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SUMMARY. We study the Local Influence on the General Linear Model with a pertur-
bation scheme in the variance-covariance matrix of the random errors. The comparison of
the results obtained and the conditional bias have been used to get local influence measures.
Finally, we introduce the Local Influence Potential for an observation. This function describes
the local influence which is exerted by the observation on the BLUE of any estimable linear

function.
1. Introduction

Statistical models are usually aproximate descriptions of more complex pro-
cesses, and because of this aproximation, considering perturbation is very im-
portant in the influence study. Generally speaking, the analysis of influence
on a statistical model is considered as the study of variation that results from
perturbing the problem formulation. Many diagnostic methods aimed at the
study of the influence that individual observations play in determining a fitting
model have been proposed in the recent years. Cook (1987) proposed a general
formulation of this problem. Munoz-Pichardo et al. (1995) gave a new approach
to the problem by defining the conditional bias.

Let Yi,---,Y, be a random sample of the random variable Y, let T" =
T (Y1, --,Y,) be a statistic defined on the sample, and let y;,---,y, be a real-
ization of the sample. The conditional bias of T given the i-th observation, is
defined as

SlyssT) = E[T|Y; = yi] — E[T] ()
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This concept is easily generalized to a set of observations:
S[yiu"'vyim;T] = E[T|Y;1 = yiu'"vyrim = ylm] - E[T] (2)

and can be considered as a measure of the influence of the set of observations
on T. Note that the conditinal bias is based on the decomposition of a statistic
given by Efron and Stein (1981). This approach provides a punctual information
about the influence which is performed by an observation or a set of observations.
So, a local influence analysis is necessary to complement that information ( see
Cook (1987)). The concept of local influence was introduced by Cook (1986) who
gave a very general method for assessing the influence of local perturbations in
models. He suggested using the likehood displacement.

Billor and Loynes (1993) proposed an alternative measure of local influence.
It is also based on the likehood displacement. Therefore, both approaches sup-
pose a hypothesis on the underlying distribution.

In this paper, we develop the local influence analysis on the General Lin-
eal Model ( Kshirsagar (1983)) with the perturbation scheme on the variance-
covariance matrix of the random errors (see Cook (1987)). We have studied it
in two different ways. Firstly, the comparison of the results obtained in Section
3, and, afterwards the conditional bias on the perturbed model in Section 4. In
Section 5, using the above results, we introduce the Local Influence Potential
for an observation on the BLUE of any estimable linear function. In these two
different studies, we do not presuppose a particular hypthesis on the distribution
of the variables.

2. The General Linear Model: Conditional Bias

In this section we present several results about the conditional bias on the
General Linear Model (GLM). For more details see Munoz-Pichardo et al. (1995).
Finally we obtain the conditional bias of the perturbed GLM estimators under
perturbation scheme proposed by Cook (1987).

2.1 Conditional bias on the general linear model. Consider the General Linear
Model
Y =XB+eg, E[g=0, varfe] =0’l, (GLM)

with ¥ a random n-vector; X a known n X p matrix with rank r(r < p < n);
[ a p-vector of unknown parameters and £ a n-vector that represents the non-
observable random errors. R

The vector of adjusted values is denoted by Y = VY with

V =XS™X = ((3))ijet,n

the prediction matrix, which is symmetric, idempotent, with rank = and unique
for any S—, generalized inverse of S = X X (see Kshirsagar (1983)). The vector
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of residuals is e = Y — 2 = Mg, where M = I,, — V, and the least squares
estimators (LSE) of 8 and o are denoted by 8 and 62, respectively. On the
other hand, the estimable linear parametric functions (e.l.f.) of 5 are Aj, where
A is a gzp matrix, with rank(A) = ¢, so that AS™S = A, and AE is the BLUE
of AS.

For this model, the following results are obtained ( see Munoz-Pichardo et
al. (1995)):

1.
S |wisAB] = AS7z; [y — 28] € R? .(3)
for any Aj e.lf., where g; is the i-th row of X.
2.
S [ys0°] = ! (1 — i yi—g;§2—a2 €R. ...(4)
n—r
As estimators of the above expressions they propose.
Sy AB) = = —AS"z; € R? ..(5)
Sid’l= —— 5[ 1] eRr .. (6)
’ n—r—1 ‘
where
€;
L o ...(7N

