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The Rys quadrature revisited: A novel formulation for the efficient
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A novel formulation of the Rys quadrature algorithm for the calculation of the electron repulsion
integrals over Gaussian basis functions is presented. The new algorithm is specifically designed for
high contractions. As for the original Rys quadrature algorithm, the new algorithm is very efficient
for high angular momentum functions. In addition it is also equally efficient for low angular
momentum functions. The new algorithm takes unique advantag€l)othe numerical Rys
guadrature methodology i) dealing with charge distributiors la McMurchie-Davidsonand in

(3) scaling integral blocks as a means of transferring angular momemtar@ill-Head-Gordon-

Pople An analysis of the algorithm suggests very favorable floating-point operation counts.
© 2001 American Institute of Physic§DOI: 10.1063/1.1336541

I. INTRODUCTION function centen, r4; is the distance between electron “1”
) o and the centel, anda; is the Gaussian exponent.
The evaluation of the electron repulsion integrals, The sum of the powers,
1 . . .
(Xin”Xle):J J Xi(l)Xj(l)r_lsz(Z)Xl(z)drl dry, (1) Ni=nxi+nyi+nzi )

is closely related to the total angular momentum quantum

where xi, xj, xx, andy, are one-electron Gaussian basis X ) S ) .
functions, and of the derivatives of these integrals with re:-"UMPer. In practice the basis functiogis are linear combi-

spect to their centers, continues to be one of the major confations of primitive basis functions,
putational tasks irab initio molecular orbital theoryMO)

and density functional theoryDFT) methods using atom-
centered Gaussian bases. In traditional algorithms where the Xi
electron repulsion integrals are computed and stored on disk,

their computation and handling is most often the time-yherek (not to be confused with centé of y, and 7,) is
limiting step of the calculation. This is even more so with thecajled the degree or level of contraction. The attractive fea-
“direct” algorithms where the integrals are computed sev-tyre of Gaussian functions resides in the fact that there exist
eral times, whenever they are needed. The new generation gfactical closed-form expressions for the electron repulsion
basis sets, with their large degree of contraction of primitiveimegra|s%,2
Gaussian functions and very high angular momentum func- A major breakthrough in electron repulsion integral
tions, bring also a heavy computational demand. Thus adgchnology was the method introduced by Pople and Hehre
vances in integral computation technology will continue 10(PH),® a method that proved to be very efficient for low-
help push the limits of molecular calculations on large mol-angular momentum highly contracted basis functions. The
ecules and on molecules with many heavy elements. successive rotations involving local axes, albeit extremely
In atom-centered bases the necessary angular depegfficacious fors andp functions, proved however difficult to
dence of a basis function is achieved explicitly through theaxtend to higher angular momentum functions. McMurchie
use of spherical harmonics or equivalently through the use ofq Davidsor{MD)* proposed a method highly efficient for
integer powers of the Cartesian coordinates. When the lattipntracted functions and readily extendable to high angular
is combined with a Gaussian radial factor, as suggested by,omentum functions. Dupuis, Rys, and KifDRK)® devel-

K
(1,l>=§ Caimi(1a,1), (4)

Boys," a primitive basis function takes the form oped a radically different method based on an exact numeri-
i : i cal quadrature using roots and weights generated from a set
. . — —_y.\nxi __y.\y! __Z\nzi
7i(1ai, 1) = (X =%)"Y = yi) ¥ (2= 7)) of orthogonal polynomials, the Rys polynomials. The imple-
X exp(—a;r2), (2)  mentation of the DRK method proved efficient for basis

functions with a low degree of contraction. In the DRK ap-
where “1” denotes the electron with coordinates proach the six-dimensional primitive integrals take the form
(X1,Y1,21), (Xi,Yi,z) represent the coordinates of the basisof sums of products of three two-dimensional integrals,
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each associated with a Cartesian direction. 8yal® devel-  however that the higher the angular momentum, the lower
oped also several recursion formulas for the elementary twahe effective contraction level for any group of four shells.
dimensional integrals. Thus it appears that an optimal strategy might involve two
Over 10 years after the work of MD and DRK, Obara (or more different algorithms, one for moderately to highly
and SaikaOS)’ proposed some new recursion formulas forcontracted low angular momentum functiofs p, most
the six-dimensional integrals of E€L). These recursion for- likely d), combined with one for lightly contracted high an-
mulas turned out to be closely related to those of DRK, exgular momentum basis functioripossiblyd and higher an-
cept that they apply to the six-dimensional primitive inte- gular momentumn
grals directly. OS'’s work generated a new wave of research  The “revisited” Rys quadrature algorithm described be-
in electron repulsion evaluation methodologies with signifi-low combines the following features(l) the numerical
cant contributions from Head-Gordon and PogkGP)®  quadrature of DRK{2) the “scaling” technique of GHGP;
Gill, Head-Gordon, and PopléGHGP),® Lindh, Ryu, and and(3) the transfer equations of HGP. The deterministic nu-
Liu (LRL),* all algorithms that have received much atten-merical quadrature step replaces the complex tree algorithm
tion, and the lesser-known algorithms by Tenth@and by of GHGP, and relies on simple recursion relations for the
Ishida (ISH).*? two-dimensional integrals. In addition the numerical quadra-
HGP improved OS’s method by applying the transferture makes it possible to evaluate the needed elementary in-
relations, already noted in DRK’s work, outside the qua-tegrals on centerd and K directly rather than on the
druple sum over contractions, so that only primitive integralsexponent-weighted charge-distribution centers. In this man-
where ; and », are ofs type need be computed inside the ner the “scaling” procedure is simplified. The resulting al-
contraction loops. This idea was taken further in GHGP’sgorithm is anticipated to have a very attractive FLOP count.
method where additionally these authors borrowed the pro- In Sec. Il we introduce the notations and give the basic
posal of MD and limited the mandatory primitive integrals to equations of the numerical quadrature for completeness. The
those where onlyy; is not ans orbital. Generation of other “scaling” procedure is described in Sec. Ill along with a
intermediate integrals is carefully accomplished via a sodetailed outline of the algorithm. Conclusions and outlook
called “scaling” of integrals, so that much intermediate are given in Sec. IV. In what follows we adopt the notation
work is moved stepwise outside the contraction loops. Thef GHGP? Parentheses are used for integrals over contracted
floating-point operation countFLOP) shows that GHGP’s functions, square-brackets are used for primitive integrals, a
method is indeed superior for contracted functions. Note thafixed notation is used to indicate that the contraction sum-
the FLOP counts reported in Refs. 8, 9, 11 for the DRKMation has been carried out for only one of the two charge
method are all erroneous. Only the count given in Ref. 10 iglistributions, eithen; x; or xix; -
approximately correct, in accord Witrgsﬂl]f efficiency observed
in practice with the DRK algorithm?>** Finally, Ishida’s
algorithm® has actually an even better FLOP count than“' THE RYS QUADRATURE
GHGP’s although it looks to be very complex to implementA. The numerical quadrature

