
A Prolog Simulator for Deterministic P
Systems with Active Membranes

A. CORDÓN-FRANCO, M.A. GUTIÉRREZ-NARANJO,

M.J. PÉREZ-JIMÉNEZ, F. SANCHO-CAPARRINI

Dpto. de Ciencias de la Computación e Inteligencia Artificial
E.T.S. Ingenieŕıa Informática. Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, España

{acordon, magutier, marper, fsancho}@us.es

Abstract In this paper we propose a new way to represent P systems 
with active membranes based on Logic Programming techniques. This 
representation allows us to express the set of rules and the configuration of 
the P system in each step of the evolution as literals of an appropriate 
language of first order logic. We provide a Prolog program to simulate the 
evolution of these P systems and present some auxiliary tools to simulate 
the evolution of a P system with active membranes using 2-division which 
solves the SAT problem following the techniques presented in 10).

Keywords Logic programming, Membrane computing, Simulation, 
Prolog, SAT-problem

§1 Introduction
In 5), a new model of computation within the framework of Natural

Computing was introduced, called P Systems.
It is based upon the notion of membrane structure that is used to enclose

computing cells in order to make them independent computing units. Also, a
membrane serves as a communication channel between a given cell and other
cells “adjacent” to it. This model comes from the observation that the processes



2 A. Cordón-Franco et al.

which take place in the complex structure of a living cell can be considered as
computations.

Since these computing devices were introduced several variants have
been considered. See 6) for a fairly complete compendium about P systems.

The different variants of P systems found in the literature are generally
thought as generating devices. Many of them have been proved to be computa-
tionally complete 6).

The model we study here, P systems with active membranes, works with
symbol–objects, and it provides rules for membrane division. In particular, P
systems with active membranes are studied in 6), section 7.2.

The main goal of this paper is to propose and illustrate a representation
of P systems with active membranes based on Logic Programming techniques.

The paper is organized as follows: Section 2 briefly presents some ideas
about the convenience of using Prolog as the basis for this representation; Section
3 introduces the way to represent all basic ingredients of this model; Section 4
studies the designed algorithm to simulate deterministic P systems with active
membranes; Section 5 presents as an example the solution given to SAT problem
using this model in 10); Section 6 presents some conclusions and future work
about the possibilities of this new simulator and representation techniques using
Logic Programming; finally, the Appendix shows a standard work session with
the interface provided with the simulator.

§2 Why Prolog?
Choosing a programming language for an effective implementation of a

P system simulator is not an easy decision. The language has to be expressive
enough to handle symbolic knowledge in a natural way and the ability of evolving
the different configurations following a set of rules. Prolog∗1 has both these
features.

On one hand, the based-tree data structure and the use of infix operators
defined ad hoc by the programmer allow us to simulate the natural language and
the user can follow the evolution of the system without any knowledge of Prolog
(see sections 3.2 and 3.3). On the other hand, Prolog programs are sets of facts
and rules and basic mechanisms of Prolog are pattern matching and automatic
backtracking, so the design of the inference engine to perform the evolutions has
a natural treatment from a programmer point of view.

∗1 A good starting point can be 3) or 13).



A Prolog Simulator for Deterministic P Systems with Active Membranes 3

Finally, the use of Prolog as programming language has other desirable
side effects which are out of the scope of this paper. Prolog fits into all kinds
of symbolic reasoning and the use of this representation can be a way to link P
systems to other deeply studied fields in Artificial Intelligence.

§3 A Logic Programming representation of P
systems with active membrane

Following 6) a P system with active membranes is a construct:

Π = (V, H, µ, w1, . . . , wm, R),

where:

1. m ≥ 1, is the initial degree of the system;
2. V is the alphabet of symbol-objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure, of m membranes, labelled (not necessarily

in a one-to-one manner) with elements of H;
5. w1, . . . , wm are strings over V , describing the initial multisets of objects

placed in the m regions of µ;
6. R is a finite set of evolution rules, of the following forms:

a. [hx → u]αh , for h ∈ H, α ∈ {+,−, 0}, x ∈ V , u ∈ V ∗. This is an
object evolution rule, associated with a membrane labelled with h

and depending on the polarity of that membrane, but not directly
involving the membrane.