[82(1 — U”)]
is the i-th internally studentized residual.
2.2. Conditional bias on the perturbed general linear model. Cook (1987)
studied the local influence of the i-th observation on the Multiple Linear Re-
gression Model by considering the perturbation produced by the lack of homo-

cedasticity when that observation is assigned a weight w. Following a similiar
idea, consider the perturbed GLM

Y=XB+g, E[g=0, vare]=0’W GLM(w,i)

with

W = diag[l,---,1/w,---,1], w>0.
That is, we shall weight the only one observation which is subject in the influence
analysis. By means of the transformation

W2y = W2XB + W12, ...(8)

the generalized least squares (GLS) estimators of § for the model GLM (w, 1)
are
B, =S;X W'Y + (I, - H,)z, z€ R arbitrary .9
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with S, =X W™'X and H, =SS,

And an unbiased estimator of o2 is:

52 = [Y Xﬂ] [X—XB]. ... (10)
n—r -
Given that an objective of our study is to compare the results with those obtained
in the unperturbed model GLM, we study the estimability in GLM(w, ) of the
estimable linear functions (e.l.f) for GLM. From now on, we will assume that
vi; # 1. The value of v;; can attain its absolute maximun of 1 only if v;; = 0 for
j # i. In this situation, §; = y; and the i-th observation will be fitted exactly.
This situation will rarely occur in practice. Under this conditions, any A’B e.l.f.
in G.L.M. , is also e.l.f. in GLM(w,4) ( see Theorem 1 in the Appendix), and
A'B_ is its BLUE ( see Theorem 2 in the Appendix).
" In short, given AS an e.l.f. in GLM, then

w—1

:w i m/\sfgi [Yi —LB] ..(11)

is unique for any B GLSE for GLM(w, i) and it is BLUE of Af.
In the followmg, we obtain the conditional bias of the B.L.U.E.of the es-
timable linear functions in GLM(w, 7).

THEOREM 2.1. In the model GLM(w,i) the conditional bias of Aéw given
the i-th observation y; is

S [yi; Aé\w] =

w
1+ (w — ]-)'Uii

where A is a q X p matriz, such that rank(A) = ¢ and AS an e.l.f. in GLM.

AS7z; [yl — g;ﬁ] e R? ... (12)

PRrROOF. From (11)

> > w—1
EAB [Vi=uy| =E|ABlY; =4l + — 2= AS—2.E Y =y
[éw| y:| [é| y:|+1+(CU—1)’Un S™z, [ a;ﬁ| y
..(13)
As AB and g;ﬁ are linearly estimable in GLM
E [@@Yz = yi] = i;ﬁ + Vii |:yz - i;ﬁ] ... (14)
[E y] AB+ASa¢[ g;ﬁ] ... (15)
Now, substituting (14) and (15) in (13), the result follows easily. 0
COROLLARY 2.2.
@) |y AB | = AB
S, [?Jz,l\ﬁw] T o 1)Uii8 [yl,Aﬁ] Yw >0 ... (16)
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In the above expression, we can see the proportionality between the conditional
bias of BLUE of an e.l.f. in the model GLM and the model GLM(w, 7). The ratio

w
1+ (w — ]-)'Uii

plays an important role in the local influence analysis (see Section 5). Also, we
can observe that the ratio not depends on the e.l.f. It is a function based on the
weight w which is assigned to the observation under study and depends on the
only one i-th diagonal element of the prediction matrix V.
The estimation of conditional bias proposed by Munoz-Pichardo et al. (1995)
for this model is
S [1iaD.) =03, - [\B] =13

W

~AB,, ..(17)

From (11) and the expression ( see Munoz-Pichardo et al. (1995))

€;

Aé(i) — AB_ — viiASEi ... (18)
we have . N w e
5 [yi; Aﬁw] 1+ (w—1vy 1 —lviiA57£i € R -+ (20)
Therefore,
S0 {%ABM] = ﬁg [yzAB] € RY ...(21)

Like the conditional bias, the estimators of conditional bias are proportionals
with the same proportionality ratio. In the following theorem, we obtain the
conditional bias of 2.