n prar::tlce: ing f for th h h i It has been known since the early work of Bbyhkat
The dr.|V|ng orce or the present researc Wa_St € be IeElectron repulsion integrals over primitive Gaussian func-
that applying recursion formulas to two-dimensional inte-ions can be expressed in the form

grals and then combining these integrals to form six-
dimensional integrals ought to be more efficient than apply-
ing somewhat more complex recursion formulas directly to L7 ’71'”77”"]:”]2:0 CoefnFm(X), ®
six-dimensional integrals. Comparison of the LRL metfod

with the GHGP methdtsupports this belief. It clearly shows Where

that for low contraction level and high angular momentum f

L

1
t?Mexp( — Xt?)dt, (6)

functions, the Rys quadrature technique as implemented by Fm(X)= .

LRL and in some cases as implemented by DRK remains the

method of choice. The superiority of the GHGP algorithm and

over the LRL algorithm fqr even moderately_contracted low L=A+ N+ N h A @
angular momentum functions is however quite clear.

In the present work we aimed at devising an algorithmThe value ofX depends upon the exponential paramegers
based on the Rys quadrature that would be especially effdj. @, anda;, and the positions of the centers of the four
cient at handling highly contracted basis functions for allGaussians, but it is independent of the angular momentum
levels of basis function angular momentum. The algorithmindices, thenx’s, ny’s, andnz's. It follows immediately
that we outline below succeeds in doing this. In what followsthat Eg.(5) can be written,
we give a detailed description of how the new algorithm 1
works for contracteds and p functions, because for such [ 7i 77j||77k77l:|:f PL(t?)exp( — Xt?)dt, 8
basis functions the presentation remains tractable and helps 0
understand how and why the algorithm works. Modern basisvhere P (t?) is a polynomial of degreg in t? with coeffi-
sets do emphasize high angular momentum basis functionsients Coef,. The integral in Eq(8) can be evaluated ex-
The new algorithm will work in these cases as well. We noteactly by anN-point numerical quadrature formula,
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N

Lmmllmem]= 2, Pu(ta’) W, ©)
whereN is any integer satisfying the condition,
N>E, (10
2
t, is a positive root of théNth polynomialRy(t,X),
Rn(te,X)=0, (11

andW,, is a weight factor, which depends upon the value of

X. Ry(t,X) is the member of degreeN2of a set of polyno-
mials (the Rys polynomialsof even order in the variable
orthonormal in the intervdl0,1] with respect to the weight
factor exp-Xtd),

flRN(t,X)RM(t,X)exp(—th)dtz5NM. (12)
0

In the early work of King and Dupui®, the roots and

weights were evaluated by polynomial approximations valid

Rys quadrature 2069
Xg= (Xt ax)/(ax+ay), (19
A=a+a;, (20)
B=a+a, (21)
p=AB/(A+B), (22)
Dy=p(Xa—Xg)?, (23

Gy= (@@ /(a+a))) (X — X))+ (ayay / (ax+ay)) (Xe—X))2.
(24

In terms of theseQ), becomes
Q=G+ A(X —Xa)*+ B(X2— Xg) *+ U(Xy— X)?. (25)

We then make a change of variable franto t,

u=pt?/(1—t?), (26)
t?=u?/(p+u?), (27
dt=p(p+u?) 32 du. (28)

over finite intervals ofX although interpolation approaches aq |, varies from zero to infinityt varies from zero to unity.

should prove more efficient.

B. The polynomial P, (t?)

We express the Coulomb operator;}/as a Gaussian
transform,

1 1= 2 fx exp(—u?r3,)du. (13
Jm Jo

A change in order of integration leads to

2 ©
[ 7 7)j|| mem]= \/—; fo [ 7, 77j|exF(_U2r§2)| e ldu,
(14

and the integrand in E@14) factors into the product of three
two-dimensional integrals associated with the three axes of a

coordinate system,

L7l exp( = ur ) | mem = 1051, - (15

Of the twelvenx, ny, nzindices, only fournx values enter
into thel, term,

I (nxi,nxj,nxknxl)

:J J (Xl_Xi)nXi(Xl_Xj)nxj(Xz_Xk)nXk(Xz_Xl)nX|

Xexp(—Q,)dx, dx,, (16)
where
Qu=ai(X— X)) 2+ aj(Xl_Xj)2+ a(Xa—Xy)?
+ay(Xp— X)) 2+ UA(X, = Xp) % (17

Herex; is thex coordinate of the centérof primitive »; and

Finally we define a modified form of the two-dimensional
integrals,
| =exp(D,t?)(1-t3) 12, (29)

and similarlyl, related tol andl, to I . Substitution of
Egs.(15), (26)—(29) into Eq. (14) yields Eq.(8), where

PL(t)=2(p/m) 4,11, (30)
and usingy andz analogs of Eq(23), it follows that
X=D,+Dy+D,. (31)

Substitution of Eq(30) into Eq. (9) yields the working for-
mula for the electron repulsion integral,

N
[ mllnkm]=a§1 L(u)l,(u)%(u,), (32)
where
15(u)=2(pl M)V (U)W, (33

C. Recursion formulas for the two-dimensional
integrals

We define

Ohm(X1,X2) = (X1 %) "(Xo = X)X — A(X; —Xa)?

