
Chapter 1

Location Problems with Multiple Criteria

S. Nickel, J. Puerto, A.M. Rodrı́guez-Chı́a

Abstract This chapter analyzes multicriteria continuous, network, and discrete lo-

cation problems. In the continuous framework, we provide a complete description

of the set of weak Pareto, Pareto, and strict Pareto locations for a general Q-criteria

location problem based on the characterization of three criteria problems. In the

network case, the set of Pareto locations is characterized for general networks as

well as for tree networks using the concavity and convexity properties of the dis-

tance function on the edges. In the discrete setting, the entire set of Pareto locations

is characterized using rational generating functions of integer points in polytopes.

Moreover, we describe algorithms to obtain the solutions sets (the different Pareto

locations) using the above characterizations. We also include a detailed complexity

analysis. A number of references has been cited throughout the chapter to avoid the

inclusion of unnecessary technical details and also to be useful for a deeper analysis.
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1.1 Introduction

Very often, locational decisions involve the investment of a significant amount of

money. It will be therefore very probable that a locational decision is made by a

group of Q decision makers (DM). In turn, it is very likely that each DM will choose

a median function to evaluate the quality of a new location, but the weights assigned

to clients may differ a lot. The same scenario occurs if one location for different

types of goods has to be found.

Multicriteria analysis of location problems has received considerable attention

within the scope of continuous, network, and discrete models in the last years. For

an overview of general methods as well as for a more bibliographic overview of

the related location literature the reader is referred to ? and ?. Presently, there are

several problems that are accepted as classical ones: the point-objective problem

(see, e.g., ???), the continuous multicriteria min-sum facility location problem (see,

e.g., ??), the network multicriteria median location problem (see, for instance, ??)

and the multicriteria discrete location problem (see, e.g., ?), among others.

In contrast to problems with only one objective, we do not have a natural ordering

in higher dimensional objective spaces. Therefore, in multicriteria optimization one

has to decide which concept of “optimality” to choose.

The goal in a multicriteria location problem is to optimize simultaneously a set

of objective functions ( f 1, . . . , f Q). Therefore, the formulation of the problem is:

v− min
x∈X⊆IRd

( f 1(x), . . . , f Q(x)), (1.1)

where v−min stands for vectorial optimization. Observe that we get points in a

Q-dimensional objective space where we do not have the canonical order of IR

anymore. Accordingly, for this type of problems, different concepts of solution

have been proposed in the literature (the reader is referred to ? as a general ref-

erence in multicriteria optimization). A point x ∈ IRd is called a Pareto location

(or Pareto-optimal) if there exists no y ∈ IRd such that f q(y) ≤ f q(x) ∀q ∈ Q :=
{1, . . . ,Q} and f p(y)< f p(x) for some p∈Q. We denote the set of Pareto solutions

by X ∗
Par

(
f 1, . . . , f Q

)
or simply by X ∗

Par if this is possible without causing confusion.

If f q(x) ≤ f q(x′) ∀q ∈ Q and ∃q ∈ Q : f q(x) < f q(x′) we say that x dominates x′

in the decision space and f (x) dominates f (x′) in the objective space.

Alternative solution concepts are weak Pareto-optimality and strict Pareto-opti-

mality. A point x ∈ IRd is called a weak Pareto location (or weakly Pareto-optimal)

if there exists no y ∈ IRd , such that f q(y) < f q(x) ∀q ∈ Q . We denote the set

of weak Pareto solutions by X ∗
w−Par

(
f 1, . . . , f Q

)
or simply by X ∗

w−Par if this

is possible without causing confusion. A point x ∈ IRd is called a strict Pareto

location (or strictly Pareto-optimal) if there exists no y ∈ IRd , y 6= x, such that

f q(y) ≤ f q(x)∀q ∈ Q . Analogously, the set of strict Pareto solutions is denoted

by X ∗
s−Par

(
f 1, . . . , f Q

)
, or simply by X ∗

s−Par if this is possible without causing con-

fusion. Note that X ∗
s−Par ⊆ X ∗

Par ⊆ X ∗
w−Par and in case we are considering strictly
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convex functions these three sets coincide. Finally, we recall that ? proved the con-

nectedness of the set X ∗
Par when the functions are convex.

In our proofs we use the concept of level sets. For a function f : IRd → IR the level

set for a value ρ ∈ IR is given by L≤( f ,ρ) := {x ∈ IRd : f (x) ≤ ρ} (the strict level

set is L<( f ,ρ) := {x ∈ IRd : f (x) < ρ}) and the level curve for a value ρ ∈ IR is

given by L=( f ,ρ) := {x ∈ IRd : f (x) = ρ}. For a function f i(·) we use the notation

X
∗( f i) := arg min

x∈IRd
f i(x).

For two points x and y we denote the segment defined by x and y as xy.

In this chapter we focus on some fundamental results in the continuous, network

and discrete cases. We will describe in some detail a complete geometric charac-

terization for the planar 1-facility case, an optimal time algorithm for the 1-facility

network problem as well as the computation of the entire set of Pareto-optimal solu-

tions of the discrete multicriteria p-median problem. Although we are concentrating

on the median case we will give some outlook to extensions.

1.2 1-Facility Planar/Continuous Location Problems

In this section we study Problem (??) where f 1(·), . . . , f Q(·) are convex, inf-

compact functions, defined in IR2, which represent different criteria or scenarios.

Recall that a real function f (·) is said to be inf-compact if its lower level sets

{x : f (x) ≤ ρ} are compact for any ρ ∈ IR. The next result states a useful char-

acterization of the different solution sets defined in the previous section using level

sets and level curves which will be used later.

Theorem 1.1. The following characterizations hold :

x ∈ X
∗

w−Par

(
f 1, . . . , f Q

)
⇔

Q
⋂

q=1

L<( f q, f q(x)) = /0 (1.2)

x ∈ X
∗

Par

(
f 1, . . . , f Q

)
⇔

Q
⋂

q=1

L≤( f q, f q(x)) =
Q
⋂

q=1

L=( f q, f q(x)) (1.3)

x ∈ X
∗

s−Par

(
f 1, . . . , f Q

)
⇔

Q
⋂

q=1

L≤( f q, f q(x)) = {x}. (1.4)

Proof. If x 6∈ X ∗
w−Par

(
f 1, . . . , f Q

)
, there exists z ∈ IR2 such that f q(z) < f q(x) for

each q ∈ Q, that means,

z ∈
Q
⋂

q=1

L<( f q, f q(x)).

Hence, we obtain that
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Q
⋂

q=1

L<( f q, f q(x)) 6= /0.

Since the implications above can be reversed the proof is concluded. The remain-

ing results can be proved analogously. �

Remark 1.1. For the case Q= 2 the previous result states that the set X ∗
w−Par( f 1, f 2)

coincides with tangential cusps between the level curves of functions f 1(·) and f 2(·)
union with X ∗( f 1)∪X ∗( f 2) (see Example ??).

Corollary 1.1. If f 1, . . . , f Q are strictly convex functions then

X
∗

w−Par( f 1, . . . , f Q) = X
∗

Par

(
f 1, . . . , f Q

)
= X

∗
s−Par

(
f 1, . . . , f Q

)
.

Example 1.1. (see Figure ??) Let us consider the points a1 = (0,0), a2 = (8,3), a3 =
(−3,5) and the functions f 1(x) = ‖x−a1‖1, f 2(x) = ‖x−a2‖∞, f 3(x) = ‖x−a3‖1.

By Theorem ??, X ∗
w−Par( f 1, f 2) is the rectilinear thick path joining a1 and a2 and

X ∗
w−Par( f 1, f 3) is the dark rectangle with a1 and a3 as opposite vertices.

a1

a2

a3

 

 

 

X
∗

w−Par
(f1, f3)

X
∗

w−Par
(f1, f2)

Fig. 1.1 Illustration of Example ??.

In what follows, since we are dealing with general convex, inf-compact func-

tions, we will focus on providing information about the geometrical structure of

X ∗
w−Par( f 1, f 2, f 3). This characterization will allow us to obtain a geometrical de-

scription of X ∗
Par

(
f 1, f 2, f 3

)
and X ∗

s−Par

(
f 1, f 2, f 3

)
in the next section for an im-

portant family of functions. Actually, we will characterize X ∗
w−Par( f 1, f 2, f 3) as a
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kind of hull delimited by the chains of bicriteria solutions of any pair of functions

f p, f q p,q = 1,2,3. This result enables us to obtain the set X ∗
w−Par

(
f 1, . . . , f Q

)
by

union of three-criteria solution sets already characterized. In order to do that, let

C∞(IR
+
0 , IR

2) :=
{

ϕ |ϕ : IR+
0 → IR2,ϕ continuous, lim

t→∞
‖ϕ(t)‖2 = ∞

}

,

where ‖x‖2 is the Euclidean norm of the point x. C∞(IR
+
0 , IR

2) is the set of continu-

ous curves, which map the set of non-negative numbers IR+
0 := [0,∞) into the two-

dimensional space IR2 and whose image ϕ(IR+
0 ) is unbounded in IR2. These curves

are introduced to characterize the geometrical locus of the points surrounded by

weak-Pareto and Pareto chains.

For a set S ⊆ IR2 we define the enclosure of S by

encl(S) :=
{

x ∈ IR2 : ∃ε > 0 with B(x,ε)∩S = /0 , ∃tϕ ∈ [0,∞)with

ϕ(tϕ) ∈ S for allϕ ∈C∞(IR
+
0 , IR

2)with ϕ(0) = x
}
,

where B(x,ε) = {y ∈ IR2 : ‖y− x‖2 ≤ ε}. Note that S∩ encl(S) = /0. Informally,

encl(S) contains all the points which are surrounded by S, but do not belong them-

selves to S.

We denote the union of the bicriteria chains of weak-Pareto solutions by

X
gen

w−Par

(
f 1, f 2, f 3

)
:=

2⋃

p=1

3⋃

q=p+1

X
∗

w−Par ( f p, f q) .

We use “gen” since this set will generate the set X ∗
w−Par

(
f 1, f 2, f 3

)
. The next

theorem provides useful geometric information to build X ∗
w−Par

(
f 1, f 2, f 3

)
. Its

proof can be found in ?.

Theorem 1.2.

