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A novel formulation of the Rys quadrature algorithm for the calculation of the electron repulsion
integrals over Gaussian basis functions is presented. The new algorithm is specifically designed for
high contractions. As for the original Rys quadrature algorithm, the new algorithm is very efficient
for high angular momentum functions. In addition it is also equally efficient for low angular
momentum functions. The new algorithm takes unique advantage of~1! the numerical Rys
quadrature methodology in~2! dealing with charge distributionsa la McMurchie–Davidsonand in
~3! scaling integral blocks as a means of transferring angular momentuma la Gill–Head–Gordon–
Pople. An analysis of the algorithm suggests very favorable floating-point operation counts.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1336541#

I. INTRODUCTION

The evaluation of the electron repulsion integrals,

~x ix j ixkx l !5E E x i~1!x j~1!
1

r 12
xk~2!x l~2!dr1 dr2 , ~1!

wherex i , x j , xk , and x l are one-electron Gaussian basis
functions, and of the derivatives of these integrals with re-
spect to their centers, continues to be one of the major com-
putational tasks inab initio molecular orbital theory~MO!
and density functional theory~DFT! methods using atom-
centered Gaussian bases. In traditional algorithms where the
electron repulsion integrals are computed and stored on disk,
their computation and handling is most often the time-
limiting step of the calculation. This is even more so with the
‘‘direct’’ algorithms where the integrals are computed sev-
eral times, whenever they are needed. The new generation of
basis sets, with their large degree of contraction of primitive
Gaussian functions and very high angular momentum func-
tions, bring also a heavy computational demand. Thus ad-
vances in integral computation technology will continue to
help push the limits of molecular calculations on large mol-
ecules and on molecules with many heavy elements.

In atom-centered bases the necessary angular depen-
dence of a basis function is achieved explicitly through the
use of spherical harmonics or equivalently through the use of
integer powers of the Cartesian coordinates. When the latter
is combined with a Gaussian radial factor, as suggested by
Boys,1 a primitive basis function takes the form

h i~1,ai ,I !5~x12xi !
nxi~y12yi !

nyi~z12zi !
nzi

3exp~2air 1i
2 !, ~2!

where ‘‘1’’ denotes the electron with coordinates
(x1 ,y1 ,z1), (xi ,yi ,zi) represent the coordinates of the basis

function centerI , r 1i is the distance between electron ‘‘1’’
and the centerI, andai is the Gaussian exponent.

The sum of the powers,

l i5nxi1nyi1nzi ~3!

is closely related to the total angular momentum quantum
number. In practice the basis functionsx’s are linear combi-
nations of primitive basis functions,

x i~1,I !5(
ai

K

caih i~1,ai ,I !, ~4!

whereK ~not to be confused with centerK of xk andhk! is
called the degree or level of contraction. The attractive fea-
ture of Gaussian functions resides in the fact that there exist
practical closed-form expressions for the electron repulsion
integrals.1,2

A major breakthrough in electron repulsion integral
technology was the method introduced by Pople and Hehre
~PH!,3 a method that proved to be very efficient for low-
angular momentum highly contracted basis functions. The
successive rotations involving local axes, albeit extremely
efficacious fors andp functions, proved however difficult to
extend to higher angular momentum functions. McMurchie
and Davidson~MD!4 proposed a method highly efficient for
contracted functions and readily extendable to high angular
momentum functions. Dupuis, Rys, and King~DRK!5 devel-
oped a radically different method based on an exact numeri-
cal quadrature using roots and weights generated from a set
of orthogonal polynomials, the Rys polynomials. The imple-
mentation of the DRK method proved efficient for basis
functions with a low degree of contraction. In the DRK ap-
proach the six-dimensional primitive integrals take the form
of sums of products of three two-dimensional integrals,
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each associated with a Cartesian direction. Ryset al.6 devel-
oped also several recursion formulas for the elementary two-
dimensional integrals.

Over 10 years after the work of MD and DRK, Obara
and Saika~OS!7 proposed some new recursion formulas for
the six-dimensional integrals of Eq.~1!. These recursion for-
mulas turned out to be closely related to those of DRK, ex-
cept that they apply to the six-dimensional primitive inte-
grals directly. OS’s work generated a new wave of research
in electron repulsion evaluation methodologies with signifi-
cant contributions from Head-Gordon and Pople~HGP!,8

Gill, Head-Gordon, and Pople~GHGP!,9 Lindh, Ryu, and
Liu ~LRL!,10 all algorithms that have received much atten-
tion, and the lesser-known algorithms by Ten-no,11 and by
Ishida ~ISH!.12

HGP improved OS’s method by applying the transfer
relations, already noted in DRK’s work, outside the qua-
druple sum over contractions, so that only primitive integrals
whereh j andh l are ofs type need be computed inside the
contraction loops. This idea was taken further in GHGP’s
method where additionally these authors borrowed the pro-
posal of MD and limited the mandatory primitive integrals to
those where onlyh i is not ans orbital. Generation of other
intermediate integrals is carefully accomplished via a so-
called ‘‘scaling’’ of integrals, so that much intermediate
work is moved stepwise outside the contraction loops. The
floating-point operation count~FLOP! shows that GHGP’s
method is indeed superior for contracted functions. Note that
the FLOP counts reported in Refs. 8, 9, 11 for the DRK
method are all erroneous. Only the count given in Ref. 10 is
approximately correct, in accord with the efficiency observed
in practice with the DRK algorithm.13,14 Finally, Ishida’s
algorithm12 has actually an even better FLOP count than
GHGP’s although it looks to be very complex to implement
in practice.

The driving force for the present research was the belief
that applying recursion formulas to two-dimensional inte-
grals and then combining these integrals to form six-
dimensional integrals ought to be more efficient than apply-
ing somewhat more complex recursion formulas directly to
six-dimensional integrals. Comparison of the LRL method10

with the GHGP method8 supports this belief. It clearly shows
that for low contraction level and high angular momentum
functions, the Rys quadrature technique as implemented by
LRL and in some cases as implemented by DRK remains the
method of choice. The superiority of the GHGP algorithm9

over the LRL algorithm for even moderately contracted low
angular momentum functions is however quite clear.