—B(X—Xg) 2= U%(X—X,)?], (34)
and the two-dimensional integral,
Gﬁ,m:f f Onm(X1,X2)dX%; dx,. (39

G} . is related tol, of Eq. (16) by placing the polynomial

nxi is the correspondingx angular momentum index, and factors of they; and 7 primitives on centet andK. Thus,

similar notation is used fop;, 7., andz, . We define some
new quantities,

XA:(aiXi+anj)/(ai+aj), (18)

Gh.mexp— Gy) =l (nxi+nxj,0nxk+nxl,0u). (36)

Rys et al® showed that



2070 J. Chem. Phys., Vol. 114, No. 5, 1 February 2001

m
J
g
f
nil
P NS N .
p N RN 7 SN 7
)
u
S \_) n

s p d f g

FIG. 1. Diagramatic representation of the recursion formula B§). u

stands for unscaled integral block, amdtands for scaled integral block.

m

> G m_1H{B(Xg—Xi) +UA(Xi =X} G} 1+ UZGh 1

—(B+U?)G}, +1=0, (37
n
5 Gh_ 1 mH{AXa— X))+ U2(X—X)}Gx 1

—(A+U?)G} 1yt U?G 11 1=0. (39

We make use of Eq$18)—(21) and sum Eqs(37) and (38)
to obtain a new recursion formula,

n m
BGﬁ,erl: _AG§+ 1,m+ EG)r(kl,m_’_ inmel

+{aj(Xj_Xi)+a|(X|_Xk)}GzYm. (39)
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I (nxi,nxj,nxk nxl)
=l (nxi,nxj,nxk+1nxl—1)
+ (X=X (nxi,nxj,nxknxl—1). (44

Similar equations hold fot,, I,, andl,.

y il

D. Recursion formulas for primitive integrals

The recursion formulas given above are valid for the
two-dimensional integrals that are used to build the primitive
electron repulsion integrals as sums of products of the two-
dimensional integrals folN roots, according to Eq(32).
These recursion relations can be turned into recursion formu-
las applicable directly to the six-dimensional primitive inte-
grals. Multiplication of Eq.(39) by exp(-G,), then by
expO,t2)(1—t2)~*2 and byl, andl,, followed by summa-
tion over roots and weighta, leads to the following equa-
tion:

B[n,0|m+1,0]
n m
=—A[n+ 1,Q|m,0]+§[n— 1,0)m,0]+ 5[n,0||m— 1,0]

+{aj(x;—x;) +a,(x;—x)}[n,0|m,0]. (49

Recall that the bracket notation refers to six-dimensional in-
tegrals, in this case integrals over primitive Gaussiarcon-
tracted functions. There is one more remark to make about
Eqg. (45). In contrast to Eq(39) that is valid for the two-
dimensional integral along thedirection, and that offers no
possibility of confusion, in Eq(45) the direction for the
increment or decremerit of angular momentum is dictated
by the coefficient of the fourth term in the sum. We really

Equation (39) is the key equation that underlies the new gygnt to use the notatioh, . However, to avoid complexity,
formulation It provides a means to transfer angular momenyye will keep the notatiorl without subscript, and we will

tum from electron 1 to electron 2. Indeed, E89) says that,

in the (n,m plane, point ,m+1) which lies east ofn,m)

can be obtained frontn,m and its north +1,m), west

have to remember the implication due to the coefficient
1a5(x;—xi) +a(x,—x)}. Equation(45) is closely related to
Eq. (30) of LRL.% The difference lies in our working with

(n,m—1), and southif—1,m) neighbors. Analogous equa- centerg, J, K, andL directly, in contrast with these authors

tions hold fory andz. Equation(39) is depicted in Fig. 1.

In their earlier work DRK made use of other recursion
relations, also derived from Eq&7) and(28). Of those we

repeat only one that will be useful to us,

G+ 1,0=NB1oGn_10+ CoGn o (40)
whereCj, and B, are given by
B(Xg—Xa)
00=(Xa—Xi) + ~ArB 2, (41)
Biom o st 42
V=2 2A(ALB) L (42

Finally we note the transfer equations that transfer angulairn these equations the variable nj

momentum from center to centerd, and from centeK to
centerL,

[ (nxi,nxj,m,0)=I;(nxi+1nxj—1,m,0)

+ (X —Xj) Iy (nxi,nxj—1,m,0), (43

working with centersA andB.
Just as before, from Eg$43) and (44) substituted into
Eqg. (29 and then Eq(32) it follows that

[ni,njllm,0]=[ni+1,nj—1[|m,0]+ (x;—X;)
X[ni,nj—1|m,0] (46)
and
[ni,njnk,nl]=[ni,nj[nk+1,nl—1]+(x,— X))
X[ni,nj|[nk,nl—11]. (47)

Equations(46) and (47) are the “horizontal recursion rela-
tions” of Head-Gordon and Poplapplied in thex direction.

nk, and nl have a
collective meaning, for examplej refers to the tripletnxi,
nyi,nz) and similarly fornj, nk, and nl. The direction to
which the transfer applied is implied by the factors; (
—X;) and (x,—X;). Note that these relations are independent
of the Gaussian exponents, something that is not the case for
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Eq. (45). Thus Eqs(46) and(47) may be applied outside the Eg. (49)] can be carried out inside the loop ovAr The
sums over primitive functions, while E¢45) must be ap- contraction of the primitive integral$n+1,d/m,0] and
plied inside the summation loop. [n,0|m,0] [terms 1 and 4 in Eq49)] can be carried out also

