Trabajo Fin de Máster Ingeniería Industrial

Análisis Comparativo de Compresores Frigoríficos Para R-134a

Autor: Thomas Joseph RUIZ Tutor: Juan Francisco Coronel Toro

> Dep. Ingeniería Energética Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2016

Trabajo Fin de Máster Ingeniería Industrial

Análisis Comparativo de Compresores Frigoríficos Para R-134a

Autor:

Thomas Joseph RUIZ

Tutor: Juan Francisco Coronel Toro Profesor titular

Dep. de Ingeniería Energética Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2016

Trabajo Fin de Máster: Análisis Comparativo de Compresores Frigoríficos Para R-134a

Autor: Thomas Joseph RUIZ

Tutor: Juan Francisco Coronel Toro

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2016

El Secretario del Tribunal

Quisiera expresar mi sincera gratitud a mi tutor, el Profesor Juan Francisco Coronel Toro, por su tiempo, comprensión y apoyo.

También quiero agradecer a mis compañeros de clase, especialmente Ignacio Martín Gómez y José Manuel Veas Peñalver, por motivarme y ayudarme, principalmente con el uso de la lengua española.

Por último, no me quiero olvidar de mi familia, que siempre me ha apoyado en mis decisiones.

El compresor frigorífico es el elemento fundamental de la instalación de producción de frío. Se encarga de elevar la presión del refrigerante y asegura su buena circulación en toda la instalación frigorífica. Además representa la mayoría del consumo energético de la instalación. Resulta muy interesante estudiar la eficiencia del compresor por su influencia en el consumo energético de la instalación.

Este trabajo se enfoca en el estudio de los indicadores que permiten comparar una selección de compresores de manera justa y pertinente en distintas condiciones de funcionamiento. Entonces, para lograr este estudio, primero se define un modelo teórico del compresor y de las características termodinámicas del refrigerante R-134a en su entorno. Después, mediante la información proporcionada por el fabricante de compresores BITZER y el uso del programa EES, se compara un modelo de compresor real al modelo teórico de referencia. Así se obtienen los indicadores de eficiencia, es decir los rendimientos volumétricos y energéticos. Y por último, tras haber conseguido estos indicadores de eficiencia para cada compresor, se hace una comparativa que permite el análisis de los comportamientos de estos compresores y la selección de los compresores adecuados para condiciones de funcionamiento dadas.

Agradecimientos	vii	
Resumen ix		
Índice		
Índice de Tablas		
Índice de Figuras	IV	
	1V \//	
Nomenciatura	VI	
1 Objetivos y Alcance	1	
1.1 Objetivos	1	
1.2 AICONCE	2	
2 Compresores Para Refrigeración	3	
2.1 Fundamentos Teóricos: El Ciclo Frigorífico	3	
2.2 Compresores Frigoríficos	5	
2.2.1 Formas de montaje y tipo de compresión:	5	
2.2.2 Tecnologías de compresores frigoríficos	7	
3 Análisis Termodinámico	11	
3.1 Condiciones De Trabajo	11	
3.1.1 Ecuaciones termodinámicas	11	
3.1.2 Rendimiento isentrópico y volumétrico	12	
3.1.3 Hipótesis de partida	12	
3.1.4 Condiciones de trabajo nominales	12	
3.2 Objetivos Del Estudio Termodinámico	13	
3.2.1 Cálculo del COP	13	
3.2.2 Cálculo de la potencia frigorífica por volumen de compresor o potencia frigorífica	a específica	
	13	
3.3 Uso Del Software Engineering Equation Solver	14	
3.3.1 Descripción del software	14	
3.3.2 Estado de referencia predeterminado	14	
3.3.3 Uso de EES	15	
3.4 Modelo EES Y Obtención De Los Resultados Teoricos	15	
3.4.1 COOIgo EES	15	
3.4.2 Resolucion del codigo EES	10	
3.4.5 Obtanción de las curvas	10	
3.4.4 Obtención de las curvas	20	
3.5 Conclusiones	20	
	22	
4 Curvas De Comportamiento De Compresores	23	
4.1 BIIZER	23	
4.1.1 BITZER, fabricante de compresores	23	

4.1.2	Tipos de compresores	23		
4.1.3	Software	23		
4.1.4	4.1.4 Polinomios y curvas de funcionamiento de los compresores			
4.2 Mo	delo EES – BITZER	26		
4.2.1	Objetivos	26		
4.2.2	Definición de los indicadores	26		
4.2.3	Ampliación del código EES.	28		
4.2.4	Obtención de f_{COP} , f_{Qf} , $\eta_v y \eta_E$	29		
4.2.5	Interpretación y reducción del estudio	32		
4.2.6	Obtención de polinomios para $\eta_{\text{E}} y \eta_{v}$	34		
4.2.7	Metodología	38		
4.3 Cor	nparativa De Tres Tipos De Compresores Distintos	39		
4.3.1	Aplicación del modelo	39		
4.3.2	Obtención e interpretación de las curvas	41		
5 Compar	ativa De Compresores	47		
5.1 Alco	ance De La Comparativa	47		
5.1.1	Rango de potencia estudiado	47		
5.1.2	Lista de los compresores BITZER	47		
5.1.3	Elección y repartición de los compresores	48		
5.2 Apl	icación Del Modelo	50		
5.2.1	Obtención de los polinomios	50		
5.2.2	Ordenación de los datos de cada compresor	50		
5.2.3	Código EES	51		
5.3 Cur	vas De Comparativa De Los Compresores	52		
5.3.1	Definición de las características de las gráficas	52		
5.3.2	Metodología EES	52		
5.3.3	Obtención de las curvas e Interpretación	53		
6 Conclus	iones Y Futuros Desarrollos	62		
6.1 Cor	nclusiones	62		
6.2 Fut	uros Desarrollos	63		
Referencias		64		
Bibliografí	a	64		
Normas				
Sitios Web		64		
Anexos		65		

Índice de Tablas

Tabla 1.1: Alcance del estudio	2
Tabla 3.1: Puntos de referencia para aplicaciones con R-134a	13
Tabla 3.2: Extracto del anexo 3.1.	17
Tabla 4.1: Coeficientes de regresión de las regresiones polinómicas sin términos cruzados	36
Tabla 4.2: Coeficientes de regresión de las regresiones polinómicas con términos cruzados	36
Tabla 4.3: Extracto del anexo 4.1.	37
Tabla 5.1: Extracto del anexo 5.1, comparación de los compresores de "Scroll"	48
Tabla 5.2: Compresores elegidos para la comparativa	49

Índice de Figuras

Figura 2.1: máquina frigorífica de Carnot	3
Figura 2.2: Ciclo estándar de refrigeración: Diagrama de flujos (a) y Diagrama Presión-Entalpía (b)	4
Figura 2.3: Diagrama Presión-Entalpía con compresión real y isentrópica	4
Figura 2.4: Esquema de un compresor hermético	5
Figura 2.6: Esquema y foto de un compresor abierto	6
Figura 2.7: Etapas de la compresión con diagrama Presión-Volumen	7
Figura 2.8: Compresores alternativos con pistones dispuestos (a) en V, (b) en W, (c) en línea y (d) en W	8
Figura 2.9: Etapas de compresión con un compresor de tornillos	8
Figura 2.10: Vista en sección de un compresor de tornillos	9
Figura 2.11: Sección transversal de un compresor mono-tornillo y dos satélites	9
Figura 2.12: Etapas de compresión de un compresor "Scroll"	10
Figura 2.13: Compresor hermético de tipo "Scroll"	10
Figura 3.1: Diagrama Presión-Entalpía con compresión real y isentrópica	11
Figura 3.2: Código EES – cálculo de COP y potencia frigorífica específica	16
Figura 3.3: Resultados del sistema de ecuaciones	16
Figura 3.4: Gráfica que representa el COP ideal en función de las temperaturas de evaporación condensación	ıу 18
Figura 3.5: Gráfica que representa la potencia frigorífica específica en función de las temperaturas evaporación y condensación	de 18
Figura 3.6: Gráfica que representa el COP ideal en función de las temperaturas de evaporación condensación	ıу 19
Figura 3.7: Gráfica que representa la potencia frigorífica específica en función de las temperaturas evaporación y condensación	de 19
Figura 3.8: Diagrama Presión-Entalpía con temperaturas de evaporación de -10°C y 0°C, y temperatura condensación de 45°C y 65°C	de 21
Figura 4.1: Pantalla de apertura del software BITZER	24
Figura 4.2: Pantalla de simulación del software BITZER	24
Figura 4.3: Resultados y datos técnicos del compresor ELA743Y con la simulación en el punto referencia nominal.	de 25
Figura 4.4: Polinomios sacados del software Bitzer del compresor "Scroll" ELA743Y	25
Figura 4.5: Esquema que representa un compresor con su motor	27
Figura 4.6: Ampliación del código EES con los datos del compresor "Scroll" ELA743Y	29

Figura 4.7: Tabla paramétrica para obtención de los indicadores29
Figura 4.8: Gráficas que representa los puntos de funcionamiento del compresor "Scroll" ELA743Y er función de Te y Tc 30
Figura 4.9: Gráficas que representan los indicadores del compresor de "Scroll" ELA743Y en función de Te y Te 31
Figura 4.10: Gráficas que representa el rendimiento energético y volumétrico del compresor de "Scroll' ELA743Y en función de la relación de compresión 32
Figura 4.12: Límites del compresor de tornillos HSK646139
Figura 4.13: Límites del compresor de "Scroll" ELH736Y40
Figura 4.14: Límites del compresor de pistones 8GE40
Figura 4.15: Gráficas que representan η_E en función de la relación de compresión: (a) pistón 8GE, (b) tornillos HSK6461,(c)"Scroll" ELH736Y 42
Figura 4.16: Gráficas que representan η_v en función de la relación de compresión: (a) pistón 8GE, (b) tornillos HSK6461,(c)"Scroll" ELH736Y 43
Figura 4.17: Gráficas que representan η_v y η_E en función de la potencia frigorífica: (a) pistón 8GE, (b) tornillos HSK6461,(c)"Scroll" ELH736Y 45
Figura 5.1: Representación del número compresores en función de su rango de potencia48
Figura 5.2: Informe del compresor de pistón "4GE"51
Figura 5.3: Rendimiento energético de cada compresor en función de la temperatura de evaporación temperatura de condensación fijada a 45°C 53
Figura 5.4: Rendimiento energético de cada compresor en función de la temperatura de condensación temperatura de evaporación fijada a -10°C 54
Figura 5.5: Rendimiento energético de cada compresor en función de la potencia frigorífica en condiciones nominales de funcionamiento 54
Figura 5.7: Rendimiento energético de cada compresor en función de la temperatura de condensación temperatura de evaporación fijada a -10°C 57
Figura 5.8: Rendimiento volumétrico de cada compresor en función de la potencia frigorífica en condiciones nominales de funcionamiento 57
Figura 5.9: Rendimiento volumétrico y energético de cada compresor en función de la potencia frigorífica con Te=0°C y Tc=35°C 61

Símbolo Descripción		Unidad	
$Q_{\rm f}$	Potencia frigorífica	kW	
f _{COP}	Factor de degradación del COP	-	
\mathbf{f}_{Qf}	Factor de degradación de la potencia frigorífica	-	
COP	Coeficiente de eficiencia energética	-	
COP _{carnot}	Coeficiente de eficiencia energética de Carnot	-	
$\eta_{\rm m}$	Rendimiento mecánico	-	
η _e	Rendimiento eléctrico	-	
η_{s}	Rendimiento isentrópico	-	
$\eta_{\mathbf{v}}$	Rendimiento volumétrico	-	
η_t	Rendimiento total	-	
$\mathbf{h}_{\mathbf{i}}$	Entalpía del refrigerante en el punto i del ciclo frigorífico	J/kg	
m _r	Caudal de refrigerante	m ³ /s	
Qc	Potencia extraída	kW	
$\mathbf{Q}_{\mathbf{f}} / \dot{V}_t$	Potencia frigorífica específica	$kW/(m^3/s)$	
Pe	Presión de evaporación	Bar o kPa	
P _c	Presión de condensación	Bar o kPa	
r _c	Relación de compresión	-	
T _e	Temperatura de evaporación	°C	
T _c	Temperatura de condensación	°C	
Ψ _c	Potencia absorbida por el gas comprimido	kW	
\dot{W}_{cs}	Potencia absorbida de compresión isentrópica	kW	
\dot{V}_t	Desplazamiento volumétrico	m ³ /s	
\mathbf{v}_1	Volumen específico del refrigerante vapor a la entrada del compresor	m ³ /kg	
"_t"	Índice de datos teóricos	-	
"_b"	Índice de datos reales de BITZER	-	

Actualmente la producción de frío se desarrolla en muchos sectores. Ya sean los sectores comercial, doméstico o de transporte para la conservación de alimentos, el sector industrial para la industria alimentaria y química, o el sector de la climatización para asegurar el confort humano y un control del ambiente, todos se están aprovechando de las innovadoras tecnologías de producción de frío.

Para una producción de frío por compresión mecánica, cualquier instalación frigorífica, ya sea la más simple o la más compleja, está compuesta de estos cuatro equipos fundamentales: una unidad de condensación, un evaporador, una válvula de expansión y un compresor frigorífico mecánico.

Este último equipo, el compresor frigorífico, es el elemento fundamental de la instalación de producción de frío. Se encarga de elevar la presión del refrigerante desde la salida del evaporador hasta la entrada del condensador, trabajando siempre en condiciones de vapor sobrecalentado; y asegura la buena circulación del refrigerante en toda la instalación frigorífica.

Sin embargo, enérgicamente hablando, entre todos estos equipos, el consumo del compresor representa la mayoría del consumo energético de la instalación. La eficiencia del compresor es un parámetro muy importante porque influye enormemente en el consumo energético de la instalación. Cuanta más alta sea la eficiencia del compresor, menor será su consumo y el consumo de la instalación frigorífica.

Cuando se está diseñando una instalación frigorífica, los fabricantes y proveedores del compresor proporcionan tablas de sus productos con las potencias consumidas, las potencias frigoríficas desarrolladas, el COP resultante y el caudal de refrigerante. Ya se da una idea de la eficiencia del producto, pero desafortunadamente o voluntariamente, los fabricantes no proporcionan los rendimientos volumétricos y energéticos de los compresores. En un primer lugar, resulta difícil saber si la eficiencia alcanzada por los compresores en dichas condiciones de funcionamiento es óptima. Y en segundo lugar, no se tienen las herramientas adecuadas para comparar un modelo de compresor con otro y elegir el más adecuado.

Al tener una comparativa de compresores, se podría hacer un prediseño muy eficaz de una instalación frigorífica y proponer un presupuesto optimizado rápidamente. En efecto, para temperaturas de evaporación y de condensación fijadas y una potencia frigorífica desarrollada, se compararían distintos tipos de compresores y se elegiría el que tiene los rendimientos volumétricos y energéticos más altos. Así se podría pre-determinar el tipo de compresor cuyo diseño es más adecuado para la instalación y también el consumo eléctrico futuro de operación.

1.1 Objetivos

El objetivo de este trabajo es realizar un estudio para obtener los indicadores que permiten comparar una selección de compresores de manera justa y pertinente en distintas condiciones de funcionamiento.

Entonces, para lograr este objetivo, primero se definirán un modelo teórico del compresor y de las características termodinámicas del refrigerante en su entorno. Después, mediante la información proporcionada por el fabricante de compresores BITZER y el uso del software EES, se obtendrán los indicadores de eficiencia de un modelo de compresor, es decir sus rendimientos volumétricos y energéticos. Y finalmente, tras haber conseguido estos indicadores de eficiencia para cada compresor, se hará una

comparativa que permitirá el análisis de los comportamientos de estos compresores y la selección de los compresores adecuados para condiciones de funcionamiento dadas.

1.2 Alcance

El alcance de este estudio se limitará a:

- Un refrigerante, el R-134a, cuyo uso se ha generalizado debido a sus buenas cualidades caloportadoras (o termodinámicas) y al mayor respeto al medio ambiente.
- Un rango de potencias frigoríficas estudiadas desde 10 kW hasta más de 150kW que se reparte en tres categorías: las potencias pequeñas (alrededor de 10kW), las potencias medianas (más o menos 50kW) y las potencias grandes (más de 100kW).
- Treinta compresores del fabricante BITZER representativos de tres tipos de tecnologías: los compresores de "Scroll", de tornillos y de pistón; y de dos formas de montaje: montaje hermético y semi-hermético.
- Un subenfriamiento nulo a la salida del condensador en el ciclo de producción de frío.
- Un sobrecalentamiento de diez kelvin a la salida del evaporador.

TIPO	FORMA DE MONTAJE	NUMERO DE COMPRESORES ESTUDIADOS	
"Scroll"	Hermético	4	
Tornillos	Semi-Hermético	13	
Pistón	Semi-Hermético	13	

Tabla 1.1: Alcance del estudio

2 COMPRESORES PARA REFRIGERACIÓN

2.1 Fundamentos Teóricos: El Ciclo Frigorífico

En este capítulo, se explicará el principio de funcionamiento de un ciclo frigorífico. Todas las ecuaciones termodinámicas vendrán en el capítulo siguiente.

Una máquina frigorífica funciona con dos focos de calor a distinta temperatura, extrae calor del foco frío y lo evacua al foco caliente. Para realizarlo, hay que añadir trabajo al ciclo.

Figura 2.1: máquina frigorífica de Carnot

El rendimiento de esta máquina frigorífica se mide mediante el COP que se define como el cociente entre el calor útil, que es la potencia frigorífica extraída del foco frío, y el trabajo que se necesita para realizarlo. Este rendimiento suele ser mayor que uno, y cuanto mayor sea, mayor será el ahorro energético que obtendremos. Sin embargo, esto tiene un límite, el COP de Carnot definido por una relación entre las dos temperaturas de los focos calientes y fríos.

$$COP_{carnot} = \frac{T_e}{T_c - T_e}$$
(2.1)

$$COP = \frac{Q_f}{\dot{W}_c}$$
(2.2)

En realidad, para conseguir que el calor se extraiga a su temperatura correspondiente, el refrigerante debe estar más frío que esta temperatura, e igualmente en el condensador, donde su temperatura debe ser mayor que la del ambiente para conseguir que el calor sea cedido a su temperatura correspondiente. La obtención de estas temperaturas se hace a través de la fijación de las presiones en el evaporador y condensador con sus respectivas temperaturas de líquido-vapor.

En la figura 2.2 se muestra cualitativamente el ciclo cerrado que sigue el refrigerante:

Figura 2.2: Ciclo estándar de refrigeración: Diagrama de flujos (a) y Diagrama Presión-Entalpía (b)

Como se observa en el esquema P-H, cuando el fluido refrigerante sale del evaporador a su presión más baja, entrará recalentado en el compresor (punto 1). El compresor elevará su presión y su temperatura hasta el punto 2 de descarga. Cuanto mayor sea la temperatura de condensación, menor será el rendimiento del compresor. De aquí, entrará en el condensador y se enfriará hasta llegar al punto de saturación del vapor, y a partir de aquí se mantendrá la temperatura constante ya que el intercambio de calor se emplea en condensar el fluido hasta llegar al punto de líquido saturado (punto 3). A partir de este punto, se sub-enfriará el fluido hasta el punto 4, según las condiciones operativas. A continuación, pasará el líquido sub-enfriado por la válvula de expansión isentálpica hasta el punto 5, mucho más frío y en el estado líquido-vapor. Por último, el refrigerante entrará en el evaporador, y absorberá calor del ambiente que se utilizará para la producción de frío. Se va avanzado por el evaporador y acercándose al punto de vapor saturado (punto 6), hasta que pasa este punto para llegar a un cierto sobrecalentamiento (punto 1). Este sobrecalentamiento asegura que no haya ninguna gota de líquido en el compresor y así evita que haya un desgaste prematuro del compresor por golpe de líquido.

Figura 2.3: Diagrama Presión-Entalpía con compresión real y isentrópica

Idealmente, la compresión ejecutada por el compresor es isentrópica pero en la práctica, hay irreversibilidades y pérdidas de energía, es el proceso de compresión real. Existe un indicador para tener en cuenta esta diferencia: el rendimiento isentrópico. Es el cociente entre la potencia de compresión isentrópica y la potencia real.

Se define por la relación:

$$\eta_{s} = \frac{\dot{W}_{cs}}{\dot{W}_{c}} = \frac{h_{2s} - h_{1}}{h_{2} - h_{1}}$$
(2.3)

Para resumir, este ciclo frigorífico tiene cuatro componentes fundamentales:

- Un compresor.
- Un condensador.
- Una válvula de expansión.
- Un evaporador.

2.2 Compresores Frigoríficos

El compresor es el elemento fundamental del circuito frigorífico, permite subir la presión a la deseada y también mantener la circulación del fluido refrigerante en el circuito. Existen diferentes tipos de montajes y varias tecnologías.

2.2.1 Formas de montaje y tipo de compresión:

Existen tres formas de montaje distintas para estos compresores:

Herméticos:

El compresor y su motor están montados y encerrados en la misma carcasa con el aceite. Se usan en ciclos frigoríficos de baja potencia. Una de sus ventajas es que no presenta fugas de refrigerante y que el motor eléctrico está refrigerado por el fluido enfriado saliendo del evaporador. Su principal desventaja es que si se rompe algún elemento, hay que desmontar completamente el compresor, lo cual dificulta mucho la reparación. A parte de eso, al estar en contacto directo el motor y el refrigerante, no se puede usar un refrigerante que pueda corroer el devanado del motor. Por ejemplo, el amoniaco con devanados de cobre.

Figura 2.4: Esquema de un compresor hermético

Semi-Herméticos:

Son del mismo tipo que los herméticos pero se pueden desmontar. El motor está bañado por el gas. Así, este tipo de construcción impide la entrada de aire y polvo. También tienen bajo nivel de fugas de refrigerante y no hace falta una refrigeración auxiliar del motor.

Figura 2.5: Esquemas y vista en sección de compresores semi-herméticos

Abiertos:

El compresor está montado aparte del motor, y se acopla con él mediante polea y correa o de modo directo mediante acoplamiento elástico. En este acoplamiento directo, el eje del compresor gira a la velocidad del motor eléctrico. Por las altas velocidades de rotación, el cierre de estanqueidad puede desgastarse rápidamente causando fugas de refrigerante.

Además, al estar el motor y el compresor separados, en ocasiones hay que instalar un sistema de refrigeración auxiliar para el motor.

Figura 2.6: Esquema y foto de un compresor abierto

Y según la forma de compresión, se clasifican en:

Compresores de desplazamiento positivo o Volumétricos

El gas refrigerante está confinado en una cámara cuyo volumen se reduce aplicando trabajo mecánico, incrementado así la presión del gas. Estos compresores pueden ser:

- Alternativos
- Rotativos:
- De paletas.
- Excéntrica.
- Espiral o "Scroll".
- Tornillos o "Screw".

Compresores de desplazamiento cinemático o Dinámicos

El gas es acelerado y después frenado bruscamente, convirtiendo la energía cinética en energía de presión. Pueden ser:

- Centrífugos o turbocompresor.
- o Axiales.

A lo largo de este proyecto, se tratará de tres tipos de compresores volumétricos: los alternativos semiherméticos, los tornillos semi-herméticos y los "Scroll" herméticos.

2.2.2 Tecnologías de compresores frigoríficos

2.2.2.1 Alternativos:

- Funcionamiento:

En este tipo de compresores, uno o más pistones recorren el interior de un cilindro efectuando una aspiración y compresión del fluido refrigerante. Cada cilindro tiene al menos una válvula de aspiración de gas refrigerante y una válvula de descarga del fluido que ha sido comprimido. En las figuras siguientes, se describen las sucesivas etapas de admisión, compresión y descarga del fluido refrigerante comprimido:

Figura 2.7: Etapas de la compresión con diagrama Presión-Volumen

En la carrera descendente, la primera etapa se denomina re-expansión (d-a). El volumen aumenta y la presión baja en el cilindro. Ambas válvulas permanecen cerradas hasta que se alcanza la presión P1 del gas. En este momento, se abre la válvula de admisión y el fluido puede entrar en el cilindro y su volumen aumenta (a-b). A continuación, en la carrera ascendente (b-c), se produce la compresión (la válvula de admisión se cierra, ambas válvulas se mantienen cerradas) hasta que se alcanza la presión de descarga P2. La válvula de descarga se abre produciendo la descarga a la presión superior. Después, la carrera del pistón será otra vez descendente y el ciclo se repetirá.

- Tipos:

En la industria, hay una multitud de compresores alternativos usando diversas disposiciones para los pistones. Entonces, los compresores alternativos herméticos suelen estar compuestos de un único pistón, mientras que los compresores semi-herméticos y abiertos están compuestos al menos de dos pistones, pudiendo llegar a tener hasta un máximo de ocho (en el caso del fabricante Bitzer). Los pistones pueden estar alineados, dispuestos en V o W (ver figura 2.7).

Análisis Comparativo De Compresores Frigoríficos Para R-134a

Figura 2.8: Compresores alternativos con pistones dispuestos (a) en V, (b) en W, (c) en línea y (d) en W

- Rango de potencias: 5-800kW. -
- Utilización/ Aplicación: muy diversas -
 - Para los compresores herméticos: frigoríficos y congeladores domésticos, unidades de 0 acondicionamiento de mediana potencia y grupos de refrigeradores de agua.
 - Para los compresores semi-herméticos y abiertos: refrigeración industrial de alta potencia, 0 máquinas de acondicionamiento.

2.2.2.2 Tornillos:

1

- Funcionamiento

Los compresores de tornillos disfrutan de un principio de funcionamiento totalmente distinto al de los alternativos. Su funcionamiento se divide en tres etapas.

Una primera etapa llamada la aspiración. Se lleva a cabo cuando el fluido ingresa a través de la entrada de aspiración. Así se llenan todos los espacios creados entre los lóbulos, los alvéolos y la carcasa. El espacio aumenta progresivamente en longitud durante la rotación a medida que el engranaje de los rotores se aproxima hacia el lado de descarga. Esta fase acaba una vez que el fluido ha ocupado toda la longitud del rotor. Tras esta etapa, empieza la compresión, el fluido disminuye su volumen debido al engrane final de los rotores y en consecuencia aumenta su presión. Finalmente, el fluido es descargado continuamente hasta que el espacio entre los lóbulos de los rotores desaparece.

Figura 2.10: Vista en sección de un compresor de tornillos

Debido a la geometría de los rotores el flujo es axial y circunferencial. El punto en el que el fluido alcanza la salida determina la relación de presiones del equipo.

- Tipos:

Existe dos tipos de compresores de tornillos, los de doble-tornillos (ver figura 2.10) y los mono-tornillos. El compresor mono-tornillo tiene un único rotor helicoidal y dos satélites opuestos cuyos ejes de rotación son paralelos y situados en un plano perpendicular al del eje del tornillo. El motor hace girar el tornillo y ese movimiento arrastra los satélites. Entonces el gas es aspirado por el tornillo, y su volumen es paulatinamente reducido por los satélites aumentando la presión. (Ver figura 2.11)

Figura 2.11: Sección transversal de un compresor mono-tornillo y dos satélites

- Rangos de potencias: 50-1000 kW.
- Utilización/Aplicación: grandes instalaciones frigoríficas, refrigeración industrial.

2.2.2.3 "Scroll":

Figura 2.12: Etapas de compresión de un compresor "Scroll"

- Funcionamiento

El esquema superior describe el proceso de compresión del compresor "Scroll". Los componentes principales son una espiral fija y otra móvil, las cuales se encuentran embutidas una en el interior de la otra. La espiral móvil realiza un movimiento orbital alrededor de la fija. Las cámaras de compresión tienen un volumen superior en la periferia de las espirales donde se sitúa la aspiración. Su volumen se hace cada vez menor hasta el centro donde se sitúa el orificio de descarga.

Los movimientos orbitales obligan al gas a desplazarse hacia el centro, y este desplazamiento va acompañado de una progresiva reducción de su volumen hasta su desaparición total. Por este medio, se consigue el ciclo de compresión del fluido frigorífico.

Figura 2.13: Compresor hermético de tipo "Scroll"

- Rangos de potencias: 5-40 kW.
- Utilización/ Aplicación: Principalmente, aire acondicionado.

En este capítulo se diseñará el modelo teórico termodinámico de un ciclo frigorífico simple. Se usará el programa EES versión 9.934-3D, desarrollado por F-chart. Además, se calculará el COP y la potencia frigorífica específica en los puntos de referencias nominales, y se obtendrán los gráficos de estos parámetros en función de las temperaturas de evaporación, de condensación y de la relación de compresión.

3.1 Condiciones De Trabajo

3.1.1 Ecuaciones termodinámicas

Figura 3.1: Diagrama Presión-Entalpía con compresión real y isentrópica

El ciclo 1-2-3-4 representa el ciclo frigorífico simple con subenfriamiento líquido y recalentamiento de los vapores. Mediante las tablas termodinámicas del refrigerante, se pueden calcular las potencias de cada componente.

Potencia frigorífica:

Producto del caudal másico de refrigerante a baja presión a través del compresor y de la diferencia entre la entalpía específica del refrigerante, a la entrada del compresor a baja presión, y la entalpía específica del fluido entrante al dispositivo de expansión del evaporador.

$$Q_f = \dot{m}_r (h_1 - h_4) \tag{3.1}$$

Potencia absorbida:

Potencia absorbida por el gas comprimido.

$$\dot{W}_{c} = \dot{m}_{r}(h_{2}-h_{1})$$
 (3.2)

Potencia extraída:

Potencia evacuada en el condensador.

$$Q_c = \dot{m}_r (h_2 - h_3) \tag{3.3}$$

La expansión en la válvula siendo isentálpica, la potencia es nula y la entalpía a la entrada de la válvula de expansión es igual a la entalpía a la salida de esta válvula. Se comprueba que la potencia frigorífica más la potencia absorbida es igual a la potencia extraída.

La relación de compresión de un compresor es el cociente entre la presión a la salida del compresor (en la entrada del condensador) y la presión a su entrada (salida del evaporador).

$$r_{c} = \frac{P_{c}}{P_{e}}$$
(3.4)

3.1.2 Rendimiento isentrópico y volumétrico

El rendimiento isentrópico ya se ha definido en el capítulo anterior:

$$\eta_{s} = \frac{\dot{W}_{cs}}{\dot{W}_{c}} = \frac{h_{2s} \cdot h_{1}}{h_{2} \cdot h_{1}}$$
(3.5)

El rendimiento volumétrico es el cociente entre el volumen de refrigerante desplazado y el desplazamiento volumétrico del compresor:

$$\eta_{\rm v} = \frac{\dot{\rm m}_{\rm r} \cdot {\rm v}_1}{\dot{V}_t} \tag{3.6}$$

3.1.3 Hipótesis de partida

En este apartado, consideramos que la comprensión del compresor es perfecta e ideal. Entonces, los rendimientos isentrópico y volumétrico son iguales a uno.

3.1.4 Condiciones de trabajo nominales

En la norma UNE-EN 12900:2013 titulada "Compresores para refrigerantes", se definen los puntos de referencia nominales para los compresores frigoríficos. En el caso de este proyecto, se trabaja con el refrigerante R-134a y una temperatura media de evaporación, los puntos de referencia nominales son:

- Temperatura de evaporación: -10°C.
- Temperatura de condensación: +45°C.
- Sobrecalentamiento: +10K.
- Subenfriamiento: 0K.

Se pueden comprobar estos datos en la tabla 5 de la norma o en la tabla 3.1:

	Aplicaciones del compresor			
Puntos de referencia	Temperatura alta de evaporación	Temperatura media de evaporación	Temperatura baja de evaporación	Nevera/congeladores para aplicaciones domésticas y similares
Temperatura de evaporación (°C) en el punto de rocío a la entrada del compresor	+ 5	- 10	- 35	- 25
Temperatura de condensación (°C) en el punto de rocío a la salida del compresor	+ 50	+ 45	+ 40	+ 55
Temperatura del gas de succión (°C) o sobrecalentamiento (K)	+ 20 10 o 5ª	+ 20 10 o 5 ^a	+ 20 10 o 5 ^a	+ 32
Subenfriamiento (K)	0	0	0	0
^a Para R-717.		·	•	

Tabla 3.1: Puntos de referencia para aplicaciones con R-134a

El subenfriamiento siendo nulo, el punto 3 en la figura 3.1 está en el punto de burbuja del refrigerante (pegado a la curva).

3.2 Objetivos Del Estudio Termodinámico

Se conocen las temperaturas de evaporación y condensación, el subenfriamiento y el sobrecalentamiento, los rendimientos isentrópico y volumétrico, el tipo de refrigerante. Entonces, se pueden calcular todos los parámetros independientes del caudal másico del refrigerante. En este apartado, nos centramos en el estudio de dos parámetros: el COP y la potencia frigorífica partida por volumen de compresor llamada también potencia frigorífica específica.

3.2.1 Cálculo del COP

Como se ha visto en el capítulo anterior, el COP se define con la fórmula siguiente:

$$COP = \frac{Q_{f}}{\dot{W}_{c}} = \frac{h_{1} \cdot h_{4}}{h_{2} \cdot h_{1}}$$
(3.7)

Las entalpías h_1 , h_2 y h_4 son función de las temperaturas de evaporación y condensación, el COP sólo depende de estas dos temperaturas.

3.2.2 Cálculo de la potencia frigorífica por volumen de compresor o potencia frigorífica específica

El desplazamiento volumétrico del compresor puede expresarse mediante esta relación:

$$\dot{V}_t = \frac{\dot{\mathbf{m}}_{\mathbf{r}} \cdot \mathbf{v}_1}{\eta_{\mathbf{v}}} \tag{3.8}$$

Entonces si se expresa la potencia frigorífica Q_f en función del desplazamiento volumétrico, se obtiene la relación:

$$\frac{Q_{f}}{\dot{V}_{t}} = \frac{\eta_{v} \cdot \dot{m}_{r} \cdot (h_{1} - h_{4})}{\dot{m}_{r} \cdot v_{1}} = \eta_{v} \cdot \frac{h_{1} - h_{4}}{v_{1}}$$
(3.9)

Las entalpías $h_1 y h_4$ sólo dependen de las temperaturas de evaporación y condensación, el volumen másico v_1 depende únicamente de la temperatura de evaporación, y el rendimiento volumétrico es igual a uno, así la potencia frigorífica específica sólo depende de estas dos temperaturas.

3.3 Uso Del Software Engineering Equation Solver

3.3.1 Descripción del software

Engineering Equation Solver (EES) es un programa de resolución general de ecuaciones que puede resolver numéricamente miles de ecuaciones algebraicas no lineales acopladas y diferenciales. El programa también puede ser usado para resolver ecuaciones diferenciales e integrales, hacer optimizaciones, proporcionar análisis de incertidumbre, realizar regresiones lineales y no lineales, convertir unidades y comprobar la coherencia de la unidad. Incluye tablas paramétricas que permiten al usuario comparar series de variables y también se pueden utilizar para generar gráficos de alta calidad. Una característica importante de EES es la base de datos de propiedades termodinámicas y de transporte. EES proporciona esta información con alta precisión y para cientos de sustancias. Además permite ser utilizado con la herramienta de resolución de ecuaciones.

Se usará la base de datos de propiedades del refrigerante R-134a.

3.3.2 Estado de referencia predeterminado

EES permite definir el estado de referencia del refrigerante, hay cuatro opciones:

- DFT: la referencia se restablece al valor predeterminado.
- NBP: los valores de la entalpía específica y la entropía específica están cada uno fijados en 0 para el líquido saturado a la temperatura de ebullición normal.
- ASH: los valores de la entalpía específica y la entropía específica están cada uno fijados en 0 para el líquido saturado a -40°C.Esta es la referencia estándar ASHRAE.
- IIR: el valor de la entalpía específica se ajusta a 200 kJ / kg y el valor de entropía específica se ajusta a 1,0 kJ / kg-K para el líquido saturado a 0°C. Este es el estado de referencia estándar para el Instituto Internacional de Refrigeración.

Se elige la última opción para el estudio, la referencia del Instituto Internacional de Refrigeración.

3.3.3 Uso de EES

Se usará EES para el cálculo del COP y de la potencia frigorífica específica en función de las temperaturas de evaporación y condensación.

3.4 Modelo EES Y Obtención De Los Resultados Teóricos

3.4.1 Código EES

El código EES de este análisis es simple. Se descompone en distintas partes que se pueden observar en las figuras 3.2:

- Pruebas.
- Cálculo de las entalpías.
- Cálculo de las entropías.
- Temperaturas.
- Presiones y relación de compresión.
- Potencias.
- Rendimientos.
- Parámetros objetivos.

\$REFERENCE R134a IIR	"Temperet weetstaatstaatstaatstaatstaatstaatstaat
"Druch	remperaturas
Pruebas	te=-10
hprueba1=enthalpy(R134a;T=0;x=0) sprueba1=entropy(R134a;T=0;x=0)	tc=45 deltaTv=10 "sobrecalentamiento" t1=te+deltaTv
"ciclo simple de refrigeración con sobrecalentamiento" "Presiones de trabajo*******************************	t3=tc t2=temperature(R134a;P=p3;H=h2)
pe=P_sat(R134a; T=te)	"Potencias************************************
pc=P_sat(R134a;T=tc) pe=p1 p2=pc p4=p1 o2=n3	Qf=mr*(h1-h4) Qc=mr*(h2-h3) Wc=mr*(h2s-h1)/etaS Wcs=mr*(h2s-h1)
rc=pc/pe "relación de compresión"	Qc=Qf+Wc "Rendimientos************************
"Cálculo de las enthalpías************************************	etaS=(h2s-h1)/(h2-h1)
h3=enthalpy(R134a;P=p3;x=0) h4=h3 h1=enthalpy(R134a; T=t1; P=p1) h2s=enthalpy(R134a; P=p3; S=s1)	etaV=Vr1/Vt etaV=1 v1=volume(R134a;P=p1;T=t1) Vr1=mr*v1
etaS=1 "h2 con el rendimiento isentrópico"	"Parámetros Objetivos : COP y Potencia frigorífica por volumen de compresor*********
"Cálculos de las entropías************************************	COP=Qf/Wc COPcarnot = 1/((tc+273)/(273+te)-1)
s3=ENTROPY(R134a;T=tc;x=0) s2s=s1 s1=entropy(R134a;P=p1;T=t1) s4=entropy(R134a;P=p1;H=h3)	Qf_tpVt=(h1-h4)/v1/3,6 {[W/(m3/h)]}

3.4.2 Resolución del código EES

Se obtiene un sistema con 37 ecuaciones independientes y 37 variables entonces la resolución es factible. Tras la resolución de este sistema en los puntos de referencia nominales, obtenemos los resultados siguientes:

COP = 3,56	COPcarnot = 4,782	δTv = 10	etaS = 1	etaV = 1
h4 = 263,9	hprueba1 = 200	mr = 1,438	p1 = 200,7	p2 = 1161
Qc = 252,7	Qf = 197,3	Qf _{tpVt} = 365,1	s1 = 1,765	s2s = 1,765
t2 = 61,07	t3 = 45	tc = 45	te = -10	v1 = 0,1044
h1 = 401,2	h2 = 439,7	h2s = 439,7	h3 = 263,9	rc = 5,781
p3 = 1161	p4 = 200,7	pc = 1161	pe = 200,7	
s3 = 1,214	s4 = 1,244	sprueba1 = 1	t1 = 0	
Vr1 = 0,1501	Vt = 0,1501	Wc = 55,41	Wcs = 55,41	

Unit Settings: SI C kPa kJ mass deg

Figura 3.3: Resultados del sistema de ecuaciones

Primero se comprueba que la entalpía y la entropía específicas tienen los valores de referencia. En esta simulación, obtenemos los valores esperados, entonces se pueden analizar los resultados. El COP de Carnot es de 4,782 y el COP ideal que obtenemos vale 3,56 y es inferior al COP de Carnot, lo que es normal, y la potencia frigorífica específica es de 365,1W/(m³/h). Aquí, EES da un valor arbitrario al caudal de refrigerante, no es pertinente y no es usado para la resolución del sistema de ecuación así que no altera a los resultados. En el siguiente capítulo se usará este parámetro.

3.4.3 Tablas paramétricas

En el apartado anterior, se ha resuelto un sistema de ecuación habiendo fijado previamente las temperaturas de evaporación y condensación. Ahora, se borran las dos variables $T_e y T_c$ del código EES, y se crea una tabla con cinco columnas:

- Temperatura de evaporación.
- Temperatura de condensación.
- Relación de compresión.
- COP.
- Potencia frigorífica específica.

La temperatura de evaporación se define con un rango de [-25°C ; 13°C] y un incremento unitario y la temperatura de condensación con un rango de [15°C ; 65°C] y un incremento de diez. Se han elegido estos rangos de temperaturas porque son los más usados y los que se encontrarán en los capítulos siguientes. Habiendo rellenado la tabla con estos rangos de temperatura, EES puede resolver cada fila que corresponde a las temperaturas de evaporación y de condensación dadas. Se resuelve 234 veces el sistema y se obtiene una base de datos del COP y de la potencia frigorífica por volumen de compresor en función de las temperaturas de evaporación y condensación como se puede ver en la tabla 3.2:

139	1 te	² tc	3 rc	⁴ COP ■	⁵ Qf _{tp∨t} ⊻
Run 1	-25	15	4,59	5,218	249,7
Run 2	-24	15	4,388	5,396	261,6
Run 3	-23	15	4,196	5,584	273,9
Run 4	-22	15	4,015	5,782	286,6
Run 5	-21	15	3,843	5,991	299,8
Run 6	-20	15	3,679	6,213	313,5
Run 7	-19	15	3,524	6,447	327,8
Run 8	-18	15	3,377	6,696	342,5
Run 9	-17	15	3,238	6,96	357,8
Run 10	-16	15	3,105	7,242	373,6
Run 11	-15	15	2,979	7,543	389,9
Run 12	-14	15	2,859	7,864	406,9
Run 13	-13	15	2,745	8,209	424,4
Run 14	-12	15	2,636	8,579	442,6
Run 15	-11	15	2,533	8,978	461,4
Run 16	-10	15	2,434	9,409	480,8

Tabla 3.2: Extracto del anexo 3.1.

3.4.4 Obtención de las curvas

Mediante la tabla que se ha obtenido anteriormente, se pueden crear gráficas representando los dos parámetros en función de las temperaturas del ciclo frigorífico y de la relación de compresión.

