tensors. Let M be a simply connected mani-

fold and E a vector bundle with connection D over M having the algebraic

structure (R, T ) of S. Let F : TM → E be a vector bundle homomorphism

satisfying equations

DV F (W )−DW F (V )− F ([V, W ]) = T (F (V ), F (W )),

DV DW U −DW DV U −D[V,W ]U = R(F (V ), F (W ))U,

for any sections V,W of TM and U of E. Then there exists a smooth map

f : M → S and a parallel bundle isomorphism Φ : E → f∗TS preserving

T and R such that df = Φ ◦ F . If S is simply connected, then f is unique

up to affine diffeomorphisms of S.

2. Existence and uniqueness theorems

We have the following existence and uniqueness theorems for slant
immersions:

Theorem 2.1 (Existence). Let c and θ be two constants with 0 < θ ≤
π/2 and M a simply-connected Riemannian manifold with dimension m+1
and metric tensor g. Suppose that there exist a unit global vector field ξ
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on M , an endomorphism T of the tangent bundle TM and a symmetric

bilinear TM -valued form α on M such that for X, Y, Z, W ∈ TM , we have

(2.1) T (ξ) = 0, g(α(X, Y ), ξ) = 0, ∇Xξ = −TX,

and the equations (1.9), (1.10), (1.15), (1.21), (1.22) and (1.23) are sat-

isfied, where η denotes the dual 1-form of ξ. Then, there exists a θ-slant

immersion from M into M̃2m+1(c) whose second fundamental form σ is

given by:

(2.2) σ(X, Y ) = csc2 θ(Tα(X,Y )− φα(X, Y )).

Proof. Let c, θ, M , ξ, T and α be in the above conditions. Denote
by D the orthogonal distribution to ξ on M and consider the Whitney sum
TM ⊕ D. For each X ∈ TM , we identify (X, 0) with X. In particular,
we identify ξ̂ = (ξ, 0) with ξ. Moreover, we denote (0, Z) by Z∗ for each
Z ∈ D.

Let ĝ be the product metric on TM⊕D. Hence, if we denote by η̂ the
dual 1-form of ξ̂, then η̂(X, Z) = η(X), for any X ∈ TM and any Z ∈ D.

Let φ̂ be the endomorphism on TM ⊕D defined by

(2.3)
φ̂(X, 0) = (TX, sin θ(X − η(X)ξ)),

φ̂(0, Z) = (−(sin θ)Z,−TZ),

for any X ∈ TM and Z ∈ D. Then, we have φ̂2(X, 0) = −(X, 0)+ η̂(X, 0)ξ̂
and, similarly, φ̂2(0, Z) = −(0, Z). Thus φ̂2(X, Z) = −(X,Z) + η̂(X, Z)ξ̂
for any X ∈ TM and any Z ∈ D. By using (1.9), (1.10) and (2.3), it
is easy to check that (φ̂, ĝ, ξ̂, η̂) is an almost contact metric structure on
TM ⊕D.

Now we define A, σ and D by

AZ∗X = csc θ{(∇XT )Z − α(X,Z)− g(X, Z)ξ},(2.4)

σ(X, Y ) = −(csc θ)α∗(X, Y ),(2.5)

DXZ∗ = (∇XZ − η(∇XZ)ξ)∗(2.6)

+ csc2 θ{(Tα(X, Z))∗ + α∗(X,TZ)},
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for any X, Y ∈ TM and any Z ∈ D. It is easy to verify that each AZ∗ is
an endomorphism on TM , σ is a (D)∗-valued symmetric bilinear form on
TM and D is a metric connection of the vector bundle (D)∗ over M .

Let ∇̂ denote the connection on TM ⊕ D induced from equations
(2.4)–(2.6). Then, from (1.9), (1.15), (2.1) and (2.3), given X, Y ∈ TM

and Z ∈ D, we have:

(∇̂(X,0)φ̂)(Y, 0) = ĝ((X, 0), (Y, 0))ξ̂ − η̂(Y, 0) (X, 0),

(∇̂(X,0)φ̂)(0, Z) = 0.

Let RD denote the curvature tensor associated with the connection D

on (D)∗, i.e. RD(X, Y )Z∗ = DXDY Z∗ − DY DXZ∗ − D[X,Y ]Z
∗, for any

X, Y ∈ TM and any Z ∈ D. Then, by virtue of (1.9), (1.10), (1.15),
(1.23), (2.1), (2.6) and a simple computation, we may obtain:

RD(X,Y )Z∗ = (R(X,Y )Z − η(R(X,Y )Z)ξ)∗

+
{c− 1

4
T [g(Y, TZ)X − g(X,TZ)Y − 2g(X, TY )Z]

+
c− 1

4
[g(Y, T 2Z)(X − η(X)ξ)(2.7)

− g(X, T 2Z)(Y − η(Y )ξ)− 2g(X,TY )TZ]

+ csc2 θ[(∇XT )α(Y, Z)−(∇Y T )α(X, Z)−η(∇XTα(Y, Z))ξ

+ η(∇Y Tα(X, Z))ξ − α(X, (∇Y T )Z) + α(Y, (∇XT )Z)]
}∗

.