b. x[h ]α1
h → [hy]α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, x, y ∈ V . An object
from the region immediately outside a membrane labelled with h

is introduced in this membrane, possibly transformed into another
object, and simultaneously its polarity can be changed.

c. [hx]α1
h → [h ]α2

h y, for h ∈ H, α1, α2 ∈ {+,−, 0}, x, y ∈ V . An object
is sent out from membrane labelled with h to the region immedia-
tely outside, possibly transformed into another object, and simulta-
neously the polarity of the membrane can be changed.

d. [hx]αh → y, for h ∈ H, α ∈ {+,−, 0}, x, y ∈ V . A membrane labelled
with h is dissolved in reaction with an object. The skin is never
dissolved.

e. [hx]α1
h → [hy]α2

h [hz]α3
h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, x, y, z ∈ V .

An elementary membrane can be divided into two membranes with



4 A. Cordón-Franco et al.

the same label, possibly transforming some objects and polarity.

These rules are applied according to the following principles:
• All the rules are applied in parallel and in a maximal manner. In one

step, one object of a membrane can be used by only one rule (chosen in
a nondeterministic way), but any object which can evolve by one rule of
any form, should evolve.

• If a membrane is dissolved, then its content (multiset and internal mem-
branes) is left free in the surrounding region.

• All objects and membranes not specified in a rule and which do not evolve
remain unchanged to the next step.

• If at the same time a membrane h is divided by a rule of type (e) and
there are objects in this membrane which evolve by means of rules of type
(a), then we suppose that first the evolution rules of type (a) are used,
and then the division is produced. Of course, this process takes only one
step.

• The rules associated with membranes labelled with h are used for all
copies of this membrane. At one step, a membrane labelled with h can
be the subject of only one rule of types (b)-(e).

In order to give a formal representation in Prolog of the basic structures of P
systems with active membranes using 2-division, the following representation
will be considered.

3.1 Representation of membrane structures
A given configuration will be expressed by means of a labelled tree,

where:

1. < > is the position to denote the root of the tree and it will be associa-
ted to the skin;

2. if < i1, . . . , in > is the position of a membrane h, then < i, i1, . . . , in >

will denote the position of the i-th internal membrane to h.

There exists one difference between the above representation and the one we
use in Prolog: in our Prolog representation, if in one step of the computation a
membrane with label < i1, . . . , in > has k internal membranes, then its children
do not have to be labelled with < 1, i1, . . . , in >, < 2, i1, . . . , in >, . . . , < k − 1,

i1, . . . , in >, < k, i1, . . . , in >.
This is because if one child membrane is dissolved, the other ones are not re-



A Prolog Simulator for Deterministic P Systems with Active Membranes 5

labelled. Besides, new membranes obtained by division are labelled with new
indexes, not by filling the holes of previously dissolved membranes.

3.2 Representation of configurations
Let us remember that to give a configuration for a P system with active

membranes consists in making explicit the membrane structure and the content
of every membrane present in this structure.

In our model we will represent the configuration in one step of the evo-
lution as a set of one-literal clauses, each of them representing each alive mem-
brane. Hence, in this representation each clause will show the label, position,
polarity, multiset of objects and current step of the computation, as well as the
P system this membrane belongs to. In this way, the set of clauses gives infor-
mation about the contents of the membranes and the membrane structure (by
means of the position of each one).

In a general form, to denote that in the t-th step of its evolution the P
system, P , has a membrane at position [pos] with label h, polarity α and m as
multiset, we will write

P :: h ec α at [pos] with m at time t

Note that we can use the user-friendly representation of a Prolog literal, instead
of the functional representation.

In a general way, if m = {{x1, . . . , xn}} (with not necessarily xi 6= xj),
then we will denote m = [x1, . . . , xn].

3.3 Description of the rules
By means of some new function symbols, the rules are also represented

as literals. In what follows we present the general form of the different rules
showed above:

(a) [hx → u]αh
P rule x evolves to [u] in h ec α

(b) x[h ]α1
h → [hy]α2

h

P rule x out of h ec α1 sends in y of h ec α2

(c) [hx]α1
h → [h ]α2

h y

P rule x inside of h ec α1 sends out y of h ec α2

(d) [hx]αh → y

P rule x inside of h ec α dissolves and sends out y



6 A. Cordón-Franco et al.

(e) [hx]α1
h → [hy]α2

h [hz]α3
h

P rule x inside of h ec α1 divides into y inside of h

ec α2 and z inside of h ec α3

§4 The algorithm
The Prolog algorithm to simulate a P system works in a natural way.