3.4.4.1 Gráficas en función de las temperaturas de evaporación y condensación

Figura 3.4: Gráfica que representa el COP ideal en función de las temperaturas de evaporación y condensación

Figura 3.5: Gráfica que representa la potencia frigorífica específica en función de las temperaturas de evaporación y condensación

3.4.4.2 Gráficas en función de la relación de compresión

Figura 3.6: Gráfica que representa el COP ideal en función de las temperaturas de evaporación y condensación

Figura 3.7: Gráfica que representa la potencia frigorífica específica en función de las temperaturas de evaporación y condensación

3.4.5 Interpretación de las curvas

3.4.5.1 Interpretación de las curvas COP=f(Te;Tc) y COP=f(rc)

Curva COP=f(T_e;T_c)

Para una temperatura de condensación dada, se observa que el COP aumenta cuando la temperatura de evaporación aumenta. En efecto, cuando la temperatura de evaporación aumenta, el salto entálpico en el compresor es menor (punto 1-2 de la figura 3.1), entonces la potencia absorbida es también menor; y el salto entálpico en el evaporador es mayor dando una potencia frigorífica mayor (punto 4-1 de la figura 3.1). Como se ha explicado, el COP es el cociente entre la potencia frigorífica y la potencia absorbida en el compresor, si al aumentar la temperatura de evaporación, la potencia absorbida disminuye y la potencia frigorífica aumenta, se entiende que el COP aumenta con la temperatura de evaporación.

Se observa también que para una temperatura de evaporación dada, el COP disminuye con un aumento de la temperatura de condensación. Se explica por el aumento del salto entálpico en el compresor y la disminución del salto entálpico en el evaporador al aumentar la temperatura de condensación. Con estas variaciones, la potencia frigorífica disminuye y la potencia absorbida en el compresor aumenta, lo que tiene como consecuencia el descenso del COP.

En la figura 3.8, se ha representado un gráfico P-h con dos temperaturas de condensación y dos de evaporación. Sólo se ha representado una de las isentrópicas (la pasando por la isoterma 0°C). No se ha representado la pasando por +10°C por motivos de claridad en el gráfico y por ser muy similar a la anterior. Se puede averiguar los comentarios anteriores en este gráfico.

Curva COP=f(r_c)

Se puede ver que cuanto menor es la relación de compresión, mayor es el COP y que el COP disminuye con el crecimiento de la relación de compresión. Una relación de compresión baja significa que las temperaturas de evaporación y condensación están cercanas. Entonces, como ya se lo ha visto, cuando las temperaturas son cercanas, el salto entálpico en el compresor es bajo, y el COP más alto. Mientras que, cuando las temperaturas de evaporación y condensación están alejadas, como en el caso de una relación de compresión alta, la potencia absorbida en el compresor es alta y la potencia frigorífica baja, lo que conduce a un COP bajo.

Figura 3.8: Diagrama Presión-Entalpía con temperaturas de evaporación de -10°C y 0°C, y temperatura de condensación de 45°C y 65°C

3.4.5.2 Interpretación de las curvas $\frac{Qf}{\dot{V}_t}$ =f(T_e;T_c) y $\frac{Qf}{\dot{V}_t}$ =f(r_c)

Curva $\frac{Qf}{\dot{V}_t}$ =f(T_e;T_c)

Ya se ha visto que la potencia frigorífica específica es el cociente entre el salto entálpico en el evaporador y el volumen específico v_1 del refrigerante en la entrada del compresor. Este volumen específico sólo depende de la temperatura de evaporación y del tipo de refrigerante.

Para una temperatura de condensación dada, la potencia frigorífica específica aumenta con el incremento de la temperatura de evaporación. En efecto, cuando la temperatura de evaporación aumenta, el salto entálpico en el evaporador es mayor dando una potencia frigorífica más grande, y bajando el volumen específico. Estas variaciones con el aumento de la temperatura de evaporación conducen a un aumento de la potencia frigorífica específica.

Se observa también que para una temperatura de evaporación dada, la potencia frigorífica específica disminuye con un aumento de la temperatura de condensación. Se explica por la disminución del salto entálpico en el evaporador al aumentar la temperatura de condensación. Con esta disminución, la potencia frigorífica disminuye y el volumen específico del refrigerante se mantiene constante, lo que tiene como consecuencia la disminución de la potencia frigorífica específica del compresor.

Cuanto mayor es este cociente, mayor es la potencia frigorífica obtenida para un volumen de compresor dado. Entonces para una potencia frigorífica dada, un cociente alto que se puede alcanzar esta potencia frigorífica con un compresor de tamaño reducido.

$Curva \frac{Qf}{\dot{V}_t} = f(r_c)$

Se observa que esta curva está compuesta de varias hipérboles. Cada hipérbole corresponde a una temperatura de condensación dada. Considerando los comentarios anteriores y los del apartado "curva $COP=f(r_c)$ ", se entiende que la potencia frigorífica específica disminuye con un aumento de la relación de compresión.

3.5 Conclusiones

En este capítulo, se ha desarrollado un código EES que permite obtener el COP teórico y la potencia frigorífica teórica por volumen de compresor o potencia frigorífica específica de un ciclo frigorífico simple conociendo solamente el tipo de refrigerante, las temperaturas de evaporación y condensación, y el sobrecalentamiento a la salida del evaporador. Para obtener estos valores, se han establecido dos hipótesis aproximadas, un rendimiento volumétrico y otro isentrópico iguales a uno. En la realidad, nunca toman estos valores. Por eso, en el resto de este trabajo, se llamarán y notarán este COP ideal y esta potencia frigorífica ideal obtenido con estos rendimientos perfectos, el COP teórico COP_t y la potencia frigorífica teórica $Q_{\rm ft}$.

4 CURVAS DE COMPORTAMIENTO DE COMPRESORES

En este capítulo se explicará la metodología seguida para obtener los rendimientos energéticos y volumétricos de compresores reales.

4.1 BITZER

4.1.1 BITZER, fabricante de compresores

Desde hace 80 años, el grupo empresarial alemán BITZER aporta innovadores productos y servicios relacionados con las tecnologías de refrigeración y aire acondicionado. Desarrolla y fabrica principalmente compresores frigoríficos de tipo alternativo con pistón, de "Scroll" y de tornillos, y también unidades de condensación y depósitos bajo presión.

4.1.2 Tipos de compresores

Bitzer fabrica tres tipos de compresores:

- Compresores de pistones abiertos, semi herméticos y semi herméticos de doble etapa.
- Compresores de tornillos abiertos, semi herméticos compactos.
- Compresores de espiral o "Scroll" herméticos.

Se estudiará los compresores de pistón semi herméticos, de tornillos semi-herméticos y compactos, y los compresores de "Scroll" herméticos.

4.1.3 Software

BITZER pone a disposición un Software donde todos sus productos están catalogados.

Figura 4.1: Pantalla de apertura del software BITZER

Las principales características de los compresores como sus límites de uso, datos técnicos, dimensiones, informaciones y documentaciones están definidas. Además, proporciona una herramienta permitiendo hacer simulaciones según las condiciones de funcionamiento del ciclo frigorífico. En la figura 4.2, se puede ver que estamos trabajando con un compresor de "Scroll" modelo ELA743Y en el punto de referencia nominal determinado anteriormente con el refrigerante R-134a. Se comprueba que las condiciones de trabajo son válidas y el software nos calcula después directamente la potencia frigorífica desarrollada por el ciclo y la potencia absorbida en el compresor. (ver figura 4.3)

Figura 4.2: Pantalla de simulación del software BITZER

Compresor ELA743Y-40S	
Escalones de capacidad 100%	
Potencia frigorífica 14,98 kW	
Potencia frigorífica * 15,51 kW	
Potencia en el evap. 14,98 KW Potencia absorbida 7,31 kW	
Corriente (400V) 14,59 A	
Gama de tensiones 380-420V	
Capacidad del condensador 22,3 kW	
COP/EER* 2,05	
Caudal másico 396 kg/h	
Temp. Gas de descarga no enfriado 85,5 ℃	

Figura 4.3: Resultados y datos técnicos del compresor ELA743Y con la simulación en el punto de referencia nominal.

4.1.4 Polinomios y curvas de funcionamiento de los compresores

Hay otros datos muy útiles que Bitzer ofrece: los polinomios de grado tres con términos cruzados de la potencia frigorífica, la potencia absorbida, el caudal másico de refrigerante y la intensidad en función de las temperaturas de evaporación y condensación. Sólo el caudal másico y las potencias frigoríficas y absorbidas nos interesan. Mediante estos polinomios y respetando sus alcances de validez y los límites del compresor, se puede calcular estos parámetros para cualquier temperatura de evaporación y condensación.

Modelo de c	ompresor		ELA743Y							
Refrigerante			R134a							
Temperatura de referencia Temp. en el				ounto de rocío)					
Liquido sube	enfriado (desp	oues condens	ОК							
Recalentami	ento de gas a	spirado	10,00 K							
Alimentació	n eléctrica		400V-3-50Hz							
Recalentami	ento útil		100%							
Polinomial										
y = c1 + c2*t	o + c3*tc + c4	*to^2 + c5*to	*tc + c6*tc^2	+ c7*to^3 + c	8*tc*to^2 + c9	9*to*tc^2 + c1	L0*tc^3			
Conficientes										
coenciente.	-1	-2	-2	- 4	-5	-6	-7	-0	-0	-10
- D	C1	C2	C5	C4	C5	CD	c/	68	C9	010
Q[W]	34182,059	1338,8004	-181,06153	21,938647	-6,3072654	-1,668949	0,1259979	-0,1411505	-0,0425587	0,0064029
P [W]	3029,1363	72,832603	52,909134	1,8451754	-2,657321	0,6827962	0,0220333	-0,0390712	0,0335308	0,0081615
m [kg/h]	591,53156	20,993314	0,8870995	0,3084158	0,0496282	-0,0237684	0,0020251	-0,0002191	-0,0007067	2,596E-05
I [A]	11,336577	0,0651768	-0,0162731	0,0021038	-0,0025448	0,0015291	2,501E-05	-4,444E-05	3,724E-05	1,281E-05
Alcance de v	alidez de los	polinomios								
Temp. de eva	poración:		-15°C		15°C					
Temp. de cor	ndensación:		30°C		70°C					
Polinomio y	datos de entr	ada según EN	12900							
Atención: ter	ner en cuenta	tambien los l	imites de apl	icación del co	ompresor					

Figura 4.4: Polinomios sacados del software Bitzer del compresor "Scroll" ELA743Y

Como se puede ver, BITZER proporciona mucha información para cada uno de sus productos pero no se conocen los rendimientos isentrópicos y volumétricos. Se modificará el código EES que se ha visto en el capítulo anterior incorporando los polinomios para obtener indicadores representativos de su funcionamiento en dichas condiciones.

4.2 Modelo EES – BITZER

4.2.1 Objetivos

En esta parte, se buscan indicadores representativos de la eficiencia de funcionamiento de un compresor BITZER para temperaturas de evaporación y condensación dadas en un ciclo simple de refrigeración. Entonces, se considera en primer lugar, cuatros indicadores:

- El rendimiento energético η_E .
- El rendimiento volumétrico η_v.
- El cociente entre la potencia frigorífica dada por Bitzer y la potencia frigorífica teórica llamado factor de degradación de la potencia frigorífica f_{Of}.
- El cociente entre el COP dado por Bitzer y el COP teórico llamado factor de degradación del COP f_{COP} .

4.2.2 Definición de los indicadores

Para diferenciar los datos provenientes del modelo teórico del capítulo anterior y de los datos de BITZER, se marcará los parámetros con dos índices, una "_t" pequeña para los datos teórico y una "_b" pequeña para los datos de BITZER.

El rendimiento energético

El rendimiento isentrópico del compresor es el cociente entre la potencia de comprensión isentrópica y la potencia de compresión real.

$$\eta_s = \frac{\dot{W}_{cs}}{\dot{W}_c} \tag{3.10}$$

BITZER proporciona la potencia absorbida real de cada compresor mediante un polinomio. Esta potencia absorbida dada corresponde a la potencia eléctrica a la salida del motor del compresor (ver figura 4.5). No conocemos la temperatura a la salida del compresor, entonces no se puede obtener la entalpía en este punto, ni calcular la potencia absorbida real.

Sin embargo, se sabe que la potencia eléctrica es igual a la potencia absorbida multiplicada por el rendimiento mecánico y el rendimiento eléctrico. Entonces se trata realmente del rendimiento energético del compresor, y no únicamente del rendimiento isentrópico. Los rendimientos mecánicos y eléctricos son cercanos a 1, el rendimiento eléctrico vale 0,95-0,96 y el rendimiento mecánico vale 0,97-0,98, por tanto el rendimiento isentrópico.

$$\eta_{\rm E} = \eta_{\rm s} \cdot \eta_{\rm m} \cdot \eta_{\rm e} \tag{3.11}$$

Figura 4.5: Esquema que representa un compresor con su motor

En el resto del trabajo, se estudiará este rendimiento energético.

Para calcularlo, se usará la potencia absorbida teórica obtenida con un rendimiento isentrópico igual a uno. Así que esta potencia teórica es igual a la potencia de comprensión isentrópica W_{cs_t} . Y se usará la potencia absorbida calculada mediante el polinomio dado por BITZER W_{cb} .

La fórmula con los índices apropiados es:

$$\eta_{\rm E} = \frac{\dot{W}_{\rm cs_t}}{\dot{W}_{\rm cb}} \tag{3.12}$$

El rendimiento volumétrico nv

Para calcularlo, se obtienen los datos técnicos del compresor, el desplazamiento volumétrico $\dot{V}_{t,b}$, y también se calcula el caudal másico mediante el polinomio dado por BITZER $\dot{m}_{r,b}$.

La fórmula con los índices apropiados es:

$$\eta_{\rm v} = \frac{\dot{m}_{\rm r_b} \cdot v_1}{\dot{V}_{t_b}} \tag{3.13}$$

El factor de degradación del COP f_{COP}

El COP_b de un compresor real de BITZER es el cociente entre la potencia frigorífica y la potencia absorbida del compresor en dichas condiciones de funcionamiento, ambos valores de potencias se han obtenido mediante los polinomios BITZER:

$$COP_{b} = \frac{Q_{f_b}}{\dot{W}_{c_b}}$$
(3.14)

Se define por la fórmula siguiente:

$$f_{COP} = \frac{COP_b}{COP_t}$$
(3.15)

El factor de degradación de la potencia frigorífica f_{Qf}

Se define por la fórmula siguiente:

$$f_{Qf} = \frac{Q_{f_{L}b}}{Q_{f_{L}t}}$$
(3.16)

La potencia frigorífica teórica se calcula para un mismo desplazamiento volumétrico que el compresor real BITZER estudiado. Entonces se define por:

$$Q_{f_{-t}} = \frac{\eta_{v_{-t}} \cdot V_{t_{-b}}}{v_1} (h_1 - h_4) \operatorname{con} \eta_{v_{-t}} = 1$$
(3.17)

Estos cuatros indicadores permitirán estudiar en detalle el comportamiento de un compresor frente a distintas condiciones de funcionamiento.

4.2.3 Ampliación del código EES.

Para obtener un código completo, se re-usa el código EES del capítulo anterior, se añaden los índices "_t" a la parte teórica y se completan con los cuatro indicadores de comportamiento, el desplazamiento volumétrico y los polinomios de un compresor dado.

Para este ejemplo, se han usado los datos y los polinomios del compresor "Scroll" ELA743Y.

En la figura 4.6, se pueden ver las nuevas partes que son:

- Los polinomios de BITZER.
- El desplazamiento volumétrico fijado.
- Los 4 indicadores de estudio.

Este modelo tiene 47 ecuaciones independientes para 47 variables, se puede resolver.

4.2.4 Obtención de f_{COP} , f_{Qf} , η_v y η_E

Este código EES es el modelo que se seguirá para estudiar los compresores BITZER. Como en el capítulo anterior, se crea una tabla paramétrica de 7 columnas con la temperatura de evaporación, la temperatura de condensación, la relación de compresión, los rendimientos energético y volumétrico y las comparaciones de COP y de potencias frigoríficas (ver figura 4.7). Hay que asegurarse que se respete el alcance de validez de los polinomios para obtener una base de datos. Esta condición de respeto del alcance es necesaria pero no es suficiente como se verá luego.

Figura 4.7: Tabla paramétrica para obtención de los indicadores

Para este compresor ELA743Y, el alcance de validez de su temperatura de evaporación es $[-15^{\circ}C; 15^{\circ}C]$ y de su temperatura de condensación es $[30^{\circ}C; 70^{\circ}C]$.

Entonces, en esta tabla, la temperatura de evaporación variará entre -15°C y 15°C con un incremento unitario y la temperatura de condensación variará entre 30°C y 70°C con un incremento de cinco.

Tras el primer relleno de esta tabla paramétrica que respeta el alcance de validez de los polinomios, hay que comprobar que se respetan los límites de funcionamiento del compresor. Para eso, se busca la gráfica que representado el conjunto de puntos de funcionamiento del compresor estudiado y se borran las filas de la tabla paramétrica que no pertenecen a este conjunto de puntos. Se puede ver este conjunto en la figura 4.8 para el compresor de "Scroll" ELA743Y.

Figura 4.8: Gráficas que representa los puntos de funcionamiento del compresor "Scroll" ELA743Y en función de Te y Tc

Por ejemplo, para la temperatura de condensación igual a 70°C, se borran las filas correspondientes al rango de temperatura de evaporación [-15°C ; 2°C] (el gas de aspiración está sobrecalentado). Se repite esta etapa para cada temperatura de condensación borrando las filas según la gráfica de límites de funcionamiento del compresor.

En este caso, antes de haber borrado las filas, la tabla paramétrica tenía 279 filas, y después, 238.

Se resuelve la tabla paramétrica y así se obtiene la base de datos del compresor de "Scroll" ELA743Y.

Primero se crean cuatro gráficas que representan los cuatro indicadores en función de las temperaturas de evaporación y de condensación. La temperatura de condensación varía de -15°C a 15°C y la temperatura de condensación tomará los siguientes valores: 30°C, 45°C, 50°C, 60°C y 70°C.

Segundo, se representan en la figura 4.10 los rendimientos volumétricos y energéticos en función de la relación de compresión. Para el dibujo de estas gráficas, se usa la tabla paramétrica entera con las 238 filas.

Curvas en función de las temperaturas de evaporación y condensación

Figura 4.9: Gráficas que representan los indicadores del compresor de "Scroll" ELA743Y en función de Te y Tc

Figura 4.10: Gráficas que representa el rendimiento energético y volumétrico del compresor de "Scroll" ELA743Y en función de la relación de compresión

4.2.5 Interpretación y reducción del estudio

Interpretación de las curvas Qf_b/Qf_t=f(T_e,T_c)

Se puede ver que el cociente entre la potencia frigorífica real y la potencia frigorífica teórica, es decir el factor de degradación de la potencia frigorífica, tiene las mismas variaciones que las curvas que representan el rendimiento volumétrico.

Ya se había definido el factor de degradación de la potencia frigorífica por esta fórmula:

$$f_{Qf} = \frac{Q_{f_b}}{Q_{f_t}}$$
(3.18)

Y también la potencia frigorífica real se podría formular así:

$$Q_{f b} = \dot{m}_r(h_1 - h_4)$$
 (3.19)

Al inyectar la ecuación (4.4) en la ecuación (4.10), se obtiene:

$$Q_{f_{-t}} = \frac{\eta_{v_{-b}} \cdot \dot{V}_{t_{-b}}}{\nu_1} (h_1 - h_4)$$
(3.20)

Inyectando (4.8) y (4.11) en (4.9), resulta que:

$$f_{Qf} = \eta_v \tag{3.21}$$

Así se puede afirmar que el factor de degradación es igual al rendimiento volumétrico. No se estudiará más este indicador.

Interpretación de las curvas $\eta_v = f(T_e, T_c) y \eta_v = f(r_c)$

En la gráfica en función de las temperaturas, se observa que para una temperatura de condensación fija, el rendimiento volumétrico aumenta con un aumento de la temperatura de evaporación. Se nota que a partir de temperaturas de evaporación altas, con un salto entálpico bajo en el compresor, el rendimiento volumétrico supera 1. No es factible y se puede explicar por un mal uso debido al alcance de validez de los polinomios. Al estudiar un compresor se deberá comprobar que no haya impertinencia en los datos obtenidos. Además cuanta más alta es la temperatura de condensación, más bajo es el rendimiento.

En la gráfica en función de la relación de compresión, la gráfica está compuesta de varias rectas con pendiente negativa. Cada recta corresponde a una temperatura de condensación dada. Se comprueba la misma tendencia que en la de en función de las temperaturas. En efecto, cuando la relación de compresión es baja, el salto entálpico lo es también, y el rendimiento es alto (alrededor de 1). Aumentando paulatinamente la relación de compresión, este rendimiento disminuye alcanzando 0,85.

Cuanto mayor sea el rendimiento volumétrico, mejor uso del volumen del compresor se está haciendo.

Interpretación de las curvas $COP_b/COP_t=f(T_e,T_c)$ y $\eta_E=f(T_e,T_c)$

Se puede ver que estas dos curvas muestran tendencias similares teniendo un máximo alrededor de 0,65. Estas dos curvas son casi similares porque estos dos indicadores, el factor de degradación del COP y el rendimiento energético son casi iguales. Se justifica por estas fórmulas:

Ya se habían definido el COP real (de BITZER) y el teórico con las fórmulas (3.7) para el teórico y (4.5) para el real.

Y también se sabe que el factor de degradación del COP es el cociente entre el COP teórico y el COP real. Entonces, se obtiene la formulación:

$$f_{COP} = \frac{COP_b}{COP_t} = \frac{Q_{f_b}}{\dot{W}_{c_b}} \times \frac{\dot{W}_{c_t}}{Q_{f_t}}$$
(3.22)

Además, la potencia absorbida teórica es la misma que la potencia absorbida isentrópica teórica (ver capítulo 3.1.3 hipótesis de partida: rendimiento isentrópico teórico igual a uno). Finalmente, La comparativa de COP es el producto entre el factor de degradación de potencia frigorífica y el rendimiento energético real. Al tener el factor de degradación de la potencia frigorífica cercano a uno, resulta que el factor de degradación del COP es equivalente al rendimiento energético real.

$$f_{\text{COP}} = \frac{Q_{f_b}}{Q_{f_t}} \times \eta_{E_b} \sim \eta_{E_b}$$
(3.23)

Por eso, sólo se estudiará el rendimiento energético en el resto del trabajo.

En la gráfica que se representa el rendimiento energético en función de las temperaturas de evaporación y condensación, se observa que para una temperatura de condensación dada, el rendimiento aumenta hasta que llega a su óptimo y después disminuye poco a poco. Para cada temperatura de condensación dada, el óptimo es obtenido para una temperatura de evaporación distinta. La interpretación de este parámetro en función de la relación de comprensión parece más apropiada.

Interpretación de las curvas $\eta_E = f(r_c)$

La gráfica está compuesta de varias curvas siguiendo las mismas tendencias. Crecen con un aumento de la relación de compresión hasta alcanzar un óptimo para una relación de compresión de aproximativamente 3,5-4 y después disminuyen. Cada curva representa el rendimiento energético para una temperatura de condensación fija.

Cuanto mayor sea el rendimiento energético, mejor será la eficiencia del ciclo frigorífico, y entonces, menor será el consumo del compresor.

Reducción del estudio

Tras este análisis, se ha visto que el factor de degradación de la potencia frigorífica era igual al rendimiento volumétrico, y que el factor de degradación del COP se podía aproximar al rendimiento energético.

Así, sólo se usarán el rendimiento volumétrico y el rendimiento energético real para estudiar y comparar a los distintos compresores. Además, se ha visto que efectuar un análisis comparativo completo de un compresor cuando los parámetros están representados en función de la temperatura de evaporación y de la temperatura de condensación es más complejo que cuando los parámetros varían en función de la relación de comprensión. Así, se estudiarán los rendimientos energéticos y volumétricos en función de la relación de compresión.

4.2.6 Obtención de polinomios para $\eta_E y \eta_v$

Mediante el código EES, se han obtenido los rendimientos energéticos y volumétricos en función de las temperaturas de evaporación y de condensación formando una base de datos para un compresor del fabricante BITZER. Sin embargo, para usar esta base de datos, hay que seguir usando el software EES, realmente muy útil pero limitado para el tratamiento del dato propio. En este apartado, se buscarán dos regresiones polinómicas para los rendimientos volumétricos y energéticos en función de las dos temperaturas.

4.2.6.1 Herramienta EES

En la ficha "tables" de la pantalla principal EES, hay una opción que se llama "Linear Regression" es decir "regresión lineal" y contrariamente a lo que deja pensar, permite también hacer regresiones polinómicas. En la figura 4.11, se puede ver cómo está diseñada la herramienta.

ependent variable	Independent variable(s)	
te tc rc	te tc TC	l able Parametric Table
Qf_tpVt EtaE_b	Qf_tpVt EtaE_b	te tc 🔹
EtaV_b f_COP f_Qf Qf_b	Etat_b Etat_b f_COP f_Qf Qf_b	First Row 1 € Last Row 238 €
Equation form Polynomial order 3 🜩	?{] Stats	🖌 Fit
✓ Include cross-terms	(2) Exclude	🗙 Cancel

Figura 4.11: Herramienta regresión polinómica del software EES

Para una tabla paramétrica dada, se puede elegir la variable dependiente que queremos regresar, es decir η_E o η_v y las variables independientes, aquí T_e y T_c . Luego, se define el grado del polinomio buscado y si se quiere integrar los términos cruzados.

Una vez que estas condiciones están definidas, mediante el botón "Fit", se obtiene la forma polinómica y se puede comprobar si los datos obtenidos son fiables con el valor de sus coeficientes de regresión R^2 . Cuanto más alto es el grado del polinomio, más cerca de 100% está este coeficiente. En este estudio, se considera que un polinomio es fiable y representativo de los datos reales de un compresor si el coeficiente de regresión es superior a 98%.

4.2.6.2 Determinación de las condiciones de regresión

La precisión de la regresión polinómica depende del grado del polinomio, de la inclusión de los términos cruzados y de la tabla paramétrica que representa la base de datos.

Para el modelo del compresor "Scroll" ELA743Y, la primera vez, se ha elegido una base de datos cuya temperatura de condensación varia de 30°C a 70°C con un incremento 5 y para cada temperatura de condensación, la temperatura de evaporación varia de -15°C a 15°C con un incremento de 1. Tras borrar las filas no adecuadas, se obtiene una tabla paramétrica con 238 filas.

Con esta tabla paramétrica, se hace varios ensayos cambiando el grado de los polinomios y añadiendo o borrando los términos cruzados para obtener los polinomios y los coeficientes de regresión R^2 de los rendimientos volumétricos y energéticos en todas las condiciones. Se resume los resultados de estos ensayos en las tablas 4.1 y 4.2.

Grado del polinomio sin términos cruzados		2		3	4		
Coeficiente de regresión	$\eta_{\rm E}$	Ŋv	$\eta_{\rm E}$	Ŋv	$\eta_{\rm E}$	Ŋv	
R2	71,03%	98,34%	71,63%	98,41%	71,63%	98,41%	

Tabla 4.1: Coeficientes de regresión de las regresiones polinómicas sin términos cruzados

Grado del polinomio con términos cruzados		2		3	4		
Coeficiente de regresión	$\eta_{\rm E}$	Ŋv	$\eta_{\rm E}$	Ŋv	$\eta_{\rm E}$	Ŋv	
R2	93,19%	99,94%	99,89%	99,99%	99,99%	99,99%	

Tabla 4.2: Coeficientes de regresión de las regresiones polinómicas con términos cruzados

Tras el estudio de estas tablas, se observa que el rendimiento volumétrico siempre tiene un coeficiente de regresión R^2 superior a 98% aunque el polinomio sea de grado bajo o alto, y con o sin términos cruzados. Entonces se podría usar cualquier condición polinómica para determinar el rendimiento volumétrico.

Sin embargo, el rendimiento energético tiene un coeficiente de regresión bajo con los polinomios sin sus términos cruzados (R^2 alrededor de 71% en la figura 4.11), y en la tabla 4.1, se ve que con un polinomio de grado 2 el rendimiento energético es inferior a 98% pero este rendimiento es superior con un polinomio de grado 3 (el coeficiente de regresión vale 99,89%).

De este estudio, podemos deducir que para una tabla paramétrica obtenida con unas temperaturas de condensación y evaporación habiendo variado sus valores con incrementos de cinco y uno respectivamente, se obtienen regresiones polinómicas fiables de los rendimientos energéticos y volumétricos con un polinomio con términos cruzados de grado 3.

Sin embargo, no se sabe si la extrapolación de estos polinomios a tablas paramétricas más grandes es viable y precisa. Para comprobar esta viabilidad, se considera una tabla con un temperatura de condensación que varía de 30°C a 70°C con un incremento de uno en este caso y para cada temperatura de condensación dada, la temperatura de evaporación variará de -15°C a 15°C con un incremento de uno. Resulta que se obtiene una tabla paramétrica con 1271 filas. En cada fila, para temperaturas de condensación y evaporación dadas, se calculan los rendimientos volumétricos y energéticos "reales" obtenidos mediante el código EES y los "estimados" obtenidos mediante las regresiones polinómicas previas. En un archivo Excel (ver anexo 4.1.), se ha calculado el error medio entre los valores reales y estimados. Como se puede ver en la tabla 4.3, el error medio del rendimiento energético es inferior a 0,3% y el del rendimiento volumétrico inferior a 0,02%.

Те	Тс	ηE_b	pol ηE	Error ηE	ηV_b	pol ηV	Error ηV
14	50	0,6735	0,6741	0,0006	1,009	1,009	0,0000
15	50	0,6712	0,672	0,0008	1,011	1,011	0,0000
-15	51	0,498	0,4979	0,0001	0,9207	0,9211	0,0004
-14	51	0,5079	0,5076	0,0003	0,9261	0,9263	0,0002
-13	51	0,5178	0,5174	0,0004	0,9312	0,9312	0,0000
		% Ei	rηE	0,282	% Er	rηV	0,014

Tabla 4.3: Extracto del anexo 4.1.

Se puede afirmar que la extrapolación, de estos polinomios obtenidos con una tabla restringida aplicada a una tabla más grande, es precisa. Entonces, para la obtención de las regresiones polinómicas para los otros modelos de compresores, se usará una regresión polinómica de grado 3 con términos cruzados y una tabla paramétrica cuyas temperaturas de evaporación y condensación varían con un incremento de uno y cinco respectivamente.

4.2.6.3 Polinomios del modelo ELA 743Y

Aplicando el método descrito anteriormente, obtenemos estos dos polinomios para el compresor de "Scroll" ELA743Y:

- Polinomio del rendimiento energético en función de la temperatura:

 $\eta_E = 1,20737795E - 01 - 3,35044950E - 02*te - 1,26482793E - 03*te^2 - 4,27852696E - 06*te^3 + 3,27602406E - 02*tc - 6,03996048E - 04*tc^2 + 3,08306953E - 06*tc^3 + 1,31811813E - 03*te*tc - 1,03377391E - 05*te*tc^2 + 3,10438771E - 05*te^2 * tc - 1,96858452E - 07*te^2 * tc^2 2 + 3,08306953E - 06*tc^3 + 1,31811813E - 03*te*tc^2 + 3,08306953E - 06*tc^3 + 1,31811813E - 03*te*tc - 1,03377391E - 05*te*tc^2 + 3,10438771E - 05*te^2 * tc - 1,96858452E - 07*te^2 * tc^2 2 + 3,08306953E - 06*tc^3 + 1,31811813E - 03*te*tc - 1,03377391E - 05*te*tc^2 + 3,10438771E - 05*te^2 * tc - 1,96858452E - 07*te^2 * tc^2 2 + 3,08306953E - 06*tc^3 + 1,31811813E - 03*te*tc^2 + 3,08306953E - 06*tc^3 + 1,31811813E - 03*te*tc^2 + 3,08377391E - 05*te*tc^2 + 3,08306953E - 06*tc^3 + 1,31811813E - 03*te*tc^2 + 3,08377391E - 05*te*tc^2 + 3,0838452E - 07*te^2 * tc^2 2 + 3,0836658452E - 07*te^2 * tc^2 2 + 3,0836658452E - 07*te^2 * tc^2 + 3,0836658452E - 07*te^2 + 3,0836658452E - 05*te^2 + 3,0836658458452$

- Polinomio del rendimiento volumétrico en función de la temperatura:

Obteniendo estas dos regresiones polinómicas para cada compresor, se podrían estudiar y comparar más en detalle sus comportamientos frente a distintas condiciones de funcionamiento. La principal ventaja de sacar estos polinomios es que se pueden seguir estudiando sin estar restringido al uso del software EES. Mediante estas regresiones se pueden dibujar curvas con Excel por ejemplo.

4.2.7 Metodología

Este apartado resume las distintas etapas que hay que seguir para obtener las curvas de funcionamiento y las regresiones polinómicas de los rendimientos para cada compresor:

- 1. Elegir un modelo de compresor BITZER.
- 2. Fijar el sobrecalentamiento a +10K y el sub-enfriamiento a 0K y sacar del software BITZER sus polinomios de potencias frigoríficas y absorbidas, y de caudal másico. Obtener también el desplazamiento volumétrico del compresor elegido.
- 3. Pegar estos polinomios y el desplazamiento volumétrico en el código EES.
- 4. Comprobar los alcances de validez de los polinomios BITZER y crear una tabla paramétrica con 5 columnas:
 - a. Temperatura de evaporación T_e.
 - b. Temperatura de condensación T_s.
 - c. Relación de compresión r_c.
 - d. Rendimiento energético $\eta_{E b}$.
 - e. Rendimiento volumétrico n_{v b}.

Respetando el alcance de validez, la temperatura de evaporación fluctúa con un incremento de 1 y la de condensación con un incremento de 5.

- 5. Buscar y obtener la gráfica de límites de funcionamiento del compresor estudiado. Borrar las filas de la tabla paramétrica cuyas temperaturas de evaporación y condensación no son admisibles. El alcance de validez de los polinomios BITZER y la gráfica de límites de funcionamiento del compresor determinan el número de filas de la tabla paramétrica.
- 6. Resolver la tabla para obtener la base de datos del compresor elegido.
- 7. Una vez que la tabla esté resuelta, se pueden hacer dos cosas:
 - a. Obtener las curvas que representan los rendimientos en función de las temperaturas y de la relación de compresión.
 - b. Usar la herramienta "regresión lineal" de EES para sacar las regresiones polinómicas de grado 3 y términos cruzados de los dos rendimientos estudiados.
- 8. Copiar y pegar estas regresiones en el archivo EES y en cualquier archivo útil para un estudio posterior.

Mediante esta metodología se obtienen todos los datos necesarios para estudiar con detalle el compresor.

4.3 Comparativa De Tres Tipos De Compresores Distintos

4.3.1 Aplicación del modelo

4.3.1.1 Elección de tres compresores

Se van a estudiar tres compresores de distinto tipo:

- El compresor de tornillos semi-hermético HSK6461, cuya potencia frigorífica es de 54,9 kW en las condiciones de funcionamiento nominales y con un desplazamiento volumétrico de 165m³/h.
- El compresor alternativo de pistones 8GE. Tiene una potencia frigorífica de 51,6 kW en condiciones nominales de funcionamiento y un desplazamiento volumétrico de 185 m³/h.
- El compresor de "Scroll" ELH736, con potencia frigorífica en condiciones nominales de 12,26kW y desplazamiento volumétrico de 36 m³/h.

4.3.1.2 Aplicación del modelo

En este apartado, se aplica la metodología desarrollada anteriormente. Sólo nos interesa la obtención de las curvas, no se usarán las regresiones polinómicas aquí. Para cada compresor, se crea un nuevo archivo EES integrando los datos BITZER y una tabla paramétrica que recopila las columnas siguientes:

- Temperatura de evaporación.
- Temperatura de condensación.
- Relación de compresión.
- Potencia frigorífica.
- Rendimiento energético.
- Rendimiento volumétrico.

Entonces para cada compresor, según su alcance de validez y sus límites, se rellena su tabla paramétrica.

El alcance de validez del compresor de tornillos HSK6461 es: " $Te = -20^{\circ} \dots 12,8^{\circ}C$; $Tc = 20^{\circ} \dots 65^{\circ}C$ "

Su tabla paramétrica se rellena así con una temperatura de condensación que va de 20°C a 65°C con un incremento de 5 y su temperatura de evaporación de -20°C a 12°C con un incremento de uno.

Se borran las filas según la información de la figura 4.12:

Figura 4.12: Límites del compresor de tornillos HSK6461

El alcance de validez del compresor "Scroll" ELH736Y es:

" $Te = -15 \dots 15^{\circ}C$; $Tc = 30 \dots 70^{\circ}C$ "

En su tabla paramétrica, la temperatura de condensación va de 30° C a 75° C con un incremento de 5 y la temperatura de evaporación de -15° C a 15° C con un incremento de uno. Se borran las filas según la información de la figura 4.13:

Figura 4.13: Límites del compresor de "Scroll" ELH736Y

El alcance de validez del compresor de pistón 8GE es:

" $Te = -25 \dots 12, 5^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$ "

En su tabla paramétrica, la temperatura de condensación va de 20°C a 65°C con un incremento de 5 y la temperatura de evaporación de -25°C a 12°C con un incremento de uno. Se borran las filas según la información de la figura 4.14:

Figura 4.14: Límites del compresor de pistones 8GE

4.3.1.3 Determinación de las curvas a sacar

Se resuelven las tres tablas y se van a dibujar las siguientes gráficas para cada compresor:

- El rendimiento energético real en función de la relación de compresión $\eta_E = f(r_c)$.
- El rendimiento volumétrico real en función de la relación de compresión $\eta_v = f(r_c)$.
- Los dos rendimientos en función de la potencia frigorífica η_E , $\eta_v = f(Q_f)$.

4.3.2 Obtención e interpretación de las curvas

Cada compresor tiene un alcance de validez distinto, así la relación de compresión máxima que se alcanza en cada uno de ellos, es distinta.

4.3.2.1 Gráficas η_E=f(r_c)

(b)

Figura 4.15: Gráficas que representan η_E en función de la relación de compresión: (a) pistón 8GE, (b) tornillos HSK6461,(c)"Scroll" ELH736Y

Se puede ver que cada gráfica está compuesta de un conjunto de curvas, cada curva corresponde a una misma temperatura de condensación. En las tres gráficas, se observa que el rendimiento energético aumenta con un crecimiento de la relación de compresión hasta que llega a su máximo y después disminuye. El máximo de este rendimiento energético vale, más o menos, 0,73 para el compresor de "Scroll", 0,68 para el de tornillos y 0,65 para el de pistones. Estos máximos son alcanzados para una relación de compresión valiendo 3 y 3,5-4 para los compresores de "Scroll" y de tornillos respectivamente, mientras que el máximo del rendimiento energético del compresor de pistones es alcanzado para una relación de compresión de 7.

Se nota que cuanto menor es la temperatura de condensación, menor el rendimiento energético. Además, para una relación de compresión dada, al cambiar la temperatura de condensación los valores del rendimiento energético varían poco para el compresor de tornillos, varían moderadamente para el compresor de "Scroll" pero varían mucho más con el compresor de pistones. Las curvas de los compresores de "Scroll" y de tornillos tienen un aspecto más compacto que las del compresor de pistones que se dispersan según la temperatura de condensación.

Estas diferencias se pueden justificar por las tecnologías intrínsecas de cada compresor. En efecto, los compresores de tornillos y de "Scroll" están compuestos de un elemento girando (el tornillo o la espiral móvil) y efectuando el mismo movimiento en permanencia mientras que el pistón sufre de un movimiento alternativo abriendo y cerrando de manera alternativa las válvulas de admisión y descarga.

4.3.2.2 Gráficas η_v=f(r_c)

Figura 4.16: Gráficas que representan η_v en función de la relación de compresión: (a) pistón 8GE, (b) tornillos HSK6461,(c)"Scroll" ELH736Y

Como en la descripción anterior, cada curva corresponde a una misma temperatura de condensación. Se puede ver que estas curvas son rectas, con una pendiente negativa.

Primero, para el compresor de "Scroll", no hay que tener en cuenta las relaciones de compresión cuyo rendimiento volumétrico supera 1. No es fisicamente posible, se justifica con las incertidumbres de los polinomios proporcionado por BITZER aunque se respeten los alcances de validez y los límites de funcionamiento del compresor.

Entonces, tras estas consideraciones, se observa que el rendimiento volumétrico del compresor de pistones vale 0,9 para una relación de compresión de 2 y baja según una recta hasta 0,56 para una relación de compresión de 11, sufriendo una disminución de casi 40%. Mientras que para el compresor de "Scroll", el rendimiento volumétrico disminuye progresivamente desde 1 con una relación de compresión igual a 2 hasta 0,92 y una r_c igual a 8, es decir una disminución de menos de 10%; y en el caso del compresor de tornillos, el rendimiento disminuye moderadamente de 0,96 con una relación de compresión igual a 2 hasta 0,8 y una r_c igual a 10 (diminución de 15%).

Se constata que los rendimientos volumétricos de los compresores de "Scroll", de pistones y de tornillos están cercanos para relaciones de compresión bajas (entre 2 y 4), pero el rendimiento del compresor de pistones baja drásticamente cuando la relación de compresión aumenta, aunque el rendimiento de los otros dos sigue alto.

Como ya se ha dicho en el apartado anterior, esta diferencia entre los rendimientos de los compresores de "Scroll" y de "tornillos" y el rendimiento del compresor de pistones se puede justificar por las diferencias entre las tecnologías de los compresores de tornillos y de "Scroll", y las de los compresores de pistón. En efecto, los compresores de tornillos y de "Scroll" funcionan con el principio de descarga directa, sufren fugas a altas relaciones de compresión, pero estas fugas son restringidas, no superan 15%. La descarga del refrigerante en un compresor de pistón es alternativa, esta fase se está operando sin rellenar el pistón al mismo tiempo que él está vaciándose, lo que hace bajar el rendimiento volumétrico con un aumento de la relación de compresión. Además, las limitaciones tecnológicas del pistón podrían ser otras causas de la disminución del rendimiento volumétrico con el aumento de la relación de compresión, la falta de estanqueidad de las válvulas y la falta de estanqueidad de los aros del pistón pueden involucrar fugas importantes, lo que hace caer bruscamente el rendimiento volumétrico.

Se observa también que para los compresores de pistones y de "Scroll", el rendimiento volumétrico no varía mucho al variar la temperatura de condensación. Las curvas del compresor de pistones forman casi una única recta (usando la herramienta "Linear Regression", se obtiene la regresión lineal siguiente: $\eta_{V_b}=0,94 - 0,033$ *rc con R²=99,54%), entonces su dependencia frente a la temperatura de condensación es casi nula, y las rectas del compresor de "Scroll" están muy pegadas, su dependencia es limitada igualmente. Sin embargo, para el compresor de tornillos, hay que considerar esta dependencia frente a la temperatura de condensación.

4.3.2.3 Gráficas η_{v} , $\eta_{E} = f(Q_{fb})$

(c)

Figura 4.17: Gráficas que representan η_v y η_E en función de la potencia frigorífica: (a) pistón 8GE, (b) tornillos HSK6461,(c)"Scroll" ELH736Y

Como ya se ha dicho en la descripción anterior, cada curva corresponde a una misma temperatura de condensación, y no consideramos los datos del compresor de "Scroll" cuyo rendimiento volumétrico supera uno.