X
∗

w−Par( f 1, f 2, f 3) = encl
(
X

gen
w−Par

(
f 1, f 2, f 3

))
∪X

gen
w−Par

(
f 1, f 2, f 3

)
.

Remark 1.2. It is worth noting that the region encl
(

X
gen

w−Par

(
f 1, f 2, f 3

))

is well-

defined because the set X
gen

w−Par

(
f 1, f 2, f 3

)
is connected (see ?).

As an illustration of the above result we present the following example.

Example 1.2. Let us consider three points a1 = (0,0), a2 = (3,−1) and a3 = (3,3),
and the functions f 1(·), f 2(·) and f 3(·) such that,

L≤( f 1,1) =

{

(x1,x2) :
x2

1

4
+

x2
2

9
≤ 1

}

L≤( f 2,1) =
{
(x1,x2) : (x1 − 3)2 +(x2 + 1)2 ≤ 1

}

L≤( f 3,1) =

{

(x1,x2) :
(x1 − 3)2

9
+

(x2 − 3)2

4
≤ 1

}

.
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We can see that these three functions are convex functions. Therefore by the previ-

ous result we obtain the geometrical characterization of the set X ∗
w−Par( f 1, f 2, f 3);

this set is the shadowed region in Figure ??.

a1

a2

a3

X
∗

w−Par
(f1, f3)

X
∗

w−Par
(f1, f2)

X
∗

w−Par
(f2, f3)

X
∗

w−Par
(f1, f2, f3)

Fig. 1.2 Illustration of Example ??.

Now we are in the right position to show the main result about the geometrical

structure of X ∗
w−Par( f 1, . . . , f Q).

Theorem 1.3.

X
∗

w−Par( f 1, . . . , f Q) =
⋃

p,q,r∈Q

p<q<r

X
∗

w−Par( f p, f q, f r).

Proof. By Theorem ??, x ∈ X ∗
w−Par( f 1, . . . , f Q) if and only if

⋂

q∈Q

L<( f q, f q(x)) =

/0. Furthermore, by Helly’s theorem (see ?), this intersection is empty if and only

if there exist p,q,r ∈ Q (p < q < r) such that L<( f p, f p(x)) ∩ L<( f q, f q(x)) ∩
L<( f r, f r(x)) = /0 and this is equivalent to x ∈ X ∗

w−Par( f p, f q, f r). Since in any

case we have that

⋃

p,q,r∈Q

p<q<r

X
∗

w−Par( f p, f q, f r)⊂ X
∗

w−Par( f 1, . . . , f Q),

the result follows. �

Remark 1.3. This result extends previous characterizations in the literature:
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- Taking f i(x) = ‖x− ai‖ with ai ∈ IR2 for i = 1, . . . ,Q and ‖ · ‖ being a strictly

convex norm or a norm derived from a scalar product, we get Proposition 1.3,

Theorem 4.3 and Corollary 4.1 in ?. The set of weakly efficient locations is the

convex hull of the points ai with i = 1, . . . ,Q. In Example ??, we illustrate this

result.

- Taking f i(x) = ‖x−ai‖ with ai ∈ IR2 for i = 1, . . . ,Q and ‖ ·‖ being a polyhedral

gauge we get Theorem 6.1 in ?, where the set of weakly efficient locations is

the union of elementary convex sets, (see ? for a definition). In Example ??, we

illustrate this result.

- Taking f i(x) = max j∈M wi
j‖x− a j‖ with a j ∈ IR2, wi

j > 0 for i = 1, . . . ,Q, j ∈
M := {1, . . . ,m} and ‖ · ‖ being the ℓ∞-norm, we get Theorem 6.1 in ?, where

the set of weakly efficient locations is the union of the sets of weakly efficient

locations for all pairs of functions. In Example ??, we illustrate the use of this

result.

Example 1.3. (See Figure ??) Let us consider the points a1 = (0,0), a2 = (5,−10),
a3 = (10,0) and the functions f i(x) = ‖x − ai‖2 for i = 1,2,3. By Theorem ??,

X ∗
w−Par( f 1, f 2, f 3) is the dark region, which in this case is the convex hull of a1, a2

and a3.

a1

a2

a3

X
∗

w−Par
(f1, f2, f3)

  

 

Fig. 1.3 Illustration of Example ??.

Example 1.4. (See Figure ??) Let us consider the points a1 = (0,0), a2 = (8,3),
a3 = (−3,5) and the functions f 1(x) = ‖x− a1‖1, f 2(x) = ‖x− a2‖∞ and f 3(x) =
‖x − a3‖1. By Theorem ??, X ∗

w−Par( f 1, f 2) is the thick path joining a1 and a2,

X ∗
w−Par( f 2, f 3) is the thick path joining a2 and a3, and X ∗

w−Par( f 1, f 3) is the dark

rectangle with a1 and a3 as opposite extreme points. Therefore, by Theorem ??,

X ∗
w−Par( f 1, f 2, f 3) is the dark region surrounded by the union of the three previous

sets. Note that this region is the union of two full dimensional elementary convex

sets.

Example 1.5. (See Figure ??) Let us consider the points a1 = (4,16), a2 = (10,5),
a3 = (25,12) and the functions f i(x) = ‖x− ai‖∞ for i = 1,2,3. By Theorem ??,
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a1

a2

a3

 

 

 

X
∗

w−Par
(f1, f3)

X
∗

w−Par
(f1, f2)

X
∗

w−Par
(f2, f3)

X
∗

w−Par
(f1, f2, f3)

Fig. 1.4 Illustration of Example ??.

X ∗
w−Par( f 1, f 2) = R1, X ∗

w−Par( f 1, f 3) = R2 ∪ R4, X ∗
w−Par( f 2, f 3) = R3 ∪ R4. By

Theorem ??, X ∗
w−Par( f 1, f 2, f 3) = R1 ∪ R2 ∪ R3 ∪ R4. Note that in this example

X ∗
w−Par( f 1, f 2, f 3) = X ∗

w−Par( f 1, f 2)∪X ∗
w−Par( f 1, f 3)∪X ∗

w−Par( f 2, f 3).

a1

a2

a3

R4R1

R2

R3

b

b

b

Fig. 1.5 Illustration of Example ??.

1.2.1 Polyhedral Planar Minisum Location Problems

Consider a set of demand points A := {a1, . . . ,aM} ⊆ IR2. Let Bi ⊂ IR2, for i ∈M :=
{1,2, . . . ,M}, be a compact, convex set containing the origin in its interior. The
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gauge with respect to Bi is defined as γi : IR2 → IR, γi(x) := inf{r > 0 : x ∈ rBi}.

Taking this definition into account, the planar minisum location problem is

min
x∈IR2

M

∑
i=1

wiγi(x− ai),

where wi is a nonnegative weight associated with the demand point ai (i ∈ M ).

In this section we study the particular case where the functions f 1, . . . , f Q are

minisum location objective functions and the distances are measured with polyhe-

dral gauges, i.e., the unit balls associated with these gauges are convex polytopes.

This type of objective function is not strictly convex and for this reason, the three so-

lutions sets (Pareto, weak Pareto and strict Pareto locations) do not coincide. There-

fore, in this section we focus on the characterization of the Pareto locations and how

it can be extended to the remaining solution sets.

b b

p1 +N(B0, p1)

p2 +N(B0, p2)

(0, 0)

(0, 0)

d1

d2

d3

d4

e1

e2

e3

e4

B
B0

p1

p2

Fig. 1.6 Illustration of the unit ball for the ℓ1-norm, its dual ball and two normal cones of this

dual ball.

The polar set Bo
i of Bi is given by Bo

i := {p ∈ IR2 : 〈p,x〉 ≤ 1∀x ∈ Bi} and the

normal cone to Bi at x is given by N(Bi,x) := {p ∈ IR2 : 〈p,y− x〉 ≤ 0 ∀y ∈ Bi},

where 〈·, ·〉 denotes the scalar product. In case of polyhedral gauges (i.e., Bi is a

polytope), the set of extreme points of Bi is denoted by Ext(Bi) := {ei
1, . . . ,e

i
Gi
} .

The maximal number of extreme points is denoted by Gmax := max{Gi : i ∈ M }.

We define fundamental directions di
1, . . . ,d

i
Gi

as the half-lines determined by 0 and

ei
1, . . . ,e

i
Gi

(see Figure ??).

Let π = (pi)i∈M be a family of elements of IR2 such that pi ∈ Bo
i for each i ∈ M

and let Cπ =
⋂

i∈M (ai +N(Bo
i , pi)). According to ?, a nonempty convex set C is

called an elementary convex set if there exists a family π such that Cπ =C. If the unit

balls are polytopes, then we can obtain the elementary convex sets as intersections

of cones generated by fundamental directions of these balls pointed at each demand

point (for details, see ?). The 2-dimensional elementary convex sets are called cells.

Let C denote to the set of these cells. Therefore each cell is a polyhedron whose
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vertices are the intersection points, which we denote by I P. Finally, in the case of

IR2 there exists an upper bound on the number of cells which is O((MGmax)
2) (see

?).

In figure ?? we show an elementary convex set for the ℓ1-norm for two points

a1, a2. In this example the dual norm is the ℓ∞-norm where its unit ball B0 has

the extreme points {(1,1),(−1,1),(−1−,1),(1,−1)}. The normal cones to B0 at

p1 = (1,−1) and p2 = (−1,1) are given by N(B0, p1) = cone((1,0),(0,−1)) and

N(B0, p2) = cone((−1,0),(0,1)), respectively, where cone stands for the conical

hull of its argument. Thus, the elementary convex set Cπ with π = (p1, p2) is the

rectangle defined by a1 and a2 with sides parallel to the coordenates axes.

b

b

a1

a2

(a1+N(B0, p1)) ∩ (a2+N(B0, p2))

Fig. 1.7 Illustration of an elementary convex set for the ℓ1-norm.

1.2.1.1 Bicriteria Case

In this section we restrict ourselves to the bicriteria case, which, as will be seen later,

is the basis for solving the Q-criteria case. To this end, we are looking for the Pareto

solutions of the vector optimization problem in IR2,

min
x∈R2

(

f 1(x) :=
M

∑
i=1

w1
i γi(x− ai), f 2(x) :=

M

∑
i=1

w2
i γi(x− ai)

)

,

where the weights w
q
i are non negative (i= 1, ...,M; q= 1,2). The following theorem

provides a geometric characterization of the set X ∗
Par.