THEOREM 2.3. In the model GLM(w,i) the conditional bias of 5>, given the
i-th observation y; is
1-— Vii 1 ’

. 2
S [yiso2] = Y ey prp v [w [?Ji —Lﬁ] —02] €ER ... (21)

By the transformation used in (8) we obtain
Z=TB+4, E[§ =06, Varld =01,

with Z =W 12y, T =W '/2X and § = W /%¢. By (4),

. [1—Ufi]{[2i—t;ﬁ]2—02} ... (22)

Su(f) [Z/i;af,] =S [Zi;a%] = n—_r

with v}; the i-th diagonal element of the matrix T [TI T] T From (12),

R
" 1 + (w — 1)’0“
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Moreover, z; = w™"/?y; and t; = w='/2z;. Substituting these expressions in (22)

the result follows easily. 0

An obvious estimator of the conditional bias S[E,i) [yi; Eg] is

89 [yia2] = 6% - [62] ;) =52 — 7, -+ (23)

Applying theorem 3 in the appendix and the following equality ( see Cook and
Weisberg (1982))

3= — -t - (24)
U(i)_n—r—]_ n r)o (]_—’Un)
we obtain
~2
S0 [, A2] o 1 n—r—1(w-—1)(1-—uvy) > 4 5
Sw [ylaa-w] ’I’L—’,‘—]_{|: + n—r 1+(w_1)vu 7"1 . ...( 5)

3. Local Influence in GLM under the Comparative Scheme

In this section, measures of the local influence for the BLUE of an e.l.f. in
GLM and for unbiased estimator of the variance are obtained, using the most
clasical technique in the influence analysis: the comparison of results.

From (14)

-~ -~ w-—1
with A a ¢ X p matrix such rank(A) = ¢ and AS linearly estimable in GLM.
So, in order to characterize the local influence, a metric of generalized distance
type will be applied, according to the characterization given by Barnett (1976).
Hence, given a symmetric, positive definite matrix Q and a positive scalar ¢, we
define the (Q, ¢)-norm of a vector X as

]_ ’
1Xll@.0) = X QX ... (27)

-1
Considering the matrix Q = [AS’A] , and an adequate choice of the

scalar ¢, we can establish the following norms:

(I) For ¢; = q6?%, we denote
Dilw, AB] = [|AB = AB_|l(Q.er)
(IT) For ¢z = 5(;), we denote

Wilw, AB] = [|AB = AB_|l(Q.c)



LOCAL INFLUENCE ON THE GENERAL LINEAR MODEL 275

(ITT) For ¢c3 = ﬁ&?i), we denote
Cilw, AB] = [|AB = AB_|l(Q.cs)

These three norms are non-negative functions of w. Note that for w = 1 the
three norms are zero. They can be expressed as:

21 2 [(w=1)(1 —vi) ?
Difw, AB] = DA [m} Vw >0 ... (28)
S @ = D —vi)]?
21 2 [ (w =11 —vi) ?
Cilw, AB] = C;i[AS] {m} Yw >0 ... (30)
with . .
Di[AB] = mg;sm’ [AS—A’] AS™ gz ... (31)
WiAB = 5 _11)”)@;8_/\’ [As=A] " AS ait? .(32)
Ci[AB] = %Q;S’AI [AS*A']_I AS ™z t2 ... (33)
where o o
r = ! and t; = . .- (34)

6% (1 —vi)]' /2 67 (1 — vi)]'/?

are the i-th internally and externally studentezed residuals, respectively. Di[AB],

WZ[AB] and Ci[AB] are measures of influence named D;-distance, W;-distance
and Cj-distance associated with y;, respectively. These distances have been
recently proposed by Munoz-Pichardo et al. (1995), as a generalization for the
Cook’s distance [ Cook and Weisberg (1982)], Welsch-Kuh’s distance [ Belsey et
al (1980)] and modified Cook’s distance [Atkinson (1982)] respectively.

As functions of w, these distances satisfy:

(PO)

-~

Di[1,AB) = W;[1,AB] = Ci[1,AB] = 0

(P1)
lim Difw, AB] = Di[AB);

lim Wilw, AB] = WiAB];

lim Cifuw, AB] = Ci[A]



276 J.M. MUNOZ-PICHARDO et al.

(P2)
- 2
WIL[I;O Di[w,AB] = % DZ[AE] (35)
. - 1 —v5]° >
i W47 = [522] wind &
. o [1=vi]? 7
Jim_ Cilw, Af] = R Ci[Af] (37)
(P3)

If D;[AB) = D;[AB] and v;; > vj; then D;[w, AB] < Dj[w, AB]Vw > 0.

If Wl[AE] =W; [AE] and v;; > vj; then Wiw, AB] <W; [w,AB]‘v’w > 0.
If C;[AB] = C;[AB] and v;; > vj; then Cilw, AB] < Cjlw, AB]Vw > 0.