In the present work we aimed at devising an algorithm
based on the Rys quadrature that would be especially effi-
cient at handling highly contracted basis functions for all
levels of basis function angular momentum. The algorithm
that we outline below succeeds in doing this. In what follows
we give a detailed description of how the new algorithm
works for contracteds and p functions, because for such
basis functions the presentation remains tractable and helps
understand how and why the algorithm works. Modern basis
sets do emphasize high angular momentum basis functions.
The new algorithm will work in these cases as well. We note

however that the higher the angular momentum, the lower
the effective contraction level for any group of four shells.
Thus it appears that an optimal strategy might involve two
~or more! different algorithms, one for moderately to highly
contracted low angular momentum functions~s, p, most
likely d!, combined with one for lightly contracted high an-
gular momentum basis functions~possiblyd and higher an-
gular momentum!.

The ‘‘revisited’’ Rys quadrature algorithm described be-
low combines the following features:~1! the numerical
quadrature of DRK;~2! the ‘‘scaling’’ technique of GHGP;
and~3! the transfer equations of HGP. The deterministic nu-
merical quadrature step replaces the complex tree algorithm
of GHGP, and relies on simple recursion relations for the
two-dimensional integrals. In addition the numerical quadra-
ture makes it possible to evaluate the needed elementary in-
tegrals on centersI and K directly rather than on the
exponent-weighted charge-distribution centers. In this man-
ner the ‘‘scaling’’ procedure is simplified. The resulting al-
gorithm is anticipated to have a very attractive FLOP count.

In Sec. II we introduce the notations and give the basic
equations of the numerical quadrature for completeness. The
‘‘scaling’’ procedure is described in Sec. III along with a
detailed outline of the algorithm. Conclusions and outlook
are given in Sec. IV. In what follows we adopt the notation
of GHGP.9 Parentheses are used for integrals over contracted
functions, square-brackets are used for primitive integrals, a
mixed notation is used to indicate that the contraction sum-
mation has been carried out for only one of the two charge
distributions, eitherx ix j or xkx l .

II. THE RYS QUADRATURE

A. The numerical quadrature

It has been known since the early work of Boys1 that
electron repulsion integrals over primitive Gaussian func-
tions can be expressed in the form,

@h ih j ihkh l #5 (
m50

L

CoefmFm~X!, ~5!

where

Fm~X!5E
0

1

t2m exp~2Xt2!dt, ~6!

and

L5l i1l j1lk1l l . ~7!

The value ofX depends upon the exponential parametersai ,
aj , ak , andal , and the positions of the centers of the four
Gaussians, but it is independent of the angular momentum
indices, thenx’s, ny’s, and nz’s. It follows immediately
that Eq.~5! can be written,

@h ih j ihkh l #5E
0

1

PL~ t2!exp~2Xt2!dt, ~8!

wherePL(t2) is a polynomial of degreeL in t2 with coeffi-
cients Coefm . The integral in Eq.~8! can be evaluated ex-
actly by anN-point numerical quadrature formula,
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@h ih j ihkh l #5 (
a51

N

PL~ ta
2!Wa , ~9!

whereN is any integer satisfying the condition,

N.
L

2
, ~10!

ta is a positive root of theNth polynomialRN(t,X),

RN~ ta ,X!50, ~11!

andWa is a weight factor, which depends upon the value of
X. RN(t,X) is the member of degree 2N of a set of polyno-
mials ~the Rys polynomials! of even order in the variablet,
orthonormal in the interval@0,1# with respect to the weight
factor exp(2Xt2),

E
0

1

RN~ t,X!RM~ t,X!exp~2Xt2!dt5dNM . ~12!

In the early work of King and Dupuis,15 the roots and
weights were evaluated by polynomial approximations valid
over finite intervals ofX although interpolation approaches
should prove more efficient.

B. The polynomial PL„t 2
…

We express the Coulomb operator 1/r 12 as a Gaussian
transform,

1/r 125
2

Ap
E

0

`

exp~2u2r 12
2 !du. ~13!

A change in order of integration leads to

@h ih j ihkh l #5
2

Ap
E

0

`

@h ih j uexp~2u2r 12
2 !uhkh l #du,

~14!

and the integrand in Eq.~14! factors into the product of three
two-dimensional integrals associated with the three axes of a
coordinate system,

bh ih j uexp~2u2r 12
2 !uhkh l c5I x8I y8I z8 . ~15!

Of the twelvenx, ny, nzindices, only fournx values enter
into the I x8 term,

I x8~nxi,nx j,nxk,nxl!

5E E ~x12xi !
nxi~x12xj !

nxj~x22xk!
nxk~x22x1!nxl

3exp~2Qx!dx1 dx2 , ~16!

where

Qx5ai~x12xi !
21aj~x12xj !

21ak~x22xk!
2

1al~x22xl !
21u2~x12x2!2. ~17!

Herexi is thex coordinate of the centerI of primitive h i and
nxi is the correspondingnx angular momentum index, and
similar notation is used forh j , hk , andh l . We define some
new quantities,

xA5~aixi1ajxj !/~ai1aj !, ~18!

xB5~akxk1alxl !/~ak1al !, ~19!

A5ai1aj , ~20!

B5ak1al , ~21!

r5AB/~A1B!, ~22!

Dx5r~xA2xB!2, ~23!

Gx5~aiaj /~ai1aj !!~xi2xj !
21~akal /~ak1al !!~xk2xl !

2.
~24!

In terms of these,Qx becomes

Qx5Gx1A~xl2xA!21B~x22xB!21u2~x12x2!2. ~25!

We then make a change of variable fromu to t,

u25rt2/~12t2!, ~26!

t25u2/~r1u2!, ~27!

dt5r~r1u2!23/2 du. ~28!