Thus the computational strategy takes shape as followsnside the loop oveA, but only after they have beestaled
inside the loop over primitives, calculate the primitive inte-by —A anda;, respectively. Inside the loop ové& (loop
grals of the form[n+m,0/0,0], use Eq.(45) to generate over 7,7,) contraction oveB is performed aftescaling the
[n,0lm,0], and sum up into the integrals over contractedfirst four partial sums by B and the fifth sum by, /B (in
functions {,0im,0). Outside the loop over primitives, apply the present case the scaling factd® tbuld be absorbed into
the transfer equatior(@6) and(47) to form the final integrals Cg, this is not true in genergplThe final contracted integrals
(ni,njlink,nl). This algorithm is equivalent to the second (n,0|m+1,0) can be generated outside the loop over primi-
LRL algorithm in Ref. 10. tive functions by adding the five terms as in E49) after
multiplication by the appropriate factors;-x;) and
—Xy), or theiry and z analogs, factors that are independent
of the primitive functions.

The situation is however a little more complicated than

Electron repulsion integrals over contracted basis functhat. Indeed the various integral groups in Etp) are them-
tions can be written as a double sum over #he; and 5,7 ~ Selves obtained through application of E4S5) for 0,1,...n,
products of primitive Gaussians with the primitive integralsand 0,1,..m. Repeated application of E¢45) provides a
multiplied by the charge distribution coefficient€, mMeans to compute any integral groiip0fk,0] from [n

=C4iCaj @nd Cg=C,iC, [the C's are the contraction coeffi-  +Mm.0|0,0] with the conditioni +k<n-+m. This is truly the
cients of Eq.(4)]. Thus we write heart of the method. In what follows we derive the expres-

sions for thei,0|k,0] group directly in terms of thgi,0|0,0]
groups. These expressions are the key equations of the new

(n,0fm,0)= ; ; [n,0[m,0]CECha. (48)  algorithm and show precisely which scaled integrals need be

calculated. Since there is no possibility of confusion we will
The notation is adapted from GHGP, the parentheses are tiwse the notatiorin||m] to represent th¢n,0|m,0] integral
result of contraction of the square brackets for the[bf@ as ~ group, ands p d f g..[m] to represent the “row vector” of
well as for the kefm,0]. integral groups[s|m],[p|/m],.... The derivation that fol-

Let us assume for the moment that we have at our dislows initially deals with the “diagonal” integrals where
posal the primitive integrals[n,0im,0], [n+1,0im,0], the angular momentum exponents are accumulated ory,
[n—1,0im,0], and[n,0lm—1,0], and that we would like to Or zonly. The generalization is not very much more compli-
calculate not only the contracted integrals,qim,0), (n cated, it requires that one pays attention to the exact combi-
+1,0im,0), (h—1,0im,0), and f,0ilm—1,0), but also the nation of angular momentum exponents that are being
integrals ,0lm+ 1,0). For the first four groups of integrals created. This point is illustrated towards the end of this sec-
we apply Eq.(48) directly. For the last group,n(Oim  tion.
+1,0), we follow the procedure described below. This step  The recursion relation Eq45) substituted into Eq(48)
is at the heart of the method. It corresponds to transferringan be conveniently represented in a matrix notation. Let us

Ill. THE RYS QUADRATURE REVISITED

angular momentum from electron 1 to electron 2. denoteL the total angular momentum for a group of four
Substitution of Eq(45) into Eq. (48) yields shells, we define two matrices of order-1 denoted and
R(L,1,). | stands for the identity matrix of ordér+1 here
(n,0|lm+1,0) (not the basis function cenjerWe define the quantity la-
beledc,,

=> ic:BZ —A[n+1,0/m,0]C,
g B A

n 1 Cx=1aj(Xj—X;) T ai(X1— X} (50
+§§ chg [n—1,0/m,0]C, o

Me 1 The R(L,1,) matrix is a tridiagonal matrix with- A on the
+§§ ECB; [n,0jm—1,01CA lower diagonal, withi/2 on the upper diagonal whetie
=1---L+1 is the row index, ana, on the diagonal. The

2 1 Z notation reflects thaR(L,1,) is a matrix function ol and of
G =xi) 9 gCe e 3[n.0[m,0]Cx one angular momentum directioxjn the present case. This

is because Eq45) raises the power of the angular mono-

_ a mial by 1, and equivalent equations can be written yand

(4 X")EB: B CBEA“ [n,0[m.0]Ca. (49) z. The angular momentum direction, Is linked to the diag-

onal termc, . For the time being we may ignore the subscript
The strategy to be followed is explicitly depicted in E49). in ¢, for ease of notation. At some point however, we will
Contraction of the primitive integrals[n—1,0/m,0], not be able to ignore it any longer, as discussed later. Thus
[n,0lm—1,0], and[n,0|m,0] over 7;7; [terms 2, 3, and 5in for L=4 we have
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c 8 0 00 [pl|p]=%(%[slls]+c[ps]—A[dns]).
-A ¢ Z 0 O
RLD= 0 -A ¢ % 0 (51) .
0o 0 -A ¢ & [dllp]= g (Lplis]+cldls]—ALf]s]),
0 0 0 -A c (55)
Using this notation Eq(49) takes the form [p||d]=§1g(c[s||s]++c2— gA+g [plls]—2Ad[d]s]
[s p d--L|m+1]=1/B{[s p d¢--L|m]R(L,1)
+[s p d-Llm-1]}m2. (52 +A2[f”s])’
Supcessive applications of E(?2) yield the expression re-
g [spd-iml to fspdrtls] for any mm [d||d1=%(%[snsmc[pnsﬁ[c2—§A+g]wlls]

[s p d--Llpl=[s p d--L[s]Ry,

—2Ac[f||s]+AYg]s]

[s p d--L|d]=[s p d&--L|s]Ry,

(53 In this example, Eq(55) says that in order to get the con-

tracted @||p) block we need thés|s] block, the[ p||s] block
scaledwith a; [recall the definition ofc given earlier Eq.
(50)] and the[d||s] block scaledwith —A. All these are