From (P1), it can be seen the three functions coincide with the influence
measures in the limit, respectively. Property (P3) leads us to conclude that
given two observations with the same influence, the observation with a smaller
diagonal element in the prediction matrix has potentially larger influence. For
instance in the multi-way classification ANOVA, the diagonal elements of V are
the inverses of the sample sizes in each cell, therefore two observations in the
same cell with equal influence have equal local influence. Other comparative
studies takes into account residuals, diagonal elements of the prediction matrix
and distances. Although, it is easier looking at the analysis of plots of those
observations with larger influence.

Regarding the unbiased estimator of the variance, from (63), we have

2
~2  ~9 e; w—1

7 _U“’:_n—r1+(w—1)vii

w € (0, 00) ...(38)

can be considered as a function of w, and will be denoted as SD;(w). This
function is non-negative in (0,1), and is zero for w = 1. It is interesting to study
the behavior of SD;(w) in a neighborhood of w = 1. The slope of the tangent to

the curve in w =1 is

4 D) o = — —5 (39)
dw™ " w=l = (n—r) o
From this we conclude that the larger the absolute value of the slope, the larger
is the local influence of the i-th observation on 2.
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4. Local Influence and Conditional Bias in GLM.

In this section, we develop the study of local influence in GLM through the
conditional bias. Therefore, we do not need to use any comparative scheme such
as in the above section.

Given that §U(f) yi;Aﬁw] is a g-dimensional vector, we can use the norms

-1
proposed in Section 3. So, if we consider the matrix Q = [AS*A] , the

following measures of local influence appear naturally:

(I) For ¢; = o2

Dilw; AB) = IS4 [yi;Aéw] Qe ¥ > 0. ... (40)

(IT) For ¢3 = 3(2i)

008 = 180 [1 A8l Yoo 0. .. (41)
(III) For C3 = ﬁ&a)
Dilws AB) = 1S9 [ AB, | ll@ues) Voo > 0. ... (42)

These three norms are non-negative functions of w. They can be expressed as:

Dilw; AB] = Di[AB] {ﬁ} w > 0. ... (43)
Wilw; AB] = WilAB] {ﬁ] w > 0. .. (44)
Cilw; AB] = Ci[Af] {ﬁ] w > 0. ... (45)

In these expressions, the factor w/[1 + (w — 1)v;] appears too. The local
influence measures are functions based on w which coincide with the square
of that factor, except constants. Also, these constants are established by the
influence measures of the observation under study. These functions have the
following properties:

(PO")
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(1)
lim Difw; AB] = 0; lim Wilw; AB] = 05 lim Cilw; AB) = 0.
(P2)
~ - 11?2 .
Jlim D[ A5] = L}—] Di[A] ... (46)
~ - 112 .
lim i AR = H WilAf) . (47)
~ . 11?2 ~
Jin GiloiaBl= ] ciAg - (19)

(P3") If D;[AB] = D;[AB] and v;; > vj; then
Bi[w;Aé] < Bj[w;Aé\] Yw > 0.
If Wi[AB] = W;[AB] and v;; > vj; then
V?/i[UJEAE] < VT/j[w;AE] Yw > 0.
If C;[AB] = C;[Af) and v;; > v;; then

E’i[w;Aé] < E’j[w;AE] Yw > 0.

According to (P0’'), for w = 1, that is to say when both models, GLM and
GLM(w, %) coincide, these measures give us the value of measure of influence.
In addition, these functions are increasing, this is intuitively correct because as
w increases, the relative weight of the i-th observation increases. The property
(P3') leads us to analogous conclusions to those obtained in Section 3, when we
discussed (P3).

The study and evaluation of these functions are of great interest, fundamen-
tally in a neighborhood of w = 1. The slope in this point gives us information
about the potential influence of the observations. In fact, we can easily obtain

d ~ . ~
D [w; Ag] et = 2[1 — 03] Di[AB] ... (49)
L [ AB] [omr = 201 — vl WilAB) +(50)
%éi [w; Ag] et = 2[1 — v;,]Ci[AB] ... (51)

Then, the slope depends on the influence of the observation and is decreasing
as function of the i-th diagonal element of the prediction matrix.
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Now, we carry out the study of the local influence on 52 by means of the
conditional bias. In section 2.2 we obtained an estimation of conditional bias
S [y 52

. 1 w—1
SW [y,:52] = SMED,; 2 (52
w I:yho-w] Z+n_7_ 1+(w_]-)/uiiel ( )
where )
SMED; = ———5°[r} —1] € R ...(53)

n—r—1
SMED; is a measure of influence on 52 proposed by Munoz-Pichardo et al.