Se observa que, por su diseño y su tipo, la potencia frigorífica óptima del compresor de pistones es superior a la del de tornillos, y este mismo compresor de tornillos tiene una potencia frigorífica máxima más grande que la del compresor de "Scroll".

Se nota que las curvas de estos tres compresores tienen una misma tendencia general de variación. Los rendimientos energéticos aumentan con el aumento de la potencia frigorífica, alcanzan un máximo alrededor de su potencia frigorífica nominal y después disminuyen. Esta disminución es importante para los compresores de "Scroll" y de pistones. El compresor de tornillos, una vez que ha alcanzado su óptimo, consigue mantener su rendimiento constante con el aumento de la potencia frigorífica.

Otra tendencia general de estos tres tipos de compresores es el aumento del rendimiento volumétrico con el crecimiento de la potencia frigorífica. En efecto, una potencia frigorífica grande es equivalente a un salto entálpico alto en el evaporador y bajo en el compresor, y entonces a una relación de compresión baja. Ya se ha visto que el rendimiento volumétrico aumenta con una disminución de r_c , y entonces aumenta con un aumento de la potencia frigorífica.

Además, para una potencia frigorífica dada, se observa que un aumento de la temperatura de condensación lleva a una disminución generalizada del rendimiento volumétrico para cada tipo de compresor. Sin embargo, no hay una variación generalizada del rendimiento energético de los compresores con un aumento de la temperatura de condensación. En efecto, al aumentar la temperatura de condensación, el rendimiento energético aumenta para el compresor de pistones pero baja para el compresor de tornillos. El compresor de "Scroll" no tiene una dependencia frente a la potencia frigorífica. Si la potencia frigorífica es baja (inferior a 25kW para un compresor de "scroll"), el rendimiento energético disminuye con un aumento de la temperatura de condensación, pero frente a potencias frigoríficas altas, este mismo rendimiento aumenta con el aumento de esta temperatura.

Se puede hacer una última observación, en estos gráficos para la potencia frigorífica nominal de cada compresor, se obtienen rendimientos energéticos y volumétricos ambos altos y no únicamente uno muy alto mientras que el otro es bajo:

- Para el compresor de pistones 8GE: Potencia frigorífica nominal Q_f nom = 51,6 kW, η_v =0,75, η_E =0,64.
- Para el compresor de tornillos HSK6461:
 Potencia frigorífica nominal Q_f nom = 54,9 kW, η_v=0,92, η_E =0,59.
- Para el compresor de "Scroll" ELH736: Potencia frigorífica nominal Q_f nom = 12,26 kW, η_v =0,94, η_E =0,57.

Mediante el estudio de estas gráficas, se ha podido analizar y comprobar el comportamiento de estos tres tipos de compresores frente a diferentes condiciones de trabajo, ya sea a alta o baja relación de compresión, a alta o baja potencia frigorífica, a altas o bajas temperaturas de evaporación o condensación. En cada situación, se conocen los rendimientos volumétricos y energéticos de un compresor y se puede determinar si este compresor está funcionando de manera óptima. Estos tres compresores sólo son una muestra del estudio que se va a desarrollar en el próximo capítulo.

En este capítulo, se definirá el rango de potencias frigoríficas a estudiar, se elegirán los compresores BITZER satisfaciendo este rango de potencia. Mediante el código EES visto anteriormente, se obtendrán los polinomios de los rendimientos volumétricos y energéticos en función de las temperaturas de condensación y evaporación. Se sacarán las gráficas, y por fin, se comparará y analizará el comportamiento de esta selección de compresores en condiciones nominales de funcionamiento.

5.1 Alcance De La Comparativa

5.1.1 Rango de potencia estudiado

Como se ha visto en el primer capítulo, los compresores frigoríficos para la refrigeración pueden dividirse en tres categorías: los compresores de potencia frigorífica pequeña cuya potencia es alrededor de 10 kW, los de potencia frigorífica mediana con una potencia alrededor de 50 kW y los de potencia frigorífica grande cuya potencia supera 100 kW.

Los compresores de "Scroll" son de potencia pequeña. Los de pistones son de potencia pequeña y mediana, su potencia depende del número de pistones y del volumen de cada pistón. Los compresores de tornillos son de potencia mediana y grande.

Para resumir, este estudio analizará el comportamiento de compresores cuyo rango de potencias nominales variará desde algunos kilovatios hasta más de 150 kW.

5.1.2 Lista de los compresores BITZER

El fabricante BITZER proporciona una multitud de compresores funcionando en distintas condiciones de temperaturas y con varios refrigerantes frigoríficos. En el caso del estudio, sólo nos interesan los compresores funcionando con el refrigerante R-134a, con un sobrecalentamiento de +10K y un subenfriamiento nulo. BITZER fabrica 115 compresores trabajando en dichas condiciones. En el anexo 5.1, se puede ver la lista de estos compresores según su tipo, su forma de montaje, su serie y su modelo. Se han calculado las potencias en las condiciones nominales de funcionamiento y se han clasificado por rango de potencias (pequeña, mediana o grande). En la tabla 5.1, se puede ver un extracto de este anexo para los compresores de "Scroll":

Tipos de compresores	Tipos de Montaje	Serie	Modelos	Qf (kW)	Vt (m3/h)		Ρ	М	G
	Hermético	ES (vert)	ESH725Y	8,53	25,00		1	0	0
			ESH730Y	10,23	30,00		0	1	0
			ESH736Y	12,28	36,00		0	1	0
			ESH743Y	14,94	43,00		0	1	0
Scroll						Total	1	3	0
		ES (hori)	ELH725Y	8,37	25,00		1	0	0
			ELH730Y	10,17	30,00		0	1	0
			ELH736Y	12,26	36,00		0	1	0
			ELA743Y	14,98	43,00		0	1	0
						Total	1	3	0
					Total S	croll	2	6	0

Tabla 5.1: Extracto del anexo 5.1, comparación de los compresores de "Scroll"

Resulta que para estos 115 compresores, la repartición entre las tres categorías de potencia se representa en la figura 5.1:

Figura 5.1: Representación del número compresores en función de su rango de potencia

Se observa que la mayoría de los compresores BITZER son de tamaño mediano, es decir que sus potencias nominales valen aproximadamente 50kW.

5.1.3 Elección y repartición de los compresores

El rango de potencias elegido es aproximadamente de [10kW ; 150kW]. Para estudiarlo de una manera pertinente y representativa, se eligen 30 compresores de la anterior lista de compresores BITZER disponibles Estos compresores además de funcionar con el refrigerante R-134a deben cumplir una segunda especificación, deben ser semi-herméticos. Además, se han intentado elegir los diferentes modelos para que cada tipo de compresor represente una parte de este rango de potencias estudiado.

Así, se han elegido 4 compresores de "Scroll" herméticos, 13 compresores de pistones semi-herméticos y 13 compresores de tornillos semi-herméticos. Los 13 compresores de tornillos se dividen en dos series, los semi-herméticos clásicos (serie HSK, se estudian diez de ellos) y los semi-herméticos compactos (serie CSH, tres de ellos).

"Scr	"Scroll"		illos	Pistón		
Modelo	Qf (kW)	Modelo	Qf (kW)	Modelo	Qf (kW)	
ELH725Y	8,37	HSK5343	26,1	2KES	0,99	
ELH730Y	10,17	HSK5363	38	4FES	4,98	
ELH736Y	12,26	HSK6461	54,9	4DES	7,67	
ELH743Y	14,98	HSK7451	65,6	4VES	9,9	
		HSK7471	83,2	4PES	13,59	
		HSK8551	100,3	4NES	16,29	
		HSK8561	115,3	4JE	19,1	
		HSK8571	135	4HE	22,6	
		HSK8581	147	4GE	26,5	
		HSK8591	169,2	4FE	31,4	
		CSH6553	41,4	6GE	39,3	
		CSH7563	68,2	8GE	51,9	
		CSH7593	106,2	8FE	61	

En la tabla 5.2 se representan los modelos estudiados con sus potencias nominales de funcionamiento:

Tabla 5.2: Compresores elegidos para la comparativa

Se comprueba la aserción que se había hecho, las potencias nominales frigoríficas son pequeñas para los compresores de "Scroll", pequeñas y medianas para los compresores de pistones y medianas y grandes para los compresores de tornillos. Con esta selección, teniendo en cuenta los límites de cada compresor, se podrá hacer un estudio completo del rango de potencia.

5.2 Aplicación Del Modelo

5.2.1 Obtención de los polinomios

Se aplica treinta veces la metodología explicada en el apartado 4.2.7 del capítulo anterior, una vez por cada uno de los compresores, y se sacan las regresiones polinómicas de los rendimientos energéticos y volumétricos en función de las temperaturas de evaporación y de condensación mediante el código EES.

5.2.2 Ordenación de los datos de cada compresor

En el anexo 5.2, se ha redactado un informe para cada compresor. Estos informes reagrupan toda la información necesaria para un análisis posterior de estos compresores:

- El tipo de compresor y su nº de modelo.
- El valor de su potencia frigorífica nominal y de su desplazamiento volumétrico.
- Sus límites de funcionamiento y el alcance de validez de los polinomios.
- Los polinomios dados proporcionados por BITZER: la potencia frigorífica, la potencia absorbida, y el caudal másico de refrigerante.
- Los polinomios conseguidos por regresiones polinómicas: el rendimiento energético y el rendimiento volumétrico.

En la figura 5.2, se ve el informe para el compresor de pistón "4GE":

Modelo	4GE	Tipo	pistón Semi-Hermético				
Potencia frigorífica nominal (kW)	26,5	Límites					
Desplazamiento Volumétrico (m3/h)	84,5		20 10 -30 -20 -10 to ["C] to ["C]				
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 3^{\circ}C$; $Tc = 10 \dots 60^{\circ}C$				
Potencia frigorífica (W)	$Qf_b = 6440$ 37,05612665692 0,212644556593 0,023162577790	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Potencia absorbida (W)	Wc_b =3387, 4,757700131783 0,039503896975 -0,00401275896	$\label{eq:wc_b} \begin{split} &=\!\!3387,\!75953731235 & -129,\!776767975621^{*}te \ + \ 261,\!86371904305^{*}tc \\ &4,\!75770013178383^{*}te^2 \ + \ 8,\!584742079026^{*}te^{*}tc \ -0,\!915240701952809^{*}tc^2 \\ &0,\!0395038969750187^{*}te^3 \ + \ 0,\!0603213610275056^{*}tc^{*}te^2 \ -0,\!0210794086484074^{*}te^{*}tc^{-} \\ &-0,\!0401275896625986^{*}tc^3 \end{split}$					
Caudal másico (kg/h)	mr_b=1114,739 0,536778685690 0,003277972781 0,000408472953	mr_b=1114,73949745214 + 42,5690010541271*te + 1,39786554031193*tc + 0,536778685690215*te^2 -0,0324116867987189*te*tc -0,0678626313754865*tc^2 + 0,00327797278138268*te^3 + 0,000164473609237534*tc*te^2 - 0,000408472953810973*te*tc^2 -3,40747793333801E-05*tc^3					
		Regresiones polinór	nicas				
rendimiento volumétrico	polEtaV=9,60703470E-01+2,99256320E-03*te-1,24793828E-04*te^2+3,39259561E- 06*te^3+1,11906330E-03*tc-5,58714234E-05*tc^2-5,27720053E-08*tc^3-5,02295327E- 05*te*tc+1,54339757E-06*te*tc^2+4,52971333E-06*te^2*tc-5,94206424E-08*te^2*tc^2						
rendimiento energético	polEtaE=2,7288 07*te^3+1,7818 04*te*tc-5,9984	oolEtaE=2,72886754E-01-2,30973008E-02*te-6,39209792E-04*te^2+3,72122078E-)7*te^3+1,78182096E-02*tc-2,31235012E-04*tc^2+7,55734725E-07*tc^3+7,27681208E-)4*te*tc-5,99849488E-06*te*tc^2+2,13472243E-05*te^2*tc-2,08961583E-07*te^2*tc^2					

Figura 5.2: Informe del compresor de pistón "4GE"

5.2.3 Código EES

Una vez que se han obtenido todos los polinomios para los 30 compresores, se recopilan en una misma hoja EES, y se crean tablas paramétricas por tipo de compresor. En efecto, como se ha visto, cada compresor tiene límites de funcionamiento distintos. Sin embargo, los compresores del mismo tipo tienen generalmente condiciones de funcionamiento similares aunque pueden fluctuar según el modelo. Estas tablas paramétricas serán usadas para luego dibujar las curvas necesarias para el estudio y el análisis comparativo de los compresores.

Se ha usado un código EES por su sencillez de uso aunque algunas etapas sean redundantes. Se habría podido usar otro software como MatLab o Excel.

5.3 Curvas De Comparativa De Los Compresores

En este apartado, se obtienen las curvas que van a permitir el análisis comparativa de los compresores frigoríficos.

5.3.1 Definición de las características de las gráficas

Los indicadores que mejor representan el comportamiento de los compresores son, como se ha visto en el capítulo anterior, el rendimiento energético y el rendimiento volumétrico.

Para cada rendimiento, se dibujan tres gráficas, una que representa el conjunto de rendimiento de cada compresor en función de la temperatura de evaporación, para una temperatura de condensación igual a 45°C, otra que representa el conjunto de rendimiento de cada compresor en función de la temperatura de condensación, para una temperatura de evaporación igual a -10°C, y una última que representa una nube de rendimientos, un punto por compresor, en función de la potencia frigorífica obtenida en las condiciones nominales de funcionamiento con una temperatura de evaporación igual a -10°C y una temperatura de condensación igual a 45°C.

5.3.2 Metodología EES

Como se ha visto en el apartado 5.2.3 "Código EES", para cada compresor, se han pegado sus polinomios característicos en la hoja EES, y luego para cada uno, se han creado dos tablas paramétricas con las siguientes entradas:

- Temperatura de evaporación.
- Temperatura de condensación.
- Potencia frigorífica.
- Rendimiento energético.
- Rendimiento volumétrico.

En la primera tabla, la temperatura de condensación está fijada a 45°C (es la misma en cada fila), y la temperatura de evaporación varía con un incremento de uno respetando los límites de funcionamiento del compresor y el alcance de validez de sus polinomios. En la segunda tabla, se fija la temperatura de evaporación a -10°C y la temperatura de condensación está fluctuando con un incremento de uno respetando los límites de funcionamiento. Se repite este proceso para los 30 compresores. Como cada compresor tiene sus propios límites, se entiende que algunas tablas tienen más filas que otras. Una vez que se han obtenido las dos tablas para cada compresor, se pueden dibujar las gráficas esperadas. Estas gráficas son un conjunto de curvas.

5.3.3 Obtención de las curvas e Interpretación

Estas curvas están en el anexo 5.3 con un tamaño más grande.

5.3.3.1 Gráficas que representan el rendimiento energético de cada compresor

Figura 5.3: Rendimiento energético de cada compresor en función de la temperatura de evaporación, temperatura de condensación fijada a 45°C

Figura 5.4: Rendimiento energético de cada compresor en función de la temperatura de condensación, temperatura de evaporación fijada a -10°C

Figura 5.5: Rendimiento energético de cada compresor en función de la potencia frigorífica en condiciones nominales de funcionamiento

5.3.3.2 Análisis de las gráficas que representan el rendimiento energético de cada compresor

$\eta_E = f(T_e), T_c = 45^{\circ}C$

Cada curva representa el rendimiento energético de un compresor.

Se observan tendencias comunes entre estos compresores. En efecto, el rendimiento energético aumenta con la temperatura de evaporación, alcanza su óptimo y después disminuye progresivamente.

Se nota que una curva de un compresor de pistón está muy alejada de las demás curvas de los compresores de pistón. Es la del compresor "2KES", cuya potencia nominal es muy baja en comparación con los otros (menos de 1kW). Si no se tiene en cuenta esta curva, se pueden ver que los rendimientos energéticos de los compresores de pistón oscilan entre 0,56 y 0,68. Cada curva tiene una variación de 5-6% frente a la temperatura de evaporación. Entonces se puede afirmar que los rendimientos energéticos de los compresores de pistón tienen poca dependencia frente a la temperatura de evaporación.

Sin embargo, se observa que los rendimientos de los compresores de tornillos y de "Scroll" tienen un rango de [0,43 ; 0,71] y [0,49 ; 0,70] respectivamente. Estos rendimientos cambian mucho con la variación de la temperatura de evaporación. Para los compresores de "Scroll", el rendimiento energético fluctúa en un 20%, y para los compresores de tornillos, fluctúa en un 25%.

Hay compresores de tornillos que tienen unos límites de funcionamiento más amplios: los HSK 5343 y los HSK 5363. Sus rendimientos caen bruscamente de más de 10% con un incremento de la temperatura de evaporación de 10°C a 20°C.

Así habiendo considerado los datos de esta gráfica, se puede admitir que si se está trabajando a baja temperatura de evaporación (es decir a alta relación de compresión), se usarán compresores de pistón para obtener un rendimiento energético más alto, y a alta temperatura de evaporación, se usarán compresores de tornillos o de "Scroll".

Ojo, este análisis, sólo ha tenido en cuenta el rendimiento energético y no el volumétrico. En efecto, ya se sabe que el rendimiento volumétrico de un compresor de pistón empeora con relaciones de compresión bajas. Se estudiará más en detalle este comportamiento en el apartado siguiente.

$\eta_E=f(Tc), Te=-10^{\circ}C$

Cada curva representa el rendimiento energético de un compresor.

A diferencia del análisis anterior, no se observan tendencias similares entre los distintos tipos de compresores.

En efecto, para los compresores de pistón, el rendimiento energético aumenta con el incremento de la temperatura de condensación, alcanza su máximo alrededor de 35°-40°C y después se mantiene constante. Para los compresores de "Scroll", el rendimiento cae un 10% con el aumento de la temperatura de condensación. Y algunos de los compresores de tornillos, como los modelos HSK5343, CSH6553, CSH7563 y CSH7593, presentan un ligero crecimiento de su rendimiento energético con el aumento de la temperatura de condensación de 20°C a 30°C. Pero después, todos los compresores de tornillos sufren una bajada brusca del 40%.

Observando estas curvas, se nota que los rendimientos más grandes son alcanzados por los compresores de tornillos para un rango de temperaturas de condensación de [20°C ; 35°C] y por los compresores de pistón para un rango de temperatura de condensación de [35°C , 70°C].

 $\eta_E = f(Q_f)$

Cada punto representa el rendimiento energético de un compresor en condiciones nominales de funcionamiento. Excepto el compresor de pistón "2KES", todos los compresores de pistón tienen un rendimiento energético que oscila entre [0,63 ; 0,71] mientras que el rango de los rendimientos de los compresores de tornillos es [0,53 ; 0,63], y el rendimiento de los compresores de "Scroll" es más bajo con un rango de [0,51 ; 0,59].

Del punto de vista del rendimiento energético, para una potencia pequeña dada de [10 kW ; 20kW], se puede ver que es más ventajoso elegir los modelos de compresores de pistón "4FES", "4DES", "4VES" y "4FES" que los compresores de "Scroll" "ELH725Y", "ELH730Y", "ELH736Y" y "ELA743Y". En efecto, la diferencia de rendimientos energéticos entre estos dos tipos de compresores es del 20%.

Además, para una potencia mediana dada oscilando entre [50kW ; 75kW], los rendimientos energéticos de los compresores de pistón 8GE y 8FE son un 10% más altos que los rendimientos de los compresores de tornillos HSK6461, HSK7451 o CSH7563.

Entonces, del punto de vista del rendimiento energético, sale más rentable usar compresores de pistón para una potencia frigorífica baja y mediana. Sin embargo, para potencias altas, si se quiere usar compresores en condiciones nominales de funcionamiento, habrá que usar compresores de tipo tornillos. Si se quiere lograr una potencia frigorífica alta, con otro tipo de compresor que los de tornillos, otra opción podría ser el uso de un compresor de pistón y luego cambiar su temperatura de evaporación para alcanzar esta potencia frigorífica. Una vez alcanzada, se podrá comprobar mediante las dos primeras gráficas si el rendimiento sigue más alto que el de los compresores de tornillos.

5.3.3.3 Gráficas que representan el rendimiento volumétrico de cada compresor

Figura 5.6: Rendimiento volumétrico de cada compresor en función de la temperatura de evaporación, temperatura de condensación fijada a 45°C

Figura 5.7: Rendimiento energético de cada compresor en función de la temperatura de condensación, temperatura de evaporación fijada a -10°C

Figura 5.8: Rendimiento volumétrico de cada compresor en función de la potencia frigorífica en condiciones nominales de funcionamiento

5.3.3.4 Análisis de las gráficas que representan el rendimiento volumétrico de cada compresor $\eta_v = f(T_e), T_c = 45^{\circ}C$

Cada curva representa el rendimiento volumétrico de un compresor.

Se puede ver que las curvas representativas del rendimiento volumétrico de cada compresor tienen una misma tendencia general. Está creciendo con un aumento de la temperatura de evaporación. Los rendimientos volumétricos más altos son los de los compresores de "Scroll" cuyos valores oscilan un 10% entre [0,9; 1]. Después vienen los rendimientos de los compresores de tornillos, varían un 5% y tienen un rango de [0,8; 1] según el modelo de compresor. Por fin, los rendimientos volumétricos de los compresores de jistón son los que tienen las variaciones más grandes. En efecto, su rango es de [0,45; 0,85] y tienen variaciones de 40%.

Además, se observa que tres compresores de tornillos tienen un comportamiento diferente de los demás de tornillos. Los rendimientos de los compresores de tornillos compactos CSH6553, CSH7563 crecen desde [0,72-0,74] para una temperatura de evaporación de 20°C hasta [0,86-0,88] para una temperatura de evaporación de 12°C, creciendo así un 16%. Y el modelo HSK7451 también varía un 15%. Mientras que los otros compresores de tornillos sólo aumentan un 5% frente a este crecimiento de la temperatura de evaporación. Se puede concluir que del punto de vista del rendimiento volumétrico, la mayoridad de los compresores de tornillos tiene un rendimiento casi independiente de la temperatura de evaporación. También se puede aceptar esta aserción con los compresores de "Scroll".

η_v=f(Tc), Te=-10°C

Cada curva representa el rendimiento volumétrico de un compresor.

Se puede ver que el rendimiento volumétrico disminuye con el aumento de la temperatura de condensación, información que se esperaba según las propiedades termodinámicas. Todas las curvas representativas del rendimiento volumétrico de cada compresor son cóncavas salvo la curva del compresor de pistón "2KES" que es convexa.

Para una temperatura de evaporación fijada a -10°C, la variación de la temperatura de condensación para un uso de los compresores de "Scroll" está restringida al rango [30°C ; 48°C], entonces el rendimiento volumétrico de dichos compresores fluctúa un 5% y sigue alto, entre [0,92 ; 0,98]. Así la dependencia del rendimiento volumétrico de los compresores de "Scroll" tampoco depende mucho de la temperatura de condensación.

Sin embargo, el rendimiento de los compresores de tornillos disminuye más que el de los compresores de "Scroll", alrededor de 20% y su evolución se descompone en dos fases. Primero, el rendimiento se mantiene aproximadamente constante con temperaturas comprendidas entre 20°C y 40°C, y después la pendiente de las curvas que representan el rendimiento crece, y el rendimiento baja mucho más cuando la temperatura aumenta de 40°C a 70°C. Los rendimientos de los compresores de tornillos oscilan entre [0,68; 0,98]. Este rango es casi igual al rango de los rendimientos de los compresores de tornillos de la figura 5.8 con las variaciones en función de la temperatura de evaporación.

Los rendimientos de los compresores de pistón disminuyen de 0,95 a 0,6, es decir una bajada del 35%. Sin embargo, se nota que los rendimientos conseguidos son más altos con una temperatura de evaporación

fijada a -10°C que con una temperatura de condensación fijada a 45°C. En efecto, como se demostró previamente los extremos alcanzados en el rendimiento volumétrico con una temperatura de condensación de 45°C eran de [0,45 ; 0,85] mientras que con una temperatura de evaporación fijada a -10°C, son de [0,6 ; 0,95]. Entonces se puede concluir que la temperatura de evaporación para los compresores de pistón tiene más influencia que la de condensación sobre el rendimiento volumétrico.

Por fin, no se nota una correlación entre el tamaño de un compresor y su rendimiento volumétrico.

$\eta_v = f(Q_f)$

Cada punto representa el rendimiento volumétrico de un compresor en condiciones nominales de funcionamiento.

En las condiciones de funcionamiento nominales, se puede observar que los rangos de rendimientos volumétricos son de [0,92 ; 0,97] para los compresores de "Scroll", de [0,83 ; 0;94] para los compresores de tornillos, y de [0,66 ; 0;84] para los compresores de pistón.

Esta diferencia entre los rangos de rendimientos volumétricos de cada tipo de compresor viene principalmente del tipo de montaje de los compresores y de las tecnologías intrínsecas usadas. En efecto, los compresores de "Scroll" son compresores herméticos mientras que los compresores de pistón y de tornillos son semi-herméticos. Entonces las fugas involucradas con los compresores de "Scroll" son casi nulas en comparación con las de los compresores de pistón y de tornillos. Esta diferencia de montaje justifica las diferencias entre los rangos de rendimientos de los compresores de "Scroll" por un lado, de los compresores de pistón y de tornillos por otro lado.

Además, la diferencia en los valores de los rendimientos entre los compresores de pistón y los de tornillos se explica por las tecnologías de cada compresor. En efecto, el compresor de tornillos funciona con el principio de descarga directa. Cuando está funcionando, su volumen útil o desplazamiento volumétrico siempre está lleno de fluido refrigerante, y sufre pocas pérdidas con un cambio de las condiciones de funcionamiento (ver capítulo 4, apartado 4.3.2.2 *Gráficas* $\eta_v = f(rc)$), por eso su rendimiento volumétrico sigue alto. Por otro lado, los compresores de pistón disponen de válvulas y tienen una fase de descarga sin relleno del pistón en la que el volumen útil del pistón no está usado por un momento. Esta fase hace caer el rendimiento volumétrico de los compresores de pistón.

Del punto de vista del rendimiento volumétrico, para una potencia pequeña dada de [10 kW ; 20kW], se puede ver que es más ventajoso elegir los modelos de compresores de "Scroll" "ELH725Y", "ELH730Y", "ELH736Y" y "ELA743Y", que los modelos de compresores de pistón de baja potencia. En efecto, la diferencia de rendimientos volumétricos entre estos dos tipos de compresores es de más de un 20%. Para potencias frigoríficas medianas y grandes, se usarán compresores de "tornillo" pues tienen los rendimientos más elevados para este rango de potencia frigorífica.

5.3.3.5 Discusión General, comparación $\eta_E=f(Q_f) y \eta_v=f(Q_f)$

Estas dos gráficas proporcionan los rendimientos energéticos y volumétricos de los 30 compresores estudiados en función de la potencia frigorífica en condiciones de funcionamiento dadas. Estos rendimientos están calculados en base a las condiciones nominales de funcionamiento con un sobrecalentamiento de 10K, una temperatura de evaporación igual a -10°C y una temperatura de condensación igual a 45°C para el refrigerante R-134a. De este modo, si se conoce la potencia frigorífica que hay que desarrollar en una instalación frigorífica, mediante estas curvas, se podrá elegir el compresor frigorífico adecuado para conseguir rendimientos volumétricos y energéticos más elevados.

En estas dos gráficas, se puede observar que para potencias frigoríficas altas, los rendimientos energéticos y volumétricos más altos son conseguidos con los compresores de tornillos. Sin embargo, para las potencias frigoríficas pequeñas y medianas, esta decisión no es inmediata, no hay un tipo de compresor preponderante cuyos dos tipos de rendimientos son ambos más altos. Habrá que determinar el parámetro de diseño más importante, que sea el rendimiento energético o el rendimiento volumétrico.

En efecto, a potencias frigoríficas pequeñas, los compresores de pistón tienen rendimientos energéticos más altos que los compresores de "Scroll" (20% más altos) pero sus rendimientos volumétricos son más pequeños que los de los compresores de "Scroll" (20% más pequeños). A potencias frigoríficas medianas, los rendimientos volumétricos de los compresores de tornillos son más altos que los de los compresores de pistón (20% más altos), aunque sus rendimientos energéticos son más pequeños que los de los compresores de los compresores de son más altos que los de los compresores de pistón (20% más altos), aunque sus rendimientos energéticos son más pequeños que los de los compresores de los co

Entonces, en el caso de que no haya un compresor ideal en esta comparativa, cuyos rendimientos volumétricos y energéticos sean ambos más altos que los demás, habrá que definir que rendimiento se debe favorecer para tomar una decisión.

Además, como se ha dicho anteriormente, estas dos gráficas se han obtenido con las temperaturas de evaporación y condensación en condiciones nominales de funcionamiento. Si un ciclo frigorífico tuviera otras condiciones de funcionamiento, se habría podido cambiar estas dos temperaturas para obtener dos nuevas gráficas que representarían los rendimientos volumétricos y energéticos en función de la potencia frigorífica en dichas condiciones de funcionamiento. Y mediante estas dos nuevas graficas se podría elegir el compresor adecuado.

Por ejemplo, en la figura 5.9, se han cambiado la temperatura de evaporación a 0°C y la temperatura de condensación a 35°C. Y ahora, con estas dos nuevas gráficas, se pueden observar los valores de rendimientos de cada compresor. En este ejemplo, para una potencia frigorífica baja (alrededor de 25kW), se elegiría el compresor de "Scroll" "ELH736Y" cuyos rendimientos son ambos más altos que los demás. Para una potencia frigorífica mediana (50kW), se elegiría el compresor de pistón "4GE" y no el compresor de tornillos "HSK5343", los rendimientos volumétricos son cercanos pero el rendimiento energético es más alto para el compresor de pistón. Para una potencia frigorífica grande (100kw), se elegiría el compresor de tornillos "HSK6461" cuyos rendimientos son los más altos.

Al hacer esta comparativa para cada potencia frigorífica deseada o por condiciones de funcionamiento dadas, se podría obtener el modelo de compresor más eficiente.

Figura 5.9: Rendimiento volumétrico y energético de cada compresor en función de la potencia frigorífica con Te=0°C y Tc=35°C

6.1 Conclusiones

Para empezar este trabajo, se ha hecho un estado del arte de las diferentes tecnologías existentes y tipos de montajes de los compresores frigoríficos usados actualmente.

Luego, con el uso del software EES, se han sacado las curvas de un compresor teórico ideal perfectamente isentrópico y sin volumen neutro. Estas curvas representaban el COP teórico y la potencia frigorífica específica que se podría alcanzar con este compresor. Este compresor perfecto ha servido de referencia para el estudio de los compresores reales. Después se han usado los datos de los compresores reales fabricados por BITZER, y comparándolos con los datos del compresor teórico, se han definido los indicadores representativos de la eficiencia de cada compresor real: los rendimientos energéticos y volumétricos. Para cada uno de los compresores del alcance del estudio, se han sacado los polinomios de estos dos indicadores en función de las temperaturas de evaporación y condensación respetando sus límites de funcionamiento respectivos. Y luego, mediante estos polinomios, se han dibujado gráficas y nubes de puntos representativas de los rendimientos de cada compresor en las condiciones nominales de funcionamiento en función de la potencia frigorífica desarrollada. Al obtener estas gráficas, se ha podido efectuar el análisis de los treinta compresores.

Actualmente, para evaluar la eficiencia energética de un compresor sólo se dispone del COP que es el cociente entre la potencia frigorífica y la potencia absorbida. Este cociente es un indicador del consumo energético de un compresor para una potencia y temperaturas de funcionamiento dadas. Desgraciadamente, con este cociente no se puede saber si el consumo para una potencia frigorífica desarrollada es mínimo, y tampoco se sabe si el volumen útil del compresor es óptimo.

Por eso se ha creado el código EES, y al usarlo, se han conseguido los rendimientos energéticos y volumétricos. Cuantos mayores sean los rendimientos energéticos y volumétricos, mayores serán su COP y su volumen útil para condiciones dadas.

Mediante el código EES desarrollado y las curvas obtenidas, los problemas de diseño podran resolverse de dos maneras. Si los parámetros de una instalación frigorífica para R134-a (las temperaturas de evaporación y de condensación y la potencia frigorífica) ya son fijados, se buscarán los compresores que validan estas condiciones y cuyos rendimientos son más altos. Sin embargo, si sólo se conoce la potencia frigorífica a alcanzar por la instalación, se podrán hacer varios ensayos modificando las temperaturas de evaporación y condensación para optimizar los rendimientos conseguidos por la selección de compresores potenciales.

Sin embargo, a veces, para el diseño de una instalación frigorífica, no hay compresor cuyos rendimientos energético y volumétrico sean cada uno más altos que los demás. Entonces en estos casos, hay que elegir cual es el indicador de diseño predominante, el rendimiento energético o el rendimiento volumétrico. En efecto, al favorecer el rendimiento energético, se está buscando una eficiencia energética óptima; mientras al favorecer el rendimiento volumétrico se está buscando un uso máximo del volumen útil del compresor. Las gráficas obtenidas tras este estudio permiten esta toma de decisión.

Por ejemplo, para el diseño de una instalación frigorífica que desarrollaría 50kW con temperaturas de evaporación y condensación iguales a 0°C y 35°C respectivamente, mediante las correlaciones obtenidas, se puede ver en la figura 5.11 que dos compresores satisfacen estos criterios, el compresor de pistón "4GE" y

el compresor de tornillos "HSK5343". El rendimiento volumétrico de cada uno es alto (superior a 0,9), entonces el volumen útil es casi óptimo. Pero el rendimiento energético del compresor de pistón es más alto (0,65) que el del compresor de tornillos (0,58 es decir 10% más bajo). Así, para el diseño de esta instalación frigorífica, se elegiría el compresor de pistón "4GE" porque permitiría un consumo energético de operación menor para una misma potencia desarrollada. En un año, se ahoraría más de 80MWh por haber elegido el compresor de pistón en vez del otro. Sin estas correlaciones no se habría podido elegir de forma pertinente uno en lugar del otro.

6.2 Futuros Desarrollos

Este estudio se limita al tratamiento del comportamiento de treinta compresores, en futuros trabajos podría ampliarse a:

- Todos los compresores de BITZER.
- Otros refrigerantes. En esta comparativa sólo se han estudiado los compresores funcionando con el refrigerante R-134a cuyo uso es principalmente doméstico y de aire acondicionado; también se podría profundizar la comparativa añadiendo otros refrigerantes tal que el R-404a o el R-717 cuyos usos son más industriales.
- Otros fabricantes. Esta comparativa ha sido factible porque el fabricante BITZER ha proporcionado para cada compresor no sólo sus características y límites de funcionamiento sino también los polinomios representando la potencia absorbida, la potencia frigorífica y el caudal de refrigerante circulando por el compresor en función de las temperaturas de evaporación y condensación. Se habían buscado otros fabricantes de compresores tales como Danfoss o Copeland para ampliar el estudio pero no proporcionaban estos polinomios tales como los de BITZER, lo que, a primera vista, impide el uso del código EES desarrollado. Sin embargo, estos fabricantes proveen tablas de COP, potencia frigorífica y de caudal en función de las temperaturas de funcionamiento. Tal cual, no se puede usar el código EES desarrollado, pero al tratar e implementar estas tablas, se podrían obtener los rendimientos sin haber tenido los polinomios de datos tipo BITZER previamente. Así, un trabajo futuro podría ampliarse al estudio de compresores de distintos fabricantes.
- La búsqueda de la temperatura de descarga del gas a la salida del compresor. En efecto, al obtener esta temperatura, se podría calcular la entalpía a la salida del compresor, y obtener directamente el rendimiento isentrópico del compresor. Con este rendimiento isentrópico y el rendimiento energético previamente obtenido, se podrá comprobar toda la información que los fabricantes proporcionan (como el rendimiento eléctrico por ejemplo).

Al ampliar el alcance así, se dispondrán de más opciones para diseñar una instalación frigorífica e intentar optimizarla.

Bibliografía

[1] P.J.RAPIN, *Instalaciones frigoríficas*, Tomo 2, 1992, Marcombo Boixareu editores, traducción: José Alarcón Creus.

[2] D. Javier Doria, D. German Gondra, D. Luis Ruiz de Gauna, D. Salvador Makazaga, *Instalaciones frigoríficas*, 1995, Cadem Grupo EV.

[3] Wilbert F. Stoecker, Industrial Refrigeration Handbook, 1998, Mc Graw-Hill Companies, Inc.

[4] J. F. Coronel Toro, *Apuntes de la asignatura: "Instalaciones y Máquina Hidráulicas y Térmicas*", 2015, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla.

[5] Documentación de BITZER: "*Semi-Hermetic Reciprocating Compressors*" (KP-104-5), "*Semi-Hermetic Screw Compressors*" (SP-100-4), "*Hermetic Scroll Compressors*" (ESP-200-3).

Normas

[6] Norma Española: UNE-EN 12900, "Compresores para refrigerantes", Octubre 2014.

[7] Norma Española: UNE-EN 13771-1 "Compresores y unidades de condensación para refrigeración, Ensayos de prestaciones y métodos de ensayos, parte 1: Compresores para refrigerantes.", Noviembre 2003.