Theorem 1.4. X ∗
Par

(
f 1, f 2

)
is a connected chain from X ∗( f 1) to X ∗( f 2) consist-

ing of faces or vertices of cells, or complete cells.

Proof. First, we note that X ∗( f q) 6= /0 for q = 1,2 (see ?). Moreover, X ∗
Par ∩

X ∗( f q) 6= /0 for q = 1,2. Therefore, we know that X ∗
Par 6= /0, so we can choose

x ∈ X ∗
Par. There exists at least one cell C ∈ C with x ∈ C. We can assume with-

out loss of generality that C is bounded. We also note that the functions f 1 and f 2
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are linear within each cell (see ?). Given a set A, in what follows, conv(A), bd(A)

and int(A) will denote the convex hull, the boundary and the interior of the set A,

respectively. Hence three cases may occur:

Case 1: x ∈ int(C). Since x ∈ X ∗
Par we obtain

2⋂

q=1

L≤( f q, f q(x)) =
2⋂

q=1

L=( f q, f q(x))

and by linearity of the median problem in each cell we have

2⋂

q=1

L≤( f q, f q(y)) =
2⋂

q=1

L=( f q, f q(y)) ∀y ∈ C

which means y ∈ X ∗
Par ∀y ∈ C, hence C ⊆ X ∗

Par.

Case 2: x ∈ ab := conv({a,b}) ⊂ bd(C) and a,b ∈ Ext(C). We can choose y ∈
int(C) and two cases can occur:

Case 2.1: y ∈ X ∗
Par. Hence we can continue as in Case 1.

Case 2.2: y /∈ X ∗
Par. Therefore using the linearity we first obtain

2⋂

q=1

L≤( f q, f q(z)) 6=
2⋂

q=1

L=( f q, f q(z)) ∀z ∈ int(C).

Second, since x ∈ X ∗
Par, we have

2⋂

q=1

L≤( f q, f q(z)) =
2⋂

q=1

L=( f q, f q(z)) ∀z ∈ ab.

Hence, we have that C 6⊆ X ∗
Par and ab ⊆ X ∗

Par.

Case 3: x ∈ Ext(C). We can choose y ∈ int(C) and two cases can occur

Case 3.1: If y ∈ X ∗
Par, we can continue as in Case 1.

Case 3.2: If y /∈X ∗
Par, we choose z1,z2 ∈ Ext(C) such that xz1,xz2 are faces of C,

- If z1 or z2 are in X ∗
Par, we can continue as in Case 2.

- If z1 and z2 are not in X ∗
Par, then using the linearity in the same way as

before we obtain that (C\ {x})∩X ∗
Par = /0.

Hence, we conclude that the set of Pareto solutions consists of complete cells, com-

plete faces, and vertices of these cells. Since we know that the set X ∗
Par is connected,

the proof is completed. �

In the following we develop an algorithm to solve the bicriteria planar min-

isum location problem. The idea of this algorithm is to start in a vertex x of the

cell structure which belongs to X ∗
Par, say x ∈ X ∗

1,2 := argminx∈X ∗( f 1) f 2(x) (set
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of optimal lexicographical locations, see ?). Then, using the connectivity of X ∗
Par,

the algorithm proceeds by moving from vertex x to another Pareto-optimal ver-

tex y of the cell structure which is connected with the previous one by an ele-

mentary convex set. This procedure is repeated until the end of the chain reaches

X ∗
2,1 := argminx∈X ∗( f 2) f 1(x).
Let C be a cell and y, x and z three vertices of C enumerated counterclockwise

(see Figure ??). By the linearity of the level sets in each cell we can distinguish the

following disjoint situations, if x ∈ X ∗
Par :

(S1) C ⊆ X ∗
Par , i.e., C is contained in the chain.

(S2) xy and xz are candidates for X ∗
Par and int(C) 6⊂ X ∗

Par.

(S3) xy is candidate for X ∗
Par and xz is not contained in X ∗

Par.

(S4) xz is candidate for X ∗
Par and xy is not contained in X ∗

Par.

(S5) Neither xy nor xz are contained in X ∗
Par.

We denote by sit(C,x) the situations (S1, S2, S3, S4 or S5) in which the cell C is

classified according to the extreme point x of C. The following lemma, whose proof

is based on an exhaustive case analysis of the different relative positions of x within

C, can be found in ?. It states when a given segment belongs to the Pareto-set in

terms of the sit(·, ·) function.

Cy

z

x

Fig. 1.8 Illustration to y,x, z ∈ Ext(C) in counterclockwise order.

Lemma 1.1. Let C1, . . . ,CPx be the cells containing the intersection point x , con-

sidered in counterclockwise order, and y1, . . . ,yPx the intersection points adjacent

to x , considered in counterclockwise order ( see Figure ?? ). If x ∈ X ∗
Par and

i ∈ {1, . . . ,Px}, then the following holds (assume that i+ 1 = 1 whenever i = Px) :

xyi+1 ⊆ X ∗
Par ⇐⇒







sit(Ci,x) = S1

or sit(Ci+1,x) = S1

or

{
sit(Ci,x) ∈ {S2,S3}

sit(Ci+1,x) ∈ {S2,S4}

}









1 Location Problems with Multiple Criteria 13

x

y1

y2

y3

y4

y5

y6

C1C2

C3

C4

C5

C6

Fig. 1.9 Illustration to Lemma ?? with Px = 6.

These results validate the following algorithm for finding X ∗
Par

(
f 1, f 2

)
.

Algorithm 1.1.

Step 1. Compute the planar graph generated by the cells and the two sets of lexico-

graphical locations X ∗
1,2 , X

∗
2,1 .

Step 2. If X ∗
1,2 ∩X ∗

2,1 6= /0 then set X ∗
Par := conv(X ∗

1,2) (trivial case X ∗( f 1)∩

X ∗( f 2) 6= /0). Otherwise set X ∗
Par := X ∗

1,2 ∪X ∗
2,1 (non trivial case X ∗( f 1)∩

X ∗( f 2) = /0)

Step 3. Choose x ∈ X ∗
1,2 ∩I P .

Step 4. Scan the list of cells adjacent to x until we get situation S1 for a cell C or two

consecutive cells, C, C, in situations C∈ {S2,S3} and C ∈ {S2,S4}, respectively.

Step 5. If situation A occurs then X ∗
Par :=X ∗

Par ∪C (we have found a bounded cell.)

Otherwise X ∗
Par := X ∗

Par ∪ xy where y is a vertex of C defined in situations S2

and S4 (we have found a bounded face.)

Step 6. Let C be the last scanned cell. Choose y ∈ I P ∩C and, such that, y is

connected to x. If y ∈ X ∗
2,1 stop. Otherwise, set x := y and go to Step 4.

Output: X ∗
Par

(
f 1, f 2

)
. �

? proved that the computation of a planar graph induced by n lines in the plane

can be done in O(n2) time. This implies that in the case of the minisum location

problem the computation of the planar graph generated by the fundamental direction

lines is doable in O(M2G2
max) time.

The evaluation of the minisum location function needs O(M log(Gmax)) for

one point, therefore we obtain O(M3G2
max log(Gmax)) time for the computation
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of lexicographic solutions. At the end, the complexity for computing the chain is

O(M3G2
max log(Gmax)), since we have to consider at most O(M2G2

max) cells and the

determination of sit( . , .) can be done in O(M log(Gmax)) time. Hence, the overall

complexity is O(M3G2
max log(Gmax)). Notice that the polynomial complexity of this

algorithm allows an efficient computation of the solution set.

Example 1.6. Consider a 3-criteria median problem with 9 existing facilities A =
{a1, . . . ,a9} ( see Figure ?? ). The coordinates ai = (xi,yi) of the existing facilities

are given by the set: {(−3,0),(3,0),(0,−4),(11,−6),(17,−6),(14,−2),(11,2),
(17,2),(14,6)}, and the weights wq,q= 1,2,3 are given by w1 =(2,2,1,0,0,0,0,0,0),
w2 = (0,0,0,2,2,1,0,0,0) and w3 = (0,0,0,0,0,0,2,2,1).

The optimal solutions of the location problems associated with the median func-

tions f 1, f 2 and f 3 with f q = ∑M
i=1 w

q
i ‖ x− ai ‖1, q = 1,2,3, are unique and given

by X ∗
1 = {(0,0)}, X ∗

2 = {(14,−6)} and X ∗
3 = {(14,2)}, respectively, all of them

with the (optimal) objective value 16. The bicriteria chains (consisting of cells and

edges with respect to the fundamental directions drawn in Figure ??) are given by

X
∗

Par

(
f 1, f 3

)
= (0,0)(3,0)∪ conv({(3,0) ,(3,2) ,(11,2) ,(11,0)})∪ (11,2)(14,2),

X
∗

Par

(
f 2, f 3

)
= (14,2)(14,−6),

X
∗

Par

(
f 1, f 2

)
= (0,0)(3,0)∪ (3,0)(3,−2)∪

conv({(3,−2) ,(3,−4) ,(11,−4),(11,−2)})∪

(11,−4)(14,−4)∪ (14,−4)(14,−6).

b b

b

b b

b

b b

b

rs

rs

rs

a1 a2

a3

a4 a5

a6

a7 a8

a9

X ∗

1

X ∗

3

X ∗

2

Fig. 1.10 Illustration to Example ??.
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1.2.1.2 Three-Criteria Case

In this section we consider the 3-criteria case and develop an efficient algorithm for

computing X ∗
Par

(
f 1, f 2, f 3

)
using the results for the bicriteria case. In particular, we

obtain a characterization of the Pareto solution set for the three criteria case using

the region surrounded by the chains of bicriteria Pareto solutions. We denote the

union of the bicriteria chains including the 1-criterion solutions by

X
gen

Par

(
f 1, f 2, f 3

)
:=

3⋃

q=1

X
∗( f q) ∪

2⋃

q=1

3⋃

p=q+1

X
∗

Par ( f p, f q) .

We use “gen” since this set will generate the set X ∗
Par

(
f 1, f 2, f 3

)
(see Figure

??).