Also, (1.21), (2.1), (2.4) and (2.5) yield, for any X, Y ∈ TM and any
Z, W ∈ D:

(2.8)

sin2 θg([AZ∗ , AW∗ ]X, Y ) = g((∇Y T )Z, (∇XT )W )

− g((∇XT )Z, (∇Y T )W ) + g((∇XT )Z, α(Y,W ))

+ g((∇Y T )W,α(X,Z))− g((∇Y T )Z, α(X,W ))

− g((∇XT )W,α(Y,Z))

+ g(α(X, W ), α(Y,Z))− g(α(X,Z), α(Y, W ))

+ (1− 2 cos2 θ)(g(X, W )g(Y,Z)− g(X, Z)g(Y, W )).
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From (1.10) we have:

(2.9) g(α(Y, Z), TW ) + g(Tα(Y, Z),W ) = 0.

By taking the derivative of (2.9) with respect to X and using (1.10),
we find that:

(2.10) g(α(Y,Z), (∇XT )W ) + g((∇XT )α(Y, Z),W ) = 0.

Moreover, by virtue of (1.10) we obtain:

g((∇XT )Z, (∇Y T )W ) = g(α(Y, W ), (∇XT )Z)(2.11)

−g(α(Y, (∇XT )Z),W ) + cos2 θg(X, Z)g(Y, W ).

Hence, by applying (2.7), (2.8), (2.10), (2.11) and a direct computa-
tion, we get:

g(RD(X, Y )Z∗,W ∗)− g([AZ∗ , AW∗ ]X, Y )(2.12)

=
c−1
4
{sin2 θ(g(X, W )g(Y, Z)− g(X, Z)g(Y, W ))− 2g(X, TY )g(TZ,W )}.

Equations (1.3), (1.9), (1.10) and (2.12) imply that (M,A, D) satisfies
the equation of Ricci (1.5) for a (m+1)-dimensional θ-slant submanifold in
M̃2m+1(c). Also, (1.22) and (1.23) imply that (M, σ) satisfies the equations
of Gauss and Codazzi for a θ-slant submanifold in M̃2m+1(c). Hence, the
vector bundle TM⊕D over M equipped with the product metric, the shape
operator A, the second fundamental form σ and the connections D and ∇̂
satisfy the structure equations of (m+1)-dimensional θ-slant submanifolds
in M̃2m+1(c). Therefore, if we put S = M̃2m+1(c), E = TM ⊕ D, D =
∇̂ and F : TM → E : X 7→ (X, 0), then assumptions of Theorem 1.1
verify given that E has the algebraic structure of M̃2m+1(c) as we have
indicated above. Then, we know that there exists a θ-slant immersion
of M into M̃2m+1(c) with (2.2) as its second fundamental form, A as its
shape operator and D as its normal connection. ¤

The following result gives sufficient conditions to obtain the unique-
ness of a slant immersion.
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Theorem 2.2 (Uniqueness). Let x1, x2 : M → M̃2m+1(c) be two

slant immersions, with slant angle θ (0 < θ ≤ π/2), of a connected Rie-

mannian manifold M , with dimension m+1, into the Sasakian-space-form

M̃2m+1(c). Let σ1 and σ2 denote the second fundamental forms of x1 and

x2 respectively. Suppose that there is a vector field ξ̄ on M such that

xi
∗p(ξ̄p) = ξxi(p), for any i = 1, 2 and any p ∈ M and that

g(σ1(X, Y ), φx1
∗Z) = g(σ2(X,Y ), φx2

∗Z),

for all vector fields X, Y, Z tangents to M . Suppose also that we have one

of the following conditions:

i) θ = π/2,

ii) there exists a point p of M such that T1 = T2 on p,

iii) c 6= 1.

Then, there exists an isometry ϕ of M̃2m+1(c) such that x1 = ϕ ◦ x2.

Proof. This proof works like that of the Uniqueness Theorem in the
Kaehlerian case (see [4], [5]) by choosing ξ̄ in the initial orthonormal frame
on TM . Nevertheless, calculations are longer. ¤

3. Applications and examples

Let ψ = ψ(x), ψi = ψi(x), i = 1, . . . , 3, be four functions defined on an
open interval containing 0. Let c and θ be two constants with 0 < θ ≤ π/2.
Now, put:

(3.1) f(x) = exp
(∫

ψ3(x)dx

)
.