The input of the program is the initial configuration of the membranes (which
is represented as a set of literals with predicate symbol **, all of them at time

0) and an appropriate set of rules.
• Step 1: Initialization. At the beginning, all the membranes are set

to applicable and their objects are split into two multiset: one usable

multiset, containing all the objects of the initial membrane, and one used

multiset which is empty.
• Step 2: Transition. If there exists an applicable membrane satisfying

the condition of a rule, then the rule is applied in the following way:
– (a)-step: At this stage, only rules of type (a) are checked. The ob-

ject which triggers the rule is removed from the usable and the result
multiset by the application of the rule is added to used, to prevent
that the same object is used by two different rules at the same step.
After the evolution step, the membrane remains to be applicable and
new evolution rules can be applied.
This stage ends when no more rules of type (a) can be applied.

– Non-(a)-step: At this stage, only one rule of the other types (not (a))
can be applied. Let us remember that this simulation only works with
deterministic P systems (in fact, it works with confluent ones). The
action depends on the kind of rule to apply:
∗ Send out rule: The element which triggers the rule is removed from

usable multiset and the new one is added to the used multiset of
the father membrane. Both membranes changes to not applicable
mode. If the element is sent out of the skin, then it is marked with
the property outside.

∗ Send in rule: It is the reciprocal of the previous one. The ele-
ment which triggers the rule is removed from usable in the father
membrane and the new one is added to the used multiset. Both
membranes changes to not applicable mode.

∗ Dissolution rule: The element which triggers the rule belongs to



A Prolog Simulator for Deterministic P Systems with Active Membranes 7

usable and the new element obtained together with the rest of the
elements of the membrane are added to the used multiset of the
father membrane. When a membrane m is dissolved, its inner mem-
branes (i.e. its children) become children of the father membrane of
m in the next stage of evolution. For that, the new positions have to
be arranged. The father membrane changes to not applicable mode.

∗ Division rule: The element which triggers the rule belongs to us-

able and the division creates two new membranes in not applicable
mode. One of them keeps the original position and the second one
gets a position which has not been occupied by any membrane.

– End: When no more rules can be applied to applicable membranes, a
new configuration (with at time incremented by 1) is stored. In this
moment no membrane has applicable or not applicable state. These
modes only have validity during the evolution. At this stage, the P
system is ready for a new step of the evolution.

• Step 3: End of computation. The evolution of the P system finishes
when there are no rules to be applied.
Notice that due to the features of the implementation, the program

only ensures a correct simulation of the evolution for deterministic (confluent)
P systems. Nevertheless, most of the usual algorithms that solve interesting
problems are covered.

§5 A study case: SAT problem

5.1 A linear solution to the SAT problem by P systems
with active membranes

Propositional Satisfiability is the problem of determining, for a formula
of the propositional calculus, if there is an assignment of truth values to its
variables for which that formula evaluates to true. By SAT we mean the problem
of propositional satisfiability for formulas in conjunctive normal form (CNF).

Following 10) we present a family of recognizing P systems with active
membranes using 2–division (see 6), section 7.2) solving the SAT problem in
linear time.

Let us suppose that ϕ = C1∧· · ·∧Cm in CNF and V ar(ϕ) = {x1, . . . , xn}.
For each (m,n) ∈ N2 we consider the recognizing P system

(Π(〈m,n〉), Σ(m,n), i(m,n)),



8 A. Cordón-Franco et al.

where Σ(m,n) = {xi,j , xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, i(m,n) = 2 and

Π(〈n,m〉) = (Γ(m,n), {1, 2}, [1 [2 ]2 ]1, w1, w2, R)

is defined as follows:

Γ(m, n) = Σ(m,n) ∪ {ck : 1 ≤ k ≤ m + 2} ∪ {dk : 1 ≤ k ≤ 3n + 2m + 3}
∪ {ri,k : 0 ≤ i ≤ m, 1 ≤ k ≤ 2n} ∪ {e, t} ∪ {Y es,No}.