X ∗
1

X ∗
2

X ∗
3

X ∗
Par

(
f 1, f 2

)

X ∗
Par

(
f 1, f 3

)

X ∗
Par

(
f 2, f 3

)

encl
(
X gen

Par

(
f 1, f 2, f 3

))

Fig. 1.11 The enclosure of X
gen

Par

(
f 1, f 2, f 3

)
.

The next lemma provides useful geometric information to build X ∗
Par

(
f 1, f 2, f 3

)
.

For a set A, let cl(A) denote the topological closure of A.

Lemma 1.2. The following inclusion of sets holds:

cl
(
encl

(
X

gen
Par

(
f 1, f 2, f 3

)))
⊆ X

∗
s−Par

(
f 1, f 2, f 3

)
.

The interested reader is referred to ? for a detailed proof of this result.

Remark 1.4. Since X ∗
Par

(
f i, f j

)
= X ∗

w−Par

(
f i, f j

)
for any i, j ∈ {1,2,3}, we have

that:

encl
(
X

gen
Par

(
f 1, f 2, f 3

))
= encl

(
X

gen
w−Par

(
f 1, f 2, f 3

))
.

Finally we obtain the following theorem which provides a subset as well as a

superset of X ∗
Par

(
f 1, f 2, f 3

)
.

Theorem 1.5. The following inclusions of sets hold:
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encl
(
X

gen
Par

(
f 1, f 2, f 3

))
⊆ X

∗
Par

(
f 1, f 2, f 3

)

⊆ X
gen

Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

))

= X
∗

w−Par

(
f 1, f 2, f 3

)
.

Proof. Using Lemma ?? and Theorem ?? we have the following chain of inclusions

that proves the thesis of the theorem.

encl
(
X

gen
Par

(
f 1, f 2, f 3

))
⊆ X

∗
s−Par

(
f 1, f 2, f 3

)

⊆ X
∗

Par

(
f 1, f 2, f 3

)
⊆ X

∗
w−Par

(
f 1, f 2, f 3

)

⊆ X
gen

Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

))
. �

Now it remains to consider the Pareto-optimality of the set X
gen

Par

(
f 1, f 2, f 3

)

with respect to the three objective functions f 1, f 2, f 3. For a cell C ∈ C we define

the collapsing and the remaining part of C with respect to Q-criteria optimality by

colQ(C) :=
{

x ∈C : x /∈ X
∗

Par

(
f 1, . . . , f Q

)}

remQ(C) :=
{

x ∈C : x ∈ X
∗

Par

(
f 1, . . . , f Q

)}
.

Summing up the preceding results we get a complete geometric characteriza-

tion of the set of Pareto solutions for the three criteria case. For each cell C,

colQ(C) ∪̇ remQ(C) =C and, as shown by ?, determining both sets can be done with

the gradients of the objective functions with a complexity of O(Q logQ).

Theorem 1.6. The set of Pareto solutions satisfies:

X
∗

Par

(
f 1, f 2, f 3

)
=
(
X

gen
Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

)))

\{x ∈ IR2 : ∃C ∈ C ,C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
, x ∈ col3(C)}.

Proof. Let y ∈ X ∗
Par

(
f 1, f 2, f 3

)
. Then we have, by Theorem ??, that

y ∈ X
gen

Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

))
. Moreover for C ∈ C with y ∈ C

we have y ∈ rem3(C), i. e., y /∈ col3(C). This implies

y ∈
(
X

gen
Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

)))

\{x ∈ IR2 : ∃C ∈ C ,C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
, x ∈ col3(C)}.

We distinguish the following cases :

Case 1: y ∈ encl
(
X

gen
Par

(
f 1, f 2, f 3

))
. Then y ∈ X ∗

Par

(
f 1, f 2, f 3

)
by Theorem ??.

Case 2 : y ∈ X
gen

Par

(
f 1, f 2, f 3

)
.

Case 2.1 : ∃C ∈ C ,C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
with y ∈C

⇒ y /∈ col3(C) ⇒ y ∈ rem3(C) ⇒ y ∈ X ∗
Par

(
f 1, f 2, f 3

)
.

Case 2.2 : 6 ∃C ∈ C ,C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
with y ∈C
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⇒ L≤( f p, f p(y))∩L≤( f q, f q(y)) = {y} for some p,q ∈ {1,2,3}, p < q

⇒
⋂3

q=1 L≤( f q, f q(y)) = {y}⇒ y ∈X ∗
s−Par

(
f 1, f 2, f 3

)
⊆X ∗

Par

(
f 1, f 2, f 3

)
.�

In the case of median functions the gradients ∇ f q(x), q ∈ {1,2,3}, (in those

points where they are well-defined) can be computed in O(M log(Gmax)) time (anal-

ogous to the evaluation of the function). Therefore, we can test in O(M log(Gmax))
time if a cell C ∈C , C ⊆X

gen
Par

(
f 1, f 2, f 3

)
collapses. We obtain the following algo-

rithm for the 3-criteria median problem with time complexity O(M3G2
max log(Gmax))

(see ? for more details).

Algorithm 1.2.

Step 1. Compute the the subdivision of the plane generated C , the family of elemen-

tary convex sets. Compute X ∗
w−Par

(
f 1, f 2

)
, X ∗

w−Par

(
f 1, f 3

)
, X ∗

w−Par

(
f 2, f 3

)

using Algorithm ??.

Step 2. Set X
gen

Par

(
f 1, f 2, f 3

)
:=X ∗

w−Par

(
f 1, f 2

)
∪X ∗

w−Par

(
f 1, f 3

)
∪X ∗

w−Par

(
f 2, f 3

)

and X ∗
Par

(
f 1, f 2, f 3

)
:= X

gen
Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

))
.

Step 3. For any C ∈ C with C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
compute col3(C) and set

X ∗
Par

(
f 1, f 2, f 3

)
:= X ∗

Par

(
f 1, f 2, f 3

)
\ col3(C).

Output: X ∗
Par

(
f 1, f 2, f 3

)
. �

Figure ?? illustrates the preceding results using the data introduced in Exam-

ple ??. The dashed path joining X ∗
1 and X ∗

3 in the picture represents the set

X ∗
w−Par

(
f 1, f 3

)
after removing the col3(C). In the same way, the path joining X ∗

1

and X ∗
2 represents the set X ∗

w−Par

(
f 1, f 2

)
after removing the col3(C). Finally, the

dotted segment joining X ∗
2 and X ∗

3 is X ∗
w−Par

(
f 2, f 3

)
(in this case there are not

cells to be collapsed).

b b

b

b b

b

b b

b

rs

rs

rs

a1 a2

a3

a4 a5

a6

a7 a8

a9

X ∗

1

X ∗

3

X ∗

2

Fig. 1.12 Illustration of X
gen

Par

(
f 1, f 2, f 3

)
and X ∗

Par

(
f 1, f 2, f 3

)
for the problem introduced in

Example ??.
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1.2.1.3 Case where Q > 3

In this section we consider the general Q-Criteria case (Q > 3). We prove that the

Pareto solution set can be obtained from the Pareto solution sets of all the three

criteria problems. This construction requires the removal of the dominated points

from the union of all the three criteria Pareto solution sets. The reader may notice

that all this process reduces to obtaining the bicriteria Pareto chains as proved in

Theorem ??.

Theorem 1.7. The following inclusions hold:

1.
⋃

p,q,r∈Q

p<q<r

cl
(
encl

(
X

gen
Par ( f p, f q, f r)

))
⊆ X

∗
Par

(
f 1, . . . , f Q

)
.

2. X
∗

Par

(
f 1, . . . , f Q

)
⊆

⋃

p,q,r∈Q

p<q<r

X
gen

Par ( f p, f q, f r) ∪
⋃

p,q,r∈Q

p<q<r

encl
(
X

gen
Par ( f p, f q, f r)

)
=

X
∗

w−Par

(
f 1, . . . , f Q

)
.

Proof. (1) Let x ∈
⋃

p,q,r∈Q

p<q<r

cl
(
encl

(
X

gen
Par ( f p, f q, f r)

))
. This is equivalent to

x ∈ cl
(
encl

(
X

gen
Par ( f p, f q, f r)

))
for some p,q,r ∈ Q, p < q < r.

Then, by Lemma ??, x ∈ X ∗
s−Par ( f p, f q, f r) for some p,q,r ∈ Q, p < q < r. Ap-

plying characterization (??), this is equivalent to L≤( f p, f p(x))∩L≤( f q, f q(x))∩
L≤( f r, f r(x)) = {x} for some p,q,r ∈ Q, p < q < r and since x ∈ L≤( f q, f q(x))

for all q ∈ Q it follows that
⋂Q

q=1 L≤( f q, f q(x)) = {x}. Finally, again by (??),

x ∈ X ∗
s−Par

(
f 1, . . . , f Q

)
, which implies that x ∈ X ∗

Par

(
f 1, . . . , f Q

)
.

(2) Let x ∈ X ∗
Par

(
f 1, . . . , f Q

)
then x ∈ X ∗

w−Par

(
f 1, . . . , f Q

)
and, by (??), this is

equivalent to
⋂Q

q=1 L<( f q, f q(x)) = /0. By Helly’s theorem, there exists p,q,r ∈

Q, p < q < r, such that, L<( f p, f p(x)) ∩ L<( f q, f q(x)) ∩ L<( f r , f r(x)) = /0. By

characterization (??), this is equivalent to x ∈ X ∗
w−Par ( f p, f q, f r) for some p,q,r ∈

Q, p < q < r and, by Theorem 3.2 in ?, this implies that x ∈ X
gen

Par ( f p, f q, f r)∪
encl

(
X

gen
Par ( f p, f q, f r)

)
for some p,q,r ∈ Q, p < q < r. Finally, this can be equiv-

alently written as

x ∈
⋃

p,q,r∈Q

p<q<r

X
gen

Par ( f p, f q, f r) ∪
⋃

p,q,r∈Q

p<q<r

encl
(
X

gen
Par ( f p, f q, f r)

)
.

�

In the Q-criteria case the crucial region is now given by the cells C ∈ C with

C ⊆
⋃

p,q,r∈Q

p<q<r

X
gen

Par ( f p, f q, f r) \
⋃

p,q,r∈Q

p<q<r

encl
(
X

gen
Par ( f p, f q, f r)

)
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=
⋃

p,q∈Q

p<q

X
∗

w−Par ( f p, f q) \
⋃

p,q,r∈Q

p<q<r

encl
(
X

gen
Par ( f p, f q, f r)

)
.