As u varies from zero to infinity,t varies from zero to unity.
Finally we define a modified form of the two-dimensional
integrals,

I x5exp~Dxt
2!~12t2!21/2I x8 , ~29!

and similarly I y related toI y8 and I z to I z8 . Substitution of
Eqs.~15!, ~26!–~29! into Eq. ~14! yields Eq.~8!, where

PL~ t2!52~r/p!1/2I xI yI z , ~30!

and usingy andz analogs of Eq.~23!, it follows that

X5Dx1Dy1Dz . ~31!

Substitution of Eq.~30! into Eq. ~9! yields the working for-
mula for the electron repulsion integral,

@h ih j ihkh l #5 (
a51

N

I x~ua!I y~ua!I z
#~ua!, ~32!

where

I z
#~ua!52~r/p!1/2I z~ua!Wa . ~33!

C. Recursion formulas for the two-dimensional
integrals

We define

gn,m
x ~x1 ,x2![~x12xi !

n~x22xk!
mexp@2A~x12xA!2

2B~x22xB!22u2~x12x2!2#, ~34!

and the two-dimensional integral,

Gn,m
x 5E E gn,m

x ~x1 ,x2!dx1 dx2 . ~35!

Gn,m
x is related toI x8 of Eq. ~16! by placing the polynomial

factors of theh j andh l primitives on centerI andK. Thus,

Gn,m
x exp~2Gx!5I x8~nxi1nx j,0,nxk1nxl,0,u!. ~36!

Rys et al.6 showed that
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m

2
Gn,m21

x 1$B~xB2xk!1u2~xi2xk!%Gn,m
x 1u2Gn11,m

x

2~B1u2!Gn,m11
x 50, ~37!

n

2
Gn21,m

x 1$A~xA2xi !1u2~xk2xi !%Gn,m
x

2~A1u2!Gn11,m
x 1u2Gn,m11

x 50. ~38!

We make use of Eqs.~18!–~21! and sum Eqs.~37! and~38!
to obtain a new recursion formula,

BGn,m11
x 52AGn11,m

x 1
n

2
Gn21,m

x 1
m

2
Gn,m21

x

1$aj~xj2xi !1al~xl2xk!%Gn,m
x . ~39!

Equation ~39! is the key equation that underlies the new
formulation. It provides a means to transfer angular momen-
tum from electron 1 to electron 2. Indeed, Eq.~39! says that,
in the ~n,m! plane, point (n,m11) which lies east of~n,m!
can be obtained from~n,m! and its north (n11,m), west
(n,m21), and south (n21,m) neighbors. Analogous equa-
tions hold fory andz. Equation~39! is depicted in Fig. 1.

In their earlier work DRK made use of other recursion
relations, also derived from Eqs.~27! and ~28!. Of those we
repeat only one that will be useful to us,

Gn11,0
x 5nB10Gn21,0

x 1C00
x Gn,0

x , ~40!

whereC00
x andB10 are given by

C00
x 5~xA2xi !1

B~xB2xA!

A1B
t2, ~41!

B105
1

2A
2

B

2A~A1B!
t2. ~42!

Finally we note the transfer equations that transfer angular
momentum from centerI to centerJ, and from centerK to
centerL,

I x8~nxi,nx j,m,0!5I x8~nxi11,nx j21,m,0!

1~xi2xj !I x8~nxi,nx j21,m,0!, ~43!

I x8~nxi,nx j,nxk,nxl!

5I x8~nxi,nx j,nxk11,nxl21!

1~xk2xl !I x8~nxi,nx j,nxk,nxl21!. ~44!

Similar equations hold forI x , I y , andI z .

D. Recursion formulas for primitive integrals

The recursion formulas given above are valid for the
two-dimensional integrals that are used to build the primitive
electron repulsion integrals as sums of products of the two-
dimensional integrals forN roots, according to Eq.~32!.
These recursion relations can be turned into recursion formu-
las applicable directly to the six-dimensional primitive inte-
grals. Multiplication of Eq. ~39! by exp(2Gx), then by
exp(Dxta

2)(12ta
2)21/2, and byI y and I z , followed by summa-

tion over roots and weightsa, leads to the following equa-
tion:

B@n,0im11,0#

52A@n11,0im,0#1
n

2
@n21,0im,0#1

m

2
@n,0im21,0#

1$aj~xj2xi !1al~xl2xk!%@n,0im,0#. ~45!

Recall that the bracket notation refers to six-dimensional in-
tegrals, in this case integrals over primitive Gaussian~uncon-
tracted! functions. There is one more remark to make about
Eq. ~45!. In contrast to Eq.~39! that is valid for the two-
dimensional integral along thex direction, and that offers no
possibility of confusion, in Eq.~45! the direction for the
increment or decrement1 of angular momentum is dictated
by the coefficient of the fourth term in the sum. We really
ought to use the notation1x . However, to avoid complexity,
we will keep the notation1 without subscript, and we will
have to remember the implication due to the coefficient
$aj (xj2xi)1al(xl2xk)%. Equation~45! is closely related to
Eq. ~30! of LRL.10 The difference lies in our working with
centersI, J, K, andL directly, in contrast with these authors
working with centersA andB.

Just as before, from Eqs.~43! and ~44! substituted into
Eq. ~29! and then Eq.~32! it follows that

@ni,n jim,0#5@ni11,n j21im,0#1~xi2xj !

3@ni,n j21im,0# ~46!

and

@ni,n jink,nl#5@ni,n jink11,nl21#1~xk2xl !

3@ni,n jink,nl21#. ~47!

Equations~46! and ~47! are the ‘‘horizontal recursion rela-
tions’’ of Head-Gordon and Pople8 applied in thex direction.
In these equations the variablesni, nj, nk, and nl have a
collective meaning, for example,ni refers to the triplet~nxi,
nyi,nzi! and similarly for nj, nk, and nl. The direction to
which the transfer applied is implied by the factors (xi

2xj ) and (xk2xl). Note that these relations are independent
of the Gaussian exponents, something that is not the case for

FIG. 1. Diagramatic representation of the recursion formula Eq.~45!. u
stands for unscaled integral block, ands stands for scaled integral block.
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Eq. ~45!. Thus Eqs.~46! and~47! may be applied outside the
sums over primitive functions, while Eq.~45! must be ap-
plied inside the summation loop.