(1995). St [yi; 2] is a function of w that we will be denoted by SMED;(w)
and it verifies:

(QO)
SMED;[1] = SMED,;
Q1) i
. _ o ei
lim SMEDilw] = SMED; = 56—
(Q2) 2
lim SMED;[w] = SMED; — —
wmree (n —r)ovii

Similarly, the behaviour of SD;(w) in a neighbourhood of w = 1 must be
studied. The slope of the curve shows that the growth is

62

SMED,(1) = — ... (54)

n—r

Therefore, except in the sign, we get the same slope as for SD;(w) in w = 1.
This last slope depends on the i-th residual and the sample size.

5. Local Influence Potential

Until now, we have proposed local influence measures of the i —th observation
on the BLUE of an e.l.f. AS, in the model GLM. The expressions (16) and (20)
provide us the relationship between the conditional bias in the model GLM (w, 7)
and the postulated model GLM, and among their estimators, respectively. Both
relations are in proportion with the ratio

w

a;(w) =



280 J.M. MUNOZ-PICHARDO et al.

In the same way, in the expressions (43), (44) and (45), we get the direct propor-
tion  between lw)z [w;AE] and Di[AE], I/?/l [w;AE] and Wi[Ag], and
E'i [w;AB] and C’i[AE], respectively. The proportion ratio is [a;(w)]?, in the
three relationships. Analogously, the relationship between D; [w;AE] and
Di[AE], W; [w;AB] and Wi[AE], and C; [w;AE] and C’i[AE], conserves the

same proportion ratios [1 — a;(w)]? ( see (28), (29) and (30)).

The following result potencies the importance of the proportion ration a;(w)
and (1 — a;(w)) in the study of the local influence. We denote by GLM; the
resulting linear model with i-th observation omitted.

THEOREM 5.1. Let AB be an e.lf. on the GLM. We suppose that AB,
AEM and AE(i) are the BLUE on the models GLM, GLM(w,i) and GLM,

respectively. Then, it is verified:
Sf,i) [yj; Aéw] = q;(w)S [yj; Ag] + (1 - a;(w))S [yj; Aé(i)] ... (56)
Yw>0andVj=1,---,n
PROOF. Munoz-Pichardo et al. (1995) obtained

~ ~ 1
AByy =AB

N

AS™z; Vi - 28] ..(57)
JFrom the expressions (15) and (61), we get

Agw = ai(w)Aé—l- (1- ai(w))AB

B ...(58)

And the result is immediately obtained. 0
When w € (0,1), the proportion ratio verifies 0 < a;(w) < 1, therefore,

S Yi; AB\ can be considered as a convex linear combination between S |y;; AE
i AP, 7 AP

and S [yj; Ag(i)] for w € (0,1). Their coefficients does not depend on the j-th
observation and on the e.lf. AJ. Therefore, a;(w) is the proportion of the
SLE)i) [yj; Aéw] in the direction of S [yj; AE] for any j-th observation. That is to
say, a;(w) is the explained proportion by S [yj;Aé] on S [yj;Aéw] . Analo-

gously, [1 — a;(w)] is the proportion in the direction of S [yj; Aé(i)] .
Consequently, we can interpret «;(w) as the explained proportion of the
influence of any observation on the BLUE for any e.l.f. Af in the GLM(w, i) by
the influence of that observation on the BLUE in the GLM. Similarly, we can
also interpret [1 — a;(w)]. Since the proportion ratios between the distances are
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the squares of a;(w) and [1 —a;(w)], we can define [a;(w)]? as the Local Influence
Potential of the i-th observation:

LIP(w) = {ﬁ] 2 ... (59)

This function of the w perturbation describes the performed local influence
of an observation on the BLUE on any e.l.f. in GLM ( see Fig. 1).

08
—u— i =0,01

06
— i = 0,20

0.4
-8 vii = 0,90

0.2

0

0 02 04 06 08 1

Figure 1. Local Influential Potential. L1 (w)

6. Examples

In this section, we present two examples to illustrate some of the proposed
local influence measures. Firstly, we include a real-life example where obser-
vations have equal magnitude of influence but different local influence. This
example justifies the application of the proposed process. Finally, we include an
artificial example presenting the different possible cases which are described in
the paper.