We will say that every internal membrane with label 2 is an internal membrane.
The initial content of each membrane is: w1 = ∅ and w2 = {d1}.
The set R of rules is given by:

(a) {[2dk]02 → [2dk]+2 [2dk]−2 : 1 ≤ k ≤ n}.
By using a rule of (a), a membrane with label 2 is divided into two
membranes with the same label, but with different polarizations. These
rules allow us to duplicate, in one step, the total number of internal
membranes.

(b) {[2xi,1 → ri,1]+2 , [2 xi,1 → ri,1]−2 : 1 ≤ i ≤ m},
{[2xi,1 → λ]−2 , [2 xi,1 → λ]+2 : 1 ≤ i ≤ m}.
The rules of (b) try to implement a process allowing to the internal mem-
branes to encode the assignment of a variable and, simultaneously, to
check the value of all clauses by this assignment, in such a way that if the
clause is true, then an object ri,1 will appear in the membrane. In other
case, the object encoding the variable will disappear.

(c) {[2xi,j → xi,j−1]+2 , [2xi,j → xi,j−1]−2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n},
{[2 xi,j → xi,j−1]+2 , [2 xi,j → xi,j−1]−2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}.
The check process described previously is always made with respect to
the first variable appearing in the internal membrane. Hence, the rules
of (c) take charge of making a cyclic path through all the variables to get
that, initially, the first variable is x1, then x2, and so on.

(d) {[2dk]+2 → [2 ]02dk, , [2dk]−2 → [2 ]02dk : 1 ≤ k ≤ n},
{dk[2 ]02 → [2dk+1]02 : 1 ≤ k ≤ n− 1}.
The rules of (d) are used as controllers of the generating process of the
assignments and the encoding of the satisfied clauses: the objects d are
sent out to the skin at the same time the checking is made and they come
back to the internal membranes to start the division of these membranes.

(e) {[2ri,k → ri,k+1]02 : 1 ≤ i ≤ m, 1 ≤ k ≤ 2n− 1}.



A Prolog Simulator for Deterministic P Systems with Active Membranes 9

The use of objects r in the rules (i), (j) and (k) makes necessary to
perform a rotation of these objects. This is the mission of the rules
of (e).

(f) {[1dk → dk+1]01 : n ≤ k ≤ 3n− 3}; [1d3n−2 → d3n−1e0]01.

Through the counter-objects d, the rules of (f) control the rotation of the
elements ri,k in the internal membranes.

(g) e[2 ]02 → [2c1]+2 ; [1d3n−1 → d3n]01.

The application of the rules of (g) will show that the system is ready
to check which clauses are made true by the assignment encoded by an
internal membrane.

(h) {[1dk → dk+1]01 : 3n ≤ k ≤ 3n + 2m + 2}.
The rules of (h) supply counters in the skin through objects d, in such a
way that, if objects d3n+2m appear, then they show the end of the checking
of the clauses. The objects dk, with 3n + 2m + 1 ≤ k ≤ 3n + 2m + 3, will
control the final stage of the computation.

(i) [2r1,2n]+2 → [2 ]−2 r1,2n.

The applicability of the rule (i) encodes the fact that an internal mem-
brane makes true the clause represented by the object r1,2n, through a
change in the sign of its polarization. Because of this, we must relabel the
values of r representing the different internal membranes. This is done
by means of the rules (j).

(j) {[2ri,2n → ri−1,2n]−2 : 1 ≤ i ≤ m}.
(k) r1,2n[2 ]−2 → [2r0,2n]+2 .

By using the rule (k) the task of making explicit the assignments that
make true the clause encoded in that moment of the execution by the
object r1,2n is ended.

(l) {[2ck → ck+1]−2 : 1 ≤ k ≤ m}.
The presence of objects ck (with 2 ≤ k ≤ m + 1) in the internal mem-
branes shows that the assignments making true every clause are being
determined.

(m) [2cm+1]+2 → [2 ]+2 cm+1.



10 A. Cordón-Franco et al.

The rule (m) sends to skin the objects cm+1 appearing in the internal
membranes.

(n) [1cm+1 → cm+2t]01.