Sitios Web

- [8] Fabricante de Compresores Frigoríficos BITZER. https://www.bitzer.de/websoftware/
- [9] Fabricante de Compresores Frigoríficos DANFOSS. http://www.danfoss.com/
- [10] Fabricante de Compresores Frigoríficos EMERSON. http://www.emersonclimate.com/
- [11] Desarrollador del software EES. http://www.fchart.com/ees/

Anexos

Anexo 3.1: Cálculos teóricos de la relación de compresión, del COP, de la potencia frigorífica espe función de Te y Tc.	cífica en 66
Anexo 4.1: Cálculo del error medio entre los valores reales y pólinomicas del compresor de ELA743Y.	"Scroll" 71
Anexo 5.1: Lista y clasificación de los compresores BITZER en función de su potencia frigo condiciones nominales de funcionamiento.	rífica en 80
Anexo 5.2: Características y datos de los compresores del estudio.	84
Anexo 5.3: Gráficas representando los rendimientos isentrópicos y volumétricos en distintas condi- funcionamiento.	ciones de 99

te	tc	rc	COP	Qf_t/V_t
-25	15	4,59	5,218	249,7
-24	15	4,388	5,396	261,6
-23	15	4,196	5,584	273,9
-22	15	4,015	5,782	286,6
-21	15	3,843	5,991	299,8
-20	15	3,679	6,213	313,5
-19	15	3,524	6,447	327,8
-18	15	3,377	6,696	342,5
-17	15	3,238	6,96	357,8
-16	15	3,105	7,242	373,6
-15	15	2,979	7,543	389,9
-14	15	2,859	7,864	406,9
-13	15	2,745	8,209	424,4
-12	15	2,636	8,579	442,6
-11	15	2,533	8,978	461,4
-10	15	2,434	9,409	480,8
-9	15	2,341	9,876	500,9
-8	15	2,251	10,38	521,6
-7	15	2,166	10,94	543
-6	15	2,085	11,55	565,2
-5	15	2,007	12,21	588
-4	15	1,933	12,95	611,6
-3	15	1,862	13,78	636
-2	15	1,794	14,69	661,1
-1	15	1,73	15,73	687,1
0	15	1,668	16,9	713,8
1	15	1,609	18,24	741,4
2	15	1,552	19,78	769,9
3	15	1,498	21,59	799,2
4	15	1,446	23,72	829,5
5	15	1,397	26,28	860,6
6	15	1,349	29,4	892,7
7	15	1,304	33,31	925,8
8	15	1,26	38,34	959,8
9	15	1,218	45,05	994,9
10	15	1,178	54,43	1031
11	15	1,139	68,51	1068
12	15	1,102	91,98	1106
13	15	1,067	138,9	1146
-25	25	6,253	3,944	229,2
-24	25	5,978	4,06	240,1
-23	25	5,717	4,18	251,5
-22	25	5,47	4,306	263,3
-21	25	5,235	4,438	275,5
-20	25	5,013	4,575	288,2
-19	25	4,802	4,719	301,4
-18	25	4,601	4,869	315
-17	25	4,411	5,027	329,2
-16	25	4,23	5,193	343,9
-15	25	4,058	5,367	359
-14	25	3,895	5,55	374,8

te	tc	rc	COP	Qf_t/V_t
-13	25	3,74	5,743	391,1
-12	25	3,592	5,946	407,9
-11	25	3,451	6,161	425,3
-10	25	3,317	6,389	443,4
-9	25	3,189	6,629	462
-8	25	3,067	6,885	481,3
-7	25	2,951	7,157	501,2
-6	25	2,84	7,446	521,8
-5	25	2,734	7,755	543
-4	25	2,633	8,085	565
-3	25	2,537	8,439	587,7
-2	25	2,445	8,82	611,1
-1	25	2,356	9,23	635,2
0	25	2,272	9,673	660,2
1	25	2,192	10,15	685,9
2	25	2,115	10,68	712,4
3	25	2,041	11,24	739,7
4	25	1,97	11,87	767,9
5	25	1,903	12,56	796,9
6	25	1,838	13,32	826,9
7	25	1,776	14,16	857,7
8	25	1,716	15,1	889,5
9	25	1,659	16,17	922,2
10	25	1,605	17,37	955,9
11	25	1,552	18,75	990,6
12	25	1,502	20,33	1026
13	25	1,453	22,19	1063
-25	35	8,336	3,073	208,1
-24	35	7,968	3,154	218,1
-23	35	7,62	3,238	228,5
-22	35	7,291	3,324	239,3
-21	35	6,978	3,415	250,6
-20	35	6,682	3,508	262,2
-19	35	6,4	3,605	274,3
-18	35	6,133	3,706	286,8
-17	35	5,88	3,811	299,8
-16	35	5,639	3,92	313,3
-15	35	5,41	4,033	327,3
-14	35	5,192	4,152	341,7
-13	35	4,985	4,275	356,7
-12	35	4,788	4,404	372,2
-11	35	4,6	4,538	388,3
-10	35	4,421	4,678	404,9
-9	35	4,251	4,825	422,1
-8	35	4,088	4,979	439,8
-7	35	3,933	5,141	458,2
-6	35	3,786	5,31	477,2
-5	35	3,644	5,488	496,8
-4	35	3,51	5,676	517,1
-3	35	3,381	5,873	538
-2	35	3.258	6.081	559.6

te	tc	rc	COP	Qf _t /V _t
-1	35	3,141	6.301	581.9
0	35	3.029	6.534	605
1	35	2.922	6.78	628.7
2	35	2,819	7.041	653.2
3	35	2.721	7.319	678.5
4	35	2.626	7.616	704.6
5	35	2,536	7,932	731,5
6	35	2,45	8,27	759,2
7	35	2,367	8,632	787,8
8	35	2,288	9,021	817,2
9	35	2,212	9,441	847,5
10	35	2,139	9,894	878,7
11	35	2,069	10,39	910,9
12	35	2,002	10,92	944
13	35	1,937	11,5	978,1
-25	45	10,9	2,428	186,3
-24	45	10,42	2,488	195,3
-23	45	9,965	2,549	204,8
-22	45	9,534	2,612	214,6
-21	45	9,125	2,677	224,8
-20	45	8,738	2,745	235,3
-19	9 45 3 45	8,37	2,815	246,3
-18		8,021	2,886	257,7
-17	45	7,689	2,961	269,5
-16	45	7,374	3,038	281,8
-15	45	7,074	3,117	294,5
-14	45	6,79	3,2	307,6
-13	45	6,519	3,285	321,3
-12	45	6,261	3,373	335,4
-11	45	6,015	3,465	350
-10	45	5,781	3,56	365,1
-9	45	5,558	3,659	380,8
-8	45	5,346	3,761	397
-7	45	5,144	3,868	413,8
-6	45	4,95	3,979	431,1
-5	45	4,766	4,094	449
-4	45	4,59	4,215	467,6
-3	45	4,422	4,34	486,7
-2	45	4,261	4,471	506,5
-1	45	4,108	4,608	526,9
0	45	3,961	4,751	548
1	45	3,82	4.9	569.7

te	tc	rc	COP	Qf _t /V _t
2	45	3 686	5 057	592.2
3	45	3,558	5.221	615.3
4	45	3.435	5.394	639.2
5	45	3.317	5.575	663.9
6	45	3.204	5.765	689.3
7	45	3.096	5.966	715.5
8	45	2,992	6,178	742.5
9	45	2.893	6,402	770.4
10	45	2,797	6,638	799
11	45	2,706	6,889	828,6
12	45	2,618	7,155	859
13	45	2,534	7,438	890,3
-25	55	14,02	1,922	163,6
-24	55	13,4	1,967	171,7
-23	55	12,81	2,013	180,1
-22	55	12,26	2,061	188,8
-21	55	11,73	2,11	197,9
-20	55	11,24	2,16	207,4
-19	55	10,76	2,212	217,2
-18	55	10,31	2,266	227,4
-17	55	9,887	2,321	238
-16	55	9,482	2,377	249
-15	55	9,097	2,435	260,3
-14	55	8,731	2,496	272,2
-13	55	8,382	2,557	284,4
-12	55	8,051	2,621	297,1
-11	55	7,735	2,687	310,2
-10	55	7,434	2,755	323,8
-9	55	7,148	2,826	337,9
-8	55	6,874	2,898	352,5
-7	55	6,614	2,973	367,6
-6	55	6,366	3,051	383,2
-5	55	6,128	3,131	399,4
-4	55	5,902	3,215	416,1
-3	55	5,686	3,301	433,4
-2	55	5,479	3,39	451,2
-1	55	5,282	3,483	469,6
0	55	5,093	3,579	488,7
1	55	4,913	3,678	508,4
2	55	4,74	3,782	528,7
3	55	4,575	3,89	549,6
4	55	4,417	4,002	571,3
5	55	4,265	4,118	593,6
	55	4,12	4,24	010,6
		2.947	4,30/	664.0
8		3,847	4,499	600.1
10		3,12	4,037	7160
10	55	3,397	4,/82	/10,2
11	55	2 266	+,933 5 001	743
12	55	3,500	5 257	70,0
1.5		5,430	J.4J1	177.1

te	tc	rc	COP	Qf_t/V_t
-25	65	17.76	1.504	139.8
-24	65	16,98	1,538	146,8
-23	65	16,24	1,574	154,2
-22	65	15,53	1,611	161,8
-21	65	14,87	1,648	169,8
-20	65	14,24	1,687	178,1
-19	65	13,64	1,726	186,7
-18	65	13,07	1,767	195,6
-17	65	12,53	1,808	204,9
-16	65	12,02	1,851	214,5
-15	65	11,53	1,895	224,5
-14	65	11,06	1,94	234,9
-13	65	10,62	1,986	245,7
-12	65	10,2	2,034	256,9
-11	65	9,801	2,083	268,5
-10	65	9,42	2,133	280,5
-9	65	9,057	2,185	292,9
-8	65	8,711	2,239	305,8
-7	65	8,381	2,294	319,2
-6	65	8,066	2,35	333
-5	65	7,766	2,409	347,3
-4	65	7,479	2,469	362,1
-3	65	7,205	2,531	377,4
-2	65	6,943	2,595	393,2
-1	65	6,693	2,66	409,6
0	65	6,454	2,729	426,5
1	65	6,225	2,799	444
2	65	6,006	2,872	462,1
3	65	5,797	2,947	480,7
4	65	5,596	3,024	500
5	65	5,404	3,105	519,9
6	65	5,22	3,188	540,4
7	65	5,044	3,274	561,6
8	65	4,875	3,363	583,4
9	65	4,713	3,456	606
10	65	4,558	3,552	629,2
11	65	4,409	3,652	653,2
12	65	4,266	3,755	677,9
13	65	4,128	3,863	703,4

Anexo 4.1.				
Cálculo del error medio en	tre los valores reales y	polinómicas del co	ompresor de "Scr	oll" ELA743Y

T T	F 1	1 5	г г	X 7 1	1 17	F V	T	T	F 1	1 5	Б Б	X 7 1	1 17	
le lc	ηEb	pol nE	Error nE	ηVb	pol n V	Error nV	le	lc	ηEb	pol nE	Error nE	ηVb	pol nV	Error ηV
-15 30	0,5988	0,5917	0,0071	0,9727	0,9725	0,0002	-15	51	0,498	0,4979	0,0001	0,9207	0,9211	0,0004
-14 30	0,6062	0,6005	0,0057	0,9762	0,976	0,0002	-14	51	0,5079	0,5076	0,0003	0,9261	0,9263	0,0002
-13 30	0,6131	0,6087	0,0044	0,9795	0,9794	0,0001	-13	51	0,5178	0,5174	0,0004	0,9312	0,9312	0,0000
-12 30	0.6196	0.6162	0.0034	0.9827	0.9826	0.0001	-12	51	0.5275	0.527	0.0005	0.9361	0.9359	0.0002
-11 30	0.6255	0.623	0.0025	0.9857	0.9857	0,0000	-11	51	0.537	0 5366	0,0004	0.9407	0 9404	0,0003
-10 30	0.6308	0.6291	0.0017	0.9885	0.9886	0,0001	-10	51	0.5464	0.5461	0.0003	0.945	0.9448	0.0002
0 20	0,0308	0,0271	0,0017	0,0012	0,0014	0,0001	-10	51	0,5404	0,5554	0,0003	0,0402	0,0490	0,0002
-9 30	0,0555	0,0545	0,0012	0,9912	0,9914	0,0002	-9	51	0,5557	0,3334	0,0003	0,9492	0,9489	0,0003
-8 30	0,6395	0,6388	0,0007	0,9938	0,994	0,0002	-8	51	0,5648	0,5646	0,0002	0,9531	0,9529	0,0002
-7 30	0,6429	0,6425	0,0004	0,9963	0,9966	0,0003	-7	51	0,5737	0,5737	0,0000	0,9569	0,9567	0,0002
-6 30	0,6455	0,6453	0,0002	0,9987	0,999	0,0003	-6	51	0,5823	0,5825	0,0002	0,9604	0,9604	0,0000
-5 30	0.6473	0.6473	0.0000	1.001	1.001	0.0000	-5	51	0.5908	0.591	0.0002	0.9639	0.9639	0.0000
-4 30	0.6483	0.6484	0.0001	1.003	1 003	0,0000	-4	51	0 599	0 5993	0.0003	0.9672	0.9672	0,0000
-3 30	0.6484	0.6485	0.0001	1,005	1,005	0.0010	_3	51	0.6069	0.6074	0.0005	0.9703	0.9704	0.0001
-3 30	0,0404	0,0485	0,0001	1,003	1,000	0,0010	-5	51	0,0007	0,0074	0,0005	0,0703	0,0724	0,0001
-2 30	0,0470	0,0477	0,0001	1,007	1,008	0,0010	-2	51	0,0145	0,6151	0,0006	0,9733	0,9734	0,0001
-1 30	0,6459	0,6459	0,0000	1,009	1,009	0,0000	-1	51	0,6218	0,6225	0,0007	0,9762	0,9763	0,0001
0 30	0,6431	0,6432	0,0001	1,011	1,011	0,0000	0	51	0,6288	0,6295	0,0007	0,979	0,9791	0,0001
1 30	0,6393	0,6394	0,0001	1,013	1,013	0,0000	1	51	0,6354	0,6361	0,0007	0,9816	0,9817	0,0001
2 30	0,6344	0,6346	0,0002	1,015	1,015	0,0000	2	51	0,6416	0,6423	0,0007	0,9841	0,9843	0,0002
3 30	0.6284	0.6287	0.0003	1.016	1.016	0.0000	3	51	0.6473	0.6481	0.0008	0.9866	0.9867	0.0001
4 30	0.6212	0.6217	0.0005	1.018	1.018	0,0000	4	51	0.6526	0.6534	0.0008	0.9889	0.989	0.0001
5 30	0.6128	0.6136	0,0008	1,010	1,010	0,0010	5	51	0.6575	0.6583	0,0008	0.9912	0.9912	0,0001
<u> </u>	0,0120	0,0130	0,0000	1,02	1 021	0,0010	5	51	0,0373	0,0303	0,0008	0,0022	0,0022	0,0000
0 50	0,0032	0,0043	0,0011	1,021	1,021	0,0000	6	51	0,0018	0,0020	0,0008	0,9933	0,9933	0,0000
/ 30	0,5924	0,5938	0,0014	1,023	1,022	0,0010	1	51	0,6656	0,6664	0,0008	0,9954	0,9953	0,0001
8 30	0,5802	0,5822	0,0020	1,024	1,024	0,0000	8	51	0,6688	0,6696	0,0008	0,9973	0,9973	0,0000
9 30	0,5668	0,5693	0,0025	1,025	1,025	0,0000	9	51	0,6714	0,6722	0,0008	0,9992	0,9991	0,0001
10 30	0,5521	0,5552	0,0031	1,027	1,026	0,0010	10	51	0,6734	0,6742	0,0008	1,001	1,001	0,0000
11 30	0,5361	0,5398	0,0037	1,028	1,028	0,0000	11	51	0,6747	0,6755	0,0008	1,003	1,003	0,0000
12 30	0.5187	0.5231	0.0044	1.029	1,029	0.0000	12	51	0.6753	0.6762	0.0009	1.004	1,004	0,0000
13 30	0.5	0.505	0.0050	1.03	1.03	0,0000	13	51	0.6752	0.6762	0.0010	1,006	1 006	0,0000
14 30	0.48	0.4856	0,0056	1,031	1,031	0,0000	14	51	0,6743	0,6754	0.0011	1,000	1,000	0,0000
14 30	0,40	0,4630	0,0030	1,031	1,031	0,0000	14	51	0,0743	0,0734	0,0011	1,007	1,007	0,0000
15 30	0,4586	0,4649	0,0063	1,032	1,033	0,0010	15	51	0,0727	0,674	0,0013	1,009	1,009	0,0000
-15 31	0,5955	0,5902	0,0053	0,9708	0,9707	0,0001	-15	52	0,4922	0,4916	0,0006	0,9176	0,9181	0,0005
-14 31	0,6032	0,5992	0,0040	0,9744	0,9743	0,0001	-14	52	0,5021	0,5013	0,0008	0,9231	0,9233	0,0002
-13 31	0,6105	0,6075	0,0030	0,9779	0,9777	0,0002	-13	52	0,5119	0,511	0,0009	0,9283	0,9282	0,0001
-12 31	0,6173	0,6152	0,0021	0,9811	0,981	0,0001	-12	52	0,5216	0,5206	0,0010	0,9332	0,933	0,0002
-11 31	0.6236	0.6223	0.0013	0.9842	0.9842	0.0000	-11	52	0.5311	0.5302	0.0009	0.9378	0.9376	0.0002
-10 31	0.6294	0.6286	0.0008	0.9871	0.9872	0,0001	-10	52	0.5406	0.5397	0,0009	0.9422	0.942	0.0002
0 31	0,62/4	0,6342	0,0003	0,9800	0.00	0,0001	0	52	0,5400	0,5397	0,0009	0.0464	0.0462	0,0002
-9 31	0,0343	0,0342	0,0003	0,9899	0,99	0,0001	-9	52	0,5499	0,3491	0,0008	0,9404	0,9402	0,0002
-8 31	0,6391	0,6391	0,0000	0,9926	0,9927	0,0001	-8	52	0,559	0,5584	0,0006	0,9504	0,9502	0,0002
-7 31	0,643	0,6431	0,0001	0,9951	0,9953	0,0002	-7	52	0,5679	0,5675	0,0004	0,9542	0,9541	0,0001
-6 31	0,6461	0,6464	0,0003	0,9976	0,9978	0,0002	-6	52	0,5767	0,5764	0,0003	0,9579	0,9578	0,0001
-5 31	0,6486	0,6488	0,0002	0,9999	1	0,0001	-5	52	0,5852	0,5851	0,0001	0,9614	0,9613	0,0001
-4 31	0,6502	0,6504	0,0002	1,002	1,002	0,0000	-4	52	0,5935	0,5936	0,0001	0,9647	0,9647	0,0000
-3 31	0,651	0,6511	0,0001	1,004	1,005	0,0010	-3	52	0,6015	0,6018	0,0003	0,9679	0,968	0,0001
-2 31	0.6509	0.6509	0.0000	1.006	1.007	0.0010	-2	52	0.6093	0.6097	0.0004	0.9709	0.971	0.0001
-1 31	0.6499	0.6498	0.0001	1,008	1,009	0.0010	_1	52	0.6168	0.6173	0.0005	0.9739	0.974	0.0001
0 21	0,649	0,6477	0,0001	1,000	1,005	0,0010	0	52	0,6100	0,6246	0,0003	0,0767	0,0769	0,0001
1 21	0,048	0,0477	0,0003	1,01	1,01	0,0000	1	52	0,0239	0,0240	0,0007	0,9707	0,9708	0,0001
1 51	0,045	0,0440	0,0004	1,012	1,012	0,0000	1	52	0,0307	0,0313	0,0008	0,9793	0,9793	0,0002
2 31	0,641	0,6406	0,0004	1,014	1,014	0,0000	2	52	0,6371	0,638	0,0009	0,9819	0,9821	0,0002
3 31	0,6359	0,6354	0,0005	1,016	1,016	0,0000	3	52	0,6431	0,6441	0,0010	0,9844	0,9845	0,0001
4 31	0,6296	0,6293	0,0003	1,017	1,017	0,0000	4	52	0,6487	0,6497	0,0010	0,9868	0,9869	0,0001
5 31	0,6223	0,622	0,0003	1,019	1,019	0,0000	5	52	0,6538	0,6549	0,0011	0,9891	0,9891	0,0000
6 31	0,6137	0,6136	0,0001	1	1,02	0,0010	6	52	0,6585	0,6596	0,0011	0,9912	0,9913	0,0001
7 31	0,6039	0,6041	0,0002	1,022	1,022	0,0000	7	52	0,6626	0,6637	0,0011	0,9933	0,9933	0,0000
8 31	0,5929	0.5934	0.0005	1.023	1.023	0.0000	8	52	0.6662	0.6674	0.0012	0.9953	0,9953	0.0000
9 31	0.5806	0.5816	0.0010	1.025	1 024	0.0010	9	52	0.6692	0.6704	0.0012	0.9973	0,9972	0.0001
10 21	0.567	0.5685	0.0015	1.026	1.024	0.0000	10	52	0.6716	0 6728	0.0012	0,0001	0 000	0.0001
10 31	0,507	0,5085	0.0013	1,020	1,020	0,0000	10	52	0,6724	0,0720	0,0012	1.001	1 001	0,0001
11 51	0,5521	0,5542	0,0021	1,027	1,027	0,0000	11	52	0,0734	0,0/4/	0,0013	1,001	1,001	0,0000
12 31	0,5359	0,5386	0,0027	1,028	1,028	0,0000	12	52	0,6745	0,6759	0,0014	1,002	1,002	0,0000
13 31	0,5184	0,5217	0,0033	1,03	1,03	0,0000	13	52	0,6749	0,6764	0,0015	1,004	1,004	0,0000
14 31	0,4996	0,5035	0,0039	1,031	1,031	0,0000	14	52	0,6746	0,6762	0,0016	1,006	1,006	0,0000
15 31	0,4795	0,484	0,0045	1,032	1,032	0,0000	15	52	0,6735	0,6753	0,0018	1,007	1,007	0,0000
-15 32	0,592	0,5883	0,0037	0,9689	0,9688	0,0001	-15	53	0,4863	0,4853	0,0010	0,9144	0,9149	0,0005
-14 32	0.6	0.5974	0.0026	0.9726	0,9725	0,0001	-14	53	0,4961	0,4949	0,0012	0.92	0.9202	0.0002
-13 32	0.6076	0.6059	0.0017	0.9761	0 976	0.0001	-13	53	0.5059	0.5045	0.0014	0.9252	0.9252	0.0000
-12 32	0.61/18	0.6138	0.0010	0.9795	0 979/	0.0001	_12	53	0.5156	0 51/2	0.0014	0.9302	0.9301	0.0001
11 22	0,6215	0.4211	0.0004	0,000	0.0004	0,0001	-12	55	0,5150	0.5227	0.0014	0.0240	0.0247	0,0001
-11 32	0,0215	0,0211	0,0004	0,9820	0,9820	0,0000	-11	55	0,5252	0,5257	0,0015	0,9349	0,934/	0,0002
-10 32	0,6276	0,6277	0,0001	0,9856	0,9856	0,0000	-10	53	0,5346	0,5333	0,0013	0,9394	0,9392	0,0002
-9 32	0,6332	0,6336	0,0004	0,9885	0,9886	0,0001	-9	53	0,5439	0,5427	0,0012	0,9436	0,9434	0,0002
-8 32	0,6382	0,6388	0,0006	0,9913	0,9914	0,0001	-8	53	0,5531	0,552	0,0011	0,9477	0,9475	0,0002
-7 32	0,6426	0,6433	0,0007	0,9939	0,994	0,0001	-7	53	0,5621	0,5612	0,0009	0,9516	0,9514	0,0002
-6 32	0,6463	0,647	0,0007	0,9964	0,9966	0,0002	-6	53	0,5709	0,5702	0,0007	0,9553	0,9552	0,0001
-5 32	0,6493	0,6499	0,0006	0,9988	0.999	0,0002	-5	53	0,5795	0.579	0,0005	0,9588	0,9588	0,0000
-4 32	0.6515	0.6519	0.0004	1.001	1 001	0.0000	_4	53	0 5879	0 5876	0.0003	0.9622	0.9622	0,0000
_3 32	0.653	0.6532	0,0007	1,003	1 004	0.0010	_2	53	0.596	0 596	0,0000	0.9654	0.9655	0.0001
_2 32	0.6536	0.6536	0.00002	1,005	1 004	0.0010		53	0.6030	0.60/1	0.0002	0.9685	0.9686	0.0001

Anexo 4.1.		
Cálculo del error medio entre los valores reales y poli-	nómicas del compresor de "Scro	oll" ELA743Y

Те Тс	ηE b	pol nE	Error nE	ηV b	pol ŋV	Error nV	Te	e Tc	ηE b	pol ŋE	Error nE	ηV b	pol ŋV	Error nV
-1 32	0,6533	0,653	0,0003	1,008	1,008	0,0000	-1	53	0,6115	0,6119	0,0004	0,9715	0,9716	0,0001
0 32	0,6521	0,6516	0,0005	1	1,01	0,0010	0	53	0,6188	0,6194	0,0006	0,9743	0,9744	0,0001
1 32	0,6499	0,6492	0,0007	1,011	1,011	0,0000	1	53	0,6258	0,6265	0,0007	0,977	0,9772	0,0002
2 32	0,646/	0,6459	0,0008	1,013	1,013	0,0000	2	53	0,6324	0,6333	0,0009	0,9796	0,9798	0,0002
$\frac{3}{4}$ 32	0,0423	0,0413	0,0010	1,013	1,013	0,0000	4	53	0,6380	0,0397	0.0012	0,9822	0,9823	0,0001
5 32	0,6308	0,6297	0,0011	1,017	1,017	0,0000	5	53	0,6498	0,6511	0,0012	0,9869	0,9869	0,0001
6 32	0,6232	0,6222	0,0010	1,02	1,02	0,0000	6	53	0,6548	0,6562	0,0014	0,9891	0,9891	0,0000
7 32	0,6144	0,6136	0,0008	1,021	1,021	0,0000	7	53	0,6592	0,6607	0,0015	0,9912	0,9912	0,0000
8 32	0,6045	0,6039	0,0006	1,023	1,022	0,0010	8	53	0,6632	0,6647	0,0015	0,9933	0,9932	0,0001
9 32	0,5933	0,593	0,0003	1,024	1,024	0,0000	9	53	0,6665	0,6682	0,0017	0,9952	0,9951	0,0001
10 32	0,5808	0,5809	0,0001	1,025	1,025	0,0000	10	$\frac{1}{1}$ 53	0,6694	0,671	0,0016	0,9971	0,997	0,0001
11 32 12 32	0,567	0,5677	0,0007	1,027	1,026	0,0010	11	$\frac{1}{2}$ $\frac{53}{53}$	0,6731	0,675	0,0017	1,001	1,000	0,0002
12 32 13 32	0,5357	0,5352	0,0012	1,020	1,020	0,0000	12	3 53	0.674	0.676	0.0020	1,001	1,000	0,0010
14 32	0,5181	0,5204	0,0023	1,03	1,03	0,0000	14	4 53	0,6743	0,6763	0,0020	1,004	1,004	0,0000
15 32	0,4991	0,5021	0,0030	1,031	1,032	0,0010	1.5	5 53	0,6737	0,6759	0,0022	1,005	1,005	0,0000
-15 33	0,5884	0,586	0,0024	0,9669	0,9668	0,0001	-1	5 54	0,4803	0,479	0,0013	0,9112	0,9117	0,0005
-14 33	0,5966	0,5952	0,0014	0,9707	0,9706	0,0001	-1-	4 54	0,4902	0,4885	0,0017	0,9168	0,9171	0,0003
-13 33	0,6045	0,6039	0,0006	0,9743	0,9742	0,0001	-1.	$\frac{3}{2}$ 54	0,4999	0,4981	0,0018	0,9221	0,9222	0,0001
-12 55	0,612	0,612	0,0000	0,9778	0,9778	0,0002	-1.	$\frac{2}{1}$ 54	0,5090	0,5077	0,0019	0,9272	0,927	0,0002
-10 33	0.6255	0.6263	0.0008	0.9841	0.9841	0.0000	-1	$\frac{1}{0}$ 54	0.5286	0.5267	0.0019	0.9365	0.9363	0.0002
-9 33	0,6315	0,6325	0,0010	0,987	0,9871	0,0001	-9) 54	0,5379	0,5362	0,0017	0,9408	0,9406	0,0002
-8 33	0,6369	0,6381	0,0012	0,9899	0,99	0,0001	-8	3 54	0,5471	0,5456	0,0015	0,9449	0,9447	0,0002
-7 33	0,6418	0,6429	0,0011	0,9925	0,9927	0,0002	-7	7 54	0,5561	0,5548	0,0013	0,9488	0,9487	0,0001
-6 33	0,646	0,647	0,0010	0,9951	0,9953	0,0002	-6	5 54	0,565	0,5639	0,0011	0,9526	0,9525	0,0001
-5 33	0,6495	0,6504	0,0009	0,9976	0,9978	0,0002	-5	54	0,5736	0,5728	0,0008	0,9561	0,9561	0,0000
-4 33	0,6543	0,6529	0,0006	1,002	1 1 002	0,0001	-4	+ 54	0,5821	0,5810	0,0005	0,9596	0,9596	0,0000
-3 33	0,0343	0,0347	0,0004	1,002	1,002	0,0000	-3	5 54	0,5903	0,5901	0,0002	0,9028	0,9629	0,0001
-1 33	0,656	0,6557	0,0003	1,001	1,005	0,0010	-1	1 54	0,606	0,6063	0,0003	0,969	0,9691	0,0001
0 33	0,6555	0,6549	0,0006	1,009	1,009	0,0000	0	54	0,6135	0,614	0,0005	0,9719	0,972	0,0001
1 33	0,6541	0,6531	0,0010	1,01	1,01	0,0000	1	54	0,6206	0,6214	0,0008	0,9746	0,9748	0,0002
2 33	0,6517	0,6505	0,0012	1,012	1,012	0,0000	2	54	0,6274	0,6284	0,0010	0,9773	0,9774	0,0001
3 33	0,6483	0,6469	0,0014	1,014	1,014	0,0000	3	54	0,6339	0,635	0,0011	0,9799	0,98	0,0001
4 33	0,6439	0,6423	0,0016	1,016	1,016	0,0000	4	54	0,6399	0,6413	0,0014	0,9823	0,9824	0,0001
6 33	0,0384	0,0300	0.0018	1,017	1,017	0,0000	6	54	0,6430	0,6524	0,0015	0,9847	0,9847	0,0000
7 33	0,624	0,6223	0,0010	1	1,01	0,0010	7	54	0,6555	0,6573	0,0018	0,9891	0,989	0,0000
8 33	0,615	0,6135	0,0015	1,022	1,022	0,0000	8	54	0,6598	0,6617	0,0019	0,9911	0,9911	0,0000
9 33	0,6049	0,6035	0,0014	1,023	1,023	0,0000	9	54	0,6635	0,6655	0,0020	0,9931	0,993	0,0001
10 33	0,5935	0,5925	0,0010	1,025	1,025	0,0000	10	0 54	0,6667	0,6688	0,0021	0,995	0,9949	0,0001
11 33	0,5809	0,5802	0,0007	1,026	1,026	0,0000	11	1 54	0,6693	0,6715	0,0022	0,9968	0,9967	0,0001
12 33	0,5669	0,5668	0,0001	1,027	1,027	0,0000	12	$\frac{2}{2}$ 54	0,6713	0,6736	0,0023	0,9985	0,9984	0,0001
13 33	0,5318	0,5322	0,0004	1,028	1,028	0,0000	12	5 <u>54</u> 1 <u>54</u>	0,6734	0,6758	0,0023	1 002	1 002	0,0000
14 33 15 33	0,5355	0,5303	0.0016	1.03	1,031	0.0010	1.	5 54	0.6734	0.6759	0.0024	1,002	1,002	0.0000
-15 34	0,5845	0,5833	0,0012	0,9648	0,9648	0,0000	-1	5 55	0,4744	0,4726	0,0018	0,9079	0,9085	0,0006
-14 34	0,593	0,5926	0,0004	0,9688	0,9686	0,0002	-1-	4 55	0,4842	0,4821	0,0021	0,9136	0,9139	0,0003
-13 34	0,6011	0,6014	0,0003	0,9725	0,9723	0,0002	-1	3 55	0,4939	0,4916	0,0023	0,919	0,919	0,0000
-12 34	0,6089	0,6097	0,0008	0,976	0,9758	0,0002	-1	2 55	0,5035	0,5011	0,0024	0,9241	0,924	0,0001
-11 34	0,6162	0,6174	0,0012	0,9793	0,9792	0,0001	-1	1 55	0,5131	0,5107	0,0024	0,9289	0,9287	0,0002
_0 34	0,6294	0,0245	0.0014	0,9825	0,9824	0,0001	-1	0 33) 55	0,5225	0,5202	0.0025	0,9555	0,9333	0.0002
-8 34	0,6352	0,6369	0.0017	0.9884	0,9885	0,0001	-8	× 55	0,5510	0,5297	0.0019	0.9421	0.9419	0,0002
-7 34	0,6405	0,6421	0,0016	0,9911	0,9913	0,0002	-7	7 55	0,5501	0,5483	0,0018	0,946	0,9459	0,0001
-6 34	0,6452	0,6466	0,0014	0,9938	0,9939	0,0001	-6	5 55	0,5589	0,5575	0,0014	0,9498	0,9497	0,0001
-5 34	0,6492	0,6504	0,0012	0,9963	0,9965	0,0002	-5	5 55	0,5677	0,5665	0,0012	0,9534	0,9534	0,0000
-4 34	0,6525	0,6534	0,0009	0,9987	0,9989	0,0002	-4	4 55	0,5762	0,5754	0,0008	0,9569	0,9569	0,0000
-3 34	0,6552	0,6556	0,0004	1,001	1,001	0,0000	-3	3 55	0,5845	0,584	0,0005	0,9602	0,9603	0,0001
-2 34	0,6581	0,6577	0,0001	1,005	1,003	0,0000	-2	2 55	0,5926	0,5924	0,0002	0,9654	0,9655	0,0001
$-1 34 \\ 0 34$	0,6583	0,6575	0,0004	1,003	1,000	0,0010	-1	55	0,0004	0,0003	0,0001	0,9603	0,9000	0,0001
1 34	0,6576	0,6565	0,0011	1	1,01	0,0010	1	55	0,6153	0,616	0,0007	0,9722	0,9723	0,0001
2 34	0,656	0,6545	0,0015	1,011	1,011	0,0000	2	55	0,6222	0,6232	0,0010	0,9749	0,975	0,0001
3 34	0,6534	0,6516	0,0018	1,013	1,013	0,0000	3	55	0,6289	0,6301	0,0012	0,9775	0,9776	0,0001
4 34	0,6498	0,6477	0,0021	1,015	1,015	0,0000	4	55	0,6351	0,6366	0,0015	0,98	0,9801	0,0001
5 34	0,6452	0,6429	0,0023	1,017	1,016	0,0010	5	55	0,641	0,6427	0,0017	0,9823	0,9824	0,0001
0 34	0,6394	0,6371	0,0023	1,018	1,018	0,0000	6	55	0,6465	0,6483	0,0018	0,9846	0,9847	0,0001
8 34	0,6246	0,0302	0.0024	1,02	1,02	0.0000	/ 8	55	0,6561	0,0555	0.0020	0,9880	0,9800	0.0000
9 34	0,6155	0.6133	0.0023	1.023	1.022	0.0010	9	55	0,6601	0,6624	0.0023	0,9909	0.9908	0.0001
10 34	0,6051	0,6032	0,0019	1,024	1,024	0,0000	1(0 55	0,6637	0,666	0,0023	0,9929	0,9927	0,0002
11 34	0,5936	0,592	0,0016	1,025	1,025	0,0000	11	1 55	0,6666	0,6691	0,0025	0,9947	0,9946	0,0001
12 34	0 5808	0 5796	0.0012	1.027	1 026	0.0010	12	2 55	0.6691	0.6716	0.0025	0 9964	0.9963	0.0001

Anexo 4.1.				
Cálculo del error medio en	tre los valores reales y	polinómicas del co	ompresor de "Scr	oll" ELA743Y

Т. Т.	- E 1	1E	EE			EmanuM	т.	т.	uE h		Emera	V. h		Emeral
1e 1c	ηE b	pol nE	Error nE	ηv b	pol ŋ v	Error ηV	le	10	ηE b	polnE	Error nE	ηv b	polnv	Error nv
13 34	0,5667	0,566	0,0007	1,028	1,028	0,0000	13	55	0,6709	0,6735	0,0026	0,9981	0,998	0,0001
14 34	0,5514	0,5512	0,0002	1,029	1,029	0,0000	14	55	0,672	0,6748	0,0028	0,9997	0,9997	0,0000
15 34	0,5348	0,5352	0,0004	1,03	1,03	0,0000	15	55	0,6725	0,6754	0,0029	1,001	1,001	0,0000
-15 35	0,5804	0,5802	0,0002	0,9627	0,9627	0,0000	-15	56	0,4684	0,4664	0,0020	0,9046	0,9052	0,0006
-14 35	0,5892	0,5896	0,0004	0,9667	0,9666	0,0001	-14	56	0,4781	0,4757	0,0024	0,9104	0,9106	0,0002
-13 35	0,5975	0,5986	0,0011	0,9705	0,9704	0,0001	-13	56	0,4878	0,4851	0,0027	0,9158	0,9158	0,0000
-12 35	0,6055	0,607	0,0015	0,9741	0,974	0,0001	-12	56	0,4974	0,4946	0,0028	0,921	0,9208	0,0002
-11 35	0,6131	0,615	0,0019	0,9776	0,9775	0,0001	-11	56	0,5069	0,5041	0,0028	0,9259	0,9257	0,0002
-10 35	0.6203	0.6223	0.0020	0.9808	0.9807	0.0001	-10	56	0.5164	0.5136	0.0028	0.9305	0.9303	0.0002
-9 35	0.627	0.6291	0.0021	0.9839	0.9839	0,0000	-9	56	0.5257	0 5231	0.0026	0.9349	0.9347	0,0002
-8 35	0.6332	0.6353	0.0021	0.9869	0.9869	0,0000	-8	56	0.5349	0.5325	0.0024	0.9391	0.9389	0.0002
-7 35	0.6389	0,6505	0.0019	0.9897	0.9898	0,0001	-7	56	0.5439	0.5418	0.0021	0.9432	0.943	0.0002
-6 35	0.644	0.6457	0.0017	0.9924	0.9925	0,0001	-6	56	0.5528	0.551	0.0018	0.947	0.9/69	0.0001
5 35	0,044	0,0437	0,0017	0.0040	0.0051	0,0001	-0	56	0,5526	0,551	0,0015	0.0507	0,0407	0,0001
-5 55	0,0403	0,0499	0,0014	0,9949	0,9931	0,0002	-3	56	0,5010	0,560	0,0013	0,9307	0,9300	0,0001
-4 55	0,0325	0,0333	0,0010	0,9974	0,9970	0,0002	-4	50	0,5701	0,309	0,0011	0,9342	0,9342	0,0000
-3 35	0,0555	0,0501	0,0006	0,9998	1	0,0002	-3	50	0,5785	0,5778	0,0007	0,9575	0,9576	0,0001
-2 35	0,6579	0,6581	0,0002	1,002	1,002	0,0000	-2	56	0,5867	0,5863	0,0004	0,9608	0,9609	0,0001
-1 35	0,6595	0,6593	0,0002	1,004	1,004	0,0000	-1	56	0,5946	0,5946	0,0000	0,9639	0,964	0,0001
0 35	0,6604	0,6596	0,0008	1,006	1,006	0,0000	0	56	0,6023	0,6026	0,0003	0,9668	0,967	0,0002
1 35	0,6604	0,6592	0,0012	1,008	1,008	0,0000	1	56	0,6097	0,6104	0,0007	0,9697	0,9698	0,0001
2 35	0,6595	0,6579	0,0016	1,01	1,01	0,0000	2	56	0,6168	0,6178	0,0010	0,9724	0,9726	0,0002
3 35	0,6577	0,6556	0,0021	1,012	1,012	0,0000	3	56	0,6236	0,6249	0,0013	0,975	0,9752	0,0002
4 35	0,6549	0,6525	0,0024	1,014	1,014	0,0000	4	56	0,6301	0,6316	0,0015	0,9776	0,9777	0,0001
5 35	0,6511	0,6484	0,0027	1,016	1,016	0,0000	5	56	0,6362	0,6379	0,0017	0,98	0,98	0,0000
6 35	0,6462	0,6434	0,0028	1,017	1,017	0,0000	6	56	0,6419	0,6439	0,0020	0,9823	0,9823	0,0000
7 35	0,6403	0,6374	0,0029	1,019	1,019	0,0000	7	56	0,6472	0,6493	0,0021	0,9845	0,9845	0,0000
8 35	0,6333	0,6303	0,0030	1,02	1,02	0,0000	8	56	0,652	0,6544	0,0024	0,9867	0,9866	0,0001
9 35	0,6251	0,6222	0,0029	1,022	1,022	0,0000	9	56	0,6564	0,6589	0,0025	0,9887	0,9886	0,0001
10 35	0,6158	0,6131	0,0027	1,023	1,023	0,0000	10	56	0,6602	0,6629	0,0027	0,9907	0,9905	0,0002
11 35	0.6052	0.6028	0.0024	1.025	1.024	0.0010	11	56	0.6636	0.6663	0.0027	0.9925	0.9924	0.0001
12 35	0 5935	0 5914	0.0021	1.026	1.026	0,0000	12	56	0.6664	0.6692	0.0028	0.9943	0 9942	0,0001
13 35	0.5805	0.5789	0.0016	1,027	1,027	0,0000	13	56	0.6686	0.6715	0.0029	0.996	0.9959	0.0001
14 35	0,5663	0,57652	0.0011	1,027	1,027	0,0000	14	56	0.6702	0.6732	0.0030	0.9976	0.9976	0,0000
14 55	0,5005	0,5052	0,0011	1,020	1,028	0,0000	14	56	0,6712	0,0732	0,0030	0,9970	0,9970	0,0000
15 35	0,5508	0,5505	0,0005	0.0605	0.0605	0,0010	15	57	0,0712	0,0742	0,0030	0,9991	0,9992	0,0001
-13 30	0,5762	0,5708	0,0008	0,9003	0,9603	0,0000	-13	57	0,4024	0,4001	0,0023	0,9012	0,9018	0,0008
-14 50	0,5851	0,3803	0,0012	0,9047	0,9043	0,0002	-14	57	0,4721	0,4094	0,0027	0,9071	0,9075	0,0002
-13 36	0,5937	0,5954	0,0017	0,9686	0,9684	0,0002	-13	57	0,4817	0,4/8/	0,0030	0,9126	0,9126	0,0000
-12 36	0,602	0,604	0,0020	0,9722	0,9721	0,0001	-12	57	0,4913	0,4881	0,0032	0,9178	0,9177	0,0001
-11 36	0,6098	0,6121	0,0023	0,9757	0,9756	0,0001	-11	57	0,5008	0,4976	0,0032	0,9227	0,9225	0,0002
-10 36	0,6173	0,6197	0,0024	0,9791	0,979	0,0001	-10	57	0,5101	0,507	0,0031	0,9274	0,9272	0,0002
-9 36	0,6243	0,6267	0,0024	0,9822	0,9822	0,0000	-9	57	0,5194	0,5165	0,0029	0,9319	0,9317	0,0002
-8 36	0,6308	0,6332	0,0024	0,9853	0,9853	0,0000	-8	57	0,5286	0,5259	0,0027	0,9362	0,9359	0,0003
-7 36	0,6369	0,6391	0,0022	0,9881	0,9882	0,0001	-7	57	0,5377	0,5352	0,0025	0,9402	0,9401	0,0001
-6 36	0,6424	0,6443	0,0019	0,9909	0,991	0,0001	-6	57	0,5466	0,5445	0,0021	0,9441	0,944	0,0001
-5 36	0,6473	0,6489	0,0016	0,9935	0,9937	0,0002	-5	57	0,5554	0,5536	0,0018	0,9478	0,9478	0,0000
-4 36	0,6516	0,6528	0,0012	0,996	0,9962	0,0002	-4	57	0,564	0,5626	0,0014	0,9514	0,9514	0,0000
-3 36	0,6552	0,656	0,0008	0,9985	0,9986	0,0001	-3	57	0,5724	0,5714	0,0010	0,9548	0,9548	0,0000
-2 36	0,6582	0,6585	0,0003	1,001	1,001	0,0000	-2	57	0,5807	0,5801	0,0006	0,9581	0,9582	0,0001
-1 36	0,6604	0,6602	0,0002	1,003	1,003	0,0000	-1	57	0,5887	0,5885	0,0002	0,9612	0,9613	0,0001
0 36	0,6619	0,6612	0,0007	1,005	1,005	0,0000	0	57	0,5965	0,5967	0,0002	0,9642	0,9643	0,0001
1 36	0,6625	0,6613	0,0012	1,007	1,007	0,0000	1	57	0,604	0,6046	0,0006	0,9671	0,9672	0,0001
2 36	0,6623	0.6606	0.0017	1,009	1.009	0,0000	2	57	0,6112	0,6122	0,0010	0,9699	0.97	0.0001
3 36	0,6612	0.6591	0.0021	1.011	1.011	0,0000	3	57	0,6182	0,6194	0.0012	0,9725	0.9727	0.0002
4 36	0,6592	0.6567	0,0025	1,013	1,013	0,0000	4	57	0,6248	0,6264	0,0016	0,9751	0,9752	0.0001
5 36	0.6562	0.6533	0.0029	1.015	1.015	0.0000	5	57	0.6311	0.6329	0.0018	0.9775	0,9776	0.0001
6 36	0.6522	0.6491	0.0031	1.016	1.016	0.0000	6	57	0.637	0.6391	0.0021	0.9799	0,9799	0,0000
7 36	0.6471	0 6438	0.0033	1.018	1 018	0.0000	7	57	0.6425	0.6449	0.0024	0.9822	0.9821	0.0001
8 36	0.641	0.6376	0.0034	1.019	1 019	0,0000	8	57	0.6476	0.6502	0.0026	0.9843	0 9843	0,0000
9 36	0.6338	0.6304	0.0034	1.021	1 021	0,0000	0	57	0.6523	0.655	0.0020	0.9864	0.9863	0.0001
10 36	0,0338	0,0304	0,0034	1,021	1,021	0,0000	10	57	0,6565	0,6503	0,0027	0.9804	0,9803	0,0001
10 30	0,0234	0,0222	0,0032	1,022	1,022	0,0000	11	57	0,6505	0,0393	0,0028	0,9884	0,9885	0,0001
11 30	0,0159	0,0128	0,0031	1,024	1,024	0,0000	11	57	0,6622	0,0031	0,0030	0,9903	0,9902	0.0001
12 30	0,0032	0,0024	0,0028	1,025	1,025	0,0000	12	57	0,0055	0,0003	0,0030	0,9921	0,992	0,0001
10 00	0,5955	0,5909	0,0024	1,020	1,020	0,0000	13	51	0,0039	0,009	0,0031	0,9938	0.0054	0,0001
14 30	0,5601	0,3/83	0,0018	1,027	1,027	0,0000	14	57	0,0079	0,0/1	0,0031	0,9955	0,9934	0,0001
15 36	0,5658	0,5644	0,0014	1,028	1,029	0,0010	15	57	0,6693	0,6/25	0,0032	0,997	0,9971	0,0001
-15 37	0,5718	0,5731	0,0013	0,9583	0,9583	0,0000	-15	58	0,4563	0,454	0,0023	0,8978	0,8984	0,0006
-14 37	0,5809	0,5827	0,0018	0,9625	0,9624	0,0001	-14	- 58	0,466	0,4631	0,0029	0,9037	0,904	0,0003
-13 37	0,5897	0,5919	0,0022	0,9665	0,9663	0,0002	-13	58	0,4756	0,4723	0,0033	0,9093	0,9093	0,0000
-12 37	0,5981	0,6007	0,0026	0,9703	0,9701	0,0002	-12	58	0,4851	0,4817	0,0034	0,9145	0,9144	0,0001
-11 37	0,6062	0,6089	0,0027	0,9739	0,9737	0,0002	-11	58	0,4945	0,491	0,0035	0,9195	0,9193	0,0002
-10 37	0,614	0,6167	0,0027	0,9773	0,9771	0,0002	-10	58	0,5039	0,5005	0,0034	0,9243	0,924	0,0003
-9 37	0,6213	0,624	0,0027	0,9805	0,9804	0,0001	-9	58	0,5132	0,5099	0,0033	0,9288	0,9286	0,0002
-8 37	0,6281	0,6308	0,0027	0,9836	0,9836	0,0000	-8	58	0,5223	0,5193	0,0030	0,9331	0,9329	0,0002
-7 37	0,6345	0,6369	0,0024	0,9865	0,9866	0,0001	-7	58	0,5314	0,5286	0,0028	0,9372	0,9371	0,0001
-6 37	0,6404	0,6425	0,0021	0,9893	0,9894	0,0001	-6	58	0,5403	0,5379	0,0024	0,9412	0,9411	0,0001
-5 37	0.6457	0.6475	0.0018	0.992	0.9922	0.0002	-5	58	0.5491	0.5471	0.0020	0.9449	0.9449	0.0000