The notation in Eq(53) indicates that each integral group cOmputed inside the loop over the pairs mfy; primitives.
[s|d],[plld],... [L]d] is, in a generic sense, equal to a linear!nside  the loop over thex.n primitives, all the
combination of the integral groupss|s].[plis],...[L|ls], n;mj-contracted blocks get scaled with or B-dependent

with the coefficients being the matrix elements of the matrix@ctors. While these formulas may appear cumbersome, it
Ry, m=1---L/2 must be remembered that the algorithm makes extensive re-

use of the calculated basic integral blocks
1 [s|s].[pls].....[d]ls] and that scaling is relatively inexpen-
p ER’ sive, some of the scaling occurring outside the inner loops as
seen in Eq(49).
The target integrals blocks for the low angular momen-

[s p d--LLi2]=[s p d--L[s]Ryp,.

Rd:é R2+ ;) tum integrals up todd||dd) are given in the Appendix. The
Appendix provides a global view of block scaling, i.e., which
(54 plock must be computed, so that it is possible to generate all
Rf=—13 R3+ ﬁR) needed individual integrals. We do find there the terms in
B 2 ) Eq. (55) for the (d|d) integrals. The complexity of the for-
mulas grows quickly with the target integral blocks, i.e., with
1, , 3B? the angular momentum. As the effective degree of contrac-
9 B4 R*+3BR™+ - tion K decreases with increasing angular momentum we may

want to compromise between ease of programming and com-
putational gains. In practice we can decide to write a com-
puter code that covers all cases with basis functions up to
In Eq. (54) we used the shortened notatiBrfor the R(L,1)  type. The recursion formula is represented diagrammatically
matrix of Eq.(51). These equations provide a general recipeas in Fig. 1.
to express any grousp --L||m] in terms of[sp --L||s] for Before returning to the discussion of the efficiency of the
anymandL. Symbolic algebra software can be convenientlyproposed algorithm, we must recall that equations such as
used to obtain the matriceRy,R¢,Ry,... . For anintegral  Eg.(55) were derived for the case when the angular momen-
group [ni,nj|nk,nl] the target integral groups are tum grows along one direction only. For example, Ef) is
[ max(i,nj)- - -ni+nj|max@knl)] up to [max(inj)---ni  correct when botlp's are identical, let us say thes|(s) and
+nj|lnk+nl]. As an example &pp|/pp] group requires the (p,|s) integrals lead to theg(p,) integrals and theq(s),
four groups pllp], [plld], [d||p], [d|d]. The formula for (p,|s), and @d,,|s) integrals lead to thes{d,,) integral. To
[pllp], in terms of[s||s], [pls], and[d|s] is found as the obtain cross integrals such as{d,,) we must raise the an-
p,pelements oR,, for [d||p] itis the elemend,p of Ry, for  gular momentum in the direction and in they direction. We
[pld] it is the elemenp,d of the matrixRy, and for[d|d] it  accomplish this by combining the recursion formulas in two
is the elemend,d of Ry in accord with Eq.(54). We have directions,
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.. — .. TABLE |. FLOP counts for various shell quartets using different algo-
[s p doLm+1]=1B{[s p d-LImJR(LL)  TABLE
+[S P d“Lme_l]}(mX/Z)’ PH GHGP LRL DRK DM
(56) Ref. 3 Ref.9 Ref 10 Ref.5 This work®
[s p d--L|m+1]=1B{[s p d¢--L|m]IR(L,1) (pplpp) X 220 300 691 904 440
y 2300 610 30 30 140
+[s p d--L{m,—1]}(my/2). z 4000 680 330 0 650
(57) (dd|dd) X 2450 10255 14660 2575
25800 30 30 2550
Recall thatR(L,1,) andR(L,1,) differ through the diagonal 32/ 28900 11300 0 18800

terms,c, andc,, respectively. Application of Eq56) leads

from (pylls) and @dy,ls) to (pyllpx), and from §|s) and (spspspsp  x 220 450 753 1056

> 2 1
(pylIs) to (s]py). Appllcatlon'of Eg.(57) then leads from Z 4(3)88 1388 838 38
(pylpx) and (s]py) to the desired integrals(d,,). In place
of the second equation in E¢3) we can write *Estimates. See text for explanations.
[s p d--Lllpp'J=[s p &--L[sIRppy, (58) tive centers to the actual primitive centers. Although creating

the target integral§s pd--|sp d--] from the basic inte-
L L grals[s p @ --L||s] is trivial in their approaches, the transfer
_ r_ from exponent-weighted centers to primitive centers requires
R,»r==3RR'=—-R(L,1,)R(L,1,). 59 . h .
PPt B2 gz R(LLIR(L.L) 59 additional work. In our approach this step is completely by-

Equation(59) is closely related to the second equation in Eq_passed as the numerical quadrature yields primitive integrals
(54) giving Ry for like-angular momentum raising. For directly centered on the primitive centers. An added benefit

higher angular momenta we can define other needed traan the numerical quadrature is the extreme simplicity of com-
formation matriceRyy, Royors Rugrs Rape s and so on puting the basic integrals, in contrast to the complexity of the
The list of scaled blogks f(';? "‘)diagonal” anpdp“nondiagonal” tree search in the GHGP algorithm. Of course once we have

integrals are identical, albeit the individual integral expres-calculated 00lm0), then we can use the best possible strat-

: ; 16
sions are different. The approach is completely general an§9Y 0 generate the [[k) integrals.

the formulas can be obtained with a symbolic algebra soft- It has become usu'al to express the performgnce of algo-
ware. rithms for the calculation of electron repulsion integrals by

expressing the number of floating-point operatighkOP)