By using the rule (n) the objects cm+1 in the skin evolve to objects
cm+2t. The objects t in the skin are produced simultaneously with the
appearance of the objects d3n+2m+2 in the skin, and will show that there
exists some assignment making true the formula.

(o) [1t ]01 → [1 ]+1 t.

The rule (o) sends out of the system an object t changing the polarization
of the skin membrane to positive (after that, the objects t remaining in
the skin region can no longer evolve). Hence, an object cm+2 can exit the
skin producing an object Y es. This object is then sent to the environment
through the rule (p), telling us that the formula is satisfiable, and the
computation stops.

(p) [1cm+2]+1 → [1 ]−1 Y es.

The applicability of the rule (p) changes the polarization of the skin mem-
brane to negative in order that the objects cm+2 remaining in it cannot
continue evolving.

(q) [1d3n+2m+3]01 → [1 ]+1 No.

By the rule (q) the object d3n+2m+3 only evolves when the skin has a
neutral charge (this is the case when the formula is not satisfiable). Then
the system will evolve sending to the environment an object No and
changing the polarization of the skin to positive, in order that objects
d3n+2m+3 remaining in the skin region can no longer evolve.

In 10) it is proved that the family Π = (Π(t))t∈N+ solves the SAT problem in
linear time.
As input data for this P system, associated with the formula ϕ = C1 ∧ · · · ∧Cm

in CNF with V ar(ϕ) = {x1, . . . , xn}, we consider the multiset
{xi,j : xj ∈ Ci} ∪ {xi,j : ¬xj ∈ Ci}

The execution of the P system with the above input can be structured in four
stages: a stage of generation of all assignments, a stage of synchronization, a
stage of checking the assignments with regard to the formula, and a stage of
output.



A Prolog Simulator for Deterministic P Systems with Active Membranes 11

The generating stage is controlled by the objects di, with 1 ≤ i ≤ n.
• The presence in the skin of one object di, with 1 ≤ i ≤ n, will show that

all possible partial assignments associated with {x1, . . . , xi} have been
generated.

• In this stage, simultaneously to the consideration of partial assignments
(each one associated with each internal membrane created by division)
we will encode in every internal membrane all the clauses being true by
the assignment represented by the membrane (through the objects ri,k).

• The object d1 appears in the skin after the execution of 2 steps. From the
appearance of di in the skin to the appearance of di+1, with 1 ≤ i ≤ n−1,
3 steps have been executed.

• This stage ends when the object dn appears in the skin.
Hence, the total number of steps in the generating stage is 3n− 1.

The synchronization stage has the goal of unifying the second subindexes
of the objects ri,k, to make them equal to 2n.

• This stage starts with the evolution of the object dn in the skin region.
• In every step of this stage the object di, with n ≤ i ≤ 3n− 1, evolves to

di+1 in the skin region.
• This stage ends as soon as the object d3n appears in the skin, that is the

moment when each internal membrane has positive charge and contains
one object c1 (obtained by using the first rule of (g)).

Therefore, the synchronization stage needs a total of 2n steps.
The checking stage has the goal to determine how many (and which)

clauses are true in every internal membrane (that is, by the assignment repre-
sented by it). This stage is controlled by the objects ci, with 1 ≤ i ≤ m+1, and
it starts after the presence of c1 in the internal membranes.

• The presence of an object ci in an internal membrane shows that the
clauses C1, . . . , Ci−1 are true by the assignment represented by that mem-
brane.

• From every ci (with 1 ≤ i ≤ m) the object ci+1 is obtained in some
membranes after the execution of 2 steps.

• The checking stage ends as soon as the object d3n+2m appears in the skin.
Therefore, the total number of steps of this stage is 2m.

The output stage starts immediately after the appearance of the object
d3n+2m in the skin and it is controlled by the objects cm+1 and cm+2.

• To produce the output Y es the object cm+1 must have been produced



12 A. Cordón-Franco et al.

in some internal membrane of the configuration C5n+2m−1. Then, after 4
steps the system returns Y es to the environment, through the evolution
of objects cm+2 present in the skin membrane, and when it has positive
charge.

• To produce the output No, no object cm+1 appears in any internal mem-
brane of the configuration C5n+2m−1. Then after 4 steps the system re-
turns No to the environment, through the evolution of objects d3n+2m+3

present in the skin region, and when it has neutral charge.
Therefore, the total number of steps in the output stage is 4, and the total
execution time of the P system is 5n + 2m + 3.