6.1. Example 1: Cloud seeding data set. Cook and Weisberg (1982) analyzed
different models using the cloud seeding data set (Woodley et al., 1977). This
data set consists of 24 observations with the following variables:

Y = response variable, the amount of rain ( in m? x 107 ).

C = echo coverage, per cent cloud cover in the experiment area.
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prevetness, total rainfall in the target area 1 hour before seeding

(in m3 x 107 ).

E = echo motion, a classification indicating a moving radar echo (1) or a
stationary radar echo (2).

A = action, a classification indication seeding (1) or no seeding (0).

S — N, = suitability for seeding.

T = number of days after the first day of the experiment ( June 1,1975 = 0).

Cook and Weisberg (1982, pp 126 ) used the following linear model:

Y13 = By + B1A + BT + B3(S — Ne) + B4C + B5 P/ + B E

+B13(A x (S — Ne)) + Bra(A x C) + Bi5(A x PY?) + B15(A x E) + ¢

Using the procedures which appear in this paper, we can study the influence
analysis on the vector of regression coefficients. The results are shown in Fig. 2.
Basically, we can get the following conclusions:

i) In Fig 2a, cases 18 and 24 exert similar influence on the vector of regression
coefficients, but the local influence potential is very different for each one (see
Fig 2b). Therefore, case 18 is locally more influential than case 24 (see Fig 2c).

1
08
06
04

0.2

.
18 24
T 8
o 2 M
tee, ¢ o ¢
' G e
5 10 15 20 25
(a) Index plot of D-distance (*)

Figure 2 (Contd.)
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1.2
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(b) LIP:(w) for cases 18 and 24
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03
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0,15
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(18)

(24)
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08

(c) D,(w) for cases 18 and 24

(20)

(24)

0 02 04

06

08

(d) LIP,(w) for cases 20 and 24

Figure 2.

0.35

03
025
0.2
0,15
0,1
0,05

(e)

(24)

(20)

02

0.4

06

08

5,(W) for cases 20 and 24

Several plots for influence analysis of Cloud Seeding data set
(*) It has been omitted case 2, with ), = 4.55
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ii) Case 20 does not exert influence on the considered BLUE, but the local
influence potential is very similar to the local influence potential for the case 24
( see Fig. 2d). However, we can observe that the local influence is significantly
different for each one of them ( see Fig. 2e).

Finally, we can conclude that it is convenient to complete the influence anal-
ysis with the local influence analysis because it can provide an interesting addi-
tional information ( see cases 18 vs 24). Although, they can coincide sometimes
(' see cases 20 vs 24).

Table 6.1. ARTIFICIAL DATA SET.

Group X Z 1% Y Group X Z 14 Y
3,40 16,08 7,34 69,87 3 2,562 29,78 7,34 39,37
2,02 30,16 3,03 76,47 1,03 11,90 3,13 42,22
2,54 24,78 14,55 60,34 1,27 23,92 5,31 44,82
539 20,14 15,71 50,27 3,37 21,58 15,87 11,51
2,32 25,90 1,22 78,31 3,70 20,27 19,29 22,68
2,51 30,65 14,10 51,60 2,43 30,63 10,40 48,54
4,06 18,34 9,37 79,06 3,38 19,02 5,60 46,97
3,06 13,34 10,04 123,34 4,68 16,71 13,94 37,46
1,88 15,92 12,05 44,51 3,07 9,50 7,37 32,50
3,98 21,23 12,45 34,45 3,73 22,34 2,12 46,93
3,48 16,60 1,57 70,84 1,66 3,82 12,37 69,87
2,33 9,19 18,42 23,71 1,96 8,88 3,86 27,24
2,88 16,70 17,10 56,89 1,96 22,85 13,53 18,04
4,13 21,51 22,28 33,03 2,77 23,40 10,96 36,65
4,03 11,20 13,37 42,87 3,26 2397 17,16 33,65
0,87 16,39 6,91 39,31 1,73 14,64 9,46 29,99
4,70 22,99 15,83 59,34 4,93 18,45 16,04 17,01
2,65 18,46 23,73 4,71 4,38 11,83 12,81 15,77
3,46 21,89 -1,21 101,23 2,29 11,08 5,98 32,00
2,91 23,72 13,73 61,25 1,71 7,59 14,25 8,30
1,59 3,38 2,80 26,93 3,43 14,64 14,97 23,29
3,87 18,31 5,21 42,28 3,23 16,44 9,72 20,18
2,562 17,46 9,75 29,00 0,23 39,54 21,76 34,87
2,09 21,66 10,76 45,76 4,06 25,09 7,94 47,97
1,01 20,85 8,21 45,19 2,81 27,23 18,64 24,35
3,76 26,09 1,91 64,18