Similar to the situation in the previous section one can test whether the cell C ∈ C

collapses with respect to f 1, . . . , f Q by comparing the gradients of the objective

functions in int(C). Finally we obtain the following theorem, which can be proven

using the same reasoning as in the 3-criteria case (see proof of Theorem ??).

Theorem 1.8.

X ∗
Par

(
f 1, . . . , f Q

)
=




⋃

p,q,r∈Q

p<q<r

X
gen

Par ( f p, f q, f r) ∪
⋃

p,q,r∈Q

p<q<r

encl
(
X

gen
Par ( f p, f q, f r)

)





\






x ∈ IR2 : ∃C ∈ C ,C ⊆

⋃

p,q∈Q

p<q

X ∗
w−Par ( f p, f q)\

⋃

p,q,r∈Q

p<q<r

encl
(
X

gen
Par ( f p, f q, f r)

)
, x ∈ colQ(C)







For the Q-criteria median problem we obtain the following algorithm.

Algorithm 1.3.

Step 1. Compute the the subdivision of the plane generated C , the family of elemen-

tary convex sets. Compute X ∗
w−Par ( f p, f q) , p,q∈Q, p< q, using Algorithm ??.

Step 2. Set for any p, q and r with p < q < r

X
gen

Par ( f p, f q, f r):=X ∗
w−Par ( f p, f q)∪X ∗

w−Par ( f p, f r)∪X ∗
w−Par ( f q, f r),

and

X ∗
Par

(
f 1, . . . , f Q

)
:=
⋃

p,q,r∈Q

p<q<r

X
gen

Par ( f p, f q, f r)∪
⋃

p,q,r∈Q

p<q<r

encl
(
X

gen
Par ( f p, f q, f r)

)
.

Step 3. For every cell C ⊆
⋃

p,q∈Q

p<q

X ∗
w−Par ( f p, f q) \

⋃

p,q,r∈Q

p<q<r

encl
(
X

gen
Par ( f p, f q, f r)

)

compute colQ(C) and set X ∗
Par

(
f 1, . . . , f Q

)
:= X ∗

Par

(
f 1, . . . , f Q

)
\ colQ(C).

Output: X ∗
Par

(
f 1, . . . , f Q

)
. �

The complexity of Algorithm ?? can be determined as follows. For each cell

C, colQ(C) can be computed in O(Q log(Q)) time. Algorithm ?? needs to solve

O(Q3) three-criteria problems which dominates all other elementary operations of

the algorithm. Each one of them has the same complexity as the two-criteria prob-

lem. Thus, the overall complexity is O(M3G2
maxQ3(logGmax)+M2G2

maxQ logQ) =
O(M3G2

maxQ3(logGmax).
We would like to conclude this section pointing that the multi-facility versions

of the problems analyzed in this section have been hardly studied in the literature,

although an exception is the paper by ?.
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1.3 Network Location Problems

1.3.1 1-Facility Median Problems

1.3.1.1 Pareto Locations in General Networks

Let G = (V,E) be a connected graph with node set V = {v1, . . . ,vn} and edge set

E = {e1, . . . ,em}. Each edge e ∈ E has a positive length ℓ(e), and is assumed to be

rectifiable. Let P(G) denote the continuum set of points on edges of G. We denote a

point x ∈ e = {u,v} as a pair x = (e, t), where t (0≤ t ≤ 1) gives the relative distance

of x from node u along edge e. For the sake of readability, we identify P(G) with

G and P(e) with e for e ∈ E . We also define (e,(t1, t2)) := {x = (e, t) : t ∈ (t1, t2)};

(e, [t1, t2]), (e,(t1, t2]), and (e, [t1, t2)) are used in an analogous way.

We denote by d(x,y) the length of the shortest path connecting two points x,y ∈
G. Let vi ∈ V and x = ({vr,vs}, t) ∈ G. The distance from vi to x entering the edge

{vr,vs} through vr (vs) is given as D+
i (x) = d(vr,x)+ d(vr,vi) (D−

i (x) = d(vs,x)+
d(vs,vi)). Hence, the length of a shortest path from vi to x is given by Di(x) =
min{D+

i (x), D−
i (x)}. As d(vr,x) = t · ℓ(e) and d(vs,x) = (1− t) · ℓ(e), the functions

D+
i (x) and D−

i (x) are linear in x and Di(x) is piecewise linear and concave in x

(cf. ?). The distance from vi to a facility located at x is finally defined as d(vi,x) =
Di(x) = min{D+

i (x),D
−
i (x)}.

We consider the objective function f (x) = ( f 1(x), . . . , f Q(x)), where each f q(x),
q ∈ Q, is a median function defined as:

f q(x) = ∑
vi∈V

w
q
i d(vi,x) .

More formally, we assign a vector of weights

wi =






w1
i

...

w
Q
i




 6= 0 to every vertex vi ∈V, with w

q
i ≥ 0, q ∈ Q := {1, . . . ,Q}.

The quality of a point x ∈ P(G) in this multicriteria setting is defined by

f (x) :=






f 1(x)
...

f Q(x)




 :=






∑vi∈V w1
i d(x,vi)
...

∑vi∈V w
Q
i d(x,vi)






in the undirected case and

f (x) :=






f 1(x)
...

f Q(x)




 :=






∑vi∈V w1
i (d(x,vi)+ d(vi,x))

...

∑vi∈V w
Q
i (d(x,vi)+ d(vi,x))





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in the directed case.

Let S ⊆ P(G) and W ⊆ IRQ. We define Wpar = { f (x) ∈W : ∄ f (y) ∈ W such that

f (y) dominates f (x) in the objective space} and X ∗
par := {x ∈ S : f (x) ∈ Wpar}. If

S = P(G) we simply write X ∗
par. A point x ∈ X ∗

par(S) is called a Pareto location

with respect to S, and the elements of X ∗
par(V ) are called Pareto nodes or Pareto

vertices.

Computing X ∗
par(V ) can simply be done by pairwise comparision of the nodes.

For X ∗
par we first have to check if a multicriteria version of Hakimi’s node domi-

nance result holds (?). For the directed case we even have X ∗
par(V ) = X ∗

par. The

proof relies on the concavity of the distance functions among the edges and also on

the fact that in the directed case we have no choice on which side to exit or enter

an edge. This implies that the objective function is strictly concave and therefore

the nodes always dominate the edges. For the technical details and the proofs the

reader is referred to ?. In the case of undirected networks, this aspect is slightly

more complicated as shown in the next example.

Example 1.7. Consider the following network N = (G, ℓ) with n = 6 nodes and a

distance matrix D = (di j)i, j=1,...,6 given by

D =











0 1 1 4 3 2

1 0 2 3 4 1

1 2 0 3 2 3

4 3 3 0 5 2

3 4 2 5 0 3

2 1 3 2 3 0











.

v1 v2

v3 v4

v5 v6

1

3

3

1

3

3

1

22

Fig. 1.13 Network of Example ??.

Assume that the weight vectors are

w1 =

(
1

2

)

, w2 =

(
2

1

)

, w3 =

(
1

2

)

, w4 =

(
2

2

)

, w5 =

(
2

2

)

, w6 =

(
2

1

)

.

Using this information we get
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v1 v2 v3 v4 v5 v6

f (·)
(

21
19

) (
19
21

) (
21
17

) (
27
29

) (
29
27

) (
17
21

)

By pairwise comparison we get

X
∗

par(V ) = {v3}∪{v6}= X
∗
(

f 1(V )
)
∪X

∗
(

f 2(V )
)
.

Now we look at the points on the edges and get (by using concavity in the objective

functions):

• v3 dominates all points on the edges {v3,v5}, {v3,v4}, {v3,v1}
• v6 dominates all points on the edges {v6,v2}, {v6,v5}, {v6,v4}
• v2 dominates all points on the edge {v2,v4}
• v1 dominates all points on the edge {v1,v5}

We also observe that no vertex can dominate a point with both objective functions

smaller than 21. The only edge left is now {v1,v2}.

19

20

21

22

19

20

21

22

0 1

f 2

f 1

Fig. 1.14 Objective functions on the edge {v1,v2} in Example ??.

We see that

1. For all points x∈P({v1,v2}) with x 6= v1, x 6= v2 we have f 1(x)< 21, f 2(x)< 21.

2. No point on {v1,v2} dominates another point on {v1,v2}

⇒ X
∗

par = {v3}∪{v6}∪ ({v1,v2}, (0,1)) .

We conclude that we have no node dominance and that even on edges with

endnodes not in X ∗
par(V ) we can find elements of X ∗

par.

Since we do not have node dominance in the undirected case, we have to explic-

itly solve a multicriteria global optimization problem. First we will identify local

Pareto locations with respect to an edge e = {vi,v j} for all edges of the network. In

a second step we will compare all local Pareto locations to get X ∗
par. Due to the lim-

ited space and a possible overload of technicalities, we will describe the main ideas

which allow the reader to understand the final algorithm. For the technical details

and the proofs the reader is referred to ?.
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1.3.1.2 Bi-criteria Case

We will first deal with the bi-criteria case, since here we can derive a geometrical

solution method. The main property of the objective functions we are using is the

concavity on an edge e = {vi,v j}. In addition we have also piecewise linearity but

this is not really needed. Suppose that f (vi) > f (v j) or f (v j) > f (vi). In the first

situation we say that v j dominates vi and in the latter vi dominates v j. Both situations

do not allow any location on the edge, which is not dominated by an endnode due

to concavity.

Now assume that for an edge e = {vi,v j} with vi and v j not dominating each

other one of the functions f 1 or f 2 is constant. It is easy to see that this is only the

case if f (vi) = f (v j). If for an edge e only one of the objective functions is constant

then X ∗
par(e) = {vi}∪{v j}. If both objective functions are constant then X ∗

par(e) =
({vi,v j}, [0,1]). Again this is due to the concavity of the objective functions and can

be seen in Figure ??.

0 1

f 2

f 1

Fig. 1.15 Concavity on an edge with one objective function constant.

Now we have only one situation left (the most typical one), where the endnodes

do not dominate each other and none of the two objective functions is constant.