5.2 A Prolog session for m = n = 2
In this section we present a session for one instance of the problem. We

consider two clauses: C1 = x1 ∧ x2 and C2 = x1 ∧ ¬x2. First, we will build the
initial configuration and the set of rules∗2.

The initial configuration has two membranes: the skin at position <>,
label e1, electrical charge 0 and empty content, and one internal membrane.
The internal membrane contains the information relative to this instance of the
problem: xi j represents that xj is a variable in Ci and zi j represents that ¬xj

occurs in Cj . So, we consider an internal membrane at position < 1 > with label
e2, electric charge 0 and the multiset codifying the information of the literals.
We call p1 this P system and we write at time 0 to denote that the system has
not evolved yet.

The Prolog representation of this initial configuration is

p1 :: e1 ec 0 at [] with [] at_time 0.

p1 :: e2 ec 0 at [1] with [x2_1, z2_2, x1_1, x1_2, d1] at_time 0.

The set of rules only depends on the set of clauses and the set of variables.
This set is generated by the simulator as a numbered set of rules. We have 52
rules in this example, and they can be found in the appendix.

To start with the simulation of the evolution of the P system p1 from
time 0 we type the following command.

?- evolve(p1,0).

The simulator returns the configuration at time 1, the set of rules and
additional information about the elements outside the skin membrane.
∗2 The Prolog simulator provides the facilities to build automatically the initial configuration

and the set of rules for any instance of the SAT problem.



A Prolog Simulator for Deterministic P Systems with Active Membranes 13

p1 :: e1 ec 0 at [] with [] at_time 1

p1 :: e2 ec -1 at [2] with [x2_1,z2_2, x1_1, x1_2, d1] at_time 1

p1 :: e2 ec 1 at [1] with [x2_1,z2_2, x1_1, x1_2, d1] at_time 1

Used rules in the step 0: [1]

In this step only the first rule has been applied. We follow the evolution.

?- evolve(p1,1).

p1 :: e1 ec 0 at [] with [d1, d1] at_time 2

p1 :: e2 ec 0 at [1] with [r1_1, r2_1, x1_1, z2_1] at_time 2

p1 :: e2 ec 0 at [2] with [x1_1, z2_1] at_time 2

Used rules in the step 1: [3, 5, 7, 9, 11, 12, 17, 18, 19, 20]

where 10 rules have been applied.
The simulator also allows us to go to a configuration at time N without

showing the previous steps.

?- configuration(p1,5).

p1 :: e1 ec 0 at [] with [d2, d2, d2, d2] at_time 5

p1 :: e2 ec 0 at [1] with [r1_3, r2_3, r1_1] at_time 5

p1 :: e2 ec 0 at [2] with [r1_1] at_time 5

p1 :: e2 ec 0 at [3] with [r2_1] at_time 5

p1 :: e2 ec 0 at [4] with [r1_3, r2_3, r2_1] at_time 5

In this example the generating stage ends at time 5 (that is, 3n − 1). We can
follow the evolution and obtain the configuration at time 9 (that is, 3n−1+2n).
This is the first configuration where the element d6 appears in the skin region.

?- configuration(p1,9).

p1 :: e1 ec 0 at [] with [d6, d6, d6, d6] at_time 9

p1 :: e2 ec 1 at [1] with [r1_4, r2_4, r1_4, c1] at_time 9

p1 :: e2 ec 1 at [2] with [r1_4, c1] at_time 9

p1 :: e2 ec 1 at [3] with [r2_4, c1] at_time 9

p1 :: e2 ec 1 at [4] with [r1_4, r2_4, r2_4, c1] at_time 9

The synchronization stage has ended. In the next step the checking stage begins;
it ends at time 13 (that is, 5n − 1 + 2m) when the element d10 appears in the
skin region.

?- configuration(p1,13).

p1 :: e1 ec 0 at [] with [d10, d10, d10, d10] at_time 13

p1 :: e2 ec 1 at [1] with [r0_4, r0_4, r0_4, c3] at_time 13

p1 :: e2 ec 1 at [2] with [r0_4, c2] at_time 13

p1 :: e2 ec 1 at [3] with [r2_4, c1] at_time 13

p1 :: e2 ec 1 at [4] with [r0_4, r0_4, r0_4, c3] at_time 13

After that, the output stage starts. At step 16 (that is, 5n+2m+2) the element
t is sent out of the skin region.