Anexo 4.1.				
Cálculo del error medio en	tre los valores reales y	polinómicas del co	ompresor de "Scr	oll" ELA743Y

Te Te	nE b	nol nE	Error nE	nV h	nol nV	Error nV	Те	Te	nE h	nol nE	Error nE	nV h	nol nV	Error nV
_1 37	0.6504	0.6518	0.0014	0.9946	0 9948	0.0002	-4	58	0.5578	0 5561	0.0017	0.9485	0.9485	0.0000
-3 37	0,6545	0,6555	0,0014	0.9971	0,0072	0,0002		58	0,5576	0,5501	0,0017	0.952	0,9405	0,0000
-3 37	0,0545	0,0555	0,0010	0,9971	0,9972	0,0001	-3	58	0,5002	0,505	0,0012	0,952	0,952	0,0000
1 37	0,038	0,0384	0,0004	1.002	1.002	0,0002	-2	58	0,5745	0,5757	0,0003	0,9535	0,9554	0,0001
$-1 37 \\ 0 37$	0,0008	0,0007	0,0001	1,002	1,002	0,0000	-1	58	0,5820	0,5822	0,0004	0,9383	0,9580	0,0001
1 37	0,6641	0,6620	0,0000	1,004	1,004	0,0000	1	58	0,5905	0,5986	0,0000	0.9644	0.9646	0,0002
$\frac{1}{2}$ 37	0,6645	0,0029	0.0012	1,000	1,000	0,0000	2	58	0,5981	0,5980	0,0003	0,9044	0,9040	0,0002
3 37	0,6641	0,0028	0.0022	1,008	1,008	0,0000	3	58	0,6035	0,0003	0,0008	0,9073	0,9074	0,0001
J 37	0,6628	0,0019	0,0022	1,012	1,012	0,0000		58	0,0120	0,0138	0,0012	0,97	0,9701	0,0001
5 37	0,0028	0,0002	0,0020	1,012	1,012	0,0000	5	58	0,0193	0,0209	0,0010	0,9723	0,9727	0,0002
6 27	0,0003	0,0570	0,0029	1,014	1,015	0,0010	6	50	0,0238	0,0277	0,0019	0,973	0,9731	0,0001
7 37	0,0373	0,034	0,0033	1,013	1,013	0,0000	7	58	0,0319	0,0341	0,0022	0,9774	0,9773	0,0001
0 27	0,0331	0,0490	0,0033	1,017	1,017	0,0000	/	50	0,0370	0,0401	0,0023	0,9797	0,9797	0,0000
8 37 0 27	0,0478	0,0442	0,0030	1,018	1,018	0,0000	0	50	0,045	0,0430	0,0028	0,9819	0,9819	0,0000
9 37	0,0415	0,6378	0,0037	1,02	1,02	0,0000	9	58	0,6479	0,6507	0,0028	0,984	0,984	0,0000
10 57	0,0341	0,0304	0,0037	1,021	1,021	0,0000	10	50	0,0324	0,0335	0,0029	0,9801	0,9839	0,0002
11 3/	0,0255	0,622	0,0035	1,023	1,023	0,0000	11	50	0,0505	0,0594	0,0031	0,988	0,9879	0,0001
12 37	0,0158	0,0120	0,0032	1,024	1,024	0,0000	12	58	0,6598	0,003	0,0032	0,9898	0,9897	0,0001
15 57	0,0049	0,0021	0,0028	1,025	1,023	0,0000	13	50	0,0028	0,000	0,0032	0,9910	0,9913	0,0001
14 57	0,3929	0,3904	0,0023	1,020	1,027	0,0010	14	50	0,0052	0,0084	0,0032	0,9955	0,9952	0,0001
15 3/	0,5/90	0,5770	0,0020	1,027	1,028	0,0010	15	50	0,007	0,6702	0,0032	0,9948	0,9949	0,0001
-15 58	0,50/5	0,5091	0,0018	0,950	0,950	0,0000	-15	59	0,4505	0,4479	0,0024	0,8944	0,895	0,0000
-14 38	0,5765	0,5788	0,0023	0,9603	0,9602	0,0001	-14	59	0,4599	0,4569	0,0030	0,9003	0,9006	0,0003
-13 38	0,5855	0,5881	0,0026	0,9644	0,9642	0,0002	-13	59	0,4694	0,466	0,0034	0,9059	0,9059	0,0000
-12 38	0,5941	0,597	0,0029	0,9682	0,9681	0,0001	-12	59	0,4789	0,4753	0,0036	0,9112	0,9111	0,0001
-11 38	0,6024	0,6054	0,0030	0,9/19	0,9/17	0,0002	-11	59	0,4883	0,4846	0,0037	0,9163	0,9161	0,0002
-10 38	0,6104	0,6134	0,0030	0,9754	0,9753	0,0001	-10	59	0,4976	0,4939	0,0037	0,9211	0,9208	0,0003
-9 38	0,6179	0,6209	0,0030	0,9787	0,9786	0,0001	-9	59	0,5068	0,5033	0,0035	0,9256	0,9254	0,0002
-8 38	0,6251	0,6279	0,0028	0,9818	0,9818	0,0000	-8	59	0,516	0,5127	0,0033	0,93	0,9298	0,0002
-/ 38	0,6318	0,6344	0,0026	0,9848	0,9849	0,0001	-/	59	0,525	0,522	0,0030	0,9342	0,934	0,0002
-6 38	0,638	0,6403	0,0023	0,9877	0,9878	0,0001	-6	59	0,534	0,5313	0,0027	0,9382	0,938	0,0002
-5 38	0,6437	0,6456	0,0019	0,9905	0,9906	0,0001	-5	59	0,5428	0,5405	0,0023	0,942	0,9419	0,0001
-4 38	0,6488	0,6504	0,0016	0,9931	0,9932	0,0001	-4	59	0,5514	0,5495	0,0019	0,9456	0,9456	0,0000
-3 38	0,6534	0,6545	0,0011	0,9956	0,9958	0,0002	-3	59	0,5599	0,5585	0,0014	0,9491	0,9492	0,0001
-2 38	0,6573	0,6579	0,0006	0,998	0,9982	0,0002	-2	59	0,5683	0,5673	0,0010	0,9525	0,9525	0,0000
-1 38	0,6606	0,6606	0,0000	1	1	0,0000	-1	59	0,5764	0,5759	0,0005	0,9557	0,9558	0,0001
0 38	0,6632	0,6626	0,0006	1,003	1,003	0,0000	0	59	0,5844	0,5843	0,0001	0,9588	0,9589	0,0001
1 38	0,665	0,6639	0,0011	1,005	1,005	0,0000	1	59	0,5921	0,5924	0,0003	0,9617	0,9619	0,0002
2 38	0,666	0,6644	0,0016	1,007	1,007	0,0000	2	59	0,5996	0,6003	0,0007	0,9646	0,9647	0,0001
3 38	0,6663	0,6642	0,0021	1,009	1,009	0,0000	3	59	0,6068	0,6079	0,0011	0,9673	0,9674	0,0001
4 38	0,6656	0,6631	0,0025	1,011	1,011	0,0000	4	59	0,6137	0,6152	0,0015	0,9699	0,9701	0,0002
5 38	0,6641	0,6611	0,0030	1,012	1,012	0,0000	5	59	0,6203	0,6222	0,0019	0,9725	0,9725	0,0000
6 38	0,6617	0,6583	0,0034	1,014	1,014	0,0000	6	59	0,6266	0,6288	0,0022	0,9749	0,9749	0,0000
7 38	0,6582	0,6547	0,0035	1,016	1,016	0,0000	7	59	0,6325	0,635	0,0025	0,9772	0,9772	0,0000
8 38	0,6538	0,65	0,0038	1,017	1,017	0,0000	8	59	0,6381	0,6407	0,0026	0,9795	0,9794	0,0001
9 38	0,6483	0,6445	0,0038	1,019	1,019	0,0000	9	59	0,6432	0,6461	0,0029	0,9816	0,9815	0,0001
10 38	0,6418	0,638	0,0038	1,02	1,02	0,0000	10	59	0,6479	0,6509	0,0030	0,9837	0,9835	0,0002
11 38	0,6342	0,6305	0,0037	1,022	1,022	0,0000	11	59	0,6522	0,6553	0,0031	0,9856	0,9855	0,0001
12 38	0,6255	0,6219	0,0036	1,023	1,023	0,0000	12	59	0,656	0,6592	0,0032	0,9875	0,9874	0,0001
13 38	0,6156	0,6123	0,0033	1,024	1,024	0,0000	13	59	0,6593	0,6625	0,0032	0,9893	0,9892	0,0001
14 38	0,6045	0,6017	0,0028	1,025	1,026	0,0010	14	59	0,6621	0,6652	0,0031	0,991	0,9909	0,0001
15 38	0,5923	0,5899	0,0024	1,027	1,027	0,0000	15	59	0,6643	0,6674	0,0031	0,9926	0,9926	0,0000
-15 39	0,5626	0,5648	0,0022	0,9536	0,9537	0,0001	-15	60	0,4442	0,4419	0,0023	0,8908	0,8915	0,0007
-14 39	0,572	0,5745	0,0025	0,958	0,958	0,0000	-14	60	0,4538	0,4508	0,0030	0,8968	0,8971	0,0003
-13 39	0,5811	0,5839	0,0028	0,9622	0,962	0,0002	-13	60	0,4632	0,4598	0,0034	0,9025	0,9025	0,0000
-12 39	0,5899	0,5929	0,0030	0,9661	0,966	0,0001	-12	60	0,4726	0,4689	0,0037	0,9079	0,9077	0,0002
-11 39	0,5984	0,6015	0,0031	0,9699	0,9697	0,0002	-11	60	0,482	0,4782	0,0038	0,913	0,9128	0,0002
-10 39	0,6066	0,6097	0,0031	0,9734	0,9733	0,0001	-10	60	0,4913	0,4874	0,0039	0,9178	0,9176	0,0002
-9 39	0,6144	0,6175	0,0031	0,9768	0,9767	0,0001	-9	60	0,5005	0,4967	0,0038	0,9224	0,9222	0,0002
-8 39	0,6218	0,6247	0,0029	0,98	0,98	0,0000	-8	60	0,5096	0,5061	0,0035	0,9268	0,9266	0,0002
-7 39	0,6288	0,6315	0,0027	0,9831	0,9831	0,0000	-7	60	0,5186	0,5154	0,0032	0,9311	0,9309	0,0002
-6 39	0,6353	0,6377	0,0024	0,986	0,9861	0,0001	-6	60	0,5275	0,5246	0,0029	0,9351	0,935	0,0001
-5 39	0,6413	0,6434	0,0021	0,9888	0,9889	0,0001	-5	60	0,5363	0,5338	0,0025	0,9389	0,9389	0,0000
-4 39	0,6469	0,6485	0,0016	0,9915	0,9916	0,0001	-4	60	0,545	0,5429	0,0021	0,9426	0,9426	0,0000
-3 39	0,6518	0,653	0,0012	0,9941	0,9942	0,0001	-3	60	0,5535	0,5519	0,0016	0,9462	0,9462	0,0000
-2 39	0,6562	0,6569	0,0007	0,9965	0,9967	0,0002	-2	60	0,5619	0,5608	0,0011	0,9496	0,9496	0,0000
-1 39	0,6599	0,6601	0,0002	0,9989	0,999	0,0001	-1	60	0,5701	0,5694	0,0007	0,9528	0,9529	0,0001
0 39	0,663	0,6626	0,0004	1,001	1,001	0,0000	0	60	0,5781	0,5779	0,0002	0,9559	0,9561	0,0002
1 39	0,6654	0,6644	0,0010	1,003	1,003	0,0000	1	60	0,5859	0,5862	0,0003	0,9589	0,9591	0,0002
2 39	0,667	0,6655	0,0015	1,005	1,005	0,0000	2	60	0,5935	0,5942	0,0007	0,9618	0,962	0,0002
3 39	0,6678	0,6658	0,0020	1,007	1,007	0,0000	3	60	0,6008	0,6019	0,0011	0,9646	0,9647	0,0001
4 39	0,6678	0,6654	0,0024	1,009	1,009	0,0000	4	60	0,6078	0,6093	0,0015	0,9673	0,9674	0,0001
5 39	0,667	0,6641	0,0029	1,011	1,011	0,0000	5	60	0,6146	0,6164	0,0018	0,9698	0,9699	0,0001
6 39	0,6653	0,662	0,0033	1,013	1,013	0,0000	6	60	0,621	0,6232	0,0022	0,9723	0,9723	0,0000
7 39	0,6626	0,6591	0,0035	1,015	1,014	0,0010	7	60	0,6272	0,6296	0,0024	0,9747	0,9747	0,0000
8 39	0,659	0,6552	0,0038	1,016	1,016	0,0000	8	60	0,6329	0,6356	0,0027	0,9769	0,9769	0,0000
9 39	0.6543	0.6504	0.0039	1.018	1.018	0.0000	9	60	0.6383	0.6411	0.0028	0.9791	0.979	0.0001

Anexo 4.1.				
Cálculo del error medio er	ntre los valores reales y	polinómicas del con	npresor de "Scroll'	' ELA743Y

Te Tc	nE b	nol nE	Error nE	nV b	pol nV	Error nV	Te	e Te	nE b	pol nE	Error nE	nV b	nol nV	Error nV
10 39	0.6487	0 6447	0 0040	1.019	1 019	0.0000	10	60	0.6433	0 6462	0.0029	0.9812	0.9811	0.0001
11 39	0.642	0.6381	0.0039	1,01	1,017	0,0000	11	60	0,6478	0,6508	0.0030	0.9832	0.9831	0.0001
12 39	0.6341	0.6304	0.0037	1,021	1,021	0,0000	12	2 60	0.6519	0,6549	0.0030	0.9851	0.985	0.0001
13 39	0.6252	0.6218	0.0034	1,022	1,022	0,0000	13	8 60	0,6555	0,6585	0,0030	0.9869	0.9868	0,0001
14 39	0.6152	0.6121	0.0031	1,025	1,025	0,0010	14	, <u>60</u>	0,6586	0,6505	0.0030	0.9887	0,9886	0.0001
15 39	0.6039	0.6013	0.0026	1,021	1,025	0,0000	15	5 60	0.6612	0.664	0.0028	0,9903	0,9903	0,0000
-15 40	0.5578	0.5603	0.0025	0.9512	0.9513	0,0001	-14	5 61	0.4382	0,004	0,0028	0.8873	0.8879	0,0006
-14 40	0.5673	0,5005	0.0023	0.9557	0,9515	0,0001	-14	4 61	0.4476	0.4448	0.0022	0.8933	0.8936	0,0003
-13 40	0.5765	0.5795	0.0030	0.9599	0.9598	0,0001	-13	3 61	0.457	0.4537	0.0033	0,899	0.8991	0,0001
-12 40	0.5855	0,5775	0.0031	0.964	0.9638	0,0001	-1	$\frac{5 \ 01}{2 \ 61}$	0.4664	0.4627	0,0033	0.9044	0.9043	0.0001
-12 40	0.5942	0,5880	0.0032	0.9678	0,9676	0,0002	-12	1 61	0.4757	0.4718	0,0039	0,9096	0,9094	0.0002
-10 40	0.6025	0,6057	0.0032	0.9714	0,9713	0,0002	-10	0 61	0.4849	0.481	0,0039	0.9145	0.9143	0,0002
-9 40	0.6105	0.6137	0.0032	0.9749	0.9748	0,0001	_9	61	0.4941	0.4903	0.0038	0.9192	0,9189	0.0002
-9 40	0.6182	0.6212	0.0030	0.9781	0.9781	0,0001	->	61	0.5031	0.4995	0,0036	0.9236	0.9234	0,0003
-7 40	0.6254	0.6282	0.0028	0.9813	0.9813	0,0000	-7	61	0.5122	0,4999	0.0034	0.9279	0,9277	0,0002
-6 40	0,6323	0,6347	0.0020	0.98/3	0.98/3	0,0000	-/	61	0.5211	0,5000	0,0034	0.9310	0.9318	0.0002
-0 40 5 40	0,0323	0,0347	0,0024	0,9843	0,9843	0,0000	-0	61	0,5200	0,518	0,0031	0.0358	0.0358	0,0001
-3 40	0,0380	0,0408	0,0022	0,9871	0,9872	0,0001	-5	61	0,5299	0,5272	0,0027	0,9336	0,9336	0,0000
3 40	0,0443	0,0402	0,0017	0,9898	0,99	0,0002	-4	61	0,5385	0,5305	0,0022	0,9390	0,9390	0,0000
-3 40	0,0498	0,6554	0,0013	0,9923	0,9920	0,0001	-5	61	0,5555	0,5433	0,0013	0,9432	0,9452	0,0000
-2 40	0,0340	0,0334	0,0008	0,995	0,9931	0,0001	-2	61	0,5555	0,5542	0,0013	0,9400	0,9407	0,0001
-1 40	0,0388	0,0391	0,0003	0,9974	0,9973	0,0001	-1	61	0,5057	0,5029	0,0008	0,9499	0,95	0,0001
0 40	0,0025	0,0021	0,0002	1,002	1,002	0,0001	1	61	0,5706	0,5709	0,0004	0,9351	0,9352	0,0001
1 40	0,0052	0,0044	0,0008	1,002	1,002	0,0000	1	61	0,5790	0,5798	0,0002	0,9501	0,9503	0,0002
2 40	0,00/4	0,000	0,0014	1,004	1,004	0,0000	2	61	0,58/5	0,5879	0,0006	0,959	0,9592	0,0002
3 40	0,6688	0,067	0,0018	1,006	1,000	0,0000	3	61	0,5947	0,5957	0,0010	0,9618	0,962	0,0002
4 40	0,0094	0,00/1	0,0023	1,008	1,008	0,0000	4	61	0,0018	0,6032	0,0014	0,9645	0,9647	0,0002
5 40	0,6692	0,6665	0,0027	1,01	1,01	0,0000	5	61	0,6087	0,6105	0,0018	0,9671	0,9672	0,0001
6 40	0,6682	0,6651	0,0031	1,012	1,012	0,0000	6	61	0,6153	0,6174	0,0021	0,9696	0,9697	0,0001
7 40	0,6662	0,6628	0,0034	1,013	1,013	0,0000	/	61	0,6216	0,6239	0,0023	0,972	0,972	0,0000
8 40	0,6633	0,6597	0,0036	1,015	1,015	0,0000	8	61	0,6275	0,6301	0,0026	0,9743	0,9743	0,0000
9 40	0,6595	0,6557	0,0038	1,017	1,016	0,0010	9	61	0,6331	0,6358	0,0027	0,9766	0,9765	0,0001
10 40	0,6547	0,6508	0,0039	1,018	1,018	0,0000	10) 61	0,6383	0,6411	0,0028	0,9787	0,9786	0,0001
11 40	0,6488	0,645	0,0038	1,02	1	0,0010	11	61	0,6431	0,646	0,0029	0,9807	0,9806	0,0001
12 40	0,6419	0,6382	0,0037	1,021	1,021	0,0000	12	2 61	0,6475	0,6503	0,0028	0,9826	0,9825	0,0001
13 40	0,6339	0,6304	0,0035	1,022	1,022	0,0000	13	8 61	0,6514	0,6542	0,0028	0,9845	0,9844	0,0001
14 40	0,6248	0,6216	0,0032	1,023	1,024	0,0010	14	61	0,6548	0,6575	0,0027	0,9863	0,9862	0,0001
15 40	0,6146	0,6118	0,0028	1,025	1,025	0,0000	15	5 61	0,6577	0,6602	0,0025	0,9879	0,9879	0,0000
-15 41	0,5528	0,5554	0,0026	0,9487	0,9488	0,0001	-1.	5 62	0,4321	0,4303	0,0018	0,8836	0,8843	0,0007
-14 41	0,5624	0,5653	0,0029	0,9533	0,9533	0,0000	-14	4 62	0,4415	0,4389	0,0026	0,8897	0,89	0,0003
-13 41	0,5718	0,5748	0,0030	0,9576	0,9575	0,0001	-1.	3 62	0,4508	0,4477	0,0031	0,8955	0,8955	0,0000
-12 41	0,5809	0,584	0,0031	0,9618	0,9616	0,0002	-12	2 62	0,4601	0,4566	0,0035	0,901	0,9009	0,0001
-11 41	0,5897	0,5929	0,0032	0,9656	0,9655	0,0001	-11	1 62	0,4693	0,4656	0,0037	0,9062	0,906	0,0002
-10 41	0,5983	0,6015	0,0032	0,9693	0,9692	0,0001	-10	0 62	0,4785	0,4747	0,0038	0,9111	0,9109	0,0002
-9 41	0,6065	0,6096	0,0031	0,9729	0,9727	0,0002	-9	62	0,4876	0,4838	0,0038	0,9158	0,9156	0,0002
-8 41	0,6143	0,6173	0,0030	0,9762	0,9761	0,0001	-8	62	0,4967	0,493	0,0037	0,9203	0,9201	0,0002
-7 41	0,6218	0,6246	0,0028	0,9794	0,9794	0,0000	-7	62	0,5056	0,5023	0,0033	0,9246	0,9245	0,0001
-6 41	0,6289	0,6314	0,0025	0,9824	0,9825	0,0001	-6	62	0,5145	0,5114	0,0031	0,9287	0,9286	0,0001
-5 41	0,6356	0,6377	0,0021	0,9853	0,9854	0,0001	-5	62	0,5233	0,5206	0,0027	0,9327	0,9326	0,0001
-4 41	0,6418	0,6435	0,0017	0,9881	0,9882	0,0001	-4	62	0,532	0,5297	0,0023	0,9365	0,9365	0,0000
-3 41	0,6475	0,6488	0,0013	0,9908	0,9909	0,0001	-3	62	0,5405	0,5387	0,0018	0,9401	0,9401	0,0000
-2 41	0,6526	0,6535	0,0009	0,9933	0,9935	0,0002	-2	62	0,5489	0,5476	0,0013	0,9436	0,9437	0,0001
-1 41	0,6572	0,6576	0,0004	0,9958	0,9959	0,0001	-1	62	0,5572	0,5563	0,0009	0,9469	0,947	0,0001
0 41	0,6612	0,6611	0,0001	0,9981	0,9983	0,0002	0	62	0,5653	0,5649	0,0004	0,9501	0,9503	0,0002
1 41	0,6645	0,6639	0,0006	1	1	0,0010	1	62	0,5732	0,5733	0,0001	0,9532	0,9533	0,0001
2 41	0,6672	0,6661	0,0011	1,003	1,003	0,0000	2	62	0,5809	0,5814	0,0005	0,9562	0,9563	0,0001
3 41	0,6692	0,6675	0,0017	1,005	1,005	0,0000	3	62	0,5884	0,5893	0,0009	0,959	0,9591	0,0001
4 41	0,6704	0,6683	0,0021	1,007	1,007	0,0000	4	62	0,5957	0,597	0,0013	0,9618	0,9619	0,0001
5 41	0,6708	0,6683	0,0025	1,009	1,008	0,0010	5	62	0,6027	0,6043	0,0016	0,9644	0,9645	0,0001
6 41	0,6704	0,6675	0,0029	1,01	1,01	0,0000	6	62	0,6094	0,6114	0,0020	0,9669	0,967	0,0001
7 41	0,6691	0,6659	0,0032	1,012	1,012	0,0000	7	62	0,6158	0,618	0,0022	0,9694	0,9694	0,0000
8 41	0,667	0,6635	0,0035	1,014	1,014	0,0000	8	62	0,6219	0,6244	0,0025	0,9717	0,9717	0,0000
9 41	0,6639	0,6602	0,0037	1,015	1,015	0,0000	9	62	0,6277	0,6303	0,0026	0,9739	0,9739	0,0000
10 41	0,6598	0,6561	0,0037	1,017	1,017	0,0000	10) 62	0,6331	0,6357	0,0026	0,9761	0,976	0,0001
11 41	0,6548	0,6511	0,0037	1,018	1,018	0,0000	11	62	0,6381	0,6408	0,0027	0,9782	0,978	0,0002
12 41	0,6487	0,6451	0,0036	1,02	1,02	0,0000	12	2 62	0,6427	0,6453	0,0026	0,9801	0,98	0,0001
13 41	0,6416	0,6382	0,0034	1,021	1,021	0,0000	13	62	0,6469	0,6494	0,0025	0,982	0,9819	0,0001
14 41	0,6334	0,6303	0,0031	1,022	1,022	0,0000	14	62	0,6506	0,6529	0,0023	0,9838	0,9837	0,0001
15 41	0,6242	0,6214	0,0028	1,023	1,024	0,0010	15	62	0,6539	0,6559	0,0020	0,9855	0,9855	0,0000
-15 42	0,5477	0,5504	0,0027	0,9461	0,9463	0,0002	-1.	5 63	0,4261	0,4248	0,0013	0,88	0,8806	0,0006
-14 42	0,5574	0,5603	0,0029	0,9508	0,9508	0,0000	-14	4 63	0,4354	0,4332	0,0022	0,8861	0,8864	0,0003
-13 42	0,5669	0,5699	0,0030	0,9553	0,9551	0,0002	-13	3 63	0,4446	0,4418	0,0028	0,8919	0,892	0,0001
-12 42	0,5761	0,5792	0,0031	0,9595	0,9593	0,0002	-12	2 63	0,4538	0,4506	0,0032	0,8974	0,8973	0,0001
-11 42	0,5851	0,5882	0,0031	0,9634	0,9632	0,0002	-11	1 63	0,463	0,4595	0,0035	0,9027	0,9025	0,0002
-10 42	0,5938	0,5969	0,0031	0,9672	0,967	0,0002	-10	0 63	0,4721	0,4685	0,0036	0,9077	0,9074	0,0003
-9 42	0,6022	0,6052	0,0030	0,9708	0,9706	0,0002	-9	63	0,4812	0,4775	0,0037	0,9124	0,9122	0,0002
-8 42	0.6103	0.6131	0.0028	0 9742	0 9741	0.0001	-8	63	0.4902	0.4866	0.0036	0.917	0.9168	0.0002

Anexo 4.1.				
Cálculo del error medio en	tre los valores reales y	polinómicas del co	ompresor de "Scr	oll" ELA743Y

T T	F 1	1 5	F F	X7 1	1 17	F 17	T	T	F 1	1 5	F F	X7 1	1 17	F V
le lc	ηEb	pol ŋE	Error nE	ηVb	pol ŋ V	Error nV	le	lc	ηEb	pol nE	Error nE	ηV b	pol ŋ V	Error ηV
-7 42	0,618	0,6207	0,0027	0,9774	0,9774	0,0000	-7	63	0,4991	0,4958	0,0033	0,9213	0,9212	0,0001
-6 42	0,6253	0,6277	0,0024	0,9805	0,9806	0,0001	-6	63	0,508	0,5049	0,0031	0,9255	0,9254	0,0001
-5 42	0,6322	0,6344	0,0022	0,9835	0,9836	0,0001	-5	63	0,5167	0,514	0,0027	0,9295	0,9294	0,0001
-4 42	0.6387	0.6405	0.0018	0.9863	0.9864	0.0001	-4	63	0.5254	0.5231	0.0023	0.9333	0.9333	0.0000
-3 42	0.6447	0.6461	0.0014	0.9891	0.9892	0,0001	-3	63	0,5339	0.5321	0.0018	0.937	0.937	0,0000
2 42	0,6502	0,6512	0,0014	0,0017	0,0012	0,0001	2	62	0,5355	0,5321	0,0015	0.0405	0.0406	0,0000
-2 42	0,0302	0,0312	0,0010	0,9917	0,9918	0,0001	-2	03	0,5424	0,5409	0,0013	0,9403	0,9400	0,0001
-1 42	0,6552	0,6557	0,0005	0,9941	0,9943	0,0002	-1	63	0,5506	0,5497	0,0009	0,9438	0,944	0,0002
0 42	0,6596	0,6596	0,0000	0,9965	0,9967	0,0002	0	63	0,5588	0,5583	0,0005	0,9471	0,9472	0,0001
1 42	0,6634	0,6629	0,0005	0,9988	0,9989	0,0001	1	63	0,5667	0,5667	0,0000	0,9502	0,9504	0,0002
2 42	0,6665	0,6656	0,0009	1,001	1,001	0,0000	2	63	0,5745	0,5749	0,0004	0,9532	0,9534	0,0002
3 42	0.669	0.6676	0.0014	1.003	1.003	0.0000	3	63	0.5821	0.5829	0.0008	0.9561	0.9563	0.0002
1 12	0.6708	0,6689	0.0019	1,005	1,005	0,0000	1	63	0.5894	0.5906	0.0012	0.9589	0.959	0.0001
5 42	0,6719	0,0005	0,0012	1,003	1,003	0,0000		62	0,50/4	0,5700	0,0012	0,0616	0,0616	0,0001
3 42	0,0718	0,0093	0,0023	1,007	1,007	0,0000	5	03	0,3903	0,398	0,0013	0,9010	0,9616	0,0000
6 42	0,672	0,6693	0,0027	1,009	1,009	0,0000	6	63	0,6033	0,6051	0,0018	0,9641	0,9642	0,0001
7 42	0,6713	0,6684	0,0029	1,011	1,011	0,0000	7	63	0,6099	0,6119	0,0020	0,9666	0,9666	0,0000
8 42	0,6699	0,6667	0,0032	1,012	1,012	0,0000	8	63	0,6162	0,6184	0,0022	0,969	0,9689	0,0001
9 42	0,6675	0,6641	0,0034	1,014	1,014	0,0000	9	63	0,6221	0,6244	0,0023	0,9713	0,9712	0,0001
10 42	0,6642	0,6607	0,0035	1,016	1,015	0,0010	10	63	0,6277	0,63	0,0023	0,9734	0,9733	0,0001
11 42	0.66	0.6565	0.0035	1.017	1 017	0,0000	11	63	0.6329	0.6352	0.0023	0.9755	0 9754	0.0001
12 42	0.6547	0.6513	0.0034	1,018	1,019	0,0000	12	63	0.6378	0.64	0.0022	0.9775	0.9774	0.0001
12 42	0,0347	0,0313	0,0034	1,010	1,010	0,0000	12	62	0,0378	0,04	0,0022	0,9775	0,9774	0,0001
13 42	0,0483	0,0432	0,0033	1,02	1,02	0,0000	15	03	0,0422	0,0442	0,0020	0,9793	0,9793	0,0002
14 42	0,6412	0,6382	0,0030	1,021	1,021	0,0000	14	63	0,6462	0,6479	0,0017	0,9813	0,9812	0,0001
15 42	0,6328	0,6302	0,0026	1,022	1,023	0,0010	15	63	0,6497	0,6511	0,0014	0,983	0,983	0,0000
-15 43	0,5426	0,5452	0,0026	0,9435	0,9438	0,0003	-15	64	0,4201	0,4194	0,0007	0,8763	0,8769	0,0006
-14 43	0,5523	0,5551	0,0028	0,9483	0,9483	0,0000	-14	64	0,4293	0,4277	0,0016	0,8824	0,8827	0,0003
-13 43	0,5619	0.5647	0,0028	0,9528	0,9527	0,0001	-13	64	0,4384	0,4361	0,0023	0,8883	0,8883	0,0000
-12 43	0.5712	0 5741	0.0029	0.9571	0.9569	0.0002	-12	64	0.4476	0 4447	0.0029	0.8939	0.8937	0.0002
-11 /2	0.5803	0 5822	0.0020	0.9612	0.9609	0.0002	_11	64	0.4567	0.4525	0.0022	0,8002	0 8080	0.0002
-11 43	0,5805	0,5852	0,0029	0,9012	0,9009	0,0003	-11	64	0,4507	0,4333	0,0032	0,0992	0,8989	0,0003
-10 43	0,3891	0,392	0,0029	0,965	0,9648	0,0002	-10	04	0,4037	0,4024	0,0033	0,9042	0,9039	0,0003
-9 43	0,5977	0,6005	0,0028	0,9686	0,9685	0,0001	-9	64	0,4747	0,4713	0,0034	0,909	0,9087	0,0003
-8 43	0,6059	0,6087	0,0028	0,9721	0,972	0,0001	-8	64	0,4837	0,4803	0,0034	0,9136	0,9134	0,0002
-7 43	0,6139	0,6164	0,0025	0,9754	0,9754	0,0000	-7	64	0,4926	0,4894	0,0032	0,918	0,9178	0,0002
-6 43	0,6214	0,6237	0,0023	0,9786	0,9786	0,0000	-6	64	0,5014	0,4985	0,0029	0,9222	0,922	0,0002
-5 43	0.6286	0.6307	0.0021	0.9816	0.9816	0.0000	-5	64	0.5101	0.5075	0.0026	0.9262	0.9261	0.0001
-4 43	0.6353	0.6371	0.0018	0.9845	0.9846	0,0001	-4	64	0.5187	0.5165	0.0022	0.9301	0.93	0.0001
2 42	0,6335	0,6371	0,0015	0,0043	0,0074	0,0001	2	64	0,5107	0,5105	0,0022	0.0228	0,0338	0,0001
-3 43	0,0410	0,0431	0,0013	0,9872	0,9874	0,0002	-5	04	0,5273	0,5233	0,0018	0,9556	0,9338	0,0000
-2 43	0,6475	0,6485	0,0010	0,9899	0,99	0,0001	-2	64	0,5357	0,5343	0,0014	0,9373	0,9374	0,0001
-1 43	0,6528	0,6534	0,0006	0,9924	0,9926	0,0002	-1	64	0,544	0,543	0,0010	0,9407	0,9409	0,0002
0 43	0,6576	0,6578	0,0002	0,9949	0,995	0,0001	0	64	0,5521	0,5516	0,0005	0,944	0,9442	0,0002
1 43	0,6618	0,6615	0,0003	0,9972	0,9973	0,0001	1	64	0,5601	0,5601	0,0000	0,9472	0,9473	0,0001
2 43	0,6654	0,6647	0,0007	0,9994	0,9995	0,0001	2	64	0,5679	0,5683	0,0004	0,9502	0,9504	0,0002
3 43	0.6683	0.6672	0.0011	1.002	1.002	0.0000	3	64	0.5756	0.5763	0.0007	0.9531	0.9533	0.0002
4 43	0.6706	0.669	0.0016	1 004	1 004	0,0000	4	64	0.583	0 5841	0.0011	0.956	0.9561	0,0001
5 43	0.6721	0.6702	0.0010	1,001	1,001	0,0000	5	64	0,5002	0,5011	0.0013	0.0587	0.0588	0,0001
6 42	0,0721	0,0702	0,0019	1,000	1,000	0,0000	6	64	0,5902	0,5915	0,0015	0,9307	0,9588	0,0001
6 43	0,0729	0,6706	0,0023	1,007	1,007	0,0000	0	04	0,5971	0,5987	0,0016	0,9613	0,9613	0,0000
/ 43	0,6729	0,6703	0,0026	1,009	1,009	0,0000	/	64	0,6038	0,6056	0,0018	0,9638	0,9638	0,0000
8 43	0,6721	0,6692	0,0029	1,011	1,011	0,0000	8	64	0,6102	0,6121	0,0019	0,9662	0,9662	0,0000
9 43	0,6704	0,6674	0,0030	1,013	1,013	0,0000	9	64	0,6163	0,6183	0,0020	0,9685	0,9684	0,0001
10 43	0,6678	0,6647	0,0031	1,014	1,014	0,0000	10	64	0,6221	0,624	0,0019	0,9707	0,9706	0,0001
11 43	0,6643	0,6612	0,0031	1,016	1,016	0,0000	11	64	0,6275	0,6294	0,0019	0,9729	0,9727	0,0002
12 43	0,6599	0.6568	0.0031	1.017	1.017	0.0000	12	64	0.6325	0.6342	0.0017	0.9749	0.9748	0.0001
13 43	0.6545	0.6515	0.0030	1 019	1 019	0,0000	13	64	0.6372	0.6386	0.0014	0.9768	0 9767	0.0001
14 12	0.648	0.6453	0.0027	1.02	1.02	0,0000	11	64	0.6414	0.6425	0.0011	0.9787	0 0786	0.0001
15 42	0,6405	0.6201	0.0027	1,02	1,02	0,0000	14	64	0.6452	0.6450	0.0007	0.0205	0.0005	0.0001
15 45	0,0405	0,0301	0,0024	1,021	1,021	0,0000	13	04	0,0432	0,0439	0,0007	0,9805	0,2003	0,0000
-15 44	0,5373	0,539/	0,0024	0,9409	0,9411	0,0002	-15	65	0,414	0,4142	0,0002	0,8725	0,8/31	0,0006
-14 44	0,5471	0,5496	0,0025	0,9457	0,9458	0,0001	-14	65	0,4232	0,4223	0,0009	0,8787	0,879	0,0003
-13 44	0,5567	0,5593	0,0026	0,9503	0,9502	0,0001	-13	65	0,4322	0,4306	0,0016	0,8846	0,8846	0,0000
-12 44	0,5662	0,5688	0,0026	0,9547	0,9545	0,0002	-12	65	0,4413	0,4391	0,0022	0,8902	0,8901	0,0001
-11 44	0,5754	0,578	0,0026	0,9588	0,9586	0,0002	-11	65	0,4503	0,4477	0,0026	0,8956	0,8953	0,0003
-10 44	0.5843	0.587	0.0027	0.9627	0.9625	0.0002	-10	65	0.4593	0.4564	0.0029	0.9006	0.9004	0.0002
-9 44	0 593	0 5956	0.0026	0.9664	0.9663	0.0001	_9	65	0.4682	0 4652	0.0030	0.9055	0.9052	0.0003
8 44	0,575	0,5750	0,0020	0.97	0,0608	0,0001	8	65	0,4002	0,4032	0,0030	0.0101	0,0000	0,0003
-0 44	0,6005	0,0039	0.0023	0.0722	0,2020	0,0002	-0	65	0.496	0.4021	0,0030	0.0146	0.0144	0.0002
-/ 44	0,0095	0,0119	0,0024	0,9733	0,9733	0,0000	-/	03	0,460	0,4031	0,0029	0,9140	0,9144	0,0002
-0 44	0,61/3	0,0195	0,0022	0,9765	0,9765	0,0000	-6	65	0,4947	0,4921	0,0026	0,9188	0,918/	0,0001
-5 44	0,6247	0,6266	0,0019	0,9796	0,9797	0,0001	-5	65	0,5034	0,501	0,0024	0,9229	0,9228	0,0001
-4 44	0,6317	0,6334	0,0017	0,9825	0,9826	0,0001	-4	65	0,5121	0,51	0,0021	0,9268	0,9268	0,0000
-3 44	0,6382	0,6396	0,0014	0,9854	0,9855	0,0001	-3	65	0,5206	0,5189	0,0017	0,9305	0,9305	0,0000
-2 44	0,6444	0,6454	0,0010	0,9881	0,9882	0,0001	-2	65	0,529	0,5277	0,0013	0,9341	0,9342	0,0001
-1 44	0.65	0.6507	0.0007	0 9906	0 9908	0.0002	-1	65	0 5373	0 5364	0.0009	0.9376	0 9377	0.0001
$\frac{1}{0}$ $\frac{1}{4}$	0.6552	0.6555	0,0003	0.9931	0 0022	0.0001	0	65	0.5454	0 5/15	0.0004	0.9400	0.0/1	0.0001
1 44	0,6509	0.6507	0.0003	0.0055	0.0054	0.0001	1	65	0.5525	0 5524	0.0004	0.0441	0.0442	0.0001
1 44	0,0398	0,039/	0,0001	0,9955	0,9930	0,0001		03	0,5555	0,3334	0,0001	0,9441	0,9442	0,0001
2 44	0,6638	0,6633	0,0005	0,9978	0,9979	0,0001	2	65	0,5613	0,5616	0,0003	0,9472	0,9473	0,0001
3 44	0,6672	0,6663	0,0009	0,9999	1	0,0001	3	65	0,569	0,5696	0,0006	0,9501	0,9503	0,0002
4 44	0,6699	0,6686	0,0013	1,002	1,002	0,0000	4	65	0,5765	0,5774	0,0009	0,953	0,9531	0,0001
5 44	0,6719	0,6703	0,0016	1,004	1,004	0,0000	5	65	0,5837	0,5849	0,0012	0,9557	0,9558	0,0001
6 44	0.6733	0.6713	0.0020	1.006	1.006	0.0000	6	65	0.5908	0 5922	0.0014	0.9584	0.9584	0.0000

Anexo 4.1.				
Cálculo del error medio ent	re los valores reales y p	olinómicas del comp	presor de "Scroll'	' ELA743Y