Without loss of generality we can assume f 1(vi)> f 1(v j) and f 2(vi)< f 2(v j) (oth-

erwise exchange the roles of vi and v j). The behaviour of the objective functions

can be seen in Figure ??. First, both objectives functions are increasing (maybe for

a small or zero intervall only) and all points are dominated by the left endnode.

Only after the first objective function is already decreasing and smaller than the left

endnode value, the endnode cannot dominate the points of the edge. The same ar-

gument can be applied by starting from the right endnode. More formally we can

define

t1 := max{t ∈ [0,1] : f 1(vi) = f 1 (({vi,v j}, t))}

and

t2 := min{t ∈ [0,1] : f 2(v j) = f 2 (({vi,v j}, t))}



24 Nickel, Puerto, Rodriguez-Chı́a

Then

X
∗

par(e) = {vi}∪{v j}∪
(
{vi,v j},

(
t1, t2

))
.

0 1t1 t2

f 1

f 2

Fig. 1.16 Derivation of t1 and t2.

Overall we have that for each e∈E in (G, ℓ), X ∗
par(e) is a (possibly empty) single

subedge of e plus one or both endnodes. Now we can combine these results to get

an efficient algorithm for determining X ∗
par(e).

Algorithm 1.4. (Computation of X ∗
par(e))

Input: edge e = {vi,v j} ∈ E , undirected network (G, l), distance matrix D

Step 1. IF vi dominates v j then X ∗
par(e) := {vi}, go to Step 7

Step 2. IF v j dominates vi then X ∗
par(e) := {v j}, go to Step 7

Step 3. IF f (vi) = f (v j) then

a. IF f
((
{vi,v j},

1
2

))
= f (vi) then X ∗

par(e) := P({vi,v j}), go to Step 7

b. IF f
((
{vi,v j},

1
2

))
6= f (vi) then X ∗

par(e) := {vi}∪{v j}, go to Step 7

Step 4. IF f 1(vi)< f 1(v j) and f 2(vi)> f 2(v j) then exchange vi and v j

Step 5. Compute t1 and t2 as defined above

Step 6. IF t1 < t2

THEN X ∗
par(e) := {vi}∪{v j}∪

(
{vi,v j}, (t

1, t2)
)

ELSE X ∗
par(e) := {vi}∪{v j}

Output: X ∗
par(e)

To analyze the complexity of this algorithm, we need the following definition: A

point x = ({vi,v j}, t), t ∈ [0,1] on one edge e = {vi,v j} is called a bottleneck point

for f q if there exists a vertex vk with w
q
k > 0, such that

d(vk,x) = d(vk,vi)+ d(vi,x) = d(vk,v j)+ d(v j,x).
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Let Bi j denote the set of bottleneck points on the edge {vi,v j}. Note that |Bi j| ≤ |V |.
If D is given, the only non constant operation in Algorithm ?? is the compu-

tation of t1 and t2. To plot f q we have to determine the breakpoints of f q which

is piecewise linear on an edge. Since these breakpoints correspond to the bot-

tleneck points on this edge we have to compute Bi j for e = {vi,v j}. This can

be done in O(|V | log |V |) (see ?). Then t1 and t2 can be determined by explor-

ing the sorted list of bottleneck points two times. The total complexity for find-

ing X ∗
par(e) is O(|V | log |V |) and the total complexity for finding

⋃

e∈E X ∗
par(e) is

O(|E||V | log |V |).

Example 1.8. Consider the following network:

v1 v2

v3 v4

1

1

1

2

[
1
3

] [
2
1

]

[
2
1

][
2
2

]

Fig. 1.17 Network of Example ??.

with distance matrix

D =







0 1 2 2

1 0 2 1

2 2 0 1

2 1 1 0






.

We first compute

v1 v2 v3 v4

f 1 10 7 8 6

f 2 7 8 9 9

and obtain X ∗
par(V ) = {v1,v2,v4}. Now we have to determine the set X ∗

par(e) for

every e ∈ E:

• e = {v1,v2}. v1 and v2 do not dominate each other and f 1, f 2 are not constant,

i.e., we need to plot f 1, f 2 and therefore we have to find B12

B12 =

{

b1
12 =

(

{v1,v2},
1

2

)}

f 1
(
b1

12

)
= 9.5 and f 2

(
b1

12

)
= 8.5

So the objective function can be drawn as shown in Figure ??.
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7

8

9

10

11

8

9

10

11

0 11
3

1
2

f 2

f 1

Fig. 1.18 Computing X ∗
par({v1,v2}).

t1 = max
{

t ∈ [0,1] : f 1(v1) = f 1 ({v1,v2}, t)
}
= 0

t2 = min
{

t ∈ [0,1] : f 2(v2) = f 2 ({v1,v2}, t)
}
=

1

3

(in [0,
1

2
], f 2(x)≡ 7+ 3t, 7+ 3t = 8 ⇔ t =

1

3
)

X
∗

par(e) = {v1}∪{v2}∪

(

{v1,v2},

(

0,
1

3

))

• e = {v2,v4}. f 1(v2) = 7 > f 1(v4) = 6 and f 2(v2) = 8 < f 2(v4) = 9 and B24 =
/0 ⇒ t1 = 0, t2 = 1 ⇒ X ∗

par(e) = P(e).
• e = {v3,v4}. v4 dominates v3 ⇒ X ∗

par(e) = {v4}.

• e = {v1,v3}. B13 =












{v1,v3}
︸ ︷︷ ︸

b1
13

, 1
4






,






{v1,v3}
︸ ︷︷ ︸

b2
13

, 3
4













8

9

10

11

8

9

10

11

0 11
2

1
4

3
4

4
5

f 2

f 1 t2 t1

Fig. 1.19 Computing X ∗
par({v1,v3}).
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f
(
b1

13

)
=

(
11.5

8.5

)

, f
(
b2

13

)
=

(
10.5

9.5

)

t1 =
4

5
, t2 =

1

2

X
∗

par(e) = {v1}∪{v3}

In a second step we have to compare all local Pareto locations X ∗
par(e), e ∈ E

to get X ∗
par. With two objective functions we can map everything to the objective

space where dominance can easily be computed. In the case of median objective

functions on a network, we know that f 1 and f 2 are piecewise linear with the same

potential breakpoints. This leads to the following mapping in the (z1,z2)-space (or

objective space) as shown in Figure ??. Essentially, this plot shows all pairs (z1,z2)
of the objective function values f1(x) and f2(x) for all points x on the edge. Again

we would like to skip the technical details and proofs and refer the reader to ?.

5

6

7

8

5

6

7

8

t1 t2

f 1

f 2

Xpar(e)\ ({vi}∪{v j})

5

6

7

8

6 7 8 9 z1

z2

Fig. 1.20 Mapping X ∗
par(e) to the objective space.

In the objective space, a point w dominates all other points in w+ IR2
+\{0} :=

{
w+ y : y ∈ IR2

+\{0}
}

(see Figure ??).

w1

w2

w3

w4

Fig. 1.21 w1 is dominating w2 and w3.
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In order to obtain X ∗
par we draw IM( f ) which is defined as the set of all images

of X ∗
par(e) for e ∈ E in the objective space. The lower envelope for a set P of points

in IR2 is defined as

⋃{
(x,y) ∈ P : y ≤ y′ for all (x,y′) ∈ P

}
.

Algorithm 1.5. (Combining the local Pareto locations)

Input: X ∗
par(e) for all e ∈ E

Step 1. Let z1
max := max

{
f 1(x) : x ∈

⋃

e∈E X ∗
par(e)

}

Step 2. Build IM( f ) =
⋃

e∈E f
(
X ∗

par(e)
)

Step 3. For each connected component l in IM( f ), let (z1
l , z2

l ) be the right-most point

(largest z1 value) and add to IM( f ) the horizontal segment going from (z1
l , z2

l ) to

(z1
max, z2

l ).
Step 4. Compute the lower envelope L of IM( f ), which is the lower envelope of

O(|E||V |) line segments.

Step 5. Eliminate every horizontal line segment of L, except its left-most point.

Step 6. Set X ∗
par := f−1(L).

Output: X ∗
par

In order to get the same result from the dominance relation we have to add an arti-

ficial line segment and delete it from the solution (see Figure ??).

X ∗

par

lower

envelope

Fig. 1.22 Using the lower envelope to delete dominated solutions.

Steps 1 and 3 are necessary to modify IM( f ) such that we can get X ∗
par

form the lower envelope. These steps as well as Step 2 can be done in linear

time. Step 4 can be done in a naive way in O
(
|E|2|V |2

)
or in optimal time of

O(|E||V | log(max(|E||V |))) by an algorithm of ?. Since Step 5 can be done in linear

time the complexity of Step 4 determines the overall complexity. For easier handling

of the segments, note that we may use instead of an open subedge ({vi,v j}, (t1, t2))
the closed subedge ({vi,v j}, [t1, t2]). After applying the algorithm we then have to

test if we deleted a point directly above the left-most point.
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Example 1.9. (Example ?? cont.) We first draw IM( f ) and add the horizontal line

segments. Finally, we get X ∗
par = P({v2,v4})∪

(
{v1,v2},

[
0, 1

3

))
.

7

8

9

10

6 7 8 9 10
z1

z2

v1

v2

v3

v4

v2

Fig. 1.23 Computing X ∗
par for Example ??.

1.3.1.3 Q-criteria Case

We will now briefly explain how this approach generalizes to the Q-criteria case.

Also in this situation we easily see that if for an edge e = {vi,v j} one endnode

dominates the other one, there are no Pareto locations in the interior of e. From now

on assume that neither vi dominates v j nor v j dominates vi. Let Q1 and Q2 be a

partition of Q, such that f q(vi)≥ f q(v j) for all q ∈ Q1 and f q(vi)< f q(v j) for all

q∈Q2. Of course, Q1 6= /0, Q1∩Q2 = /0 and Q1∪Q2 =Q. Also in case of constant

functions we get a similar result as in the bi-criteria case. Accordingly, assume that

f (vi) 6= f (v j) for an edge e = {vi,v j} and let

t1( f q) := max
{

t ∈ [0,1] : f q(vi) = f q (({vi,v j}, t))
}

for q ∈ Q1

and

t2( f q) := min
{

t ∈ [0,1] : f q(v j) = f q (({vi,v j}, t))
}

for q ∈ Q2.