14 A. Cordón-Franco et al.

?- evolve(p1,15).

p1 :: e1 ec 1 at [] with [c4, c4, t, d13, d13, d13, d13] at_time 16

p1 :: e2 ec 1 at [1] with [r0_4, r0_4, r0_4] at_time 16

p1 :: e2 ec 1 at [2] with [r0_4, c2] at_time 16

p1 :: e2 ec 1 at [3] with [r2_4, c1] at_time 16

p1 :: e2 ec 1 at [4] with [r0_4, r0_4, r0_4] at_time 16

Used rules in the step 15: [41, 41, 41, 41, 50]

outside(t).

Finally, in the next step the system sends out yes

?- evolve(p1,16).

p1 :: e1 ec -1 at [] with [c4, t, d13, d13, d13, d13] at_time 17

p1 :: e2 ec 1 at [1] with [r0_4, r0_4, r0_4] at_time 17

p1 :: e2 ec 1 at [2] with [r0_4, c2] at_time 17

p1 :: e2 ec 1 at [3] with [r2_4, c1] at_time 17

p1 :: e2 ec 1 at [4] with [r0_4, r0_4, r0_4] at_time 17

Used rules in the step 16: [51]

outside(t).

outside(yes).

To check the system we try to evolve one more time, though this is a halting
configuration.

?- evolve(p1,17).

No more evolution!

The P-system p1 has already reached a halting configuration at step 17

§6 Conclusion and future work
We have presented an effective tool for making experiments with P sys-

tems to solve decision problems. One example is the propositional satisfiability
problem, but the simulator is useful for general purposes, covering all the deter-
ministic P systems with active membranes using 2-division.

In the literature some references to other software simulators can be
found (e.g. 1, 2, 4, 11)), but this is the first time when P systems with active
membranes are simulated. The automatic generation of the initial configuration
and the set of rules by the system from the formal description of the problem is
other relevant feature of the simulator presented in this paper.

The chosen logic representation is so user-friendly that the user can
follow the evolution of the system without any knowledge about Prolog language.
Besides, representing rules and membranes as literals in a clausal language allows
a natural treatment of the objects from a programmer’s point of view.

The idea of representing the P systems as an unordered set of clauses
endows them with a flexibility which can be used for new purposes. This can be



A Prolog Simulator for Deterministic P Systems with Active Membranes 15

a good starting point towards new unexplored perspectives in P systems, such
as the merge of two P systems or the evolution of a population of P systems in
the way of genetic algorithms.

Representing P systems as Prolog programs suggests new relations be-
tween P systems and other deeply studied techniques in Artificial Intelligence.
Different aspects related to heuristics, search in spaces of states or automated
learning can be linked to the theory of P systems via this representation.

Acknowledgment
The last two authors gratefully acknowledge the support of this research

through the project TIC2002-04220-C03-01 of the Ministerio de Ciencia y Tec-
noloǵıa de España, cofinanced by FEDER funds.

References

1) Arroyo, F.; Luengo, C.; Baranda, A.V.; de Mingo, L.F.: A software simulation
of transition P systems in Haskell, Springer-Verlag, LNCS 2597, Berlin, 2003,
19-32.

2) Balbont́ın Noval, D.; Pérez Jiménez, M.J.; Sancho Caparrini, F.: A MzScheme
implementation of transition P systems, Springer-Verlag, LNCS 2597, Berlin,
2003, 58-73.

3) Bratko, I.: PROLOG Programming for Artificial Intelligence, Third edition.
Addison-Wesley, 2001.

4) Ciobanu, G.; Paraschiv, D.: Membrane Software. A P System Simulator, Fun-
damenta Informaticae 49 , 1-3 (2002), 61-66.

5) Păun, G.: Computing with membranes, Journal of Computer and System
Sciences, 61(1), 2000, 108–143.

6) Păun, G.: Membrane Computing. An Introduction, Springer-Verlag, Berlin,
2002.