Let M be a simply-connected open neighborhood of the origin
(0, 0, 0) ∈ R3. We define

(3.2) η = dz + 2(cos θ)f(x)ydx

and we consider on M the warped metric:

(3.3) g = η ⊗ η + (dx⊗ dx + f2(x)dy ⊗ dy).
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Let

e1 =
∂

∂x
− 2(cos θ)f(x)y

∂

∂z
, e2 =

1
f

∂

∂y
, ξ =

∂

∂z
.

Then, it is easy to check that {e1, e2, ξ} is a local orthonormal frame
field of TM and that η is the dual 1-form of ξ. Moreover, we have:

∇e1e1 = 0, ∇e1e2 = cos θξ, ∇e1ξ = − cos θe2,

∇e2e1 = ψ3e2 − cos θξ, ∇e2e2 = −ψ3e1, ∇e2ξ = cos θe1,

∇ξe1 = − cos θe2, ∇ξe2 = cos θe1, ∇ξξ = 0.

We define the tensor φ given by φe1 = e2, φe2 = −e1 and φξ = 0, and
a symmetric bilinear TM -valued form α on M by:

(3.6)

α(e1, e1) = ψe1 + ψ1e2, α(e1, e2) = ψ1e1 + ψ2e2,

α(e2, e2) = ψ2e1 − ψ1e2,

α(e1, ξ) = sin2 θe1, α(e2, ξ) = sin2 θe2, α(ξ, ξ) = 0.

It is easy to prove that (M, φ, ξ, η, g) is an almost contact metric
manifold with (∇Xφ)Y = cos θ(g(X, Y )ξ − η(Y )X), for any X, Y ∈ TM .
If we put T = cos θ φ, then (M, g, ξ, T, α) satisfies equations (1.9), (1.10),
(1.15), (1.21) and (2.1).

On the other hand, it can be proved that M satisfies condition (1.22)
if and only if

ψ′3 = −ψ2
3 − csc2 θ{ψψ2 − 2ψ2

1 − ψ2
2} −

c + 3
4

(1 + 3 cos2 θ).

Furthermore, we can also see that M satisfies (1.23) if we have the
following equations:

ψ′2 = (−2ψ2 + ψ)ψ3 − csc θ cot θ(ψ2 + ψ)ψ1,

ψ′1 = −3ψ1ψ3 + csc θ cot θ(ψ2 + ψ)ψ2 + 3
c + 3

4
sin2 θ cos θ,(3.6)

ψ′1 = −3ψ1ψ3 + csc θ cot θ(ψ2 + ψ)ψ2 − 3
c + 3

4
sin2 θ cos θ.(3.7)
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But (3.6) and (3.7) hold simultaneously if and only if (c+3)/4 sin2 θ cos θ=0.
Since 0 < θ ≤ π/2, we know that sin2 θ 6= 0. Hence, it must be c = −3 or
θ = π/2. By applying Theorem 2.1, we obtain the following result:

Theorem 3.1. Let ψ = ψ(x) be a function defined on an open interval

containing 0 and a1, a2, a3, c, θ be five constants with 0 < θ ≤ π/2.

Consider the system of first order ordinary differential equations

y′1 = −3y1y3 + csc θ cot θ(y2 + ψ)y2,

y′2 = (−2y2 + ψ)y3 − csc θ cot θ(y2 + ψ)y1,

y′3 = −y2
3 − csc2 θ(ψy2 − 2y2

1 − y2
2),

with the initial conditions: y1(0) = a1, y2(0) = a2, y3(0) = a3. Let ψ1,

ψ2 and ψ3 be the components of the unique solution of this differentiable

system on some open interval containing 0. Let M be a simply-connected

open neighborhood of the origin (0, 0, 0) ∈ R3, endowed with the metric

given by (3.1)–(3.3). Let α be the TM -valued form defined by (3.4)–(3.5).
Then, we have:

i) If c = −3, then there exists a θ-slant immersion from (M, g) into

M̃5(−3), whose second fundamental form is given by σ(X, Y ) =
csc2 θ(Tα(X, Y )− φα(X, Y )).

ii) If θ = π/2, then there exists an anti-invariant immersion from (M, g)
into M̃5(c), whose second fundamental form is given by σ(X,Y ) =
−φα(X,Y ).

We can obtain immediately from Theorem 3.1 the following existence
result for three-dimensional slant submanifolds with prescribed scalar cur-
vature or with prescribed mean curvature.

Corollary 3.2. For a given constant θ with 0 < θ ≤ π/2 and a given

function F1 = F1(x) (resp. F2 = F2(x)), there exist infinitely many three-

dimensional θ-slant submanifolds in M̃5(−3) with F1 (resp. F2) as the

prescribed scalar curvature (resp. mean curvature) function.