Thus the computational strategy takes shape as follows:
inside the loop over primitives, calculate the primitive inte-
grals of the form@n1m,0i0,0#, use Eq.~45! to generate
@n,0im,0#, and sum up into the integrals over contracted
functions (n,0im,0). Outside the loop over primitives, apply
the transfer equations~46! and~47! to form the final integrals
(ni,n jink,nl). This algorithm is equivalent to the second
LRL algorithm in Ref. 10.

III. THE RYS QUADRATURE REVISITED

Electron repulsion integrals over contracted basis func-
tions can be written as a double sum over theh ih j andhkh l

products of primitive Gaussians with the primitive integrals
multiplied by the charge distribution coefficientsCA

5caica j and CB5cakcal @the c’s are the contraction coeffi-
cients of Eq.~4!#. Thus we write

~n,0im,0!5(
B

(
A

@n,0im,0#CBCA . ~48!

The notation is adapted from GHGP, the parentheses are the
result of contraction of the square brackets for the bra@n,0u as
well as for the ketum,0#.

Let us assume for the moment that we have at our dis-
posal the primitive integrals@n,0im,0#, @n11,0im,0#,
@n21,0im,0#, and@n,0im21,0#, and that we would like to
calculate not only the contracted integrals (n,0im,0), (n
11,0im,0), (n21,0im,0), and (n,0im21,0), but also the
integrals (n,0im11,0). For the first four groups of integrals
we apply Eq. ~48! directly. For the last group, (n,0im
11,0), we follow the procedure described below. This step
is at the heart of the method. It corresponds to transferring
angular momentum from electron 1 to electron 2.

Substitution of Eq.~45! into Eq. ~48! yields

~n,0im11,0!

5(
B

1

B
CB(

A
2A@n11,0im,0#CA

1
n

2 (
B

1

B
CB(

A
@n21,0im,0#CA

1
m

2(
B

1

B
CB(

A
@n,0im21,0#CA

1~xj2xi !(
B

1

B
CB(

A
aj@n,0im,0#CA

1~xl2xk!(
B

al

B
CB(

A
@n,0im,0#CA . ~49!

The strategy to be followed is explicitly depicted in Eq.~49!.
Contraction of the primitive integrals@n21,0im,0#,
@n,0im21,0#, and@n,0im,0# overh ih j @terms 2, 3, and 5 in

Eq. ~49!# can be carried out inside the loop overA. The
contraction of the primitive integrals@n11,0im,0# and
@n,0im,0# @terms 1 and 4 in Eq.~49!# can be carried out also
inside the loop overA, but only after they have beenscaled
by 2A and aj , respectively. Inside the loop overB ~loop
over hkh l! contraction overB is performed afterscaling the
first four partial sums by 1/B and the fifth sum byal /B ~in
the present case the scaling factor 1/B could be absorbed into
CB , this is not true in general!. The final contracted integrals
(n,0im11,0) can be generated outside the loop over primi-
tive functions by adding the five terms as in Eq.~49! after
multiplication by the appropriate factors (xj2xi) and (xl

2xk), or their y andz analogs, factors that are independent
of the primitive functions.

The situation is however a little more complicated than
that. Indeed the various integral groups in Eq.~45! are them-
selves obtained through application of Eq.~45! for 0,1,...,n,
and 0,1,...,m. Repeated application of Eq.~45! provides a
means to compute any integral group@ i ,0ik,0# from @n
1m,0i0,0# with the conditioni 1k<n1m. This is truly the
heart of the method. In what follows we derive the expres-
sions for the@ i ,0ik,0# group directly in terms of the@ i ,0i0,0#
groups. These expressions are the key equations of the new
algorithm and show precisely which scaled integrals need be
calculated. Since there is no possibility of confusion we will
use the notation@nim# to represent the@n,0im,0# integral
group, and@s p d f g...im# to represent the ‘‘row vector’’ of
integral groups@sim#,@pim#,... . The derivation that fol-
lows initially deals with the ‘‘diagonal’’ integrals where
the angular momentum exponents are accumulated onx, or y,
or z only. The generalization is not very much more compli-
cated, it requires that one pays attention to the exact combi-
nation of angular momentum exponents that are being
created. This point is illustrated towards the end of this sec-
tion.

The recursion relation Eq.~45! substituted into Eq.~48!
can be conveniently represented in a matrix notation. Let us
denoteL the total angular momentum for a group of four
shells, we define two matrices of orderL11 denotedI and
R(L,1x). I stands for the identity matrix of orderL11 here
~not the basis function center!. We define the quantity la-
beledcx ,

cx5$aj~xj2xi !1a1~x12xk!%. ~50!

The R(L,1x) matrix is a tridiagonal matrix with2A on the
lower diagonal, with i /2 on the upper diagonal wherei
51¯L11 is the row index, andcx on the diagonal. The
notation reflects thatR(L,1x) is a matrix function ofL and of
one angular momentum direction,x in the present case. This
is because Eq.~45! raises the power of thex angular mono-
mial by 1, and equivalent equations can be written fory and
z. The angular momentum direction 1x is linked to the diag-
onal termcx . For the time being we may ignore the subscript
in cx for ease of notation. At some point however, we will
not be able to ignore it any longer, as discussed later. Thus
for L54 we have
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R~L,1!53
c 1

2 0 0 0

2A c 2
2 0 0

0 2A c 3
2 0

0 0 2A c 4
2

0 0 0 2A c

4 . ~51!

Using this notation Eq.~49! takes the form

@s p d̄ Lim11#51/B$@s p d̄ Lim#R~L,1!

1@s p d̄ Lim21#%m/2. ~52!