2,58 9,06 6,41 62,21

2,16 18,86 17,42 30,38

2,13 22,00 10,39 42,97

0,95 22,83 23,03 3,17

—
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6.2. Example 2: an artificial data set. An artificial data set is given in Table
6.1. We study the analysis of covariance considering Y as response variable,
GROUP as factor variable, and X, V and Z as covariates. That is to say, the
fitted model is:
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Figure 3. Index plots for influence analysis of artificial data set
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Yij = 1+ +Bl$ij +B2'Uij +B3Zij + &4 ...(6.1)

1 a0 () #(rs)

Ele;] =0 Cov [gij,ers] = { o2 (i) = (r )

where «; is the effect of the i-th level of the factor group, and the subindex ij
represents the value of the corresponding variable on the jth case of the i-th
group.

The BLUE of the vector (81, 082,03)" is (3.323,—2.221,1.070), and the un-
biased estimator of o2 is 220.827. Several diagnostics measures resulting from
fitting model (6.1) in both estimations have been computed and the correspond-
ing index plots have been drawn in Figure 3.

Examination of the index plots indicates that

1. Case 53 can be considered as high leverage but not as an outlier.
2. Cases 8,10 and 19 can be regarded as outliers but not high leverage.

3. Cases 8,19 and 53 can be considered as influence observations on the BLUE
of the estimable linear function. Moreover, case 8 is the only one observation
that it can be regarded as influence observation on the unbiased estimator of
the variance.

Moreover, the influence on the BLUE is very similar between cases 8 and 53.
Particularly, Wg = 0.652 and W53 = 0.633. However, when the different values
in the diagonal elements of the prediction matrix, 0.08 and 0.35 respectively,
the local influence potential of the case 53 is greater than case 8 ( see Fig. 4a).
Then, although they exert a similar influence on the BLUE considered, case 53
exerts locally more influence than case 8 (see Fig. 4b).
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Figure 4. Comparative study for cases 8 and 53
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If we observe Fig. 4a and Fig. 4b, we can deduce that they are similar.
Then, it would be sufficient to study one of them but the plots of local influence
potential and the measures of local influence can be very different. Such as
we can observe in Fig. 5, the local influence measure W;(w) is represented for
the observations 7 and 8. They have similar local influence potential because
their diagonal elements in the prediction matrix are equal to 0.081, however the
measures of the local influence are very different.
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Figure 5. W,(w) for cases 7 and 8

7. Conclusion

The Local Influence Analysis can be considered as a complementary tech-
nique to the influence analysis. The diagnostics measures directed to study the
influence which is performed by an observation, or a subset, are not sufficient.
Particularly, using the properties (P3) y (P3') we deduce that two observations
with the same influence can perform potentially different influences. Then, it is
necessary to complement the influence analysis with the local influence analysis.
In this paper, we propose different techniques for linear models which can be
fitted by the GLM. The proposed techniques do not presuppose hypothesis on
the underlying distribution and we get them from two different ways.

Firstly, we have followed the general scheme of comparison among results

A~ A~

which was proposed by Cook (1987). So, the functions D;[w, AB], Wiw, AS] and

~

C;[w, AS] were proposed to Local Influence Analysis on the BLUE of an e.l.f.
AB, and SD;(w) for the unbiased estimator of the variance. Afterwards, we used
the conditional bias in which possible arbitrary comparative scheme is not used.
In this case, the proposed techniques appear to estimate the deviations which
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are given by perturbation on the expectation of the statistic. So, the functions
Di [w,AB],Wi [w,AB],C’i [w,AB\], and SM ED;(w) are proposed.

Although both approaches can be used to study the Local Influence Analysis,
we think that the second one is prefereble because:

1. The measures based on the conditional bias have the proportion ratio
LIP;(w). That is to say, the square of the proportion of the influence which is
explained by the influence on the postulated model, while the rest of measures
have the square of the proportion of the influence which is explained by influence
on the model GLM;).