Then (see ? for the details)

X
∗

par(e) = {vi}∪{v j}∪

(

{vi,v j},

(

min
q∈Q1

{
t1( f q)

}
, max

q∈Q2

{
t2( f q)

}
))

.

For comparing the local Pareto locations, the mapping to the objective space

becomes rather involved especially when we have to compute lower envelopes.

In order to compare X ∗
par(e) for all e ∈ E pairwise, we use the following iterative

procedure: Let ({v j,vl}, [tr, tr+1]) be a subedge of X ∗
par(el), el = {v j,vl} (to have

closed subedges we neglect the vertices and handle first only the Pareto parts in the
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interior) where (tr, tr+1) are assumed to not include any further bottleneck points of

el (if this is not true we subdivide the subedge further). This leads to

f q (({v j,vl}, t)) = bq
r +mq

r t for all q ∈ Q, t ∈ [tr, tr+1],

i.e., all f q are affine linear on ({v j,vl}, [tr, tr+1]) . Take now a closed linear subedge

from another edge ek = {vk,vm}, then we get ({vk,vm}, [sp, sp+1])⊆X ∗
par(ek). This

leads to

f q (({vk,vm}, s)) = bq
p +mq

ps for all q ∈ Q, s ∈ [sp,sp+1],

If we apply the definition of a Pareto location to these two subedges, we get

that a point ({v j,vl}, t) , t ∈ [tr, tr+1] is dominated by some point ({vk,vm}, s) , s ∈
[sp, sp+1]

⇔ bq
p +mq

ps ≤ bq
r +mq

r t for all q ∈ Q,

where at least one inequality is strict. Now we define the polyhedron

F :=
{
(s, t) : mq

r t −mq
ps ≥ bq

p − bq
r , ∀q ∈ Q

}
∩ ([sp, sp+1]× [tr, tr+1]) .

We have two cases: If F = /0, then ({v j,vl}, [tr, tr+1]) contains no point which is

dominated by a point from ({vk,vm}, [sp, sp+1]). Otherwise, F 6= /0 is taken as a

feasible solution of the two 2-variable linear programs

LB = min{t : (s, t) ∈ F}, UB = max{t : (s, t) ∈ F}.

Let sLB and sUB be the optimal values for s corresponding to LB and UB, respec-

tively. Now we still have to check if one inequality is strict: If b
q
p + m

q
psLB =

b
q
r +m

q
r LB and b

q
p +m

q
psUB = b

q
r +m

q
r UB for all q ∈ Q, then there is no domi-

nance. Otherwise X ∗
par(el) := X ∗

par(el) \ ({v j,vl}, [LB, UB])) . Note that this pro-

cedure works also if tr = tr+1 or sp = sp+1 (in this case, we are testing a single

point).



1 Location Problems with Multiple Criteria 31

Algorithm 1.6. (Combining local Pareto location in the Q-criteria case)

Input: Network as in Algorithm ??

Step 1. Determine X ∗
par(e) for all e ∈ E and set X ∗

par :=
⋃

e∈E X ∗
par(e)

Step 2. Compare all vi and all edges, where all f q, q ∈ Q are constant

Step 3. For all Pareto linear subedges do a pairwise comparison as described above

and reduce X ∗
par accordingly.

Output: X ∗
par

The complexity of this algorithm is O(|E|2|V |2Q).

1.3.1.4 Multicriteria Median Problems on a Tree

Many difficult problems on general networks become easier to solve if the under-

lying graph has a tree structure. We will show that this is also true for multicriteria

problems. We relate our results with the research that has previously been done on

trees and end up with a generalization of Goldman’s algorithm (see ?). The major

concept which makes the analysis easier on trees is convexity. We first introduce

this concept based on ?.

Let N = (T, ℓ) be a tree network, with T = (V,E). For two points a,b ∈ P(T ) we

define the line segment L[a,b] between a and b as

L[a,b] := {x ∈ P(T ) : d(a,x)+ d(x,b) = d(a,b)} ,

which contains all points on the unique path between a and b. A subset C ⊆ P(T ) is

called convex, if and only if for all a,b ∈C, L[a,b]⊆C.

Now let C ⊆ P(T ) be convex and let h : P(T )→ IR be a real valued function. This

function h is called convex on C, if and only if for all a,b ∈C,

h(xλ )≤ λ h(a)+ (1−λ )h(b) , ∀λ ∈ [0,1] ,

where xλ is uniquely defined by

d(xλ ,b) = λ d(a,b) and d(xλ ,a) = (1−λ )d(a,b) . (1.5)

A function is called convex on T if it is convex on C = P(T ). Note that it is possible

to define convexity also on general networks. Then one can show that d(x,c) for

c ∈ P(T ) fixed is convex if and only if the underlying graph is a tree. Median and

Center objective functions are convex functions on a tree (see ?).

Now let L(a,b) := L[a,b]\{a,b}, L(a,b] := L[a,b]\{a} and L[a,b) := L[a,b]\{b}.

We have now the following important property (a proof can be found in ?).
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Theorem 1.9. Let a,b ∈ P(T ) and h := (h1, . . . ,hQ) be a vector of Q objective func-

tions, with hq convex on T , for all q ∈ Q = {1, ...,Q}. Then the following holds:

{a,b} ⊆ X
∗

par if and only if L[a,b]⊆ X
∗

par .

For T = (V,E) and V ′ ⊆V let

W (V ′) :=








w1(V ′)
w2(V ′)

...

wQ(V ′)








,

where wq(V ′) := ∑vi∈V ′ w
q
i , ∀q ∈ Q.

Proposition 1.1. Let T be partitioned in such a way that T = T1 ∪ T2 ∪ {e} (and

T1 ∩T2 = /0). Then W (V (T1)) dominates W (V (T2)) if and only if for all x ∈ P(T1)
there exists some y ∈ P(T2) which dominates x.

Now we can state a multicriteria version of Goldman’s dominance algorithm (see

?). We start with a subtree containing only one leaf of the tree (check for dominance)

and enlarge this subtree until we get a Pareto location using the criterion established

in Proposition ??. This procedure is then repeated for all leaves and we end up with

a subtree of all Pareto locations by using Theorem ??.

Algorithm 1.7. (Solving Q-criteria median problems on a tree)

Input: T = (V,E), with length function ℓ and node weight vectors wq, q ∈ Q.

Step 0. Set W :=W (V )
Step 1. Choose a leaf vk of T , which was not yet considered and give it the status

“considered”.

Step 2. IF V = {vk}
Set X ∗

par( f (V )) := X ∗
par( f (T )) := {vk} and go to Step 6

Step 3. Let vl be the only node adjacent to vk

IF (w1
k . . .w

Q
k )

T < 1
2

W

THEN
• w

q

l := w
q

l +w
q

k , q = 1, . . . ,Q
• T := T \ {vk}

Step 4. IF there are any leaves left in T give them status “not considered”

and go to Step 1

Step 5. Set X ∗
par( f (V )) :=V (T ), X ∗

par( f (T )) := T

Step 6. STOP

Output: X ∗
par( f (V )) and X ∗

par( f (T ))

The complexity of this algorithm is O(Q|V |). To illustrate the algorithm consider

the following example:
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Example 1.10. Consider the tree depicted in Figure ??. We solve the following in-

stance of a 3-criteria median problem. Let l(e) := 1, ∀e ∈ E . The weights of the

nodes are given in the following table:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

w1 14 6 8 4 1 2 1 3 2 2 7

w2 11 3 3 24 5 2 2 3 2 2 5

w3 16 2 1 1 2 3 3 1 6 4 21

Therefore W =





50

62

60



 and 1
2
W =





25

31

30



.

The adjacency structure of the tree is also given in Figure ??. Now we check every

leaf till there is none left with status “not considered”.

v1

v2

v3 v4

v5

v6

v7

v8

v9

v10

v11

Fig. 1.24 Tree of Example ??. The bold edges and nodes indicate the set of Pareto locations.

• Take v1: w1 =





14

11

16



 dominates W
2
=





25

31

30



.

Therefore w2 :=





6+ 14

3+ 11

2+ 16



=





20

14

18



.

By following the algorithm we delete v8, v7, v6, v5 and v4. The actual value of w3 is




13

32

4



.
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• Take v3: w3 =





13

32

4



 does not dominate W
2

.

• Take v11: w11 =





7

5

21



 dominates W
2

. Therefore w9 :=





9

7

27



.

• Take v10: w10 =





2

2

4



 dominates W
2

. Therefore w9 :=





11

9

31



.

• Take v9: w9 =





11

9

31



 does not dominate W
2

.

Since we delete after every domination step the corresponding node from the tree

according to Algorithm ?? and no leaf with status not considered is left we end up

with

X
∗

par = L[v9,v3] .

1.3.2 Other Multicriteria Location Problems on Networks

In the previous two subsections we presented optimal time algorithms for one facil-

ity median problems when looking for Pareto locations. We chose these two prob-

lems because the reader gets some insight into the needed properties. In addition, the

simplification on trees caused by the uniqueness of paths can be seen. In the recent

survey ? an overview on other location problems can be found. In ? an extension to

1-facility center problems as well as to positive and negative weight vectors on the

nodes is developed. Those ideas have been further extended to problems with cri-

teria dependent lengths in ?. A unified framework for multicriteria ordered median

functions can be found in ?. In ? the location of undesirable facilities on multicrite-

ria networks is looked at by using convex combinations of two objective functions.

Some complexity analysis for the cent-dian location problem has been developped

by ?. Most approaches to the (in general NP-hard) multi-facilty case are treated as

discrete location problems (see Section ??). Only recently ? started looking into

polynomial cases of multi-facility multicriteria location problems on networks.

1.4 Discrete Location Problems

The previous sections show that planar and network multicriteria location problems

have been widely developed from a methodological point of view so that impor-

tant structural results and algorithms are known to determine solution sets. On the
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contrary, multicriteria analysis of discrete location problems has attracted less at-

tention. In spite of that, several authors have dealt with problems and applications

of multicriteria decision analysis in this field. An annotated bibliography with many

references up to 2005 can be found in ?. In general, very few papers focus in the

complete determination of the whole set of Pareto-optimal solutions. Nevertheless,

there are some exceptions, such as the paper by ? that gives a theoretical charac-

terization but does not exploit its algorithmic possibilities, as well as the work by

? that addresses the computation of the entire set of Pareto-optimal solutions of the

multiobjective uncapacitated plant location problem.