IV. DISCUSSION needed to compute@||pp),(dd|dd),... integrals as a func-
The key factor that makes the proposed algorithm comtion of the degree of contractiok, assuming that all four
putationally efficient lies in the very small number of terms shellsp,d,... have the same degree of contraction. The ex-

in the “row vector” of integral groupgs p d¢--L|s] that  pression is

must be computed in the inner loop. This number is equal to _ id 2

(L+1)(L+2)(L+3)/6. In the pp||pp) the “row vector” FLOP=XK +yK +z. (60

of blocks[s p d f d|s] contains 35 integrals, in thel ¢]|dd) Equation(60) reflects the loop structure of the algorithm,

case it contains 165 integrals. In contrast the number of incorresponds to the work done inside all four loops over

dividual target integrals grows as{(I+1)[7(I+1)?> primitives,y corresponds to the work done outside the two

—11/6}2 wherel =L/4. This number is 9=81 for (pp|pp) inner loops(#; nj-contraction but inside the two outer loops

and 3%=961 for (dd||dd). These latter numbers correspond (7 7-contraction, andz corresponds to the work done out-

to the work done inside all four loops over primitives in the side all four contraction loops. Table | givesy, andz for

LRL algorithm. To the extent that the additional work due tothe PH, GHGP, LRL, and DRK algorithms, along with esti-

scaling and building of the target integrals from the scalednates for the present algorithm. These estimates are based on

integrals stays at a reasonable level, this algorithm will bghe analysis that follows. The analysis becomes quickly com-

superior to LRL’s for moderately and highly contracted plex and higher angular momentum cases are not considered

functions. Indeed this should the case. We note as well thdiere.

the computational dgpendence for tep d--Ls] of (L A Estimates for (pplpp) and (dd||dd)

+1)(L+2)(L+3)/6 is smaller than the one reported by

Ishidal? To gain insight in the potential of the present approach,
Comparison of the present algorithm with the GHGPWe consider the cases opffpp) and dd|dd) integrals.

algorithm shows that both require computation of the same

number of basic integrals inside the inner loop over primi-1. Evaluation of the roots and weights of the Rys

tives, mainly[s p d --L||s] integrals just as the MD method. polynomials

For MD and GHGP these primitive integrals are centered on  The evaluation of the Rys roots and weights is done

the exponent-weighted charge distribution center of thenside theK* loop since the argumeX [Eq. (31)] depends

primitives, labeled A and B in Eqg18) and (19). A step  on the exponents of the primitive functions. For tipgfpp)

required for MD and GHGP involves the transferring of thecase we need 3 roots and 3 weights, and for tthej|dd)

target primitive integrals from the exponent-weighted primi-case 5 roots and 5 weights. We can adopt an efficient

with
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TABLE II. Algorithm for constructing the g||s] primitive integrals for the |9 p||pp) integrals.

1) s 21) XXXX =1)*G(xxxX)
2) X =1)*G(x) 22) XXX y =3)*G(xxX)
3) y =1)*G(y) 23 XXX z =4)* G(XxxX)
4) z =G(2) 24) XX yy =5)*G(yy)
5  xx =1)*G(xx) 25) XX y z =9)*G(x)
6) X % =2)*G(y) 26) XX zz =10)* G(xx)
7 x z =4)*G(x) 27) X yyy =2)*G(yyy)
8) yy =1)*G(yy) 28 X yy z =18)*G(x)
9 y z =4)*G(y) 29 X y 7z =19)*G(x)
10 zz =G(z2 30) X 772 =20 G(x)
1) xxx =1)*G(xxx) 31) yyyy =1)*G(yyyy)
12 xx y =3)*G(xx) 32 yyy z =4)*G(yyy)
13)  xx z =4)*G(xx) 33 yy 7z =10)*G(yy)
14 x yy =2)*G(yy) 34) y zzz =20)*G(y)
15 x y z =9)*G(x) 35) zzzz  =G(zzz3}
16) x zz =10)*G(x)
17) yyy =1)*G(yyy)
18) % z =4)*G(yy)
19 y 7z =10)*G(y)
20) 777 =G(zz2

approach’ involving lookup tables and interpolations. A performed to generate the complete set of terms needed for
3-point interpolation, with 3 multiplications and 2 additions, the (ppllpp) integrals. The tables are based on the formulas
can yield roots and weights of sufficient accuracy for a totalgiven in the Appendix. The work amounts to 79
of 6*5=30FLOPs for pp|pp) and 165=50FLOPs for (multiply+add inside theK* loop and 53(multiply+add
(dd|dd). No additional work is necessary f@p shells inside theK? loop. Forsp shells these numbers are 90 and

(Table 1I). 59, respectively. Forddlldd) integrals, a similar analysis

shows that theK* scaling can be realized with 856
2. Evaluation of the two-dimensional integrals (multiply+add, while the K? scaling amounts to 1258
l«(nx,0,t,), 1,(ny,0,t,), and I,(nz,0,t,) (multiply+add.

This step is done inside th€* loop. G, Gy, andG, are
calculated by means of the 2-point recursion formula of Eq.5 KO
(40) for each root, . There are 3 roots for thepf||pp) and ’
(Spsmspsp cases, and 5 roots for th@(ﬂ”dd) case. For Once the scaled integrals have been CaICUIated, the final
(ppllpp) integrals the indiceax, ny, andnzrun up to 4. The integrals (_1,0||m,0) have to be assembled before_z the horizon-
cost of this Step is “8(7 mu'tip"cations p|u56additions) tal recursion formulas can be applled. InSpeCtlon of the ex-
=39FLOPs. For the dd|dd) case we have pressions given in the Appendix and of the actual expres-
5* (15 multiplications plus 14 additions)145 FLOPs. About
16 FLOPs per root are needed to create the coefficients in _ .