тт	T 1	1 5	г г	X7 1	1 17		тт		Г 1	1 5	г г	X 7 1	1 17	E V
Te Ic	ηEυ	pol ne	Error nE	ηνυ	pol ŋ v	Error nv	le i	С	ηE D	polne	Error nE	ηv b	pol ŋ v	Error nv
7 44	0,6739	0,6716	0,0023	1,008	1,008	0,0000	7 6	5	0,5976	0,5991	0,0015	0,9609	0,9609	0,0000
8 44	0,6737	0,6712	0,0025	1,01	1	0,0010	8 6	5	0,6041	0,6057	0,0016	0,9634	0,9633	0,0001
9 44	0,6726	0,67	0,0026	1,011	1,011	0,0000	96	5	0,6103	0,6119	0,0016	0,9657	0,9656	0,0001
10 44	0,6707	0,668	0,0027	1,013	1,013	0,0000	10 6	5	0,6162	0,6178	0,0016	0,968	0,9679	0,0001
11 44	0,6679	0,6652	0,0027	1,014	1,014	0,0000	11 6	5	0,6218	0,6232	0,0014	0,9701	0,97	0,0001
12 44	0,6642	0,6615	0,0027	1,016	1,016	0,0000	12 6	5	0,6271	0,6282	0,0011	0,9722	0,9721	0,0001
13 44	0,6596	0,657	0,0026	1,017	1,017	0,0000	13 6	5	0,632	0,6327	0,0007	0,9742	0,9741	0,0001
14 44	0,654	0,6516	0,0024	1,018	1,019	0,0010	14 6	5	0,6364	0,6367	0,0003	0,9761	0,976	0,0001
15 44	0,6473	0,6452	0,0021	1,02	1,02	0,0000	15 6	5	0,6405	0,6403	0,0002	0,9779	0,9779	0,0000
-15 45	0,5319	0,5341	0,0022	0,9382	0,9384	0,0002	-15 6	6	0,408	0,4093	0,0013	0,8687	0,8693	0,0006
-14 45	0.5418	0.544	0.0022	0.9431	0.9432	0.0001	-14 6	6	0.4171	0.4172	0.0001	0.8749	0.8752	0.0003
-13 45	0.5515	0.5538	0.0023	0.9478	0.9477	0.0001	-13 6	6	0.4261	0.4253	0.0008	0.8809	0.8809	0.0000
-12 45	0.561	0.5633	0.0023	0.9522	0.952	0,0002	-12 6	6	0.435	0.4336	0.0014	0.8865	0.8864	0,0001
-11 45	0 5702	0,5055	0.0023	0.9564	0.9562	0,0002	-11 6	6	0.444	0.442	0.0020	0.8919	0.8917	0.0002
-10 45	0.5793	0.5817	0.0024	0.9604	0.9602	0,0002	-10 6	6	0.4529	0.4506	0.0023	0.897	0.8968	0.0002
0 45	0.5881	0,5017	0,0024	0.0642	0.964	0,0002	0 6	6	0.4618	0,4503	0,0025	0.0010	0,0000	0,0002
-) - 3 8 45	0,5067	0,5080	0,0023	0.0677	0,9676	0,0002	- 9 6	6	0,4010	0,4575	0,0025	0,0015	0,0064	0,0002
-0 45	0,5907	0,5989	0,0022	0,9077	0,9070	0,0001	-8 0	6	0,4704	0,4081	0,0025	0,9000	0,9004	0,0002
-/ 43	0,6049	0,00/1	0,0022	0,9712	0,9711	0,0001	-/ 0	6	0,4794	0,4709	0,0023	0,9111	0,9109	0,0002
-0 43	0,0129	0,0149	0,0020	0,9744	0,9744	0,0000	-0 0	0	0,4881	0,4838	0,0023	0,9134	0,9132	0,0002
-5 45	0,6205	0,6223	0,0018	0,9776	0,9776	0,0000	-5 6	6	0,4968	0,4947	0,0021	0,9195	0,9194	0,0001
-4 45	0,6277	0,6293	0,0016	0,9806	0,9806	0,0000	-4 6	6	0,5053	0,5035	0,0018	0,9234	0,9234	0,0000
-3 45	0,6345	0,6359	0,0014	0,9834	0,9835	0,0001	-3 6	6 ć	0,5138	0,5124	0,0014	0,9272	0,9272	0,0000
-2 45	0,6409	0,642	0,0011	0,9861	0,9863	0,0002	-2 6	6	0,5222	0,5211	0,0011	0,9308	0,9309	0,0001
-1 45	0,6469	0,6477	0,0008	0,9888	0,9889	0,0001	-1 6	6	0,5305	0,5297	0,0008	0,9343	0,9344	0,0001
0 45	0,6524	0,6528	0,0004	0,9913	0,9914	0,0001	0 6	6	0,5387	0,5383	0,0004	0,9377	0,9378	0,0001
1 45	0,6573	0,6574	0,0001	0,9937	0,9938	0,0001	1 6	6	0,5467	0,5467	0,0000	0,9409	0,9411	0,0002
2 45	0,6617	0,6615	0,0002	0,996	0,9961	0,0001	2 6	6	0,5546	0,5549	0,0003	0,944	0,9442	0,0002
3 45	0,6655	0,6649	0,0006	0,9982	0,9983	0,0001	3 6	6	0,5623	0,5629	0,0006	0,947	0,9472	0,0002
4 45	0,6687	0,6678	0,0009	1	1	0,0000	4 6	6	0,5699	0,5707	0,0008	0,9499	0,95	0,0001
5 45	0,6712	0,67	0,0012	1,002	1,002	0,0000	5 6	6	0,5772	0,5782	0,0010	0,9527	0,9528	0,0001
6 45	0,6731	0,6715	0,0016	1,004	1,004	0,0000	6 6	6	0,5843	0,5855	0,0012	0,9554	0,9554	0,0000
7 45	0,6742	0,6724	0,0018	1,006	1,006	0,0000	7 6	6	0,5912	0,5924	0,0012	0,958	0,958	0,0000
8 45	0,6746	0,6726	0,0020	1,008	1,008	0,0000	8 6	6	0,5978	0,5991	0,0013	0,9604	0,9604	0,0000
9 45	0,6742	0,672	0,0022	1,01	1,01	0,0000	96	6	0,6042	0,6053	0,0011	0,9628	0,9628	0,0000
10 45	0.6729	0.6706	0.0023	1.011	1.011	0.0000	10 6	6	0.6102	0.6113	0.0011	0.9651	0.965	0.0001
11 45	0.6708	0.6685	0.0023	1.013	1.013	0.0000	11 6	6	0.616	0.6168	0.0008	0.9673	0.9672	0.0001
12 45	0.6678	0.6656	0.0022	1.014	1.014	0.0000	12 6	6	0.6214	0.6218	0.0004	0.9694	0.9693	0.0001
13 45	0.6639	0.6618	0.0021	1.016	1.016	0.0000	13 6	6	0.6265	0.6264	0.0001	0.9714	0.9713	0.0001
14 45	0.6591	0.6571	0.0020	1 017	1 017	0,0000	14 6	6	0.6312	0.6306	0,0006	0 9734	0.9733	0,0001
15 45	0.6533	0.6516	0.0017	1 018	1 019	0.0010	15 6	6	0.6355	0.6342	0.0013	0.9752	0.9752	0,0000
-15 46	0.5264	0.5284	0.0020	0.9354	0.9357	0,0003	-15 6	7	0.402	0 4046	0.0026	0.8648	0.8654	0.0006
-14 46	0.5363	0.5383	0.0020	0.9404	0.9405	0,0001	-14 6	7	0.411	0.4123	0.0013	0.8711	0.8714	0.0003
-13 46	0.5461	0.548	0.0019	0.9452	0.9451	0.0001	-13 6	, 7	0 4199	0.4202	0.0003	0.8771	0.8771	0,0000
-12 46	0.5556	0.5576	0.0020	0.9497	0.9495	0,0002	-12 6	, 7	0.4288	0.4283	0,0005	0.8828	0.8826	0.0002
-12 40	0,5550	0,5570	0.0020	0.9539	0.9537	0,0002	-11 6	, 7	0.4376	0.4366	0,0000	0.8882	0.888	0.0002
-10 46	0,505	0,5761	0,0020	0,959	0,9578	0,0002	-10 6	′ 7	0,4370	0,4300	0,0010	0,8034	0,8031	0.0002
0 46	0.5831	0,5701	0,0019	0.9618	0,9576	0,0002	-10 0	' 7	0.4553	0.4535	0,0013	0,0754	0,808	0,0003
-9 40	0,5019	0,5027	0,0020	0,9010	0,9010	0,0002	-9 0	/ 7	0,4555	0,4333	0,0018	0,0903	0,090	0,0003
-8 40	0,5918	0,5937	0,0019	0,9033	0,9033	0,0002	-8 0	/ 7	0,4041	0,4022	0,0019	0,903	0,9028	0,0002
-/ 40	0,0002	0,002	0,0018	0,909	0,9089	0,0001	-/ 0	/ 7	0,4720	0,4709	0,0019	0,9073	0,9073	0,0002
-0 40	0,0085	0,01	0,0017	0,9725	0,9722	0,0001	-0 0	/ 7	0,4013	0,4790	0,0019	0,9119	0,9117	0,0002
-5 40	0,010	0,01//	0,0017	0,9755	0,9755	0,0000	-5 0	/7	0,4901	0,4884	0,0017	0,910	0,9159	0,0001
-4 40	0,0235	0,6249	0.0012	0,9785	0,9780	0,0001	-4 0	/ 7	0,4980	0,49/2	0,0014	0,92	0,92	0,0000
-3 40	0,0305	0,0318	0.0013	0,9814	0,9013	0,0001	-3 0	/ 7	0,5071	0,3039	0,0012	0,9238	0,9238	0,0000
-2 40	0,0372	0,0383	0,0011	0,9842	0,9843	0,0001	-2 0	/ 7	0,5155	0,5140	0,0009	0,9275	0,9270	0,0001
-1 40	0,0434	0,0442	0,0008	0,9868	0,98/	0,0002	-1 6	/7	0,5237	0,5251	0,0000	0,931	0.0246	0,0001
0 46	0,6492	0,6497	0,0005	0,9894	0,9895	0,0001	0 6	/	0,5319	0,5316	0,0003	0,9344	0,9346	0,0002
1 46	0,6545	0,6547	0,0002	0,9919	0,992	0,0001	1 6	/	0,5399	0,5399	0,0000	0,9377	0,9379	0,0002
2 46	0,6592	0,6592	0,0000	0,9942	0,9943	0,0001	2 6	/	0,5478	0,5481	0,0003	0,9408	0,941	0,0002
3 46	0,6634	0,6631	0,0003	0,9965	0,9965	0,0000	3 6	7	0,5556	0,5561	0,0005	0,9439	0,944	0,0001
4 46	0,667	0,6664	0,0006	0,9986	0,9987	0,0001	4 6	7	0,5631	0,5639	0,0008	0,9468	0,9469	0,0001
5 46	0,67	0,6691	0,0009	1,001	1,001	0,0000	5 6	7	0,5705	0,5714	0,0009	0,9496	0,9497	0,0001
6 46	0,6724	0,6712	0,0012	1,003	1,003	0,0000	6 6	7	0,5777	0,5786	0,0009	0,9523	0,9524	0,0001
7 46	0,674	0,6726	0,0014	1,005	1,005	0,0000	7 6	7	0,5847	0,5856	0,0009	0,955	0,955	0,0000
8 46	0,6749	0,6734	0,0015	1,006	1,006	0,0000	8 6	7	0,5914	0,5923	0,0009	0,9575	0,9575	0,0000
9 46	0,6751	0,6734	0,0017	1,008	1,008	0,0000	9 6	7	0,5979	0,5986	0,0007	0,9599	0,9598	0,0001
10 46	0,6745	0,6727	0,0018	1,01	1,01	0,0000	10 6	7	0,6041	0,6045	0,0004	0,9622	0,9621	0,0001
11 46	0,673	0,6712	0,0018	1,011	1,011	0,0000	11 6	7	0,61	0,6101	0,0001	0,9644	0,9644	0,0000
12 46	0,6707	0,6689	0,0018	1,013	1,013	0,0000	12 6	7	0,6156	0,6152	0,0004	0,9666	0,9665	0,0001
13 46	0,6675	0,6658	0,0017	1,014	1,014	0,0000	13 6	7	0,6208	0,6199	0,0009	0,9686	0,9686	0,0000
14 46	0,6634	0,6619	0,0015	1,016	1,016	0,0000	14 6	7	0,6257	0,6241	0,0016	0,9706	0,9706	0,0000
15 46	0,6584	0,6571	0,0013	1,017	1,017	0,0000	15 6	7	0,6303	0,6278	0,0025	0,9725	0,9725	0,0000
-15 47	0,5209	0,5225	0,0016	0,9326	0,9329	0,0003	-15 6	8	0,3961	0,4001	0,0040	0,8609	0,8615	0,0006
-14 47	0,5308	0.5324	0.0016	0,9377	0,9378	0,0001	-14 6	8	0,4049	0,4076	0,0027	0,8673	0.8675	0.0002
-13 47	0,5406	0,5421	0,0015	0,9425	0,9424	0,0001	-13 6	8	0,4137	0,4153	0,0016	0,8733	0,8733	0,0000
-12 47	0.5502	0.5517	0.0015	0,9471	0.9469	0,0002	-12 6	8	0,4225	0,4232	0.0007	0.879	0.8788	0.0002
-11 47	0.5596	0.5612	0.0016	0.9514	0.9512	0.0002	-11 6	8	0.4313	0.4313	0,0000	0.8845	0.8842	0.0003

Anexo 4.1.			
Cálculo del error medio entre los valores reales y polinómicas del comp	oresor de	"Scroll"	ELA743Y

						51			1					
Te Te	nE h	pol nE	Error nF	nV h	pol nV	Error nV	Te	Te	nE h	pol nE	Error nE	nV h	pol nV	Error nV
10 17	0.5(00	0.7707	0.0017	0.0555	0.07.72	0.0002	10	(0)	0.4401	0 4207	0.0007	0.0007	0.0004	0.0002
-10 47	0,5689	0,5704	0,0015	0,9555	0,9553	0,0002	-10	68	0,4401	0,4396	0,0005	0,8897	0,8894	0,0003
-9 47	0,5779	0,5795	0,0016	0,9594	0,9592	0,0002	-9	68	0,4488	0,448	0,0008	0,8946	0,8944	0,0002
-8 47	0 5867	0.5882	0.0015	0.9631	0.963	0.0001	-8	68	0 4575	0 4565	0.0010	0 8994	0.8991	0.0003
7 47	0,5052	0.5067	0.0015	0.0667	0.0666	0.0001	7	60	0,1670	0.465	0.0012	0.0020	0.0027	0,0002
-/ 4/	0,3932	0,3907	0,0015	0,9007	0,9000	0,0001	-/	00	0,4002	0,403	0,0012	0,9039	0,9037	0,0002
-6 47	0,6034	0,6049	0,0015	0,97	0,97	0,0000	-6	68	0,4748	0,4736	0,0012	0,9083	0,9082	0,0001
-5 47	0,6114	0,6128	0,0014	0,9733	0,9733	0,0000	-5	68	0,4834	0,4823	0,0011	0,9125	0,9124	0,0001
-4 47	0.619	0 6203	0.0013	0.9764	0 9764	0,0000	-4	68	0.4919	0 4909	0,0010	0.9165	0.9165	0,0000
2 47	0,017	0,0205	0,0013	0,0702	0,0704	0,0000	2	60	0,4717	0,4905	0,0010	0,0204	0,0105	0,0000
-3 4/	0,6263	0,6275	0,0012	0,9793	0,9794	0,0001	-3	68	0,5003	0,4995	0,0008	0,9204	0,9204	0,0000
-2 47	0,6332	0,6342	0,0010	0,9821	0,9823	0,0002	-2	68	0,5086	0,5081	0,0005	0,9241	0,9242	0,0001
-1 47	0.6397	0.6405	0.0008	0 9848	0.985	0.0002	-1	68	0 5169	0 5166	0.0003	0.9276	0.9278	0.0002
0 47	0.6457	0.6463	0,0006	0.0874	0.0976	0.0002	0	69	0.5251	0.525	0,0001	0.0211	0.0212	0.0001
0 47	0,0437	0,0403	0,0000	0,9874	0,9870	0,0002	0	00	0,3231	0,323	0,0001	0,9311	0,9312	0,0001
1 47	0,6513	0,6517	0,0004	0,9899	0,9901	0,0002	1	68	0,5331	0,5332	0,0001	0,9344	0,9346	0,0002
2 47	0,6564	0,6566	0,0002	0,9923	0,9924	0,0001	2	68	0,541	0,5413	0,0003	0,9376	0,9378	0,0002
3 47	0.661	0,6609	0,0001	0.9946	0 9947	0,0001	3	68	0 5488	0 5493	0,0005	0.9407	0 9408	0,0001
4 47	0,001	0,0007	0,0001	0,00(8	0,0047	0,0001	4	60	0,5400	0,5475	0,0005	0,042(0,0429	0,0001
4 4/	0,005	0,0047	0,0003	0,9908	0,9909	0,0001	4	08	0,3304	0,337	0,0000	0,9450	0,9458	0,0002
5 47	0,6684	0,6678	0,0006	0,9989	0,9989	0,0000	5	68	0,5638	0,5645	0,0007	0,9465	0,9466	0,0001
6 47	0,6711	0,6704	0,0007	1,001	1,001	0,0000	6	68	0,5711	0,5717	0,0006	0,9492	0,9493	0,0001
7 47	0.6733	0.6724	0,0009	1.003	1 003	0,0000	7	68	0 5781	0 5786	0,0005	0.9519	0.9519	0,0000
0 47	0,0755	0,0724	0,0007	1,005	1,005	0,0000	/	00	0,5701	0,5760	0,0003	0,0514	0,0511	0,0000
8 4/	0,6/4/	0,6736	0,0011	1,005	1,005	0,0000	8	68	0,5849	0,5853	0,0004	0,9544	0,9544	0,0000
9 47	0,6754	0,6742	0,0012	1,006	1,006	0,0000	9	68	0,5915	0,5916	0,0001	0,9569	0,9569	0,0000
10 47	0.6754	0.6741	0.0013	1.008	1.008	0.0000	10	68	0.5978	0.5975	0.0003	0.9593	0.9592	0.0001
11 17	0.6745	0.6722	0.0013	1.01	1.01	0,0000	11	68	0.6038	0.6021	0.0007	0.9615	0.9614	0.0001
11 4/	0,0745	0,0732	0,0013	1,01	1,01	0,0000	11	00	0,0050	0,0031	0,0007	0,9015	0,2014	0,0001
12 47	0,6729	0,6716	0,0013	1,011	1,011	0,0000	12	68	0,6096	0,6083	0,0013	0,9637	0,9636	0,0001
13 47	0,6704	0,6692	0,0012	1,013	1,013	0,0000	13	68	0,615	0,613	0,0020	0,9658	0,9657	0,0001
14 47	0.667	0.666	0.0010	1.014	1.014	0.0000	14	68	0.6201	0.6172	0.0029	0.9678	0.9678	0.0000
15 17	0.6627	0.6610	0,0000	1.015	1 016	0.0010	15	60	0.6249	0.621	0.0029	0.9607	0.0607	0,0000
15 4/	0,0027	0,0019	0,0008	1,015	1,010	0,0010	13	00	0,0248	0,021	0,0038	0,9097	0,909/	0,0000
-15 48	0,5153	0,5165	0,0012	0,9297	0,93	0,0003	-15	69	0,3901	0,3959	0,0058	0,8569	0,8575	0,0006
-14 48	0,5252	0,5263	0,0011	0,9349	0,935	0,0001	-14	69	0,3989	0,4032	0,0043	0,8633	0,8635	0,0002
-13 48	0.535	0 5361	0.0011	0.9398	0.9397	0.0001	-13	69	0 4076	0 4107	0.0031	0.8694	0.8694	0,0000
12 49	0,555	0,5501	0,0010	0,0444	0,0442	0,0002	10	(0)	0,1070	0,1107	0,0001	0,0051	0,0071	0,0000
-12 48	0,5447	0,5457	0,0010	0,9444	0,9442	0,0002	-12	69	0,4165	0,4184	0,0021	0,8752	0,875	0,0002
-11 48	0,5541	0,5552	0,0011	0,9488	0,9486	0,0002	-11	69	0,425	0,4263	0,0013	0,8807	0,8804	0,0003
-10 48	0,5634	0,5646	0,0012	0,953	0,9528	0,0002	-10	69	0,4337	0,4344	0,0007	0,8859	0,8856	0,0003
-9 /8	0.5725	0 5737	0.0012	0.9569	0.9567	0,0002	_0	69	0 4423	0.4426	0,0003	0.8909	0.8906	0,0003
-9 48	0,5725	0,5737	0,0012	0,9509	0,9307	0,0002	-9	09	0,4423	0,4420	0,0003	0,8909	0,8900	0,0003
-8 48	0,5814	0,5826	0,0012	0,9607	0,9606	0,0001	-8	69	0,451	0,4509	0,0001	0,8957	0,8954	0,0003
-7 48	0,59	0,5912	0,0012	0,9643	0,9642	0,0001	-7	69	0,4596	0,4593	0,0003	0,9003	0,9001	0,0002
-6 48	0.5984	0.5996	0.0012	0.9677	0.9677	0.0000	-6	69	0.4681	0.4678	0.0003	0.9047	0.9045	0.0002
-5 48	0.6065	0,6077	0.0012	0.971	0.971	0,0000	-5	69	0.4766	0.4763	0,0003	0,0080	0.9088	0,0001
-3 48	0,0003	0,0077	0,0012	0,971	0,971	0,0000	-5	09	0,4700	0,4703	0,0003	0,9089	0,9088	0,0001
-4 48	0,6143	0,6154	0,0011	0,9742	0,9742	0,0000	-4	69	0,4851	0,4848	0,0003	0,9129	0,9129	0,0000
-3 48	0,6218	0,6228	0,0010	0,9772	0,9772	0,0000	-3	69	0,4935	0,4933	0,0002	0,9168	0,9169	0,0001
-2 48	0.6289	0.6298	0.0009	0.98	0.9802	0.0002	-2	69	0.5018	0.5017	0.0001	0.9206	0.9207	0.0001
1 49	0.6256	0.6264	0,0008	0.0929	0.0820	0.0001	1	60	0.51	0.5101	0,0001	0.0242	0.0242	0.0001
-1 48	0,0550	0,0304	0,0008	0,9828	0,9829	0,0001	-1	69	0,31	0,3101	0,0001	0,9242	0,9245	0,0001
0 48	0,6419	0,6426	0,0007	0,9854	0,9856	0,0002	0	69	0,5182	0,5184	0,0002	0,9277	0,9278	0,0001
1 48	0,6478	0,6483	0,0005	0,988	0,9881	0,0001	1	69	0,5262	0,5265	0,0003	0,931	0,9312	0,0002
2 48	0.6532	0.6535	0.0003	0 9904	0.9905	0.0001	2	69	0 5341	0 5346	0.0005	0.9343	0.9344	0.0001
2 10	0,6591	0,6593	0,0002	0,0027	0,0028	0,0001	2	60	0,5311	0,5310	0,0005	0,0274	0,0275	0,0001
3 48	0,0381	0,0385	0,0002	0,9927	0,9928	0,0001	3	69	0,3419	0,3424	0,0003	0,9574	0,9373	0,0001
4 48	0,6624	0,6624	0,0000	0,9949	0,995	0,0001	4	69	0,5495	0,5501	0,0006	0,9404	0,9405	0,0001
5 48	0,6662	0,6661	0,0001	0,9971	0,9971	0,0000	5	69	0,557	0,5575	0,0005	0,9433	0,9434	0,0001
6 48	0.6695	0.6691	0.0004	0 9991	0 9991	0,0000	6	69	0 5643	0 5647	0.0004	0.9461	0.9461	0,0000
7 49	0,672	0,00716	0,0001	1,001	1.001	0,0000	7	60	0,5015	0,5017	0,0007	0.0499	0,0499	0,0000
/ 48	0,072	0,0/10	0,0004	1,001	1,001	0,0000	/	09	0,3714	0,3/10	0,0002	0,9488	0,9488	0,0000
8 48	0,674	0,6734	0,0006	1,003	1,003	0,0000	8	69	0,5783	0,5782	0,0001	0,9513	0,9513	0,0000
9 48	0,6752	0,6745	0,0007	1,005	1,005	0,0000	9	69	0,5849	0,5845	0,0004	0,9538	0,9538	0,0000
10 48	0.6757	0 6749	0,0008	1.006	1 006	0.0000	10	69	0.5914	0.5904	0.0010	0.9562	0.9562	0.0000
11 40	0.6754	0.6747	0,0007	1,000	1 000	0,0000	11	60	0.5075	0 5050	0.0016	0.0595	0.0595	0,0000
10 40	0,0734	0,0747	0,0007	1,008	1,008	0,0000	11	09	0,3973	0,3737	0,0010	0,9383	0,9383	0,0000
12 48	0,6744	0,6737	0,0007	1,01	1,01	0,0000	12	69	0,6034	0,6011	0,0023	0,9607	0,9607	0,0000
13 48	0,6725	0,6719	0,0006	1,011	1,011	0,0000	13	69	0,609	0,6058	0,0032	0,9629	0,9628	0,0001
14 48	0.6698	0.6694	0.0004	1.013	1.013	0.0000	14	69	0.6142	0.6101	0.0041	0.9649	0.9649	0.0000
15 19	0.6662	0.666	0,0003	1.014	1 014	0,0000	15	60	0.6101	0.6120	0.0052	0.9669	0.0660	0.0001
15 40	0,0005	0,000	0,0005	1,014	1,014	0,0000	13		0,0191	0,0139	0,0032	0,9008	0,9009	0,0001
-15 49	0,5096	0,5103	0,0007	0,9267	0,9271	0,0004	-15	70	0,3842	0,392	0,0078	0,8529	0,8534	0,0005
-14 49	0,5195	0,5202	0,0007	0,932	0,9321	0,0001	-14	70	0,3929	0,399	0,0061	0,8594	0,8595	0,0001
-13 49	0.5293	0.5299	0.0006	0.937	0.9369	0.0001	-13	70	0.4015	0.4063	0.0048	0.8655	0.8654	0.0001
12 40	0.520	0.5200	0,0000	0.0417	0.0415	0,0001	10	70	0,4101	0 41 20	0.0027	0.9712	0.0711	0,0001
-12 49	0,539	0,5596	0,0006	0,941/	0,9415	0,0002	-12	/0	0,4101	0,4138	0,0037	0,8/13	0,8/11	0,0002
-11 49	0,5485	0,5491	0,0006	0,9461	0,9459	0,0002	-11	70	0,4187	0,4215	0,0028	0,8768	0,8765	0,0003
-10 49	0,5579	0,5585	0,0006	0,9504	0,9502	0,0002	-10	70	0,4273	0,4294	0,0021	0,8821	0,8818	0,0003
-9 49	0.567	0 5677	0 0007	0.9544	0.9542	0.0002	_9	70	0.4359	0.4374	0.0015	0.8871	0.8868	0.0003
Q 40	0.570	0.57(0	0,0009	0.0592	0.0501	0.0001	0	70	0.4444	0.4450	0.0012	0,0071	0.0017	0,0003
-0 49	0,576	0,5/68	0,0008	0,9582	0,9381	0,0001	-8	/0	0,4444	0,4430	0,0012	0,8919	0,891/	0,0002
-7 49	0,5847	0,5855	0,0008	0,9619	0,9618	0,0001	-7	70	0,453	0,4538	0,0008	0,8966	0,8964	0,0002
-6 49	0,5932	0,5941	0,0009	0,9654	0,9653	0,0001	-6	70	0,4615	0,4621	0,0006	0,901	0,9009	0,0001
-5 49	0.6014	0.6023	0,0000	0.9687	0.9687	0,0000	_5	70	0.4600	0.4704	0.0005	0.9052	0.9052	0,0000
4 40	0,0014	0.(102	0,0009	0,00710	0.0710	0,0000	-5	70	0,4702	0,4700	0,0005	0,0002	0,0002	0,0000
-4 49	0,0094	0,0103	0,0009	0,9719	0,9/19	0,0000	-4	/0	0,4783	0,4788	0,0005	0,9093	0,9093	0,0000
-3 49	0,617	0,6179	0,0009	0,9749	0,975	0,0001	-3	70	0,4867	0,4871	0,0004	0,9133	0,9133	0,0000
-2 49	0,6243	0,6252	0.0009	0,9779	0,978	0,0001	-2	70	0,4949	0,4955	0.0006	0,9171	0,9172	0,0001
-1 40	0.6312	0.622	0.0008	0.9807	0 0808	0.0001	_ 1	70	0.5032	0 5037	0.0005	0.9207	0 0200	0.0002
-1 49	0,0312	0,052	0,0003	0,0007	0,0000	0,0001	-1	70	0,5052	0,5057	0,0005	0,0242	0,0244	0,0002
0 49	0,6378	0,6385	0,0007	0,9833	0,9835	0,0002	0	/0	0,5113	0,5119	0,0006	0,9242	0,9244	0,0002
1 49	0,6439	0,6446	0,0007	0,9859	0,986	0,0001	1	70	0,5193	0,5199	0,0006	0,9276	0,9278	0,0002
2 49	0.6496	0.6501	0.0005	0.9884	0.9885	0,0001	2	70	0,5272	0,5278	0.0006	0.9309	0.9311	0,0002
3 40	0.6549	0.6552	0.0004	0.9907	0.0000	0.0001	2	70	0.525	0 5356	0.0006	0.024	0.0242	0.0002
J 47	0.0540	0.0002	0.0004	0.7707	0.7700	0.0001	2	10	0.555	0.0000	0,0000	0,934	0.7344	0.0002

Anexo 4.1.					
Cálculo del error medio entr	e los valores reales y	polinómicas del	compresor de '	"Scroll"	ELA743Y

Te	Tc	ηE b	pol nE	Error nE	ηV b	pol nV	Error nV	Te	Tc	ηE b	pol nE	Error nE	ηV b	pol nV	Error ηV
4	49	0,6595	0,6598	0,0003	0,993	0,9931	0,0001	4	70	0,5426	0,5431	0,0005	0,9371	0,9372	0,0001
5	49	0.6637	0.6639	0.0002	0.9952	0.9952	0.0000	5	70	0.5501	0.5505	0.0004	0.94	0.9401	0.0001
6	49	0.6673	0.6674	0.0001	0.9973	0.9973	0.0000	6	70	0.5575	0.5576	0.0001	0.9428	0.9429	0.0001
7	49	0.6703	0.6703	0.0000	0.9993	0.9992	0.0001	7	70	0.5646	0.5644	0.0002	0.9456	0.9456	0.0000
8	49	0.6727	0.6726	0.0001	1.001	1.001	0.0000	8	70	0.5716	0.5709	0.0007	0.9482	0.9482	0.0000
9	49	0.6744	0.6742	0.0002	1.003	1.003	0.0000	9	70	0.5783	0.5772	0.0011	0.9507	0.9507	0.0000
10	49	0.6754	0.6752	0.0002	1.005	1.005	0.0000	10	70	0.5848	0.583	0.0018	0.9532	0.9531	0.0001
11	49	0.6757	0.6755	0.0002	1.006	1.006	0.0000	11	70	0.5911	0.5885	0.0026	0.9555	0.9554	0.0001
12	49	0.6753	0.6751	0.0002	1.008	1.008	0.0000	12	70	0.5971	0.5937	0.0034	0.9577	0.9577	0.0000
13	49	0.674	0.674	0.0000	1.009	1.009	0.0000	13	70	0.6028	0.5984	0.0044	0.9599	0.9598	0.0001
14	49	0.672	0.672	0.0000	1.011	1.011	0.0000	14	70	0.6082	0.6026	0.0056	0.9619	0.962	0.0001
15	49	0.6691	0.6693	0.0002	1.012	1.012	0.0000	15	70	0.6133	0.6064	0.0069	0.9639	0.964	0.0001
-15	50	0.5038	0.5042	0.0004	0.9237	0.9242	0.0005			% E1	rr nE	0.282	% E1	r nV	0.014
-14	50	0.5138	0.5139	0.0001	0.9291	0.9292	0.0001				_				
-13	50	0.5236	0.5237	0.0001	0.9341	0.9341	0.0000								
-12	50	0.5333	0.5334	0.0001	0.9389	0.9388	0.0001								
-11	50	0,5428	0,5429	0,0001	0,9434	0,9432	0,0002								
-10	50	0,5522	0,5524	0,0002	0,9477	0,9475	0,0002								
-9	50	0,5614	0,5617	0,0003	0,9518	0,9516	0,0002								
-8	50	0,5704	0,5708	0,0004	0,9557	0,9555	0,0002								
-7	50	0,5793	0,5797	0,0004	0,9594	0,9593	0,0001								
-6	50	0,5879	0,5884	0,0005	0,9629	0,9629	0,0000								
-5	50	0,5962	0,5968	0,0006	0,9663	0,9663	0,0000								
-4	50	0,6043	0,6049	0,0006	0,9696	0,9696	0,0000								
-3	50	0,6121	0,6127	0,0006	0,9727	0,9727	0,0000								
-2	50	0,6195	0,6202	0,0007	0,9756	0,9757	0,0001								
-1	50	0,6267	0,6274	0,0007	0,9785	0,9786	0,0001								
0	50	0,6334	0,6341	0,0007	0,9812	0,9813	0,0001								
1	50	0,6398	0,6405	0,0007	0,9838	0,9839	0,0001								
2	50	0,6457	0,6464	0,0007	0,9863	0,9864	0,0001								
3	50	0,6512	0,6519	0,0007	0,9887	0,9888	0,0001								
4	50	0,6563	0,6568	0,0005	0,991	0,9911	0,0001								
5	50	0,6608	0,6613	0,0005	0,9932	0,9932	0,0000								
6	50	0,6648	0,6652	0,0004	0,9953	0,9953	0,0000								
7	50	0,6682	0,6685	0,0003	0,9974	0,9973	0,0001								
8	50	0,671	0,6713	0,0003	0,9993	0,9992	0,0001								
9	50	0,6731	0,6735	0,0004	1,001	1,001	0,0000								
10	50	0,6747	0,675	0,0003	1,003	1,003	0,0000								
11	50	0,6755	0,6758	0,0003	1,005	1,004	0,0010								
12	50	0,6756	0,6759	0,0003	1,006	1,006	0,0000								
13	50	0,6749	0,6754	0,0005	1,008	1,008	0,0000								
14	50	0,6735	0,6741	0,0006	1,009	1,009	0,0000								
15	50	0,6712	0,672	0,0008	1,011	1,011	0,0000								

Condicion de funcionamiento		
Temperatura de evaporacion	-10°C	
Temperatura de condensacion	45°C	
sobre calentamiento	10K	
Refrigerante	R134a	

Pequeño (<10kw)	Medianos (10kw;100kw)	Grandes (>100kW)	Volumen de dezplazamiento (m3/h)	Potencia frigorifica nominal (kW)
Р	М	G	Vt	Qf

Tipos de compresores	Tipos de Montaje	Serie	Modelos	Qf	Vt		Р	М	G
	Hermético	ES (vert)	ESH725Y	8,53	25,00		1	0	0
			ESH730Y	10,23	30,00		0	1	0
			ESH736Y	12,28	36,00		0	1	0
			ESH743Y	14,94	43,00		0	1	0
						Total	1	3	0
Scroll		ES (hori)	ELH725Y	8,37	25,00		1	0	0
			ELH730Y	10,17	30,00		0	1	0
			ELH736Y	12,26	36,00		0	1	0
			ELA743Y	14,98	43,00		0	1	0
				•		Total	1	3	0
		•			Total S	Scroll	2	6	0

	Tipos de Montaje	Serie	Modelos	Qf	Vt		Р	M G
	Semi Hermético	HSK	HSK5343	26,1	84,00		0	1 0
			HSK 5353	31.9	100.00		0	1 0
			HSK 5363	38	118.00		0	1 0
			115K5505	45.2	140.00		0	1 0
			113K0451	45,5	140,00		0	1 0
			HSK6461	54,9	165		0	1 0
			HSK7451	65,6	192,00		0	1 0
			HSK7461	75,5	220		0	1 0
			HSK7471	83,2	250,00		0	1 0
			HSK8551	100,3	315,00		0	0 1
			HSK8561	115,2	359,00		0	0 1
			HSK8571	135	410,00		0	0 1
			HSK8581	147	470,00		0	0 1
			HSK8591	169,2	535,00		0	0 1
						Total	0	8 5
	Compostos Sami Harmático	CSH	C\$H6553	41.4	137		0	1 0
	Compactos Senii Hermetico	Con	CSHOSS	52.4	170		0	1 0
			CSR0505	52,4	170		0	1 0
			CSH6583	60,/	195		0	1 0
			CSH6593	68,5	220,00		0	1 0
			CSH7553	57,8	197		0	1 0
			CSH7563	68,2	227		0	1 0
			CSH7573	78,5	258		0	1 0
			CSH7583	93,2	295		0	1 0
			CSH7593	106,2	336		0	0 1
			CSH8553	97,3	315		0	1 0
			CSH8563	112,2	359		0	0 1
			CSH8573	133	410		0	0 1
			CSH8583	147.3	470		0	0 1
			CSH8503	167.6	535		0	0 1
			CS118575	107,0	(15		0	0 1
			CSH9563	197,4	615		0	0 1
			CSH9573	231	700		0	0 1
			CSH9583	270	805		0	0 1
			CSH9593	307	910		0	0 1
			CSH95103	328	1015		0	0 1
Tornillos			CSH95113	359	1120		0	0 1
1 of millos						Total	0	9 11
		CSVH	CSVH24-125Y	163,4	464		0	0 1
			CSVH25-160Y	207	580		0	0 1
			CSVH26-200Y	242	725		0	0 1
				I		Total	0	0 3
		CSW	CSW6583	50.5	105		0	1 0
				39,3	195			1 0
			CSW6593	59,5 66.1	220		0	
			CSW6593 CSW7573	66,1 82,1	220 258		0	1 0
			CSW6593 CSW7573 CSW7583	66,1 82,1 93,4	220 258 295		0	1 0
			CSW6593 CSW7573 CSW7583 CSW7592	66,1 82,1 93,4	220 258 295		0 0 0	1 0 1 0
			CSW6593 CSW7573 CSW7583 CSW7593 CSW7593	39,3 66,1 82,1 93,4 106,4	195 220 258 295 336		0 0 0 0 0	1 0 1 0 1 0
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573	39,5 66,1 82,1 93,4 106,4 134,9	195 220 258 295 336 410		0 0 0 0	1 0 1 0 1 0 1 0 1 0 1 0
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583	39,5 66,1 82,1 93,4 106,4 134,9 147,6	195 220 258 295 336 410 470		0 0 0 0 0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1	195 220 258 295 336 410 470 535		0 0 0 0 0 0	1 0 1 0 0 1 0 1 0 1 0 1
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW8593 CSW9563	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5	195 220 258 295 336 410 470 535 615		0 0 0 0 0 0 0	1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228	195 220 258 295 336 410 470 535 615 700		0 0 0 0 0 0 0 0	1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9573 CSW9583	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268	195 220 258 295 336 410 470 535 615 700 805		0 0 0 0 0 0 0 0 0 0	1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9573 CSW9583 CSW9583	53,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304	195 220 258 295 336 410 470 535 615 700 805 910		0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9573 CSW9583 CSW9593	53,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326	195 220 258 295 336 410 470 535 615 700 805 910 1015		0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9573 CSW9583 CSW9593 CSW9593	53,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 2228 268 304 326 362	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
			CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9573 CSW9583 CSW9593 CSW9593 CSW95103 CSW95113	53,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120	Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 0 1
	Abierto	OSK	CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9573 CSW9573 CSW9583 CSW9593 CSW9593 CSW95103 CSW95113	53,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84	Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
	Abierto	OSK	CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9563 CSW9573 CSW9583 CSW9593 CSW9593 CSW95103 CSW95113	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 100	Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
	Abierto	OSK	CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9563 CSW9573 CSW9583 CSW9593 CSW9593 CSW9593 CSW959103 CSW95113	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 324 326 32,4 38,5	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 100 118	Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	Abierto	OSK	CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9563 CSW9573 CSW9583 CSW9593 CSW9593 CSW95103 CSW95103 CSW95113	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4 33,5 52,5	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 100 118 165	Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
	Abierto	OSK	CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9573 CSW9583 CSW9593 CSW95103 CSW95103 CSW95113 OSK5351 OSK5351 OSK5361 OSK7411 OSK751	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4 38,5 52,5 66 9	195 220 258 295 336 410 470 533 615 700 805 910 1015 1120 84 100 118 165 102	Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0
	Abierto	OSK	CSW6593 CSW7573 CSW7573 CSW7583 CSW7593 CSW8573 CSW8583 CSW8593 CSW9563 CSW9563 CSW9573 CSW9583 CSW9593 CSW9593 CSW95103 CSW95103 CSW95113 OSK5341 OSK5351 OSK5351 OSK5361 OSK7441 OSK7451 OSK7451	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4 38,5 52,5 66,8 77,2	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 100 118 165 192 292	Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 0 1
	Abierto	OSK	CSW6593 CSW7573 CSW7573 CSW7583 CSW7593 CSW8573 CSW8593 CSW9563 CSW9563 CSW9573 CSW9573 CSW9593 CSW95103 CSW95103 CSW95113 OSK5341 OSK5351 OSK5351 OSK5361 OSK7451 OSK7461	26,6 32,4 33,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 322,4 38,5 52,5 66,8 77,3	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 106 118 165 192 220	Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0 0 1
	Abierto	OSK	CSW6593 CSW7573 CSW7573 CSW7583 CSW7593 CSW8573 CSW8593 CSW9563 CSW9563 CSW9573 CSW9573 CSW9593 CSW95103 CSW95103 CSW95103 CSW95113 OSK5341 OSK5351 OSK5351 OSK7411 OSK7451 OSK7461 OSK7471	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4 38,5 52,5 66,8 77,3 85,1	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 106 118 165 192 220 250	Total	0 0	1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	Abierto	OSK	CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8573 CSW8593 CSW9563 CSW9563 CSW9573 CSW9593 CSW95103 CSW95103 CSW95113 OSK5351 OSK5361 OSK5361 OSK7411 OSK7451 OSK7461 OSK7471 OSK8551	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4 38,5 52,5 66,8 77,3 85,1 103,5	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 100 118 165 192 220 250 315	Total	0 0	1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	Abierto	OSK	CSW6593 CSW7573 CSW7583 CSW7593 CSW8573 CSW8573 CSW8593 CSW9563 CSW9563 CSW9573 CSW9593 CSW95103 CSW95103 CSW95103 CSW95113 OSK5341 OSK5351 OSK5361 OSK7451 OSK7451 OSK7461 OSK7471 OSK8551 OSK8551	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4 38,5 52,5 66,8 77,3 85,1 103,5 119,3	195 220 258 295 336 410 470 535 615 910 1015 1120 84 100 118 165 192 220 250 315 359	Total	0 0	1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	Abierto	OSK	CSW6593 CSW7573 CSW7573 CSW7593 CSW7593 CSW8573 CSW8593 CSW9563 CSW9563 CSW9573 CSW9593 CSW9593 CSW95103 CSW95103 CSW95113 OSK5351 OSK5351 OSK74551 OSK7451 OSK7551 OSK7557 OSK7577 OSK7577 OSK7577 OSK7577 OSK7577 OSK7577 OSK7577 OSK7577 OSK7577 OSK7577 OSK7577 OSK7577	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4 38,5 52,5 66,8 77,3 85,1 103,5 119,3 140,1	195 220 258 295 336 410 535 615 700 805 910 1015 1120 84 100 118 165 192 220 250 315 359 410	Total	0 0	1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	Abierto	OSK	CSW6593 CSW7573 CSW7573 CSW7583 CSW7593 CSW8573 CSW8593 CSW9563 CSW9563 CSW9573 CSW9593 CSW9593 CSW95103 CSW95103 CSW95113 OSK5311 OSK5351 OSK5361 OSK7411 OSK7451 OSK7551 OSK8551 OSK8551 OSK8551 OSK8551 OSK8551	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 264 304 326 362 26,6 32,4 38,5 52,5 66,8 77,3 85,1 103,5 119,3 140,1 152,7	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 100 118 165 192 220 250 315 359 410	Total	0 0	1 0 1 0 1 0 1 0 0 1
	Abierto	OSK	CSW6593 CSW7573 CSW7583 CSW7593 CSW7593 CSW8573 CSW8573 CSW8593 CSW9563 CSW9563 CSW9573 CSW9593 CSW95103 CSW95103 CSW95113 OSK5311 OSK5351 OSK5351 OSK5361 OSK7411 OSK7451 OSK75551 OSK755551 OSK75551 OSK75551 OSK75551 OSK75551 OSK755551 OSK75555555	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 362 26,6 32,4 38,5 52,5 66,8 77,3 85,1 103,5 119,3 140,1 152,7 175,7	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 100 118 165 192 220 250 3359 410 470	Total	0 0	1 0 1 0 1 0 0 1
	Abierto	OSK	CSW6593 CSW7573 CSW7573 CSW7593 CSW7593 CSW8573 CSW8593 CSW9593 CSW9563 CSW9563 CSW9593 CSW9593 CSW9593 CSW95103 CSW95103 CSW95113 OSK5361 OSK5361 OSK7411 OSK7451 OSK7461 OSK7451 OSK75551 OSK75551 OSK75551 OSK75551 OSK75551 OSK75551 OSK755551 O	33,3 66,1 82,1 93,4 106,4 134,9 147,6 168,1 199,5 228 268 304 326 32,4 32,6 32,4 38,5 52,5 66,8 77,3 85,1 103,5 119,3 140,1 152,7 175,7	195 220 258 295 336 410 470 535 615 700 805 910 1015 1120 84 100 118 165 192 220 250 315 359 410 470 535	Total	0 0	1 0 1 0 1 0 0 1