Nowadays, Multi-Objective Combinatorial Optimization (MOCO) (see ??) pro-

vides an adequate framework to tackle various types of discrete multicriteria prob-

lems as, for instance, the p-Median Problem (p-MP). Within this emergent research

area, several methods are known to handle different problems. It is worth noting

that most of MOCO problems are NP-hard and intractable (see ?, for further de-

tails). Even in most of the cases where the single objective problem is polynomially

solvable the multiobjective version becomes NP-hard. This is the case of spanning

tree problems and min-cost flow problems, among others. In the case of the p-MP,

the single objective version is already NP-hard. This ensures that the multiobjective

formulation is not solvable in polynomial time unless P=NP. In this context, when

time and efficiency become a real issue, different alternatives can be used to ap-

proximate the Pareto-optimal set. One of them is the use of general-purpose MOCO

heuristics (?). Another possibility is the design of “ad hoc” methods based on one of

the following strategies: 1) computing supported non-dominated solutions; and 2)

performing partial enumerations of the solutions space. Obviously, the second strat-

egy does not guarantee the non-dominated character of all the generated solutions

although the reduction in computation time can be remarkable.

The aim of this section is to present methods to obtain the Pareto-optimal set for

the multiobjective p-median problem (p-MP). In all cases, our approach to solve the

multicriteria p-MP takes advantage of the problem’s structure. The first method is

exact and it determines the whole set of Pareto-optimal solutions based on new tools

borrowed from the theory of short rational generating functions. The second method

is an “ad hoc” approximate method that generates supported Pareto locations.

1.4.1 Model and Notation

Let I = {1, . . . ,M} and J = {1, . . . ,N} respectively denote the sets of indices for

demand points and for plants, and Q = {1, . . . ,Q} denote the set of indices for

the considered criteria. For each criterion q ∈ Q , let (c
q
i j)i∈I, j∈J ∈ QM×N be the

allocation costs of demand points to plants. The multicriteria p-median location

problem is:
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v-Minimize

(
M

∑
i=1

N

∑
j=1

c1
i jxi j, . . . ,

M

∑
i=1

N

∑
j=1

c
q
i jxi j

)

(1.6)

subject to
N

∑
j=1

xi j = 1, i ∈ I, (1.7)

xi j ≤ y j, i ∈ I, j ∈ J, (1.8)

N

∑
j=1

y j = p, (1.9)

xi j ∈ {0,1}, y j ∈ {0,1}, i ∈ I, j ∈ J. (1.10)

As it is usual, v-min stands for vector minimum of the considered objective func-

tions. Here variable y j takes the value 1 if plant j is open and 0 otherwise. The binary

variable xi j is 1 if the demand point i is assigned to plant j and 0 otherwise. Con-

straints (??), together with integrality conditions on the x variables, ensure that each

demand point is assigned to exactly one plant, while constraints (??) guarantee that

no demand point is assigned to a non-open plant. Finally, constraint (??) ensures

that exactly p plants are opened.

Recall that in the single criterion case the integrality conditions on the x variables

need not be explicitly stated. The reason is that when the xi j represent the proportion

of demand of client i satisfied by plant j (i.e. 0≤ xi j ≤ 1), there exists an optimal so-

lution with xi j = 0,1, i ∈ I, j ∈ J This property is not necessarily true when multiple

criteria are considered because, in general, there might be undominated solutions

with non-integer values and even non-supported undominated integer solutions.

1.4.2 Determining the Entire Set of Pareto-optimal Solutions

In order to characterize the set of Pareto locations of the p-MP we shall use rational

generating functions. Short rational generating functions were used by ? as a tool to

develop an algorithm for counting the number of integer points inside convex poly-

topes, based on the previous geometrical paper by ?. The main idea is to encode

those integer points in a rational function of as many variables as the dimension

of the space where the polytope is defined. Let P ⊂ IRn
+ be a given convex bounded

polyhedron. Its integer points may be expressed in a formal sum f(P,z) =∑α zα with

α = (α1, . . . ,αn) ∈ P∩Zn, where zα = z
α1
1 · · ·zαn

n Barvinok’s goal was to represent

that formal sum of monomials in the multivariate polynomial ring Z[z1, . . . ,zn], as a

“short” sum of rational functions with the same variables. Actually, ? developed a

polynomial-time algorithm when the dimension, n, is fixed, to compute those func-

tions. A clear example is the polytope P= [0,T ]⊂ IR with T ∈N: the long expression

of the generating function of the integer points inside P is f(P,z) = ∑T
i=0 zi, and it

is easy to see that its representation as sum of rational functions is the well known

formula (1− zT+1)/(1− z).
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The above approach, apart from counting lattice points, has been used to develop

some algorithms to solve integer programming problems exactly. Specifically, ?, ?,

and ? presented different methods to solve this family of problems using Barvinok’s

rational function of the polytope defined by the feasible set of the given problem.

First of all, for the sake of readability, we recall some results on short rational

functions for polytopes that shall be later used in our presentation. For further details

the interested reader is referred to ??.

Let P = {x ∈ IRn : Ax ≤ b,x ≥ 0} be a rational polytope in IRn. The main idea of

Barvinok’s Theory was to encode the integer points inside a rational polytope in a

“long” sum of monomials:

f(P,z) = ∑
α∈P∩Zn

zα ,

where zα = z
α1
1 · · ·zαn

n , and then to re-encode, in polynomial-time for fixed dimen-

sion, these integer points in a “short” sum of rational functions in the form

f(P;z) = ∑
i∈I

εi
zui

n

∏
j=1

(1− zvi j)

,

where I is a polynomial-size indexing set, εi ∈ {1,−1}, and ui,vi j ∈ Zn for all i and

j (Theorem 5.4 in ?).

It is well-known that enumerating the entire set of Pareto-optimal solutions of

general multiobjective integer linear problems is #P-hard even in fixed dimension

(see, e.g., ? and ?). Therefore listing these solutions, in general, is hopeless. Nev-

ertheless, one can try to represent these sets in polynomial time using a different

strategy by simply encoding their elements in an efficient way. This strategy has

been recently applied by ?. In that paper, it is proved that using short generating

functions of rational polytopes, one can encode the whole set of Pareto-optimal so-

lutions of MOILP in polynomial time, fixing only the dimension of the space of

variables. As an application of this result we can state the following theorem.

Theorem 1.10. Assume that the number of facilities M and plants N is fixed. Then,

in polynomial time, we can encode the entire set of Pareto-optimal solutions for

(??)–(??) in a short sum of rational functions.

Proof. Apply Theorem 1 in ? to the polytope of Problem (??)–(??). ⊓⊔

The combination of Theorem ?? and Theorem 7 in ? results in the following

theorem.

Theorem 1.11. Assume M and N are constant. There exists a polynomial-delay

polynomial-space procedure to enumerate the entire set of Pareto-optimal solutions

of (??)–(??).

This construction can be implemented for problems of small to medium size

dimension using the open source software barvinok, see ?.
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1.4.3 Determining Supported Pareto-optimal Solutions

In some situations it suffices to generate the set of supported Pareto-optimal points.

It is well-known that the set of supported Pareto-optimal solutions to a problem can

be obtained by solving the scalarized problem for all possible values of the scalar

weights in the standard Q-dimensional simplex Λ Q = {λ ∈RQ : ∑
Q
q=1 λ q = 1, λ q ≥

0, ∀q = 1, . . . ,Q}.
In order to describe how to obtain these solutions in problem (??)–(??) we need

to introduce some additional notation. We denote by B any feasible basis of the

linear relaxation of Problem (??)–(??); and by N all the columns that are not in B.

Also, abusing notation, as usual in linear programming, we shall refer to the indices

determining the basis B (N) in the variables and the objective function by (x,y)B

((x,y)N) and cB (cN), respectively.

For any λ ∈Λ Q, we shall denote by c(λ )= (ci j(λ ))i j, where ci j(λ )=∑
Q
q=1 λ qc

q
i j.

For each feasible basis B, consider the subdivision of the space Λ Q induced by

the hyperplanes:

λ qc
q
BB−1N −λ qc

q

N
= 0, q ∈ Q.

Next, let λ Q
B ∈ Λ Q be a parameter such that it belongs to the relative interior of

one of the elements in the above subdivision and satisfies cB(λ
Q)B−1N−cN(λ

Q)≤
0. This choice of λ Q ensures that the problem:

Minimize
M

∑
i=1

N

∑
j=1

ci j(λ
Q
B )xi j (1.11)

subject to
N

∑
j=1

xi j = 1, i ∈ I, (1.12)

xi j ≤ y j, i ∈ I, j ∈ J, (1.13)

N

∑
j=1

y j = p, (1.14)

xi j ≥ 0, y j ≥ 0, i ∈ I, j ∈ J. (1.15)

will identify supported Pareto-optimal solutions of the linear relaxation of Problem

(??)–(??). However, these Pareto-optimal solutions may result in fractional location

variables since Problem (??)–(??) is a scalarization of the continuous version of our

original multiobjective location problem. To avoid this inconvenience we shall solve

the binary version of (??)–(??), namely
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Minimize
M

∑
i=1

N

∑
j=1

ci j(λB)xi j (1.16)

subject to
N

∑
j=1

xi j = 1, i ∈ I, (1.17)

xi j ≤ y j, i ∈ I, j ∈ J, (1.18)

N

∑
j=1

y j = p, (1.19)

xi j ∈ {0,1}, y j ∈ {0,1}, i ∈ I, j ∈ J. (1.20)

Any optimal binary solution of (??)-(??) gives a supported Pareto-optimal solution

of our original multiobjective location problem. Repeating the above process for all

feasible basis of Problem (??)-(??) will result in a set of supported Pareto-optimal

solutions for the problem.

1.5 Conclusions

In this chapter we have presented and analyzed some of the most important mod-

els of multicriteria location problems considering three different decision spaces:

continuous, networks and discrete. This material provides a general overview of the

state-of-the-art of the field as well as a number of references that can be used by the

interested readers to go for a further analysis of the topic. Emphasis was put on an

efficient (if possible) description of the whole set of Pareto locations.
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