Egs. (41) and (42), about 48 FLOPs for thep(p||pp) case TABLE IlIl. K* scaling for the pp|pp) and @d|dd) integrals®
and 80 FLOPs for thedd|dd) case. (oplpp) (dd]dd)

work and horizontal recursion formulas

. e . K4 K2 K4 K2
3. Evaluation of the primitive integrals  [n||s]

For (pplpp) we need nx ny n20] for nx, ny, nz=1 to 3, spd spdfg

. - . A spdf spdfgh
4, i.e.,[gls] integrals. There are 35 such integrals. TK#s a2 spd spdfg
step is carried out according to E@2) in the most general A’aj pdf pdfgh
case. In the case at hand, we can take advantage of the facta? dfg dfghi
that whenevemx, or ny, or nz is equal to zero, the corre- a,~32 pdfg
spondingGy, or G, or G, factor is equal to 1.0. We do not A3 dzg 2
have to multiply by that factor. The cost per integral is es- Asa,» gh i'j
sentially one multiplication to form the produ@,*G,*G, at dfg
for each root plus rfroots-1) additions for the summation  Aa fgh
over roots (Table Il). For (pplpp) this amounts to A%a? ghi
(35-5)*3+35*2=160 FLOPs. For ¢didd) it amounts to ﬁja,- hiijik

(165-9) 5+ 165 4= 1440 FLOPs.

2Entry n means that a primitive blodkn|0] gets scaled by the coefficient in

4. Evaluation of the scaled integrals column 1. For example in thep@|pp) case, the first entry in the table
. . indicates that th¢s|0], [p||0], and[d||0] blocks get scaled with the;
Tables Ill and 1V illustrate the block scaling, at the coefficients to form three scaled blocks. Entries in italics are needespfor

level and at theK? level, respectively. Scaling has to be shells.
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TABLE IV. K? scaling for the pp|pp) and (dd]dd) integrals? in this minimum number of integrals computed in tKé
loop. The trick about transferring angular momentum be-

(prlpp) (adljde) tween electrons, a technique that we borrowed from MD and
K* K? K* K? GHGP, is responsible for the gain, since both the LRL
a spd spdf method and the present method use the same numerical
(a))a spd spdfg quadrature.
(A) & pdf pdfgh Table | shows that the&<* coefficient in the present
(@) a pdfg method is close to the same coefficient in the GHGP’s
(A3)a d}(g:. method, while thek? andK° coefficients are much smaller
((23; :: dfg ' than those in GHGP. The similar magnitude of & coef-
(Aa?) ay fgh ficients between the two methods comes in part from the fact
(A%a) a ghi that both methods compute the same number of fundamental
(A% hij integrals. The much-reduced? and K° coefficients in the
Ba pdfg present method is a direct reflection of the advantage of us-
(?)ga' d;gh ing a numerical quadrature and working directly with the
") :Ié spd Spdfg basis function centers, rather than the charge distribution
(a) a2 pdfg centers. The “scaling” step is much simpler because of that.
(A) a? dfgh That the new method does not do quite as well as GHGP for
(a%) af dfg (ppllpp) integrals shows that there is some inherent over-
(Aa) af fgh head in the numerical quadrature when dealing with low an-
(A%) ap ghi gular momentum functions. We do not seem to have suc-
B:g pg:g ceeded in overcoming this point. However the present
(a-)a|3 dfg algorithm appears to be largely superior to GHGP’s for
] | . . .
(A) a@ fgh (ddidd) integrals. We expect this to hold true for higher
B spd spdfg angular momentum functions. We expect the present method
() B pdfg to be competitive for §psplspsp integrals, although we
(A B dfgh have not fully analyzed the effect of the different contraction
((212; g dfg hi coefficients for thes function and thep functions of ansp
i dtg shell.

V. SUMMARY

We have outlined a novel approach to the calculation of
electron repulsion integrals over Gaussian basis functions. It
sions in the pplipp) case suggest that in average each of thegkes advantage of the best features of several approaches:
(pdipd) integrals needed for e(iipp) block is the sum of  the angular momentum transfer of McMurchie—Davidson,
about 4 unscaled or scaled contributions, and each of thge scaling technique of Gill-Head—Gordon—Pople, the hori-
(dfglldfg) integrals needed for ad@idd) block is the sum  zontal transfer equations proposed by Head—Gordon—Pople,
Of about 8 Contl’ibutions, for a tOtal Of about 320 FLOPs andand the Rys numerica| integration of Dupuis_Rys_King.
7500 FLOPs, respectively. Finally the horizontal recursionthe resulting algorithm is anticipated to be quite competitive
transformation from1§,0im,0) to (i,jlikl) can be performed  for contracted Gaussian functions. The derivation and imple-
with the most efficient algorithm of LRE? Together these mentation are simplified through the use of symbolic alge-
two steps yield th&® coefficient in Table . braic software. The method generalizes to high angular mo-
B. Discussion mentum integrals. Implementation is in progress and
i _ performance data will be presented in future reports. The
It is clear from Table | that DRK remains the method of oytension of the method to integréirst- and second-de-
choice for uncontracted functions. This is not really unex-yiyatives with respect to nuclear coordinates should also ben-
pected. The other methods are more efficient for contractedsii from the advances devised in the present work.
functions. They were designed to take advantage of the con-
cept of charge distribution to varying extents. This can beACKNOWLEDGMENTS
seen in Table I. MD’s method falls in that category as well. ~ We dedicate this work to the memory of John Rys. We
Our goal was to devise an algorithm based on the Ryshank Dr. A. Komornicki for stimulating discussions and his
quadrature that would deal efficiently with contracted func-careful reading of the paper. We thank also Dr. Graham
tions. The critical factor for success resides in the reductiorletcher for useful discussions. This work was supported in
in the number of fundamental integrals that need to be compart by the U.S. Department of Energy’s Office of Biological
puted inside thek* loop. In the spirit of minimizing this and Environmental Research, and by the Office of Basic En-
number, it is clear that PH’s method remains the most sucergy Sciences, Chemical Physics Program. The Pacific
cessful (many are equal to zero due to using local axisNorthwest National Laboratory is a multiprogram national
frameg, albeit at the cost of much high&? andK® coeffi-  laboratory operated for the U.S. Department of Energy by
cients. It is clear also from Table | that the present algorithmBattelle Memorial Institute under Contract No. DE-AC06-
is superior to LRL’s method for all the cases. The reason lie§6RLO-1830.