Note: Net: N	Tipos de compresores	Tipos de Montaje	Serie	Modelos	Qf	Vt		Р	M G
Prese </td <td></td> <td>Abierto</td> <td>2Y-K</td> <td>2T.2Y</td> <td>6</td> <td>19,68</td> <td></td> <td>1</td> <td>0 0</td>		Abierto	2Y-K	2T.2Y	6	19,68		1	0 0
Prime Prime 9,21 9,24 9,24 9,24 0 <td></td> <td></td> <td></td> <td>2N.2Y</td> <td>8,33</td> <td>28,0</td> <td></td> <td>1</td> <td>0 0</td>				2N.2Y	8,33	28,0		1	0 0
Prese 0 0.1 <td></td> <td></td> <td></td> <td>4T.2Y</td> <td>12</td> <td>39,36</td> <td></td> <td>0</td> <td>1 0</td>				4T.2Y	12	39,36		0	1 0
Free: Image: Provide term Image: Providet term Image				4P.2Y	14,11	47,14		0	1 0
Piense Pienes 910 </td <td></td> <td></td> <td></td> <td>4N.2Y</td> <td>16,66</td> <td>56,1</td> <td></td> <td>0</td> <td>1 0</td>				4N.2Y	16,66	56,1		0	1 0
Premet Premet 40.2y 30.3 10.5 0 <td></td> <td></td> <td></td> <td>4H.2Y</td> <td>21,9</td> <td>73,6</td> <td></td> <td>0</td> <td>1 0</td>				4H.2Y	21,9	73,6		0	1 0
Fieshes Provide 0.012 0.02 0.02 0.0 <td< td=""><td></td><td></td><td></td><td>4G.2Y</td><td>24,9</td><td>84,5</td><td></td><td>0</td><td>1 0</td></td<>				4G.2Y	24,9	84,5		0	1 0
Fixes Regi Hendico 6G.2Y 67,3 60,6 0 <td< td=""><td></td><td></td><td></td><td>6H.2Y</td><td>32,9</td><td>110,5</td><td></td><td>0</td><td>1 0</td></td<>				6H.2Y	32,9	110,5		0	1 0
Prime (0.1) <th< td=""><td></td><td></td><td></td><td>6G.2Y</td><td>37,3</td><td>126,8</td><td></td><td>0</td><td>1 0</td></th<>				6G.2Y	37,3	126,8		0	1 0
Image: Normal interpretation into the standing of the s				6F.2Y	45,1	151,6		0	1 0
Pariametrices in the second of the secon							Total	2	8 0
Partner 1000		Semi Hermético	estandar	2KES	0,99	4,06		1	0 0
Fishes 1,79 6,10 0 1 0 <				2JES	1,27	5,21		1	0 0
Store 2013 20,10 7,80 0 1 0 0 2153 20,30 9,44 0 1 0 <td></td> <td></td> <td></td> <td>2HES</td> <td>1,79</td> <td>6,51</td> <td></td> <td>1</td> <td>0 0</td>				2HES	1,79	6,51		1	0 0
Partnet				2GES	2,12	7,58		1	0 0
Pistees 				2FES	2,63	9,54		1	0 0
Pistones 1 0 1 0 0 QCIS 4,86 16,27 1 0 0 4FES 4,98 18,05 1 0 0 44ES 4,98 18,05 1 0 0 44ES 7,67 26,4 1 0				2EES	3,25	11,36		1	0 0
Fishes 				2DES	3,91	13,42		1	0 0
Hers 4.98 10.0 0 0 0 Hers 6.65 2.72 0 1 0 0 HOUS 7.67 2.68 0 1 0 0 HOUS 9.95 3.73 0.0 1 0 0 1 0 0 HOUS 9.90 3.73 0.0 1 0 0 1 0 0 <t< td=""><td></td><td></td><td></td><td>2CES</td><td>4,86</td><td>16,24</td><td></td><td>1</td><td>0 0</td></t<>				2CES	4,86	16,24		1	0 0
Fixens <				4FES	4,98	18,05		1	0 0
Pistones Í 0<				4EES	6,65	22,72		1	0 0
Priones 44ES 9,55 32,48 1 0 0 4VES 9,9 34,73 0 </td <td></td> <td></td> <td></td> <td>4DES</td> <td>7,67</td> <td>26,84</td> <td></td> <td>1</td> <td>0 0</td>				4DES	7,67	26,84		1	0 0
Pixones 44/25 9,9 4,73 1 0 0 47ES 12,1 41,33 0 0 1 0 47ES 13,59 46,30 0 0 0 1 0 47ES 13,59 46,20 56,25 0 0 1 0 47ES 10,10 20,5 56,25 0 0 1 0 47ES 26,5 45,5 0 0 1 0 1 0 44E 22,6 84,5 0 0 1 0 1 0 46E 31,4 10,8 0 1 0 1 0 66E 33 105 0 0 1 0 0 1 0 7 0 0 1 0 0 1 0 0 1 0 66E 51,6 155 1 0 0 1<				4CES	9,55	32,48		1	0 0
Pistones 112.1 13.3 0				4VES	9,9	34,73		1	0 0
4PES 13.59 48.50 0 0 1 0 4NES 16.29 56.25 0 0 1 0 4HE 22.6 73.7 0 0 1 0 4HE 22.6 73.7 0 0 1 0 4HE 22.6 73.7 0 0 1 0 4HE 22.6 84.5 0 0 1 0 4HE 22.6 84.5 0 0 1 0 4HE 28.1 93.5 0 0 1 0 1 0 6HE 34.1 10.8 0 1 0 1 0 1 0 6HE 39.3 12.6 16.1 13.5 14.6 18.5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Pistones			4TES	12,1	41,33		0	1 0
4NES 16.29 56.25 0 0 1 0 4HE 19.1 6.35 0 0 1 0 4HE 22.6 7.7 0 0 1 0 4HE 26.5 84.5 0 0 1 0 4HE 31.4 10.8 0 0 1 0 6HE 33.1 10.5 0 0 1 0 6HE 33.3 10.5 0 0 1 0 6GE 39.3 126.8 0 1 0 1 0 6GE 39.3 126.8 0 1 0 1 0 1 0 6GE 39.3 126.8 0 1 0 1 0 1 0 6RE 61 121 16 0 1 0 1 0 Varisped 2DES 6.12 13.42 1 0 1 0 4HE 10.41 22.72 16 1<				4PES	13,59	48,50		0	1 0
41E 19,1 63,5 0 0 1 0 44E 22,6 73,7 0 0 1 0 44E 22,6 73,7 0 0 1 0 44E 26,5 84,5 0 0 1 0 4FE 31,4 101,8 0 0 1 0 6HE 33 110,5 0 0 1 0 6GE 39,3 126,8 0 0 1 0 6FE 46,2 151,6 0 0 1 0 8FE 61 221 0 1 0 0 4FE 7,8 18,05 1 0 0 1 0 4HE 10,41 22,72 1 0 1 </td <td></td> <td></td> <td></td> <td>4NES</td> <td>16,29</td> <td>56,25</td> <td></td> <td>0</td> <td>1 0</td>				4NES	16,29	56,25		0	1 0
4HE 22,6 73,7 0 0 1 0 4GE 26,5 84,5 0 0 1 0 4FE 31,4 101,8 0 0 1 0 6FE 28,1 95,3 10,5 0 1 0 6FE 33,3 110,5 0 0 1 0 6FE 46,2 15,6 0 0 1 0 6FE 46,2 15,6 0 0 1 0 6FE 46,2 15,6 185 0 1 0 6FE 46,2 15,6 185 0 1 0 1 0 8FE 61 221 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				4JE	19,1	63,5		0	1 0
4GE 26,5 84,5 0 0 1 0 4FE 31,4 10,8 0 0 1 0 6FE 28,1 95,3 10,5 0 0 1 0 6FE 33 110,5 0 0 1 0 1 0 6FE 46,2 15,6 12,6 0 0 1 0 1 0 6FE 46,2 15,6 18,5 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1				4HE	22,6	73,7		0	1 0
4FE 31,4 101,8 0 0 1 0 6JE 28,1 95,3 10,5 0 1 0 6HE 33 10,5 10,6 0 1 0 6GE 39,3 126,8 0 0 1 0 6GE 39,3 126,8 0 0 1 0 6GE 46,2 151,6 185 0 1 0 6FE 46,2 151,6 185 0 1 0 8GE 51,6 185 0 1 0 1 0 8FE 61 221 1 0 1 0 1 Varisped 2DES 6,12 13,42 1 0 1 0 4FE 10,41 22,72 0 1 0 1 0 4HE 10,41 22,72 0 1 0 1 0 4HE 10,41 22,72 0 1 0 1 0 4HE 10,41 24,85 34,33 0 1 0 4HE 14,95 34,73 0 1 0 4H				4GE	26,5	84,5		0	1 0
61E 28,1 95,3 0 0 1 0 61E 33 110,5 0 0 1 0 66E 39,3 126,8 0 0 1 0 66E 46,2 151,6 0 0 1 0 66E 46,2 151,6 185 0 1 0 67E 46,2 151,6 185 0 1 0 86E 51,6 185 0 1 0 1 0 87E 61 221 0 1 0 1 0 Varisped 2DES 6,12 13,42 1 0 1 0 44E 10,41 22,72 0 1 0 1 0 44E 10,41 22,72 0 1 0 1 0 44E 10,41 22,72 0 1 0 1 0 44E 14,95 32,48 0 1 0 1 0 4VE 15,5 34,73 0 1 0 1 0 4VE 21,3 48,50 0 1 0 <				4FE	31,4	101,8		0	1 0
6HE 33 110,5 0 0 1 0 6GE 39,3 126,8 0 0 1 0 6GE 46,2 151,6 0 0 1 0 8GE 51,6 185 0 0 1 0 8GE 61 221 0 0 1 0 8FE 61 221 0 1 0 0 Varisped 2DES 6,12 13,42 1 0 0 4FE 7,8 18,05 1 0 1 0 4HE 10,41 22,72 0 0 1 0 4HE 14,95 32,48 0 1 0 1 4HE 18,93 41,33 0 1 0 4HE 18,93 41,33 0 1 0 4HE 21,3 48,50 0 1 0 4HE				6JE	28,1	95,3		0	1 0
6GE 39,3 126,8 0 0 1 0 6FE 46,2 151,6 18 0 1 0 8GE 51,6 185 0 0 1 0 8FE 61 221 0 0 1 0 Varisped 2DES 6,12 13,42 1 0 0 1 4FE 7,8 18,05 1 1 0 1 0 4HE 10,41 22,72 0 0 1 0 4HE 12,01 26,84 0 1 0 4VE 15,5 34,73 0 1 0 4HE 18,93 41,33 0 1 0 4HE 21,3 48,50 0 1 0 4HE 21,3 48,50 0 1 4HE <td< td=""><td></td><td></td><td></td><td>6HE</td><td>33</td><td>110,5</td><td></td><td>0</td><td>1 0</td></td<>				6HE	33	110,5		0	1 0
6FE 46.2 15.6 0 1 0 8GE 51.6 185 0 1 0 8FE 61 221 0 0 1 0 Varisped 2DES 6.12 13.42 1 0 0 1 0 Varisped 2DES 6.12 13.42 1 0 1 0 4FE 7.8 18.05 1 1 0 1 0 4EE 10.41 22.72 0 0 1 0 1 0 4EE 10.41 22.72 0 0 1 0 1 0 4DE 10.41 22.72 0 0 1 0 1 0 4VE 15.5 34.73 0 0 1 0 1 0 4VE 18.93 41.33 0 0 1 0 1 0 4VE				6GE	39,3	126,8		0	1 0
8GE 51,6 185 0 1 0 8FE 61 221 0 0 1 0 Varisped 61 221 1 0 1 0 1 0 Varisped 2DES 6,12 13,42 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0				6FE	46,2	151,6		0	1 0
8FE 61 221 0 1 0 Varisped 2DES 6,12 13,42 1 0				8GE	51,6	185		0	1 0
Varisped 2DES 6,12 13,42 1 0 0 4FE 7,8 18,05 1 0 0 4EE 10,41 22,72 0 0 1 0 4DE 12,01 26,84 0 1 0 1 0 4DE 12,01 26,84 0 1 0 1 0 4CE 14,95 32,48 0 1 0 1 0 4VE 15,5 34,73 0 0 1 0 4VE 18,93 41,33 0 0 1 0 4VE 21,3 48,50 0 1 0 4NE 25,4 35,45 0 1 0				8FE	61	221	<u> </u>	0	1 0
Varispeed 2DES 6,12 13,42 1 0 0 4FE 7,8 18,05 1 0 0 4EE 10,41 22,72 0 0 1 0 4DE 12,01 26,84 0 1 0 1 0 4DE 12,01 26,84 0 1 0 1 0 4CE 14,95 32,48 0 1 0 1 0 4VE 15,5 34,73 0 0 1 0 4TE 18,93 41,33 0 0 1 0 4NE 25,4 46,50 0 1 0						1	Total	13	13 0
4FE 7,8 18,05 1 0 0 4EE 10,41 22,72 0 0 1 0 4DE 12,01 26,84 0 1 0 4CE 14,95 32,48 0 1 0 4VE 15,5 34,73 0 0 1 0 4VE 18,93 41,33 0 0 1 0 4VE 21,3 48,50 0 1 0 4VE 25,4 55,4 0 1 0 4NE 25,4 56,5 0 1 0			Varispeed	2DES	6,12	13,42		1	0 0
4EE 10,41 22,72 0 1 0 4DE 12,01 26,84 0 1 0 4CE 14,95 32,48 0 1 0 4VE 15,5 34,73 0 1 0 4TE 18,93 41,33 0 1 0 4PE 21,3 48,50 0 1 0 4NE 25,4 55,4 0 1 0				4FE	7,8	18,05		1	0 0
4DE 12,01 26,84 0 1 0 4CE 14,95 32,48 0 1 0 4VE 15,5 34,73 0 0 1 0 4TE 18,93 41,33 0 0 1 0 4PE 21,3 48,50 0 1 0 4NE 25,4 55,4 0 1 0				4EE	10,41	22,72		0	1 0
4CE 14,95 32,48 0 1 0 4VE 15,5 34,73 0 1 0 4TE 18,93 41,33 0 1 0 4TE 18,93 41,33 0 1 0 4PE 21,3 48,50 0 1 0 4NE 25,4 56,55 0 1 0 Total Distance Total Distance 7 0				4DE	12,01	26,84	<u> </u>	0	1 0
4VE 15.5 34,73 0 1 0 4TE 18,93 41,33 0 1 0 4PE 21,3 48,50 0 1 0 4NE 25,4 46,50 0 1 0 4NE 25,4 56,55 0 1 0				4CE	14,95	32,48	<u> </u>	0	1 0
4TE 18,93 41,33 0 1 0 4PE 21,3 48,50 0 1 0 4NE 25,4 56,5 0 1 0 Total 2 7 0				4VE	15,5	34,73	<u> </u>	0	1 0
4PE 21,3 48,50 0 1 0 4NE 25,4 56,25 0 1 0 Total 2 7 0				4TE	18,93	41,33	<u> </u>	0	1 0
4NE 25,4 56,25 0 1 0 Total 2 7 0				4PE	21,3	48,50		0	1 0
Total 2 7 0				4NE	25,4	56,25	m : 1	0	1 0
Lotal Distance I 17 10 A						Total P	1 otal	2	/ 0

	Р	М	G	1
TOTAL	19	62	34	115

	N° de com	presores co pot	n pistoi encia	nes por rango de
80				
20 -				
0			28	
	17			0
0	Р	I	м	G

	Nº de compresores de tornillos por rango de potencia						
40							
35							
30				-			
25		_					
20		_		-			
15		28		34			
10		_		-			
5							
0	0						
	P	м		G			

Modelo	2KES	Tipo	pistón Semi-Hermético				
Potencia frigorífica nominal (kW)	0,99	Límites					
Desplazamiento Volumétrico (m3/h)	4,06		2 30 10 -30 -20 -10 0 10 20 30 to ['C]				
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 25^{\circ}C$; $Tc = 10 \dots 85^{\circ}C$				
Potencia frigorífica (W)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Potencia absorbida (W)	Wc_b_2KES= 32 0,091223068764 0,001186797585 0,000958282708	20,864542591436 + 2,6940 8654*te^2 + 0,1065880893 45982*te^3 -0,0032028679 104778*tc^3	9753924793*te + 4,05436897833968*tc + 48089*te*tc + 0,108003542624875*tc^2 + 91332048*tc*te^2 + 0,00128203890554058*te*tc^2 -				
Caudal másico (kg/h)	mr_b_2KES=54, 0,0231326719910 0,000143628059 05*te*tc^2 -1,73	2388172925984 + 1,93582 058*te^2 -0,00336955316 189735*te^3 + 2,69603690 \$504282469765E-05*te^3	043472145*te -0,407199232694153*tc + 486648*te*tc + 0,00366427949702106*tc^2 +)537156E-05*tc*te^2 + 2,45519508780448E-				
		Regresiones polinón	nicas				
rendimiento volumétrico	polEtaV_2KES=9,88077473E-01+2,39637831E-03*te-7,79986145E-05*te^2+3,14289368E- 06*te^3-8,41646507E-03*te+9,03720035E-05*tc^2-4,72876454E-07*tc^3+9,26558269E- 05*te*tc+4,85169078E-08*te*tc^2-2,76467780E-06*te^2*tc+1,04683848E-08*te^2*tc^2						
rendimiento energético	polEtaE_2KES=1,90326101E-01-2,15801573E-02*te-5,60127554E-04*te^2+2,58696776E- 08*te^3+1,72908025E-02*tc-2,66559817E-04*tc^2+1,37662199E-06*tc^3+6,66000999E- 04*te*tc-4,03183955E-06*te*tc^2+8,65895254E-06*te^2*tc-3,58854336E-08*te^2*tc^2						

Modelo	4FES	Tipo	pistón Semi-Hermético		
Potencia frigorífica nominal (kW)	4,98	Límites			
Desplazamiento Volumétrico (m3/h)	18,05		2 30 20 10 -30 -30 -30 -10 0 10 -30 -10 0 10 20 30 10 -30 -10 0 10 -20 -30 -10 -10 -10 -10 -10 -10 -10 -1		
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 12, 5^{\circ}C$; $Tc = 10 \dots 70^{\circ}C$		
Potencia frigorífica (W)	Qf_b = 13998,84 9,4405022349733 0,051029469584 0,002780324962	96674133 + 602,60800378 53*te^2 -4,862678640311 8661*te^3 -0,06194251834 14568*te^3	808*te -119,571353276802*tc + 35*te*tc -0,387298995668337*tc^2 + 12804*tc*te^2 -0,000844927428964641*te*tc^2 +		
Potencia absorbida (W)	$ \begin{array}{c} Wc_b = 701,61984169196 -36,4435592577557*te + 54,0154846637746*tc - \\ 1,22344695328952*te^2 + 2,01255085673346*te*tc - 0,168541425366279*tc^2 - \\ 0,00955172992672456*te^3 + 0,0173200217412944*tc*te^2 - 0,0043401170947176*te*tc^2 - \\ 0,0018205582509688*tc^3 \end{array} $				
Caudal másico (kg/h)	mr_b=242,76049 0,140881351449 0,000816396367 0,000050779314	9534743 + 9,68922227907 761*te^2 -0,01937545465 763415*te^3 -0,00025354 824273*te*tc^2 -2,469661	2538*te -0,510134379519262*tc + 27963*te*tc -0,00676760612957051*tc^2 + 7456739735*tc*te^2 - 66043625E-05*tc^3		
		Regresiones polinón	nicas		
rendimiento volumétrico	polEtaV=9,82378890E-01+5,54673964E-03*te-3,00635894E-05*te^2+1,90978730E-06*te^3- 2,46571580E-03*tc-1,65999163E-05*tc^2-1,76073679E-07*tc^3-4,25124125E- 05*te*tc+1,39382875E-06*te*tc^2-4,27169484E-07*te^2*tc-2,28207753E-08*te^2*tc^2				
rendimiento energético	polEtaE=3,21903939E-01-1,54962513E-02*te-4,27677607E-04*te^2+9,40888345E- 07*te^3+1,43830989E-02*tc-1,90601220E-04*tc^2+7,72477837E-07*tc^3+4,73091100E- 04*te*tc-3,29677540E-06*te*tc^2+1,20336633E-05*te^2*tc-1,22012524E-07*te^2*tc^2				

Modelo	4DES	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	7,67	Límites		
Desplazamiento Volumétrico (m3/h)	26,84		2 30 10 -30 -20 -10 0 10 20 30 to [*C]	
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 12,5^{\circ}C$; $Tc = 10 \dots 70^{\circ}C$	
Potencia frigorífica (W)	$\begin{array}{l} Qf_b=20999,03\\ 14,07271124152\\ 0,075773670726\\ 0,002978835634 \end{array}$	43851481 + 900,09469851 99*te^2 -7,3850010819467 7015*te^3 -0,09349526612 4333*tc^3	6025*te -180,112465011588*tc + '4*te*tc -0,423543825855375*tc^2 + 218765*tc*te^2 + 0,000996690628621126*te*tc^2 +	
Potencia absorbida (W)	Wc_b =986,2065 1,838152674464 0,014234184477 0,002221674440	37749556 -55,0921861288 42*te^2 + 2,991012046949 3498*te^3 + 0,0264107669 20117*tc^3	3798*te + 81,7710383519401*tc -)65*te*tc -0,252438916489711*tc^2 -)945751*tc*te^2 -0,00661701933846922*te*tc^2 -	
Caudal másico (kg/h)	mr_b=364,55132 0,211050896804 0,001218091715 4,738095664823	.8833388 + 14,5127173415 509*te^2 -0,033935881237 58073*te^3 -0,0004299760 52E-05*tc^3	821*te -0,812734120455901*tc + 7658*te*tc -0,00662335341814203*tc^2 +)8366438*tc*te^2 -9,66271709388294E-06*te*tc^2 -	
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,93178153E-01+5,59998598E-03*te-2,88990583E-05*te^2+1,78296873E-06*te^3- 2,70951168E-03*tc-4,90108181E-06*tc^2-2,22258376E-07*tc^3-5,83678725E- 05*te*tc+1,39820883E-06*te*tc^2-4,55443790E-08*te^2*tc-2,61230515E-08*te^2*tc^2			
rendimiento energético	polEtaE=3,38355710E-01-1,55967169E-02*te-4,28616058E-04*te^2+6,29848811E-)7*te^3+1,41072624E-02*tc-1,88953908E-04*tc^2+7,71068384E-07*tc^3+4,70924205E-)4*te*tc-3,32153677E-06*te*tc^2+1,18932425E-05*te^2*tc-1,17359756E-07*te^2*tc^2			

Modelo	4VES	Tipo	pistón Semi-Hermético		
Potencia frigorífica nominal (kW)	9,9	Límites			
Desplazamiento Volumétrico (m3/h)	34,73		2 30 10 -20 -10 -10 -10 -10 -20 -10 -20 -10 -20 -20 -10 -20 -20 -20 -20 -20 -20 -20 -2		
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 12, 5^{\circ}C$; $Tc = 10 \dots 70^{\circ}C$		
$ \begin{array}{c} Qf_{b} = 27152,6665563264 + 1184,12372038409*te - 172,308253827906*tc + \\ 18,2577356588406*te^{+2} - 9,40799413814187*te*tc - 2,4606374010845*tc^{+2} + \\ 0,0941591299572463*te^{+3} - 0,127917048492132*tc*te^{+2} - 0,00286265481443729*te*tc^{+2} + \\ 0.0185604202348956*tc^{+3} \end{array} \right) $					
Potencia absorbida (W)	Wc_b =1395,180 3,927101494685 0,039792505803 0,009128541986	14447674 -128,904746258 38*te^2 + 6,507531312832 6959*te^3 + 0,0496489526 80674*tc^3	3394*te + 90,6998921445317*tc - 292*te*tc + 0,15852837551777*tc^2 - 529298*tc*te^2 -0,0397643382671515*te*tc^2 -		
Caudal másico (kg/h)	mr_b=469,27108 0,283217324044 0,001476047381 + 0,00021004286	4999544 + 19,3366043246 626*te^2 -0,047565367448 10165*te^3 -0,0010381355 55752057*tc^3	5308*te + 0,316095059841036*tc + 59932*te*tc -0,0477475976895418*tc^2 + 50667282*tc*te^2 -2,00838418300522E-05*te*tc^2		
		Regresiones polinón	nicas		
rendimiento volumétrico	polEtaV=9,67661956E-01+5,51865199E-03*te+1,04693881E-05*te^2+3,56719125E- 06*te^3+1,73770972E-03*tc-1,25935149E-04*tc^2+6,51076799E-07*tc^3-5,91713018E- 05*te*tc+1,64199976E-06*te*tc^2-1,12187683E-06*te^2*tc-4,33101649E-08*te^2*tc^2				
rendimiento energético	polEtaE=2,75698555E-01-7,44665242E-03*te-2,47530474E-04*te^2+5,75230936E- 06*te^3+2,12730816E-02*tc-3,82037197E-04*tc^2+2,49240265E-06*tc^3+9,70135985E- 05*te*tc+8,89755253E-07*te*tc^2+1,62734956E-05*te^2*tc-2,54968236E-07*te^2*tc^2				

Modelo	4PES	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	13,59	Límites		
Desplazamiento Volumétrico (m3/h)	48,50			
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 3^{\circ}C$; $Tc = 10 \dots 60^{\circ}C$	
Potencia frigorífica (W)		3442784 + 1656,74862449 73*te^2 -13,145154901082 115*te^3 -0,179747921148 8417*tc^3	448*te -245,411870907233*tc + !5*te*tc -3,41490955168491*tc^2 + !86*tc*te^2 -0,00550592482930828*te*tc^2 +	
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 1828,57891665286 - 123,645450666547*te + 141,216502188927*tc - \\ & 4,35809180494271*te^2 + 6,39462825710911*te*tc - 0,492432486312522*tc^2 - \\ & 0,0388990347227153*te^3 + 0,0548176813369467*tc*te^2 - 0,024364761923238*te*tc^2 - \\ & 0,00535249137476544*tc^3 \end{split}$			
Caudal másico (kg/h)	$\begin{array}{l} mr_b\!=\!654,\!271621366522+27,\!0418722714014*te+0,\!348547424673964*tc+0,\!397663203228594*te^2-0,\!0644433610392452*te*tc-0,\!0665125798716114*tc^2+0,\!00207028581672772*te^3-0,\!00144332026379073*te*te^2-8,\!05437704152513E\!-\!05*te*tc^2+0,\!000279032456800337*tc^3 \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,70071387E-01+6,94169467E-03*te+5,00834784E-05*te^2+3,71286157E- 06*te^3+1,66809649E-03*tc-1,33391208E-04*tc^2+7,18042477E-07*tc^3-7,32630479E- 05*te*tc+1,46778137E-06*te*tc^2-9,30934522E-07*te^2*tc-6,54163476E-08*te^2*tc^2			
rendimiento energético	polEtaE=2,86693537E-01-1,50418016E-02*te-3,68799141E-04*te^2+3,63153142E- 06*te^3+2,02329058E-02*tc-3,16377883E-04*tc^2+1,63184974E-06*tc^3+5,91368652E- 04*te*tc-6,00606317E-06*te*tc^2+2,18403247E-05*te^2*tc-3,41901137E-07*te^2*tc^2			

Modelo	4NES	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	16,29	Límites		
Desplazamiento Volumétrico (m3/h)	56,25		2 30 10 10 10 10 10 10 10 10 10 1	
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 3^{\circ}C$; $Tc = 10 \dots 60^{\circ}C$	
Potencia frigorífica (W)	Qf_b = 44041,5376773893 + 1913,9390099551*te -274,317657866244*tc + 29,3922551939086*tc^2 -15,2155856896756*te*tc -3,99254833748341*tc^2 + 0,1515563913463*te^3 -0,205715392745676*tc*te^2 -0,00310173256608016*te*tc^2 + 0,030062810429539*tc^3			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & = 2021, 97652764521 - 117, 549688195022*te + 181, 815285671928*tc - \\ & 4,72821185087068*te^2 + 6,07364846301662*te*tc - 1,12281722198385*tc^2 - \\ & 0,0386217825253944*te^3 + 0,0624358856693772*te*te^2 - 0,0109199846470865*te*tc^2 + \\ & 0,000397176606631282*tc^3 \end{split}$			
Caudal másico (kg/h)	$eq:mr_b=761,225601076758+31,2663927392696*te+0,600627672084937*tc+0,456098322148408*te^2-0,0789032962649426*te*tc-0,0770862751161544*tc^2+0,00238069711833135*te^3-0,00168297320460478*tc*te^2+0,000022412446399047*te*tc^2+0,000351083931292901*tc^3$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,72164367E-01+6,61055566E-03*te+4,67275848E-05*te^2+3,75430845E- 06*te^3+2,02180453E-03*tc-1,36220409E-04*tc^2+7,79283870E-07*tc^3-7,94092256E- 05*te*tc+1,43283579E-06*te*tc^2-3,29954640E-07*te^2*tc-7,20845716E-08*te^2*tc^2			
rendimiento energético	polEtaE=3,02288 06*te^3+1,80162 04*te*tc-7,04247	988E-01-1,74486463E-02 126E-02*tc-2,43691918E- 922E-06*te*tc^2+1,73287	*te-3,43289687E-04*te^2+2,54635562E- 04*tc^2+9,15810130E-07*tc^3+6,81603342E- 113E-05*te^2*tc-2,71564525E-07*te^2*tc^2	

Modelo	4JE	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	19,1	Límites		
Desplazamiento Volumétrico (m3/h)	63,5			
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 3^{\circ}C$; $Tc = 10 \dots 60^{\circ}C$	
Potencia frigorífica (W)	Qf_b = 52170,34 28,84895320643 0,151086735951 0,008225884176	81212244 + 2044,1171373 18*te^2 -16,291220898642 926*te^3 -0,173790847502 24614*tc^3	5352*te -536,143991171996*tc + !1*te*tc + 1,365742924765*tc^2 + !227*tc*te^2 + 0,00869533070468347*te*tc^2 -	
Potencia absorbida (W)	Wc_b =3643,45929509926 -100,292440232933*te + 100,165072807395*tc - 4,52469563659274*te^2 + 5,23115886529029*te*tc + 1,27950497723882*tc^2 - 0,0414783774561711*te^3 + 0,0515037214869909*tc*te^2 + 0,000497005112553324*te*tc^2 - 0,0161994913479534*tc^3			
Caudal másico (kg/h)	$\begin{array}{l} mr_b=909,289868431592+33,0218775469925*te-3,87752301676503*tc+\\ 0,429558471825909*te^2-0,0752953835010975*te*tc+0,0269211064157802*tc^2+\\ 0,00229109338275141*te^3-0,000799150558282207*tc*te^2+\\ 0,000197275405740422*te*tc^2-0,000345699205396021*tc^3\\ \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=1,05341011E+00+2,87054739E-03*te+1,75136676E-05*te^2+3,56160860E-06*te^3- 5,56949296E-03*tc+6,35918146E-05*tc^2-6,86413696E-07*tc^3-1,47062036E- 07*te*tc+6,93248833E-07*te*tc^2-1,24077705E-06*te^2*tc-2,56570535E-08*te^2*tc^2			
rendimiento energético	polEtaE=2,05967290E-01-2,19639050E-02*te-4,28206222E-04*te^2+1,80389702E- 06*te^3+2,51008076E-02*tc-4,23614248E-04*tc^2+2,32724014E-06*tc^3+8,12202697E- 04*te*tc-7,65424281E-06*te*tc^2+1,53614871E-05*te^2*tc-1,83057633E-07*te^2*tc^2			

Modelo	4HE	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	22,6	Límites		
Desplazamiento Volumétrico (m3/h)	73,7		2 10 10 -30 -20 -10 0 10 20 30 to ["C]	
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 3^{\circ}C$; $Tc = 10 \dots 60^{\circ}C$	
Potencia frigorífica (W)	$\label{eq:qf_b} \begin{array}{l} Qf_b=59612.9555594375+2312.29840843242*te-544.527502815605*tc+33.2992945053231*te^2-15.4171944527459*te*tc+0.414470426467087*tc^2+0.181810163627859*te^3-0.187484813859578*tc*te^2-0.0315329080387929*te*tc^2-0.00613155622129669*tc^3 \end{array}$			
Potencia absorbida (W)	Wc_b =3282,50941896777 -118,395012079307*te + 191,134342381081*tc - 5,0064052055342*te^2 + 6,83657746406586*te*tc -0,17150321185744*tc^2 - 0,042911328864673*te^3 + 0,0648316849508846*tc*te^2 -0,00898333423538113*te*tc^2 - 0,00680420700900387*tc^3			
Caudal másico (kg/h)	$eq:mr_b=1035,23936789501+36,9491146521478*te-2,90320081276651*tc+0,491559294764867*te^2-0,00768847438119256*te*tc+0,00960656086379245*tc^2+0,00278258643701383*te^3-0,000513917396520428*tc*te^2-0,000733424793063389*te*tc^2-0,000352805549233637*tc^3$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=1,03217 3,85689800E-03 05*te*tc+5,2762	7600E+00+2,15566770E-0 *tc+3,82977652E-05*tc^2- 3256E-07*te*tc^2-3,86621	3*te+4,81291352E-05*te^2+3,19481642E-06*te^3- 6,03840779E-07*tc^3+1,96683338E- 096E-06*te^2*tc+2,31188521E-08*te^2*tc^2	
rendimiento energético	polEtaE=2,75355 06*te^3+1,93636 04*te*tc-7,22300	281E-01-2,28848779E-02 251E-02*tc-2,78504118E- 220E-06*te*tc^2+1,19690	*te-4,03665683E-04*te^2+1,08075057E- 04*tc^2+1,16775263E-06*tc^3+7,93969410E- 045E-05*te^2*tc-1,28005562E-07*te^2*tc^2	

Modelo	4GE	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	26,5	Límites	5 S S S S S S S S S S S S S S S S S S S	
Desplazamiento Volumétrico (m3/h)	84,5		20 00 00 00 00 00 00 00 00 00 00 00 00 0	
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 3^{\circ}C$; $Tc = 10 \dots 60^{\circ}C$	
Potencia frigorífica (W)	Qf_b = 64463,8254767489 + 2659,45741840993*te -354,617861724474*tc + 37,0561266569258*te^2 -18,6553586265022*te*tc -4,6746587459289*tc^2 + 0,21264455659302*te^3 -0,183805743152411*tc*te^2 -0,0172307607632801*te*tc^2 + 0,0231625777904004*tc^3			
Potencia absorbida (W)	Wc_b=3387,75953731235 -129,776767975621*te + 261,86371904305*tc - 4,75770013178383*te^2 + 8,584742079026*te*tc -0,915240701952809*tc^2 - 0,0395038969750187*te^3 + 0,0603213610275056*tc*te^2 -0,0210794086484074*te*tc^2 - 0,00401275896625986*tc^3			
Caudal másico (kg/h)	$eq:mr_b=1114,73949745214+42,5690010541271*te+1,39786554031193*tc+0,536778685690215*te^2-0,0324116867987189*te*tc-0,0678626313754865*tc^2+0,00327797278138268*te^3+0,000164473609237534*tc*te^2-0,000408472953810973*te*tc^2-3,40747793333801E-05*tc^3 \\$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,60703470E-01+2,99256320E-03*te-1,24793828E-04*te^2+3,39259561E- 06*te^3+1,11906330E-03*tc-5,58714234E-05*tc^2-5,27720053E-08*tc^3-5,02295327E- 05*te*tc+1,54339757E-06*te*tc^2+4,52971333E-06*te^2*tc-5,94206424E-08*te^2*tc^2			
rendimiento energético	polEtaE=2,72886754E-01-2,30973008E-02*te-6,39209792E-04*te^2+3,72122078E- 07*te^3+1,78182096E-02*tc-2,31235012E-04*tc^2+7,55734725E-07*tc^3+7,27681208E- 04*te*tc-5,99849488E-06*te*tc^2+2,13472243E-05*te^2*tc-2,08961583E-07*te^2*tc^2			

Modelo	4FE	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	31,4	Límites		
Desplazamiento Volumétrico (m3/h)	101,8			
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 3^{\circ}C$; $Tc = 10 \dots 60^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b = 78724, 7812138931 + 3175, 9321252947*te & -621, 284996794116*tc + \\ 47, 445788574973*te^{+2} & -22, 6075260397759*te*tc & -1, 14838813969836*tc^{+2} + \\ 0, 259310155131281*te^{+3} & -0, 27827467960555*tc*te^{+2} & -0, 017090891555067*te*tc^{+2} + \\ 0, 00361293308969079*tc^{+3} \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 4280, 21024401557 \ -189, 231626460459^{\text{s}}\text{te} + 321, 458981333402^{\text{s}}\text{tc} - \\ & 6, 85607922300883^{\text{s}}\text{te}^{\text{c}}2 + 11, 9065752848881^{\text{s}}\text{te}^{\text{s}}\text{tc} - 1, 39743076447081^{\text{s}}\text{tc}^{\text{c}}2 - \\ & 0, 0681161394049219^{\text{s}}\text{te}^{\text{c}}3 + 0, 0982390860744821^{\text{s}}\text{te}^{\text{s}}\text{te}^{\text{c}}2 - 0, 0338503227574571^{\text{s}}\text{te}^{\text{s}}\text{tc}^{\text{c}}2 - \\ & 0, 00151185048691907^{\text{s}}\text{tc}^{\text{c}}3 \end{split}$			
Caudal másico (kg/h)	$\begin{array}{l} mr_b\!=\!1366,81103343575+51,1904966277699*te-2,040485120827*tc+\\ 0,713375385569076*te^2-0,0599875739812805*te*te-0,012202586275191*tc^2+\\ 0,00399768069023383*te^3-0,00111645479700475*tc*te^2-0,000280911704391603*te*tc^2-0,00023022087773125*tc^3\\ \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,81857206E-01+3,37131711E-03*te+1,12736589E-05*te^2+1,96814373E-06*te^3- 1,93137116E-03*tc+4,99131545E-06*tc^2-2,85980619E-07*tc^3-2,56425312E- 05*te*tc+7,46702799E-07*te*tc^2-8,76801761E-07*te^2*tc-1,68172762E-08*te^2*tc^2			
rendimiento energético	polEtaE=2,68564354E-01-2,02248130E-02*te-4,74333556E-04*te^2+8,69198108E- 07*te^3+1,65124616E-02*tc-2,10207207E-04*tc^2+7,79003324E-07*tc^3+6,44617815E- 04*te*tc-5,91859820E-06*te*tc^2+1,63360026E-05*te^2*tc-1,72975829E-07*te^2*tc^2			

Modelo	6GE	Tipo	pistón Semi-Hermético		
Potencia frigorífica nominal (kW)	39,3	Límites			
Desplazamiento Volumétrico (m3/h)	126,8		2 20 10 -20 -20 -10 0 10 -20 -20 -10 0 10 20 30 -20 -20 -10 -20 -20 -20 -20 -20 -20 -20 -2		
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 3^{\circ}C$; $Tc = 10 \dots 60^{\circ}C$		
Potencia frigorífica (W)	$\begin{array}{l} Qf_b=98507,83\\ 60,482758326819\\ 0,323636840781\\ 0,021637996305. \end{array}$	$ \begin{array}{l} Qf_b=98507, 8327974875+4013, 21534202745*te & -716, 882592616971*tc+\\ 60, 4827583268198*te^2-29, 2982442118643*te*tc & -3, 56059382869656*tc^2+\\ 0, 323636840781136*te^3-0, 384573380516578*tc*te^2-0, 0261788171841416*te*tc^2+\\ 0, 0216379963055852*tc^3 \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & wc_b = 3956,44667995812 \ -252,03892164106^*te + 439,628013742256^*tc \ - \\ & 6,94135149509407^*te^2 + 14,8682338723996^*te^*tc \ -2,0988385614153^*tc^2 - \\ & 0,0499877737653689^*te^3 + 0,0939717130499229^*tc^*te^2 - 0,0514178220979862^*te^*tc^2 - \\ & 0,00177470890279075^*tc^3 \end{split}$				
Caudal másico (kg/h)	$ \begin{array}{l} \mathrm{trr} \ b = 1706, 21017141172 + 64,8027024769826 * te \ -1,01220600942508 * tc + \\ 0,91996894818169 * te^2 - 0,0914933959499342 * te * tc - 0,0642033689327013 * tc^2 + \\ 0,00504821612099846 * te^3 - 0,00226405969878848 * te * te^2 - 0,000563451290346537 * te * tc^2 + \\ 7,69896698585999E - 05 * tc^3 \end{array} $				
		Regresiones polinón	nicas		
rendimiento volumétrico	polEtaV=9,78122224E-01+3,76902839E-03*te+3,57367234E-05*te^2+2,14598808E-06*te^3- 4,73000406E-04*tc-4,01029918E-05*tc^2+7,36586720E-08*tc^3-4,12103576E- 05*te*tc+7,69969395E-07*te*tc^2-1,41112071E-06*te^2*tc-1,69652852E-08*te^2*tc^2				
rendimiento energético	polEtaE=3,33560270E-01-2,09909087E-02*te-5,98142200E-04*te^2-1,07342607E- 06*te^3+1,51617037E-02*tc-2,11818209E-04*tc^2+9,17671506E-07*tc^3+6,91598982E- 04*te*tc-6,27499521E-06*te*tc^2+1,93279553E-05*te^2*tc-2,03801970E-07*te^2*tc^2				