Slant submanifolds with F1 as the scalar curvature function can be
obtained from Theorem 3.1, by putting a2 6= 0 and choosing ψ to be a
function satisfying 3 sin2 θ F1 = ψψ2 − 2ψ2

1 − ψ2
2 − sin2 θ cos2 θ. On the
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other hand, it is enough to put ψ = 3 sin θF2−ψ2 in order to obtain F2 as
the prescribed mean curvature function.

Clearly, we can obtain a similar result for anti-invariant submanifolds
in M̃5(c), for a given constant c.

The following proposition gives the first examples of slant submani-
folds in a Sasakian-space-form with φ-sectional curvature c 6= −3.

Proposition 3.3. For each given constant θ with 0 < θ < π/2, there

exist three-dimensional θ-slant submanifolds in M̃5(−7) with nonzero con-
stant mean curvature and constant negative scalar curvature.

Proof. For a given constant θ with 0 < θ < π/2, we choose two
nonzero constants β, γ such that

(3.8) β2 + γ2 = 4 cos2 θ.

Let a, b, c be constants defined by:

a1 = − sin2 θ sec3 θ

(
1
4
β3 − 3

2
β cos2 θ +

6
β

cos4 θ

)
,(3.9)

a2 = γ sin2 θ sec3 θ

(
1
4
β2 − cos2 θ

)
,(3.10)

a3 = −β sin2 θ sec3 θ

(
1
4
β2 − 1

2
cos2 θ +

1
2
γ2

)
.(3.11)

Let M be R3. We define the 1-form η by η = dz + 2 cos θe−γxdy. We
consider on M the metric g given by:

g = η⊗ η +(dx⊗dx−βe−γx(dx⊗dy +dy⊗dx)+ (β2 +γ2)e−2γxdy⊗dy).

Put:

(3.12) e1 =
∂

∂x
, e2 =

1
γ

(
β

∂

∂x
+ eγx ∂

∂y
− 2 cos θ

∂

∂z

)
, ξ =

∂

∂z
.

Then, e1, e2, ξ form an orthonormal frame field for (M, g) and η is
the dual 1-form of ξ. We can obtain:

∇e1e1 = βe2, ∇e1e2 = −βe1 cos θξ, ∇e1ξ = − cos θe2,

∇e2e1 = −γe2 − cos θξ, ∇e2e2 = γe1, ∇e2ξ = cos θe1,

∇ξe1 = − cos θe2, ∇ξe2 = cos θe1, ∇ξξ = 0.
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By virtue of (3.8), this implies that the scalar curvature of M is given by
τ = − cos2 θ < 0.

We define a TM -valued symmetric bilinear form α on M by:

α(e1, e1) = a1e1 + a2e2, α(e1, e2) = −a2e1 + a3e2,(3.13)

α(e2, e2) = a3e1 − a2e2,

α(e1, ξ) = sin2 θe1, α(e2, ξ) = sin2 θe2,(3.14)

α(ξ, ξ) = 0.

Let T be the endomorphism on TM defined by Te1 = cos θe2, Te2 =
− cos θe1 and Tξ = 0. Then by (3.8)–(3.14) and a very long computa-
tion, we may check that (M, ξ, T, α) satisfies the nine conditions stated in
Theorem 2.1 for c = −7. Hence, this implies that there exists a θ-slant
immersion from (M, g) into M̃5(−7), whose second fundamental form is
given by σ = csc2 θ(Tα− φα).

Since θ and β are constants such that 0 < θ < π/2 and β 6= 0, the
obtained proper slant submanifolds have nonzero constant mean curvature
and constant negative scalar curvature. ¤

Remark 3.4. During a personal conversation, D. E. Blair pointed
out to the second author that, by combining Proposition 3.3 and a D-
homothetic deformation, we may also obtain the following theorem.

Theorem 3.5. Let c, θ be two constants with c < −3 and 0 < θ < π/2.

Then, there exist three-dimensional θ-slant submanifolds in a Sasakian-

space-form with constant φ-sectional curvature c.

Proof. For a given constant θ with 0 < θ < π/2, we choose a θ-slant
submanifold M of M̃5(−7), given by Proposition 3.3.

Now, for any c < −3, we consider the constant a = −4/(c+3) > 0 and
the D-homothetic deformation given by (1.2). Then, from Lemmas 2.1 and
6.1 of [9], we know that, with this change, M̃5(−7) becomes a Sasakian-
space-form with constant φ-sectional curvature −(4/a)− 3 = c.

Finally, it is easy to prove that a D-homothetic deformation maps
slant submanifolds into slant submanifolds. ¤
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