aSee explanations in Table lI.
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APPENDIX: INTEGRAL BLOCK SCALING FOR (d|ld) CHARGE DISTRIBUTIONS [(ppllpp) INTEGRALS] AND
(gllg) CHARGE DISTRIBUTIONS [(dd|ldd) INTEGRALS] (VALID FOR “DIAGONAL” INTEGRALS INVOLVING p,,

d,2, fy3, gy4, ...)
A-1 A-5
[slp]xB [glp]xB
[sls] c [sls]
[plis] —-A [plis]
[diis] [dis]
[flis] [fls] 2
[glis] [glis] c
[his] [hlls] —-A
[ills] [ills]
Lills] [ills]
[Kis] [Kis]
A-2 A-6
[plip]xB [sld]x B2
[slis] 1/2 [sls] {c?—1/2A}+1/2B
[plis] C [pls] —2Ac
[dlis] —A [dls] A?
[flls] [fls]
[glls] [glls]
[hils] [hils]
[ills] [ills]
[jlls] [jlis]
[Kis] [Kis]
A-3 A-7
[dilp]xB [plld]x B?
[sls] [sls] c
[plis] 1 [plis] {c?—3/2A}+1/2B
[dlls] c [dlls] —2Ac
[flls] -A [flls] A?
[glls] [glls]
[hils] [hils]
[ills] [ills]
[jlis] [jlis]
[KiIs] [Kis]
A-4 A-8
[fllp]xB [did]x B2
[slis] [sls] 1/2
[pls] [plis] 2c
[dils] 3/2 [dls] {c?—5/2A}+1/2B
[flis] c [fls] —2Ac
[glis] —A [gls] A?
[hils] [hils]
[ills] [ills]
Lills] [ills]
[Kis] [Kis]
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A9 A-13
[flld]x B2 [diIf]x B3

[slis] [sls] 3/2c
[plis] 3/2 [plis] {3c¢2-3A}+3/2B
[dis] 3c [dis] {c®—15/2Ac}+3/2Bc
[flis] {c?—7I2A}+1/2B [fls] {—3Ac%+9/2A%} — 3/2BA
[glls] —2Ac [glls] 3A%c
[hils] A? [hils] —A3
[ills] [ills]
[jls] [jlls]
[Kis] [Kis]

A-10 A-14

[glld]x B? [flIf]x B3

[sls] [sls] 3/4
[plis] [plis] 9/2¢c
[dils] 3 [dlls] {9/2c2— 27/4A} + 3/2B3/2
[flls] 4c [fls] {c®—21/2Ac}+3/2Bc
[glis] {c?—9/2A} +1/2B [glis] {—3Ac?+6A%}—3/2BA
[hils] —2Ac [hils] 3A%c
[ills] A? [ills] -A3
[jlis] [jlis]
[Kis] [Kis]

A-11 A-15

[sIf]xB3 [glf]xB3

[sls] {c®—3/2Ac}+3/2Bc [sls]
[plis] {—3Ac?+3/2A% —3/2BA [plis] 3
[dlis] 3A%c [dis] 9c
[flis] —A3 [fls] {6c?—12A}+3/2B2
[glls] [glls] {c3—27/2Ac}+ 3/2Bc
[hils] [hils] {—3Ac?+15/2A%} — 3/2BA
[ills] [ills] 3A%c
[jls] [jlis] —A3
[KiIs] [Kis]

A-12 A-16

[pIf]1xB? [slg]xB*

[slls] {3/2c2— 3/4A} + 3/2B1/2 [slis] {c*—3Ac%+3/4A%)} + 3B{c?— 1/2A} + 3/4B2
[pls] {c®—9/2Ac}+3/2Bc [plis] {—4Ac®+6A%c)+3B{—2Ac}
[dlls] {—3Ac?+3A% —3/2BA [dlils] {6A%c2—3A% + 3B{A?}
[flls] 3A%c [flls] —4A3¢c
[glls] —A3 [glls] A?
[hils] [hils]
[ills] [ills]
[jlis] [jls]
[KiIs] [Kis]
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A-17 A-19
[plig]xB* [flig]xB*

[sls] {2¢3-3Ac}+3B{c} [sls] 3c

[pls] {c*—9AC?+ 15/4A%} + 3B{c?— 3/2A} + 3/4B% [plis] {9¢?—15/2A} + 3B{3/2}

[dis] {—4Ac*+12A%c} + 3B{—2Ac} [dils] {6¢3—27Ac}+3B{3c}

[flls] {6A%c?—5A% +3B{A?} [flis] {c*—21Ac%+ 75/4A%} + 3B{c?— 7/2A} + 3/4B%

[glls] —4A%c [glls] {—4Ac3+24A%c} + 3B{—2Ac}

[hils] A? [his] {6A%c?—9A%} +3B{A?}

[ills] [ills] —4A3%c

[jlls] [jlls] A*

[KiIs] [Kils]
A-18 A-20

[dig]xB* [gllg]xB*

[sls]  {3c?—3/2A}+3B{1/2 [sls] 3/2

[pls]  {4c®—12Ac}+3B{2c} [plls] 12

[dis]  {c*—15Ac®+39/4A%} + 3B{c?—5/2A} + 3/4B2 [dis] {18c2—21A}+3B{3}

[flls] {—4Ac+18A%c} +3B{—2Ac} [flls] {8c3—48Ac}+3B{4c}

[gls]  {6A%c>—7A3}+3B{A?} [gls] {c*—27Ac?+123/4A%) + 3B{c?— 9/2A} + 3/4B2

[his]  —4A3% [hiis] {—4Ac®+30A%c}+3B{—2Ac}

[ills] A* [ils]  {6A%c2—11A%}+3B{A%}

Lills] [jlls] —4A3%

[Kils] [kis] A?
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