Successive applications of Eq.~52! yield the expression re-
lating @s p d̄ Lim# to @s p d̄ Lis# for any m,m
51¯L/2. We have

@s p d̄ Lip#5@s p d̄ Lis#Rp ,

@s p d̄ Lid#5@s p d̄ Lis#Rd ,
~53!

]

@s p d̄ LiL/2#5@s p d̄ Lis#RL/2 .

The notation in Eq.~53! indicates that each integral group
@sid#,@pid#,...,@Lid# is, in a generic sense, equal to a linear
combination of the integral groups@sis#,@pis#,...,@Lis#,
with the coefficients being the matrix elements of the matrix
Rm , m51¯L/2,

Rp5
1

B
R,

Rd5
1

B2 S R21
B

2
I D ,

~54!

Rf5
1

B3 S R31
3B

2
RD ,

Rg5
1

B4 S R413BR21
3B2

4
I D .

¯

In Eq. ~54! we used the shortened notationR for the R(L,1)
matrix of Eq.~51!. These equations provide a general recipe
to express any group@sp̄ Lim# in terms of@sp̄ Lis# for
anym andL. Symbolic algebra software can be conveniently
used to obtain the matricesRd ,Rf ,Rg ,... . For anintegral
group @ni,n jink,nl# the target integral groups are
@max(ni,nj)¯ni1njimax(nk,nl)# up to @max(ni,nj)¯ni
1njink1nl#. As an example a@ppipp# group requires the
four groups@pip#, @pid#, @dip#, @did#. The formula for
@pip#, in terms of@sis#, @pis#, and @dis# is found as the
p,pelements ofRp , for @dip# it is the elementd,pof Rp , for
@pid# it is the elementp,dof the matrixRd , and for@did# it
is the elementd,d of Rd in accord with Eq.~54!. We have

@pip#5
1

B S 1

2
@sis#1c@pis#2A@dis# D ,

@dip#5
1

B
~@pis#1c@dis#2A@ f is# !,

~55!

@pid#5
1

B2 S c@sis#1H c22
3

2
A1

B

2J @pis#22Ac@dis#

1A2@ f is# D ,

@did#5
1

B2 S 1

2
@sis#12c@pis#1H c22

5

2
A1

B

2J @dis#

22Ac@ f is#1A2@gis# D .

In this example, Eq.~55! says that in order to get the con-
tracted (pip) block we need the@sis# block, the@pis# block
scaled with aj @recall the definition ofc given earlier Eq.
~50!# and the@dis# block scaled with 2A. All these are
computed inside the loop over the pairs ofh ih j primitives.
Inside the loop over thehkh l primitives, all the
h ih j -contracted blocks get scaled withal or B-dependent
factors. While these formulas may appear cumbersome, it
must be remembered that the algorithm makes extensive re-
use of the calculated basic integral blocks
@sis#,@pis#,...,@gis# and that scaling is relatively inexpen-
sive, some of the scaling occurring outside the inner loops as
seen in Eq.~49!.

The target integrals blocks for the low angular momen-
tum integrals up to (ddidd) are given in the Appendix. The
Appendix provides a global view of block scaling, i.e., which
block must be computed, so that it is possible to generate all
needed individual integrals. We do find there the terms in
Eq. ~55! for the (did) integrals. The complexity of the for-
mulas grows quickly with the target integral blocks, i.e., with
the angular momentum. As the effective degree of contrac-
tion K decreases with increasing angular momentum we may
want to compromise between ease of programming and com-
putational gains. In practice we can decide to write a com-
puter code that covers all cases with basis functions up tod
type. The recursion formula is represented diagrammatically
as in Fig. 1.

Before returning to the discussion of the efficiency of the
proposed algorithm, we must recall that equations such as
Eq. ~55! were derived for the case when the angular momen-
tum grows along one direction only. For example, Eq.~55! is
correct when bothp’s are identical, let us say the (sis) and
(pxis) integrals lead to the (sipx) integrals and the (sis),
(pxis), and (dxxis) integrals lead to the (sidxx) integral. To
obtain cross integrals such as (sidxy) we must raise the an-
gular momentum in thex direction and in they direction. We
accomplish this by combining the recursion formulas in two
directions,
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@s p d̄ Limx11#51/B$@s p d̄ Limx#R~L,1x!

1@s p d̄ Limx21#%~mx/2!,

~56!

@s p d̄ Limy11#51/B$@s p d̄ Limy#R~L,1y!

1@s p d̄ Limy21#%~my/2!.

~57!

Recall thatR(L,1x) andR(L,1y) differ through the diagonal
terms,cx andcy , respectively. Application of Eq.~56! leads
from (pyis) and (dxyis) to (pyipx), and from (sis) and
(pxis) to (sipx). Application of Eq.~57! then leads from
(pyipx) and (sipx) to the desired integral (sidxy). In place
of the second equation in Eq.~53! we can write

bs p d̄ Lipp8c5@s p d̄ Lis#Rpp8 , ~58!

with

Rpp85
1

B2 RR8[
1

B2 R~L,1x!R~L,1y!. ~59!

Equation~59! is closely related to the second equation in Eq.
~54! giving Rd for like-angular momentum raising. For
higher angular momenta we can define other needed trans-
formation matricesRdp , Rpp8p9 , Rdd8 , Rdpp8 , and so on.
The list of scaled blocks for ‘‘diagonal’’ and ‘‘nondiagonal’’
integrals are identical, albeit the individual integral expres-
sions are different. The approach is completely general and
the formulas can be obtained with a symbolic algebra soft-
ware.