7) Păun, G.; Rozenberg, G.: A guide to membrane computing, Theoretical Com-
puter Sciences, 287, 2002, 73–100.

8) Păun, G.; Rozenberg, G.; Salomaa, A.: Membrane computing with external
output, Fundamenta Informaticae, 41(3), 2000, 313–340.

9) Pérez Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F.: Teoŕıa de
la Complejidad en modelos de computación celular con membranas, Editorial
Kronos, Sevilla, 2002.

10) Pérez-Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F: The polyno-
mial complexity class in P systems using membrane division. Submitted.

11) Suzuki, Y.; Tanaka, H.: On a LISP Implementation of a Class of P Systems,
Romanian J. of Information Science and Technology, 3, 2 (2000), 173-186.

12) The P Systems Web Page: http://psystems.disco.unimib.it/



16 A. Cordón-Franco et al.

13) Logic Programming: http://www.afm.sbu.ac.uk/logic-prog/

§7 Appendix
In what follows we present a sample of the rules written in the format

they must be given to the simulator∗3.

% Set (a)

p1 rule d1 inside_of e2 ec 0 divides_into d1 inside_of

e2 ec 1 and d1 inside_of e2 ec-1 ** 1.

p1 rule d2 inside_of e2 ec 0 divides_into d2 inside_of

e2 ec 1 and d2 inside_of e2 ec-1 ** 2.

% Set (b)

p1 rule x1_1 evolves_to [r1_1]in e2 ec 1 ** 3.

p1 rule z1_1 evolves_to [r1_1]in e2 ec-1 ** 4.

...

% Set (c)

p1 rule x1_2 evolves_to [x1_1]in e2 ec 1 ** 11.

p1 rule x1_2 evolves_to [x1_1]in e2 ec-1 ** 12.

p1 rule z1_2 evolves_to [z1_1]in e2 ec 1 ** 13.

...

% Set (d)

p1 rule d1 inside_of e2 ec 1 sends_out d1 of e2 ec 0 ** 19.

p1 rule d1 inside_of e2 ec -1 sends_out d1 of e2 ec 0 ** 20.

...

% Set (e)

p1 rule r1_1 evolves_to [r1_2] in e2 ec 0 ** 24.

p1 rule r1_2 evolves_to [r1_3] in e2 ec 0 ** 25.

...

% Set (f)

p1 rule d2 evolves_to [d3] in e1 ec 0 ** 30.

p1 rule d3 evolves_to [d4] in e1 ec 0 ** 31.

p1 rule d4 evolves_to [d5, e] in e1 ec 0 ** 32.

% Set (g)

p1 rule e out_of e2 ec 0 sends_in c1 into e2 ec 1 ** 33.

p1 rule d5 evolves_to[d6]in e1 ec 0 ** 34.

% Set (h)

∗3 The number after ** is the ordinal associated to the rule.



A Prolog Simulator for Deterministic P Systems with Active Membranes 17

p1 rule d6 evolves_to [d7] in e1 ec 0 ** 35.

...

p1 rule d12 evolves_to [d13]in e1 ec 0 ** 41.

% Set (i)

p1 rule r1_4 inside_of e2 ec 1 sends_out r1_4 of e2 ec-1 ** 42.

% Set (j)

p1 rule r1_4 evolves_to [r0_4] in e2 ec -1 ** 43.

p1 rule r2_4 evolves_to [r1_4] in e2 ec -1 ** 44.

% Set (k)

p1 rule r1_4 out_of e2 ec-1 sends_in r0_4 into e2 ec 1 ** 45.

% Set (l)

p1 rule c1 evolves_to [c2] in e2 ec -1 ** 46.

p1 rule c2 evolves_to [c3] in e2 ec -1 ** 47.

% Set (m)

p1 rule c3 inside_of e2 ec 1 sends_out c3 of e2 ec 1 ** 48.

% Set (n)

p1 rule c3 evolves_to [c4, t] in e1 ec 0 ** 49.

% Set (o)

p1 rule t inside_of e1 ec 0 sends_out t of e1 ec 1 ** 50.

% Set (p)

p1 rule c4 inside_of e1 ec 1 sends_out yes of e1 ec-1 ** 51.

% Set (q)

p1 rule d13 inside_of e1 ec 0 sends_out no of e1 ec 1 ** 52.