2. The plots for the distances versus to w provide easier views. In the

following table we show this idea, particularly for 51 [w, AE] and D; [w, AE]

Table 7.1
w D; [w,AB] | Di [w,Af]
ABSENCE w—0 Di [AB] 0

w € (0,1) | decreasing | increasing

PRESENCE | w=1 0 D; [AB]

w>1 increasing | increasing

When the relative weight of the observation is increasing, a larger local in-

~

fluence in the analysis is provided, which is seen better in 51 [w, AB] than in

Appendix

LEMMA 1. Let A be a p X p matriz and L be a m X p matriz (m < p), such
that belongs to the row space generated by the matrix A. If v € R,y # 0, and
the inverse of the matriz [I + YLA™L'] exits, then the matrices

A" —yA L'[I+4LA L] 'LA-

are generalized inverses of [A + L L.
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PROOF. The proof is straightforward considering the following equalities (see
Pringle and Rayner (1971))

LAA =1, AAL =L

THEOREM 1. If v;; # 1, then
1. XS;XI is unique for any choice of S .
2. If X' B is an e.lf. for GLM, then N H, = X .

3. If Alﬁ is an e.l.f. for GLM and Ew and E; any two GLS estimators of B
for GLM(w,i), then AIEM = A@:}. Moreover,

> w—1 [ ;o
ﬁ més ZT; [yz—gzﬁ] ...(60)

>
|Q>

ProoF. 1. By means of Lemma 1 we calculate S_;. As
S, =X WX =X'X + (w— 1)z, ...(61)

then, takingL = z;,, y=w—-1, A=S= X X and given that [I+7LA"L'] =
1+ (w — 1)vy; is positive for any w > 0, we have

_ _ (w—=1) i
S, =S ———— S z.z.S ...(62
w 1 + (w _ 1),0“ g7,£l (6 )
Then, using the uniqueness of V, XS X' is unique for any choice of the gener-
alized inverse of S,,.

2. From (62)

’

NH, = w—l)

1+ (w-— 1)1)“

[ S™ MZS} [S+(w— l)gig;]
= A [n {w—l e T ks LT
H

3. As /\’ﬁ is e.l.f. in GLM, by the previous result, we have

AB =AS,XW 'Yand)j =AT, X W'y
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where S y T, are two generalized inverses of S,,. Moreover, exists u € R"
such that A = u' X ( see Kshirsagar, 1983), so
ANB, =uXS;XW 'Y and A, =u XT;X W'Y

which are equal by the uniqueness of XS;XI. On the other hand,

Aﬁw = AS;XW”X
! o (QJ—]_) ro ro 1
= XY —(w=-1z;Y;
A8 T TR et LS XY~ (- Dz.vi]
1 w—1 _ ~
3~ s -4

TuEOREM 2. If X B is an e.Lf. in GLM, its BLUE in GLM(w,i) is A B_, for
any Ew GLS estimators of [3.

PRrRoOOF. Aléw is unbiased
E [A@J —ANS;XWIE[Y]=)'S;S.,8=258

On the other hand, if a € RP, such that a'Y is unbiased of Alﬁ, that is to
say aX= AI, then

’

[a’ —A’S;X’W—l] Var(Y) ’S;X’W—l]

Il
[N

Cov [(@Y = N'B,), N3]
= o [a’ —A’S;X'W*l] XS
o* [aX8;2-X's; )
= 0
Therefore,

Var [a’Z] =Var [al_ — A’é\w] + Var [Alé\w] > Var [Aléw] Va € R?

Equality is attained when Var [a’Z - Ew] = 0, that is to say when
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THEOREM 3. In the model GLM(w,i),

1 w—1
~2 ~2 2
= B 0 ...(63
< U+n—r 1+(w_1)viiel w > (63)

and this estimation is independent of the choice of gw

ProOF. The vector of residuals for GLM(w, 7) is

~ ~ o~ w—1
Y -Xj3 = —X[— ]: - XSz
Y-XB =e B-B,|=¢ 1 @ =Tvn z;e;
where e is the vector of residuals for GLM. Then
o wo x|
’ 2 - ]_ !
—eW! (w ) e Wlesfgiei

€= 1+ (w — 1)’1)“‘_
w—1 2 / /
+ [17] elr;S"X W XS z,

2(w—1)
2_ " (w—1)e2v;
¢ 1+ (w — ]-)'Uii (w )61 vii

=1

-1 17, :
+ [wf] elx;S™ [S + (w— l)glgl] Sz,

2(w — 1)%vy (w—1)%vy ] 2

= —1)— ‘
eet |:(w ) 1+ (w — ]-)'Uii 1+ (w — ]-)'Uii '
2

' + w — 1
= ee
T 14+ (w—1)vuy;
By means of Theorem 2, it can be easily shown that this estimation is unique
for any choice of 3. 0
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