IV. DISCUSSION

The key factor that makes the proposed algorithm com-
putationally efficient lies in the very small number of terms
in the ‘‘row vector’’ of integral groups@s p d̄ Lis# that
must be computed in the inner loop. This number is equal to
(L11)(L12)(L13)/6. In the (ppipp) the ‘‘row vector’’
of blocks@s p d f gis# contains 35 integrals, in the (ddidd)
case it contains 165 integrals. In contrast the number of in-
dividual target integrals grows as$( l 11)@7(l 11)2

21#/6%2 wherel 5L/4. This number is 92581 for (ppipp)
and 3125961 for (ddidd). These latter numbers correspond
to the work done inside all four loops over primitives in the
LRL algorithm. To the extent that the additional work due to
scaling and building of the target integrals from the scaled
integrals stays at a reasonable level, this algorithm will be
superior to LRL’s for moderately and highly contracted
functions. Indeed this should the case. We note as well that
the computational dependence for the@s p d̄ Lis# of (L
11)(L12)(L13)/6 is smaller than the one reported by
Ishida.12

Comparison of the present algorithm with the GHGP
algorithm shows that both require computation of the same
number of basic integrals inside the inner loop over primi-
tives, mainly@s p d̄ Lis# integrals just as the MD method.
For MD and GHGP these primitive integrals are centered on
the exponent-weighted charge distribution center of the
primitives, labeled A and B in Eqs.~18! and ~19!. A step
required for MD and GHGP involves the transferring of the
target primitive integrals from the exponent-weighted primi-

tive centers to the actual primitive centers. Although creating
the target integrals@s p d̄ is p d̄ # from the basic inte-
grals@s p d̄ Lis# is trivial in their approaches, the transfer
from exponent-weighted centers to primitive centers requires
additional work. In our approach this step is completely by-
passed as the numerical quadrature yields primitive integrals
directly centered on the primitive centers. An added benefit
of the numerical quadrature is the extreme simplicity of com-
puting the basic integrals, in contrast to the complexity of the
tree search in the GHGP algorithm. Of course once we have
calculated (n0im0), then we can use the best possible strat-
egy to generate the (i j ikl) integrals.16

It has become usual to express the performance of algo-
rithms for the calculation of electron repulsion integrals by
expressing the number of floating-point operations~FLOP!
needed to compute (ppipp),(ddidd),... integrals as a func-
tion of the degree of contractionK , assuming that all four
shellsp,d,... have the same degree of contraction. The ex-
pression is

FLOP5xK41yK21z. ~60!

Equation~60! reflects the loop structure of the algorithm,x
corresponds to the work done inside all four loops over
primitives, y corresponds to the work done outside the two
inner loops~h ih j -contraction! but inside the two outer loops
~hkh l-contraction!, andz corresponds to the work done out-
side all four contraction loops. Table I givesx, y, andz for
the PH, GHGP, LRL, and DRK algorithms, along with esti-
mates for the present algorithm. These estimates are based on
the analysis that follows. The analysis becomes quickly com-
plex and higher angular momentum cases are not considered
here.

A. Estimates for „pp ipp … and „dd idd …

To gain insight in the potential of the present approach,
we consider the cases of (ppipp) and (ddidd) integrals.

1. Evaluation of the roots and weights of the Rys
polynomials

The evaluation of the Rys roots and weights is done
inside theK4 loop since the argumentX @Eq. ~31!# depends
on the exponents of the primitive functions. For the (ppipp)
case we need 3 roots and 3 weights, and for the (ddidd)
case 5 roots and 5 weights. We can adopt an efficient

TABLE I. FLOP counts for various shell quartets using different algo-
rithms.

PH
Ref. 3

GHGP
Ref. 9

LRL
Ref. 10

DRK
Ref. 5

DM
This worka

(ppipp) x 220 300 691 904 440
y 2300 610 30 30 140
z 4000 680 330 0 650

(ddidd) x 2450 10 255 14 660 2575
y 25 800 30 30 2550
z 28 900 11 300 0 18 800

(sp spisp sp) x 220 450 753 1056
y 2300 1300 30 30
z 4000 1700 800 0

aEstimates. See text for explanations.
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approach17 involving lookup tables and interpolations. A
3-point interpolation, with 3 multiplications and 2 additions,
can yield roots and weights of sufficient accuracy for a total
of 6* 5530 FLOPs for (ppipp) and 10* 5550 FLOPs for
(ddidd). No additional work is necessary forsp shells
~Table II!.

2. Evaluation of the two-dimensional integrals
Ix(nx ,0,t a), Iy(ny ,0,t a), and I z(nz ,0,t a)

This step is done inside theK4 loop.Gx , Gy , andGz are
calculated by means of the 2-point recursion formula of Eq.
~40! for each rootta . There are 3 roots for the (ppipp) and
(spspispsp) cases, and 5 roots for the (ddidd) case. For
(ppipp) integrals the indicesnx, ny, andnz run up to 4. The
cost of this step is 3* (7 multiplications plus 6 additions)
539 FLOPs. For the (ddidd) case we have
5* (15 multiplications plus 14 additions)5145 FLOPs. About
16 FLOPs per root are needed to create the coefficients in
Eqs. ~41! and ~42!, about 48 FLOPs for the (ppipp) case
and 80 FLOPs for the (ddidd) case.

3. Evaluation of the primitive integrals [n is ]

For (ppipp) we need@nx ny nzi0# for nx, ny, nz51 to
4, i.e., @gis# integrals. There are 35 such integrals. ThisK4

step is carried out according to Eq.~32! in the most general
case. In the case at hand, we can take advantage of the fact
that whenevernx, or ny, or nz is equal to zero, the corre-
spondingGx , or Gy , or Gz factor is equal to 1.0. We do not
have to multiply by that factor. The cost per integral is es-
sentially one multiplication to form the productGx* Gy* Gz

for each root plus (nroots-1) additions for the summation
over roots ~Table II!. For (ppipp) this amounts to
(35-5)* 3135* 25160 FLOPs. For (ddidd) it amounts to
(165-9)* 51165* 451440 FLOPs.

4. Evaluation of the scaled integrals

Tables III and IV illustrate the block scaling, at theK4

level and at theK2 level, respectively. Scaling has to be

performed to generate the complete set of terms needed for
the (ppipp) integrals. The tables are based on the formulas
given in the Appendix. The work amounts to 79
~multiply1add! inside theK4 loop and 53~multiply1add!
inside theK2 loop. Forsp shells these numbers are 90 and
59, respectively. For (ddidd) integrals, a similar analysis
shows that theK4 scaling can be realized with 856
~multiply1add!, while the K2 scaling amounts to 1258
~multiply1add!.

5. K 0 work and horizontal recursion formulas

Once the scaled integrals have been calculated, the final
integrals (n,0im,0) have to be assembled before the horizon-
tal recursion formulas can be applied. Inspection of the ex-
pressions given in the Appendix and of the actual expres-

TABLE II. Algorithm for constructing the@gis# primitive integrals for the (ppipp) integrals.

1! s 21! xxxx 51)* G(xxxx)
2! x 51)* G(x) 22! xxx y 53)* G(xxx)
3! y 51)* G(y) 23! xxx z 54)* G(xxx)
4! z 5G(z) 24! xx yy 55)* G(yy)
5! xx 51)* G(xx) 25! xx y z 59)* G(x)
6! x y 52)* G(y) 26! xx zz 510)* G(xx)
7! x z 54)* G(x) 27! x yyy 52)* G(yyy)
8! yy 51)* G(yy) 28! x yy z 518)* G(x)
9! y z 54)* G(y) 29! x y zz 519)* G(x)

10! zz 5G(zz) 30! x zzz 520* G(x)
11! xxx 51)* G(xxx) 31! yyyy 51)* G(yyyy)
12! xx y 53)* G(xx) 32! yyy z 54)* G(yyy)
13! xx z 54)* G(xx) 33! yy zz 510)* G(yy)
14! x yy 52)* G(yy) 34! y zzz 520)* G(y)
15! x y z 59)* G(x) 35! zzzz 5G(zzzz)
16! x zz 510)* G(x)
17! yyy 51)* G(yyy)
18! yy z 54)* G(yy)
19! y zz 510)* G(y)
20! zzz 5G(zzz)

TABLE III. K4 scaling for the (ppipp) and (ddidd) integrals.a

(ppipp) (ddidd)

K4 K2 K4 K2

aj s p d s p d f g
A sp d f sp d f g h
aj

2 sp d sp d f g
Aaj p d f p d f g h
A2 d f g d f g h i
aj

3 p d f g
Aaj

2 d f g h
A2aj f g h i
A3 g h i j
aj

4 d f g
Aaj

3 f g h
A2aj

2 g h i
A3aj h i j
A4 i j k

aEntry n means that a primitive block@ni0# gets scaled by the coefficient in
column 1. For example in the (ppipp) case, the first entry in the table
indicates that the@si0#, @pi0#, and @di0# blocks get scaled with theaj

coefficients to form three scaled blocks. Entries in italics are needed forsp
shells.
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sions in the (ppipp) case suggest that in average each of the
(pdipd) integrals needed for a (ppipp) block is the sum of
about 4 unscaled or scaled contributions, and each of the
(d f gid f g) integrals needed for a (ddidd) block is the sum
of about 8 contributions, for a total of about 320 FLOPs and
7500 FLOPs, respectively. Finally the horizontal recursion
transformation from (n,0im,0) to (i , j ikl) can be performed
with the most efficient algorithm of LRL.10 Together these
two steps yield theK0 coefficient in Table I.

B. Discussion

It is clear from Table I that DRK remains the method of
choice for uncontracted functions. This is not really unex-
pected. The other methods are more efficient for contracted
functions. They were designed to take advantage of the con-
cept of charge distribution to varying extents. This can be
seen in Table I. MD’s method falls in that category as well.
Our goal was to devise an algorithm based on the Rys
quadrature that would deal efficiently with contracted func-
tions. The critical factor for success resides in the reduction
in the number of fundamental integrals that need to be com-
puted inside theK4 loop. In the spirit of minimizing this
number, it is clear that PH’s method remains the most suc-
cessful ~many are equal to zero due to using local axis
frames!, albeit at the cost of much higherK2 andK0 coeffi-
cients. It is clear also from Table I that the present algorithm
is superior to LRL’s method for all the cases. The reason lies

in this minimum number of integrals computed in theK4

loop. The trick about transferring angular momentum be-
tween electrons, a technique that we borrowed from MD and
GHGP, is responsible for the gain, since both the LRL
method and the present method use the same numerical
quadrature.

Table I shows that theK4 coefficient in the present
method is close to the same coefficient in the GHGP’s
method, while theK2 andK0 coefficients are much smaller
than those in GHGP. The similar magnitude of theK4 coef-
ficients between the two methods comes in part from the fact
that both methods compute the same number of fundamental
integrals. The much-reducedK2 and K0 coefficients in the
present method is a direct reflection of the advantage of us-
ing a numerical quadrature and working directly with the
basis function centers, rather than the charge distribution
centers. The ‘‘scaling’’ step is much simpler because of that.
That the new method does not do quite as well as GHGP for
(ppipp) integrals shows that there is some inherent over-
head in the numerical quadrature when dealing with low an-
gular momentum functions. We do not seem to have suc-
ceeded in overcoming this point. However the present
algorithm appears to be largely superior to GHGP’s for
(ddidd) integrals. We expect this to hold true for higher
angular momentum functions. We expect the present method
to be competitive for (spspispsp) integrals, although we
have not fully analyzed the effect of the different contraction
coefficients for thes function and thep functions of ansp
shell.

V. SUMMARY

We have outlined a novel approach to the calculation of
electron repulsion integrals over Gaussian basis functions. It
takes advantage of the best features of several approaches:
the angular momentum transfer of McMurchie–Davidson,
the scaling technique of Gill–Head–Gordon–Pople, the hori-
zontal transfer equations proposed by Head–Gordon–Pople,
and the Rys numerical integration of Dupuis–Rys–King.
The resulting algorithm is anticipated to be quite competitive
for contracted Gaussian functions. The derivation and imple-
mentation are simplified through the use of symbolic alge-
braic software. The method generalizes to high angular mo-
mentum integrals. Implementation is in progress and
performance data will be presented in future reports. The
extension of the method to integral~first- and second-! de-
rivatives with respect to nuclear coordinates should also ben-
efit from the advances devised in the present work.
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TABLE IV. K2 scaling for the (ppipp) and (ddidd) integrals.a

(ppipp) (ddidd)

K4 K2 K4 K2

al s p d s p d f
(aj )al s p d sp d f g
(A) al p d f p d f g h

(aj
2) al p d f g

(Aaj ) al d f g h
(A2) al f g h i
(aj

3) al d f g
(Aaj

2) al f g h
(A2aj ) al g h i

(A3)al h i j
B al p d f g

(aj )B al d f g
(A)B al f g h

al
2 s p d sp d f g

(aj ) al
2 p d f g

(A) al
2 d f g h

(aj
2) al

2 d f g
(Aaj ) al

2 f g h
(A2) al

2 g h i
B al

2 d f g
al

3 p d f g
(aj ) al

3 d f g
(A) al

3 f g h
B s p d sp d f g

(aj ) B p d f g
(A) B d f g h

(aj
2) B d f g

(A2) B g h i
B2 d f g

aSee explanations in Table III.
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APPENDIX: INTEGRAL BLOCK SCALING FOR „d ¸d … CHARGE DISTRIBUTIONS †„pp ¸pp … INTEGRALS ‡ AND
„g ¸g … CHARGE DISTRIBUTIONS †„dd ¸dd … INTEGRALS ‡ „VALID FOR ‘‘DIAGONAL’’ INTEGRALS INVOLVING p x ,
d x 2, f x 3, g x 4, . . . …

A-1

@sip#3B

@sis# c
@pis# 2A
@dis#
@ f is#
@gis#
@his#
@ i is#
@ j is#
@kis#

A-2

@pip#3B

@sis# 1/2
@pis# c
@dis# 2A
@ f is#
@gis#
@his#
@ i is#
@ j is#
@kis#

A-3

@dip#3B

@sis#
@pis# 1
@dis# c
@ f is# 2A
@gis#
@his#
@ i is#
@ j is#
@kis#

A-4

@ f ip#3B

@sis#
@pis#
@dis# 3/2
@ f is# c
@gis# 2A
@his#
@ i is#
@ j is#
@kis#

A-5

@gip#3B

@sis#
@pis#
@dis#
@ f is# 2
@gis# c
@his# 2A
@ i is#
@ j is#
@kis#

A-6

@sid#3B2

@sis# $c221/2A%11/2B
@pis# 22Ac
@dis# A2

@ f is#
@gis#
@his#
@ i is#
@ j is#
@kis#

A-7

@pid#3B2

@sis# c
@pis# $c223/2A%11/2B
@dis# 22Ac
@ f is# A2

@gis#
@his#
@ i is#
@ j is#
@kis#

A-8

@did#3B2

@sis# 1/2
@pis# 2c
@dis# $c225/2A%11/2B
@ f is# 22Ac
@gis# A2

@his#
@ i is#
@ j is#
@kis#
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A-9

@ f id#3B2

@sis#

@pis# 3/2
@dis# 3c

@ f is# $c227/2A%11/2B

@gis# 22Ac

@his# A2

@ i is#

@ j is#

@kis#

A-10

@gid#3B2

@sis#

@pis#

@dis# 3
@ f is# 4c
@gis# $c229/2A%11/2B
@his# 22Ac
@ i is# A2

@ j is#

@kis#

A-11

@si f #3B3

@sis# $c323/2Ac%13/2Bc
@pis# $23Ac213/2A2%23/2BA
@dis# 3A2c
@ f is# 2A3

@gis#

@his#

@ i is#

@ j is#

@kis#

A-12

@pi f #3B3

@sis# $3/2c223/4A%13/2B1/2
@pis# $c329/2Ac%13/2Bc
@dis# $23Ac213A2%23/2BA
@ f is# 3A2c
@gis# 2A3

@his#

@ i is#

@ j is#

@kis#

A-13

@di f #3B3

@sis# 3/2c
@pis# $3c223A%13/2B
@dis# $c3215/2Ac%13/2Bc
@ f is# $23Ac219/2A2%23/2BA
@gis# 3A2c
@his# 2A3

@ i is#

@ j is#

@kis#

A-14

@ f i f #3B3

@sis# 3/4
@pis# 9/2c
@dis# $9/2c2227/4A%13/2B3/2
@ f is# $c3221/2Ac%13/2Bc
@gis# $23Ac216A2%23/2BA
@his# 3A2c
@ i is# 2A3

@ j is#

@kis#

A-15

@gi f #3B3

@sis#

@pis# 3
@dis# 9c
@ f is# $6c2212A%13/2B2
@gis# $c3227/2Ac%13/2Bc
@his# $23Ac2115/2A2%23/2BA
@ i is# 3A2c
@ j is# 2A3

@kis#

A-16

@sig#3B4

@sis# $c423Ac213/4A2%13B$c221/2A%13/4B2

@pis# $24Ac316A2c%13B$22Ac%
@dis# $6A2c223A3%13B$A2%
@ f is# 24A3c
@gis# A4

@his#

@ i is#

@ j is#

@kis#
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A-17

@pig#3B4

@sis# $2c323Ac%13B$c%
@pis# $c429Ac2115/4A2%13B$c223/2A%13/4B2

@dis# $24Ac3112A2c%13B$22Ac%
@ f is# $6A2c225A3%13B$A2%
@gis# 24A3c
@his# A4

@ i is#
@ j is#
@kis#

A-18

@dig#3B4

@sis# $3c223/2A%13B$1/2%
@pis# $4c3212Ac%13B$2c%
@dis# $c4215Ac2139/4A2%13B$c225/2A%13/4B2

@ f is# $24Ac3118A2c%13B$22Ac%
@gis# $6A2c227A3%13B$A2%
@his# 24A3c
@ i is# A4

@ j is#
@kis#
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