Modelo	8GE	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	51,6	Límites		
Desplazamiento Volumétrico (m3/h)	185		² 30 20 -20 -10 0 10 20 50 50 50 50	
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 12, 5^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b=135171,069776181+5366,7122233213*te-1027,7817228541*tc+\\ 80,9026607622682*te^{\lambda_2}-36,497157260362*te*tc-5,17222604477714*tc^{\lambda_2}+\\ 0,455160651452075*te^{\lambda_3}-0,52061260876271*tc*te^{\lambda_2}-0,0455378211832193*te*tc^{\lambda_2}+\\ 0,0350967922008075*tc^{\lambda_3} \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 6379,87294730143 \ .398,392173786424*te + 806,594948247056*tc - \\ & 17,5283481020789*te^2 + 24,6576011195438*te*tc \ .9,24057910748331*tc^2 - \\ & 0,213626548440725*te^3 + 0,269917862774077*tc*te^2 - 0,0982204741753225*te*tc^2 + \\ & 0,0429675021656547*tc^3 \end{split}$			
Caudal másico (kg/h)	$\label{eq:starsest} \begin{array}{l} \mathrm{trr}_b=\!2339,5818682564+85,683078776967^*te^{-2},05850745667186^*tc + \\ 1,17529064109405^*te^{-2}-0,0674083242014802^*te^*tc -0,100531813811317^*tc^{-2} + \\ 0,0072725116243438^*te^{-3}-0,0019528311868502^*tc^*te^{-2}-0,000136742030667344^*te^*tc^{-2} + \\ 0,000159771591185769^*tc^{-3} \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,18348949E-01+1,64069334E-03*te+4,17654181E-05*te^2+3,80825427E-06*te^3- 8,45292875E-04*tc-3,73943786E-05*tc^2+5,32890402E-08*tc^3-1,98259323E- 06*te*tc+1,23366263E-06*te*tc^2-2,18849442E-06*te^2*tc-2,41712609E-08*te^2*tc^2			
rendimiento energético	polEtaE=3,00454 06*te^3+9,44544 04*te*tc-2,14836	637E-01-1,56091737E-02 ² 071E-03*tc-3,42144268E- 521E-06*te*tc^2+1,10483	*te-2,42745609E-04*te^2+6,31187843E- 05*tc^2-3,91649435E-07*tc^3+3,67306347E- 977E-05*te^2*tc-1,70578694E-07*te^2*tc^2	

Modelo	8FE	Tipo	pistón Semi-Hermético	
Potencia frigorífica nominal (kW)	61	Límites		
Desplazamiento Volumétrico (m3/h)	221		21 30 40 40 40 40 40 40 40 40 40 40 40 40 40	
Polinomios B	ITZER	Alcance de validez	$Te = -25 \dots 12,5^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	Qf_b = 160035,651587242 + 6310,49640649028*te -1250,77956257721*tc + 94,2281870526312*te^2 -44,5253926833352*te*tc + -5,39063348862374*tc^2 + 0,527351254100739*te^3 -0,636975469723745*tc*te^2 -0,0407148491262508*te*tc^2 + 0,0358549643051756*tc^3			
Potencia absorbida (W)	Wc_b =8402,37442433554 -462,027893314628*te + 870,151710801507*tc - 20,7487880742669*te^2 + 28,1294393659766*te*tc -8,80269324548706*tc^2 - 0,255304455885587*te^3 + 0,305509000001234*tc*te^2 -0,102852102857834*te*tc^2 + 0,0341372330957157*tc^3			
Caudal másico (kg/h)	$eq:mr_b=2773,00720750072+100,872091546296*te-3,38048679196165*tc+1,38040213556273*te^2-0,115841964234263*te*tc-0,0973970651280558*tc^2+0,0085304937500817*te^3-0,00331995858732039*tc*te^2+3,85663751094719E-06*te*tc^2-1,22367339363517E-05*tc^3 \\$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,12875895E-01+1,58513550E-03*te+5,62922254E-05*te^2+4,30018403E-06*te^3- 1,32241462E-03*tc-2,53664608E-05*tc^2-4,78577369E-08*tc^3-1,84293580E- 05*te*tc+1,36772110E-06*te*tc^2-2,38476368E-06*te^2*tc-2,68697874E-08*te^2*tc^2			
rendimiento energético	polEtaE=2,87999 06*te^3+1,06522 04*te*tc-2,30326	989E-01-1,57297602E-02 ⁻ 200E-02*tc-6,60225636E- 893E-06*te*tc^2+1,15258	*te-2,33618997E-04*te^2+6,79410598E- 05*tc^2-1,50438748E-07*tc^3+3,71763980E- 621E-05*te^2*tc-1,78554770E-07*te^2*tc^2	

Modelo	HSK5343	Tipo	Tornillos Semi-Hermético	
Potencia frigorífica nominal (kW)	26,1	Límites		
Desplazamiento Volumétrico (m3/h)	84		20 30	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 20^{\circ}C$; $Tc = 20 \dots 70^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b = 63616,3439027199 + 2524,4407351718*te - 457,177769715446*tc + \\ 38,7317386651573*te^2 - 17,5525703889006*te*tc - 1,44751560134207*tc^2 + \\ 0,223085431841402*te^3 - 0,252820472538419*tc*te^2 - 0,0184674376157053*te*tc^2 + \\ 0,00464690765262838*tc^3 \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 9556,22668565778 + 101,530587734*te - 25,2463914639148*tc - \\ & 0,437427811594428*te^2 + 0,806043942566624*te*tc + 1,75284227282486*tc^2 - \\ & 0,00496939934104252*te^3 + 0,0513721283585608*tc*te^2 - 0,0297500445964237*te*tc^2 + \\ & 0,025001936721592*tc^3 \end{split}$			
Caudal másico (kg/h)	mr_b=1098,90387631494 + 39,8318104135213*te -0,361047635995532*tc + 0,53861534001337*te^2 -0,0253011197989933*te*tc -0,028346039277098*tc^2 + 0,00359107571971278*te^3 -0,000334115649995325*tc*te^2 -0,000240624354175876*te*tc^2 -4,28736179158674E-05*tc^3			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,49409917E-01+1,34538678E-03*te-3,65783817E-05*te^2+1,07860292E-06*te^3- 1,29960273E-04*tc-2,79630160E-05*tc^2-1,74981570E-08*tc^3-1,35252826E- 05*te*tc+7,93299301E-07*te*tc^2-1,58656085E-07*te^2*tc-7,84545496E-09*te^2*tc^2			
rendimiento energético	polEtaE=-1,9025 06*te^3+4,58013 03*te*tc-8,67821	1853E-01-3,45115635E-02 864E-02*tc-8,10850223E- 531E-06*te*tc^2+7,36891	2*te-6,51787666E-04*te^2-2,26791080E- 04*tc^2+4,08824695E-06*tc^3+1,23090687E- 374E-06*te^2*tc+5,92311356E-09*te^2*tc^2	

Modelo	HSK5363	Tipo	Tornillos Semi-Hermético	
Potencia frigorífica nominal (kW)	38	Límites		
Desplazamiento Volumétrico (m3/h)	118		2 30 20 -20 -10 0 10 20 to ["C]	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 20^{\circ}C$; $Tc = 20 \dots 70^{\circ}C$	
Potencia frigorífica (W)	$Qf_b = 84057,04$ 55,76823364244 0,322302386128 0,029478228223	15825545 + 3353,3868951 7*te^2 -16,2531833920626 392*te^3 -0,374323744202 7942*tc^3	2844*te -298,308208970919*tc + i*te*tc -7,22296697362379*tc^2 + 2825*tc*te^2 -0,0985089540231654*te*tc^2 +	
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 11785,4040662868 + 170,41687265598*\text{te} - 13,7165195494809*\text{tc} - \\ & 0,926604855799906*\text{te}^2 - 0,706657599571408*\text{te}*\text{tc} + 3,27848231563145*\text{tc}^2 - \\ & 0,0352718381526183*\text{te}^3 + 0,080477428173243*\text{tc}*\text{te}^2 - 0,0156248158939036*\text{te}*\text{tc}^2 + \\ & 0,0194878748462337*\text{tc}^3 \end{split}$			
Caudal másico (kg/h)	$\begin{array}{l} \mathrm{nrr} \ b = 1436, 42610025622 + 51, 8260729923332*te + 5, 83484068421093*tc + \\ 0, \overline{7}90135883434676*te^2 + 0, 13231382831204*te*tc - 0, 116612086291826*tc^2 + \\ 0,00521909876988121*te^3 - 0,00102423288724116*tc*te^2 - 0,00164180542648033*te*tc^2 + \\ 0,000178421556109875*tc^3 \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=8,62900775E-01-1,92196822E-04*te+7,34407691E-05*te^2+1,03145809E- 06*te^3+4,96851057E-03*tc-9,77067399E-05*tc^2+2,66268180E-07*tc^3+1,65674262E- 05*te*tc+6,58884156E-07*te*tc^2-3,52552045E-06*te^2*tc+1,65184715E-08*te^2*tc^2			
rendimiento energético	polEtaE=-1,15877363E-01-3,65807709E-02*te-5,97279842E-04*te^2-1,57792689E- 06*te^3+4,33016234E-02*tc-7,63214184E-04*tc^2+3,80209701E-06*tc^3+1,29250146E- 03*te*tc-9,12398288E-06*te*tc^2+5,08037494E-06*te^2*tc+2,23358670E-08*te^2*tc^2			

Modelo	HSK6461	Tipo	Tornillos Semi-Hermético	
Potencia frigorífica nominal (kW)	54,9	Límites		
Desplazamiento Volumétrico (m3/h)	165		2 30 20 20 10 0 10 20 20 10 0 10 20	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	Qf_b = 129521,273695714 + 4989,26760612574*te -776,46159813861*tc +76,5931076539188*te^2 -29,1244947507916*te*tc -5,94739452272556*tc^2 +0,436030915455575*te^3 -0,466768164290594*tc*te^2 -0,0905645440978759*te*tc^2 +0,0243316843275274*tc^3			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 11555,3388663881 + 111,890313040705*te + 291,62367035875*tc - \\ & 0,200850663774885*te^2 + 2,38844657955202*te*tc \ -0,921522532688875*tc^2 - \\ & 0,0136434219830224*te^3 + 0,0534166557764211*tc*te^2 - 0,0379417323140027*te*tc^2 + \\ & 0,0527718531438581*tc^3 \end{split}$			
Caudal másico (kg/h)	$eq:mr_b=2233,48107415127+78,3210263443687*te+2,01475876357672*tc+1,09654669039859*te^2+0,0662691936967631*te*tc-0,0915329819408927*tc^2+0,00701127200949158*te^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,000780951324242471*tc*te^2-0,0013448265338803*te*tc^2-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942902864362*tc^3-0,0000286942002*tc^3-0,0000286942002*tc^3-0,00002869*tc^3-0,00002869*tc^3-0,00002869*tc^3-0,00002869*tc^3-0,00002869*tc^3-0,00002*tc^3-0,0002*tc^3-0,0002*tc^3-0,0002*tc^3-0,0002*tc^3-0,0002*$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,77327 06*te^3+1,33904 06*te*tc+9,27247	7333E-01+3,26163404E-04 035E-03*tc-4,87969434E- 7197E-07*te*tc^2-2,73182	l*te+5,61294059E-05*te^2+1,38552952E- 05*tc^2+3,93520282E-08*tc^3-7,25613604E- 419E-06*te^2*tc+7,99854304E-09*te^2*tc^2	
rendimiento energético	polEtaE=7,56944 06*te^3+3,24883 03*te*tc-8,21349	509E-02-3,34982872E-02 ⁺ 976E-02*tc-5,51161394E- 926E-06*te*tc^2+7,66220	*te-6,62986492E-04*te^2-2,49739513E- 04*tc^2+2,49670510E-06*tc^3+1,18868790E- 794E-06*te^2*tc+5,34792154E-09*te^2*tc^2	

Modelo	HSK7451	Tipo	Tornillos Semi-Hermético		
Potencia frigorífica nominal (kW)	65,6	Límites			
Desplazamiento Volumétrico (m3/h)	192		20		
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$		
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b = 158968,520148033 + 6272,64910931574^{*}te - 1134,91403031127^{*}tc + \\ 98,6052343146385^{*}te^{2} - 36,2327740585033^{*}te^{*}tc & -2,65148148921986^{*}tc^{2} + \\ 0,542015431746414^{*}te^{3} - 0,650886825327248^{*}tc^{*}te^{2} - 0,161639061185831^{*}te^{*}tc^{2} - \\ 0,00253169299884077^{*}tc^{3} \end{array} $				
Potencia absorbida (W)	Wc_b =19321,6259845444 + 482,397333161859*te -221,470990228824*tc + 14,1957679930827*te^2 -23,0142966111551*te*tc + 12,0930002546149*tc^2 + 0,197386478941235*te^3 -0,31137903629806*tc*te^2 + 0,252489515754838*te*tc^2 - 0,009809019756425*tc^3				
Caudal másico (kg/h)	$ \begin{array}{l} \mathrm{trr} \ b=2726, 2719270706 + 97, 0409944944818*te \ -0, 0365192235658593*tc + \\ 1, 41828238002474*te^2 + 0, 201342619579053*te*tc \ -0, 0527794617104953*tc^2 + \\ 0, 00863659784848099*te^3 \ -0, 00207776437322409*te*te^2 \ -0, 00436590797146249*te*tc^2 - \\ 0, 000428380857565094*tc^3 \end{array} $				
Regresiones polinómicas					
rendimiento volumétrico	polEtaV=1,03813346E+00+1,49151030E-03*te+7,18363501E-05*te^2+1,51674342E-06*te^3-3,88407231E-04*tc-1,06453212E-05*tc^2-2,35787214E-07*tc^3+3,60352322E-05*te*tc-1,24137287E-07*te*tc^2-5,66170032E-06*te^2*tc+5,60909493E-08*te^2*tc^2				
rendimiento energético	polEtaE=1,02560613E-01-3,19738635E-02*te-9,23451255E-04*te^2-7,07038331E- 06*te^3+3,77855996E-02*tc-7,45300429E-04*tc^2+3,99364577E-06*tc^3+1,46144074E- 03*te*tc-1,27546612E-05*te*tc^2+1,50865254E-05*te^2*tc-1,10082239E-08*te^2*tc^2				

Modelo	HSK7471	Tipo	Tornillos Semi-Hermético		
Potencia frigorífica nominal (kW)	83,2	Límites	70 60 50 50 740		
Desplazamiento Volumétrico (m3/h)	250		2 30 20 -20 -10 0 10 20 to [°C]		
Polinomios BITZER		Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$		
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b = 195861,460510885 + 7541,3068790935*te - 1178,70254521575*tc + \\ 115,76211280668*te^2 - 44,0658642058485*te*tc - 8,72046729970022*tc^2 + \\ 0,659336633165707*te^3 - 0,704235199528073*tc*te^2 - 0,134907351951978*te*tc^2 + \\ 0,0350554764686276*tc^3 \end{array} $				
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 16954, 660124163 + 164, 642701304184*te + 427, 507404742746*tc - 0, 31068137739048*te^2 + 3, 46822306907317*te*tc - 1, 35178366238064*tc^2 - 0, 0198973823689914*te^3 + 0, 078685065107512*tc*te^2 - 0, 0552217187056624*te*tc^2 + 0, 077401471919119*tc^3 \end{split}$				
Caudal másico (kg/h)	tmr_b=3377,79051424409 + 118,419189031179*te + 2,95586075752432*tc + 1,65714269191404*te^2 + 0,097131602700547*te*tc -0,134264333515312*tc^2 + 0,0105998315580532*te^3 -0,00114686287131493*tc*te^2 -0,00197172700761868*te*tc^2 - 4,19029285401238E-05*tc^3				
Regresiones polinómicas					
rendimiento volumétrico	polEtaV=9,75768274E-01+3,16007795E-04*te+5,43230283E-05*te^2+1,34271111E- 06*te^3+1,29544818E-03*tc-4,72196423E-05*tc^2+3,80088187E-08*tc^3-7,03011373E- 06*te*tc+8,97611632E-07*te*tc^2-2,64251538E-06*te^2*tc+7,71969469E-09*te^2*tc^2				
rendimiento energético	polEtaE=7,86665982E-02-3,44969079E-02*te-6,82067343E-04*te^2-2,58091988E- 06*te^3+3,34221502E-02*tc-5,65740571E-04*tc^2+2,55943229E-06*tc^3+1,22301346E- 03*te*tc-8,44893697E-06*te*tc^2+7,87278140E-06*te^2*tc+5,60828378E-09*te^2*tc^2				
Modelo	HSK8551	Tipo	Tornillos Semi-Hermético		
--------------------------------------	---	--	--	--	
Potencia frigorífica nominal (kW)	100,3	Límites			
Desplazamiento Volumétrico (m3/h)	315		2 010 0 10 20 to [°C]		
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$		
Potencia frigorífica (W)	$\begin{array}{l} Qf_b=237219,315563209+9207,47015729303^{*}te^{-1331,95385936027^{*}tc}+\\ 142,391644876714^{*}te^{\Lambda_2}-49,5807210655735^{*}te^{*}tc^{-10,9556381839304^{*}tc^{\Lambda_2}+\\ 0,827200953266773^{*}te^{\Lambda_3}-0,806670252969028^{*}tc^{*}te^{\Lambda_2}-0,176905648983425^{*}te^{*}tc^{\Lambda_2}+\\ 0,0178987620052196^{*}tc^{\Lambda_3} \end{array}$				
Potencia absorbida (W)	Wc_b =28809,9659643738 + 766,887148733491*te -331,930445528429*tc + 22,4953467688453*te^2 -36,5562582504372*te*tc + 17,9604050638048*tc^2 + 0,309510633831939*te^3 -0,494416193223722*tc*te^2 + 0,401017772888196*te*tc^2 - 0,00220860749216071*tc^3				
Caudal másico (kg/h)	$\begin{array}{l} mr_b{=}4167,0736656057+146,633606547317*te~-0,992058825162337*tc~+\\ 2,03218765340557*te^2+0,075533352319899*te*tc~+0,0166051243030911*tc^2+\\ 0,0132479871036676*te^3-4,72323626703339E-05*tc*te^2-0,0004097888827269*te*tc^2-0,00225845440873068*tc^3 \end{array}$				
		Regresiones polinón	nicas		
rendimiento volumétrico	polEtaV=9,73268 1,01600598E-03 04*te*tc+2,6329	8934E-01+2,64068982E-03 *tc+2,23202914E-05*tc^2- 9424E-06*te*tc^2-2,68366	*te+7,04743809E-05*te^2+1,59736258E-06*te^3- 6,58701861E-07*tc^3-1,17144558E- 344E-06*te^2*tc-7,61122859E-09*te^2*tc^2		
rendimiento energético	polEtaE=9,32968 06*te^3+3,98927 03*te*tc-1,22681	8947E-02-3,35184292E-02 ⁴ 247E-02*tc-7,95613563E- 495E-05*te*tc^2+1,73607	*te-9,67445039E-04*te^2-7,16212249E- 04*tc^2+4,23533620E-06*tc^3+1,47666341E- 044E-05*te^2*tc-4,08548435E-08*te^2*tc^2		

Modelo	HSK8561	Tipo	Tornillos Semi-Hermético	
Potencia frigorífica nominal (kW)	115,2	Límites		
Desplazamiento Volumétrico (m3/h)	359		20 20 -20 -20 -10 to [°C]	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b=266445,514880113+10361,850718586*te-1487,35470791638*tc+\\ 166,389701258263*te^2-48,6308003473279*te*tc-9,32972498685465*tc^2+\\ 0,944076159608271*te^3-1,01588948831783*tc*te^2-0,332848316096509*te*tc^2-0,0162741856116853*tc^3 \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 25267, 614386541 + 734, 327013820978*te + 230, 154398970834*tc + \\ & 12, 2113949226311*te^2 - 29, 7533076061195*te*tc + 5, 12743907589228*tc^2 + \\ & 0, 150800284420843*te^3 - 0, 237956158170657*te*te^2 + 0, 346501008214292*te*tc^2 + \\ & 0, 120274993382488*tc^3 \end{split}$			
Caudal másico (kg/h)	mr_b=4664,5910014447 + 162,231498778332*te -0,561245721802219*tc + 2,39336763816915*te^2 + 0,381608247005099*te*tc + 0,086539635330684*tc^2 + 0,0150883322489026*te^3 -0,00183749069699954*tc*te^2 -0,0051961057763117*te*tc^2 - 0,00327876983190168*tc^3			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,65447862E-01+2,84495359E-03*te+1,23284893E-04*te^2+1,24665515E-06*te^3- 1,52791560E-03*tc+4,98122369E-05*tc^2-9,00259937E-07*tc^3-9,59342623E- 05*te*tc+1,90256199E-06*te*tc^2-5,58975197E-06*te^2*tc+3,50766736E-08*te^2*tc^2			
rendimiento energético	polEtaE=1,48515652E-01-3,42730043E-02*te-7,16567340E-04*te^2-5,11359399E- 06*te^3+3,46469143E-02*tc-6,54260393E-04*tc^2+3,10019097E-06*tc^3+1,41791126E- 03*te*tc-1,16293706E-05*te*tc^2+7,57657598E-06*te^2*tc+4,19615558E-08*te^2*tc^2			

Modelo	HSK8571	Tipo	Tornillos Semi-Hermético	
Potencia frigorífica nominal (kW)	135	Límites		
Desplazamiento Volumétrico (m3/h)	410		2 30 20 -20 -10 0 10 20 to ["C]	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b=304342,457617564+11772,1463025466^{*}te\1464,24266095184^{*}te+\\ 184,381109134928^{*}te^{\Lambda_2}-61,0039326231624^{*}te^{*}te\18,71373593857^{*}te^{\Lambda_2}+\\ 1,05888218808067^{*}te^{\Lambda_3}-1,08647036619113^{*}te^{*}te^{\Lambda_2}-0,280201106631432^{*}te^{*}te^{\Lambda_2}+\\ 0,0720618473478592^{*}te^{\Lambda_3} \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 17486,3480647209 + 44,8009635722202*te + 1048,02385508529*tc - \\ & 2,01275647746447*te^2 + 15,8071971563338*te*tc - 7,10504385590598*tc^2 - \\ & 0,0155626501580757*te^3 + 0,170969603862127*tc*te^2 - 0,221586156382995*te*tc^2 + \\ & 0,15415387368199*tc^3 \end{split}$			
Caudal másico (kg/h)	$\begin{array}{l} mr_b{=}5241,70337391612+184,257464458987^*te+11,4811468804977^*tc+2,63206990374496^*te^2+0,303078316803901^*te^*tc-0,269254501649966^*tc^2+0,0169310015439583^*te^3-0,000822339711272732^*tc^*te^2-0,00391286997191688^*te^*tc^2+7,90553162013764E-05^*tc^3 \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,22374989E-01+2,87836576E-04*te+5,73824064E-05*te^2+9,04253727E- 07*te^3+2,51258018E-03*tc-5,68861619E-05*tc^2+7,14833647E-08*tc^3-1,52966777E- 05*te*tc+9,35984194E-07*te*tc^2-2,33692263E-06*te^2*tc+5,80740167E-09*te^2*tc^2			
rendimiento energético	polEtaE=2,23281 06*te^3+2,74908 03*te*tc-8,48245	246E-01-3,53226440E-02 537E-02*tc-4,80922402E- 205E-06*te*tc^2+8,43783	*te-7,09272589E-04*te^2-3,03302070E- 04*tc^2+2,13761141E-06*tc^3+1,24494769E- 575E-06*te^2*tc+4,95589378E-09*te^2*tc^2	

Modelo	HSK8581	Tipo	Tornillos Semi-Hermético	
Potencia frigorífica nominal (kW)	147	Límites		
Desplazamiento Volumétrico (m3/h)	470		2 30 20 	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b=342928,710541676+13629,5886184727^*te-1907,93954862658^*tc+211,542908054549^*te^2-77,7557775013288^*te^*tc-14,8674315050417^*tc^2+1,18249039199538^*te^3-1,3970201931941^*tc^*te^2-0,325224662254763^*te^*tc^2+0,0126929858101489^*tc^3 \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 42340, 9338366765 \ \text{-}97, 7516946842042*te \ \text{+} \ \text{-}50, 1680440034121*tc \ \text{-}} \\ & 22, 0305619990535*te^{\lambda}2 \ \text{+} \ 17, 5077771236161*te*tc \ \text{+} \ 16, 3163003812869*tc^2 \ \text{-} \\ & 0, 325679151541577*te^{\lambda}3 \ \text{+} \ 0, 469450554314082*tc*te^{\lambda}2 \ \text{-} 0, 110816365265963*te*tc^2 \ \text{+} \\ & 0, 00348082377149371*tc^{\lambda}3 \end{split}$			
Caudal másico (kg/h)	$eq:mr_b=5962,63159694452+213,773843902355*te+2,62356654991958*tc+3,0673344775018*te^2+0,266827822230969*te*tc-0,0261830637692915*tc^2+0,0192585851697182*te^3-0,00545152779707903*tc*te^2-0,00627046945364048*te*tc^2-0,00303833028639909*tc^3 \\$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,35089344E-01+2,98035625E-03*te+7,76289841E-05*te^2+1,92799986E-06*te^3- 4,64730930E-04*tc+1,63601630E-05*tc^2-6,22285958E-07*tc^3-9,90188892E- 05*te*tc+1,70924193E-06*te*tc^2-4,31435383E-06*te^2*tc+2,57610990E-08*te^2*tc^2			
rendimiento energético	polEtaE=-4,95023588E-02-2,67245936E-02*te-4,26037095E-04*te^2+4,71222720E- 07*te^3+4,10211504E-02*tc-7,22358338E-04*tc^2+3,55550490E-06*tc^3+9,40539365E- 04*te*tc-6,32404607E-06*te*tc^2+2,53849873E-06*te^2*tc+2,28812033E-08*te^2*tc^2			

Modelo	HSK8591	Tipo	Tornillos Semi-Hermético	
Potencia frigorífica nominal (kW)	169,2	Límites		
Desplazamiento Volumétrico (m3/h)	535		2 30 20 -20 -10 to [°C]	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	Qf b = 394755,32485326 + 15684,0091522097*te -2214,41449150066*tc + 243,081275869442*te^2 -90,1327152972921*te*tc -16,6969777186811*tc^2 + 1,36031171959032*te^3 -1,6000919148158*tc*te^2 -0,363345597595704*te*tc^2 + 0,0128602504193753*tc^3			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & \text{Wc_b} = 48237,5096079303 \ -110,105381230975 \text{*te} \ -58,7612112856631 \text{*tc} \ -\\ & 25,112375080645 \text{*te}^2 + 19,8856120577154 \text{*te} \text{*tc} \ + 18,5864773727082 \text{*tc}^2 \ -\\ & 0,371352888957374 \text{*te}^3 + 0,535043507067471 \text{*tc} \text{*te}^2 \ -0,125724214834352 \text{*te} \text{*tc}^2 \ +\\ & 0,00400898767712343 \text{*tc}^3 \end{split}$			
Caudal másico (kg/h)	$\begin{array}{l} mr_b\!=\!6867,\!38273074533+246,\!22952519021*te+2,\!48606602266224*tc+3,\!5233686490849*te^2+0,\!282798676639887*te*tc-0,\!0210542976111997*tc^2+0,\!0221462522839821*te^3-0,\!0061167527107731*tc*te^2-0,\!00688240978923712*te*tc^2-0,\!0035119948003509*tc^3 \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,46412464E-01+3,02679008E-03*te+7,50213961E-05*te^2+1,91990300E-06*te^3- 5,59239298E-04*tc+1,80870497E-05*tc^2-6,33106748E-07*tc^3-1,01459699E- 04*te*tc+1,74167195E-06*te*tc^2-4,18868006E-06*te^2*tc+2,43868747E-08*te^2*tc^2			
rendimiento energético	polEtaE=-4,94747303E-02-2,69872041E-02*te-4,31528105E-04*te^2+4,73212311E- 07*te^3+4,14103251E-02*tc-7,29047913E-04*tc^2+3,58948303E-06*tc^3+9,48832686E- 04*te*tc-6,37130204E-06*te*tc^2+2,64197142E-06*te^2*tc+2,22115606E-08*te^2*tc^2			

Modelo	CSH6553	Tipo	Tornillos Compactos Semi-Hermético	
Potencia frigorífica nominal (kW)	41,4	Límites	70 60 50 ∑ 40	
Desplazamiento Volumétrico (m3/h)	137		²² 30 20 -20 -10 0 0 10 20 30	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	Qf_b = 95273,7552284184 + 3597,15419167525*te -189,700259055138*tc + 56,4566408439555*te^2 -4,95113627855047*te*tc -12,2490006849679*tc^2 + 0,374289298608709*te^3 -0,28313912509824*tc*te^2 -0,250105378813551*te*tc^2 + 0,0456020112670268*tc^3			
Potencia absorbida (W)	Wc_b =7424,2702961378 -12,3463563156675*te + 356,086715170431*tc + 2,06911938262591*te^2 + 5,38315575242236*te*tc -4,58731664518267*tc^2 + 0,0125960996735811*te^3 -0,0106651411443552*tc*te^2 -0,0534214466744789*te*tc^2 + 0,0707807351425295*tc^3			
Caudal másico (kg/h)	mr_b=1661,07403304363 + 55,2572245594076*te + 6,44426381467932*tc + 0,791156436369324*te^2 + 0,385770663985801*te*tc -0,107783828892148*tc^2 + 0,00641560120870313*te^3 + 0,000688199754529614*tc*te^2 -0,00383253347593129*te*tc^2 -0,000735083563996329*tc^3			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=8,82807414E-01-4,46925432E-04*te+1,29973523E-04*te^2+3,85081341E- 06*te^3+3,30391954E-03*tc-5,23947877E-05*tc^2-4,39109014E-07*tc^3+8,99264488E- 06*te*tc+1,80621296E-06*te*tc^2-7,70393317E-06*te^2*tc+4,34577334E-08*te^2*tc^2			
rendimiento energético	polEtaE=3,48826955E-02-3,30534141E-02*te-8,50503553E-04*te^2-2,14458109E- 06*te^3+3,45378907E-02*tc-5,29126505E-04*tc^2+1,75808726E-06*tc^3+1,16549897E- 03*te*tc-7,36049930E-06*te*tc^2+1,20320726E-05*te^2*tc-2,92706215E-08*te^2*tc^2			

Modelo	CSH7563	Tipo	Tornillos Compactos Semi-Hermético	
Potencia frigorífica nominal (kW)	68,2	Límites		
Desplazamiento Volumétrico (m3/h)	227			
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Q\underline{f} \ b = 159162, 255858241 + 6590, 53936786706^{*}te \ -176, 786333206146^{*}tc \ + \\ 108, 859578225467^{*}te^{\Lambda}2 \ -18, 38780815776^{*}te^{*}tc \ -26, 7719086679006^{*}tc^{\Lambda}2 \ + \\ 0, 656197005490139^{*}te^{\Lambda}3 \ -0, 596629713915696^{*}tc^{*}te^{\Lambda}2 \ -0, 427836596116832^{*}te^{*}tc^{\Lambda}2 \ + \\ 0, 139360887306867^{*}tc^{\Lambda}3 \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} & Wc_b = 16912,7278901983 + 242,003580391312*te + 200,21565541876*tc + \\ & 8,38931910458465*te^{\Lambda_2} - 0,65620993224107*te*tc + 1,60818205987633*tc^{\Lambda_2} + \\ & 0,113359058726453*te^{\Lambda_3} - 0,0924481443064758*tc*te^{\Lambda_2} + 0,00779038897762361*te*tc^{\Lambda_2} + \\ & 0,0544075353839708*tc^{\Lambda_3} \end{split}$			
Caudal másico (kg/h)	$\begin{array}{l} mr_b{=}2728,40485722222+100,496925560307*te+17,6214379329032*tc+1,52825018197093*te^2+0,657533755062632*te*tc-0,414329405294766*tc^2+0,0104574891948584*te^3+0,00131748059011132*tc*te^2-0,00938701211695678*te*tc^2+0,000900642475883631*tc^3 \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=8,73659129E-01+1,07129758E-03*te+3,77167947E-05*te^2+1,46213386E-06*te^3+5,70286002E-03*tc-1,33351670E-04*tc^2+2,87992281E-07*tc^3+6,92473817E-05*te*tc+2,90374711E-07*te*tc^2-4,56135452E-06*te^2*tc+4,06059091E-08*te^2*tc^2			
rendimiento energético	polEtaE=-9,44158440E-02-3,98764361E-02*te-9,99134141E-04*te^2-5,17446728E- 06*te^3+4,66874376E-02*tc-8,41659916E-04*tc^2+4,14186876E-06*tc^3+1,49741107E- 03*te*tc-1,12164639E-05*te*tc^2+1,44639866E-05*te^2*tc-1,06702682E-08*te^2*tc^2			

Modelo	CSH7593	Tipo	Tornillos Compactos Semi-Hermético	
Potencia frigorífica nominal (kW)	106,2	Límites		
Desplazamiento Volumétrico (m3/h)	336		2 30 20 -20 -10 0 10 20 30	
Polinomios B	ITZER	Alcance de validez	$Te = -20 \dots 12,8^{\circ}C$; $Tc = 20 \dots 65^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b=221336,170058201+8709,9888203949*te+354,492869055638*tc+145,923235264169*te^2-0,925634608308662*te*tc-42,8472398440834*tc^2+0,906536039980902*te^3-0,681246592479815*tc*te^2-0,738105435140001*te*tc^2+0,184769222869787*tc^3 \end{array} $			
Potencia absorbida (W)	Wc_b =1694,88273632388 + 377,555946109129*te + 1877,35884745224*tc + 26,1582656354444*te^2 + 1,4592998246805*te*tc -33,2418516253772*tc^2 - 0,059230232555003*te^3 - 0,459606214004903*te*te^2 -0,0297075263665778*te*tc^2 + 0,342355393062643*tc^3			
Caudal másico (kg/h)	$eq:mr_b=3821,65308821132+132,281283174827*te+32,3306633307468*tc+2,02357155723028*te^2+1,22250502731233*te*tc-0,522472233743184*tc^2+0,0144160873293561*te^3+0,00416342099980271*tc*te^2-0,0124772813175681*te*tc^2-8,28149742453797E-06*tc^3 \\$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=8,27234793E-01-1,44186263E-04*te+1,00947765E-04*te^2+1,46989745E- 06*te^3+6,98645973E-03*tc-1,11519300E-04*tc^2-2,16568888E-08*tc^3+1,98826334E- 05*te*tc+1,27153320E-06*te*tc^2-5,62141511E-06*te^2*tc+3,56449140E-08*te^2*tc^2			
rendimiento energético	polEtaE=2,95931627E-01-4,46270507E-02*te-1,48516210E-03*te^2-7,45831865E- 07*te^3+1,98905754E-02*tc-2,24368457E-04*tc^2-3,53843665E-07*tc^3+1,56409686E- 03*te*tc-1,11717681E-05*te*tc^2+3,36944969E-05*te^2*tc-1,86855484E-07*te^2*tc^2			

Modelo	ELH725Y	Tipo	"Scroll" Hermético	
Potencia frigorífica nominal (kW)	8,37	Límites		
Desplazamiento Volumétrico (m3/h)	25		30 -20 -15 -10 -5 0 5 10 15 20 to [*C]	
Polinomios B	ITZER	Alcance de validez	$Te = -15 \dots 15^{\circ}C$; $Tc = 30 \dots 70^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b = 19901,8595181287 + 791,182693558293^{*}te \ -124,230668318387^{*}tc \ + \\ 13,0889114503306^{*}te^{\Lambda_2} \ -3,89935074191831^{*}te^{*}tc \ -0,65975177396639^{*}tc^{\Lambda_2} \ + \\ 0,0783920853765222^{*}te^{\Lambda_3} \ -0,077685106340765^{*}tc^{*}te^{\Lambda_2} \ -0,0222485883600485^{*}te^{*}tc^{\Lambda_2} \ + \\ 0,00236689507517976^{*}tc^{\Lambda_3} \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} &Wc_b = 1998,89184635429 + 31,5637763436655*te + 12,4063820085643*tc + \\ &1,32278900195717*te^2 - 2,1527231271308*te*tc + 1,11118964175336*tc^2 + \\ &0,0236364821940295*te^3 - 0,0468800305474035*tc*te^2 + 0,0298321654442735*te*tc^2 - \\ &0,0015049106450678*tc^3 \end{split}$			
Caudal másico (kg/h)	$\begin{array}{l} mr_b\!=\!345,162469331155+12,5423710574204^*te+0,14242201705688^*tc+0,181096329424966^*te^2+0,0207154058665224^*te^*tc-0,00950947428760164^*tc^2+0,00126736428164312^*te^3+0,000109859845359572^*tc^*te^2-0,000288631709068548^*te^*tc^2+1,46101496209716E-06^*tc^3 \end{array}$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=1,00485 07*te^3+4,26794 05*te*tc+6,02125	5045E+00+1,50540259E-0 1985E-04*tc-2,81219015E- 5496E-08*te*tc^2-1,39502	3*te-1,31430853E-05*te^2+6,32638880E- 05*tc^2+8,66738953E-09*tc^3+5,08135070E- 126E-06*te^2*tc+8,39727724E-09*te^2*tc^2	
rendimiento energético	polEtaE=4,30399 06*te^3+3,97047 03*te*tc-1,49563	0499E-03-3,39214566E-02 030E-02*tc-8,08514826E- 0447E-05*te*tc^2+2,41195	*te-1,07373873E-03*te^2-7,67531641E- 04*tc^2+4,88337401E-06*tc^3+1,61067500E- 428E-05*te^2*tc-7,14709456E-08*te^2*tc^2	

Modelo	ELH730Y	Tipo	"Scroll" Hermético	
Potencia frigorífica nominal (kW)	10,17	Límites		
Desplazamiento Volumétrico (m3/h)	30		2 40 30 -20 -15 -10 -5 10 15 20 to [*C]	
Polinomios B	ITZER	Alcance de validez	$Te = -15 \dots 15^{\circ}C$; $Tc = 30 \dots 70^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Q\underline{f}_b=23746,8906332791+947,070613614537^{*}te\ -136,722542158363^{*}tc\ +\\ 15,671585304184^{*}te^{2}\ -4,54752993270521^{*}te^{*}tc\ -0,961901937997843^{*}tc^{2}\ +\\ 0,0909144484266435^{*}te^{3}\ -0,0989307688889762^{*}tc^{*}te^{2}\ -0,0291027263476559^{*}te^{*}tc^{2}\ +\\ 0,00358181556912074^{*}tc^{3} \end{array} $			
Potencia absorbida (W)	$\label{eq:wc_b} \begin{split} &Wc_b = 1877,42651811926 + 0,410708880482095*te + 66,7441050297203*tc - \\ &0,0292799386335843*te^2 + 0,229822913974887*te*tc - 0,267164944804056*tc^2 + \\ &0,00153190492367064*te^3 - 0,00385435030645064*tc*te^2 - 0,00175438033167625*te*tc^2 + \\ &0,0113938182637071*tc^3 \end{split}$			
Caudal másico (kg/h)	$eq:mr_b=411,094624233422+14,898916899722*te+0,419776035892077*tc+0,219583268437182*te^2+0,0329574595137858*te*tc-0,0142413787626799*tc^2+0,00146047100065894*te^3-7,88699563165921E-05*tc*te^2-0,000473356088658637*te*tc^2+1,56099858108186E-05*tc^3$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,97638750E-01+1,16200890E-03*te+6,98959121E-06*te^2+8,73179944E- 07*te^3+1,00317500E-03*tc-3,42062294E-05*tc^2+3,53140280E-08*tc^3+6,15501230E- 05*te*tc-2,10061884E-07*te*tc^2-2,54893437E-06*te^2*tc+2,00094458E-08*te^2*tc^2			
rendimiento energético	polEtaE=2,70724237E-02-3,18813867E-02*te-8,51075924E-04*te^2-4,64682853E- 06*te^3+3,65095198E-02*tc-6,76438405E-04*tc^2+3,60548414E-06*tc^3+1,37254524E- 03*te*tc-1,14198428E-05*te*tc^2+1,51856478E-05*te^2*tc-2,96088449E-08*te^2*tc^2			

Modelo	ELH736Y	Tipo	"Scroll" Hermético	
Potencia frigorífica nominal (kW)	12,26	Límites		
Desplazamiento Volumétrico (m3/h)	36		2 40 30 -20 -15 -10 -5 0 5 10 15 20 to [°C]	
Polinomios B	SITZER	Alcance de validez	$Te = -15 \dots 15^{\circ}C$; $Tc = 30 \dots 70^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b=27933.8983007043+1108,12775268425^{*}te-135,609835774132^{*}tc+18,2701892384796^{*}te^{\Lambda_2}-4,76572290116149^{*}te^{\star}tc-1,62704263030816^{*}tc^{\Lambda_2}+0,106545010893864^{*}te^{\Lambda_3}-0,111171131531298^{*}tc^{*}te^{\Lambda_2}-0,039246100658321^{*}te^{*}tc^{\Lambda_2}+0,00702413240578886^{*}tc^{\Lambda_3} \end{array} $			
Potencia absorbida (W)	$ \begin{split} Wc_b &= \ 2289, 58160143001 + 40, 7772539969736*te + 50, 7117252217855*tc + \\ 1,21020860975877*te^2 - 1, 83444112622266*te*tc + 0, 411256444722601*tc^2 \\ +0,0147984077738986*te^3 - 0,0272747055859259*tc*te^2 + 0,0224318222332545*te*tc^2 + \\ 0,00773066638102302*tc^3 \end{split} $			
Caudal másico (kg/h)	mr_b=482,270973956193 + 17,415664954389*te + 1,04829253962148*tc + 0,254289709751773*te^2 +0,0477573326516898*te*tc -0,0260405292234096*tc^2 +0,00171020591817101*te^3 + 0,0000171518444016403*tc*te^2 - 0,000597709547128057*te*tc^2 + 0,0000723400123206361*tc^3			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=9,77486 07*te^3+1,94912 05*te*tc-1,12297	5709E-01+7,53079648E-04 1920E-03*tc-4,87264716E- 1286E-07*te*tc^2-2,258464	4*te+5,14232353E-06*te^2+8,57438345E- 05*tc^2+1,16918076E-07*tc^3+5,89307125E- 142E-06*te^2*tc+1,59097787E-08*te^2*tc^2	
rendimiento energético	polEtaE=8,97641 06*te^3+4,19154 03*te*tc-1,47975	710E-03-3,83818061E-02 [:] 510E-02*tc-8,16563142E- 680E-05*te*tc^2+1,94512	*te-1,07178317E-03*te^2-6,41939452E- 04*tc^2+4,64357930E-06*tc^3+1,68332113E- 314E-05*te^2*tc-3,27602141E-08*te^2*tc^2	

Modelo	ELH743Y	Tipo	"Scroll" Hermético	
Potencia frigorífica nominal (kW)	14,98	Límites		
Desplazamiento Volumétrico (m3/h)	43		2 40 30 	
Polinomios B	ITZER	Alcance de validez	$Te = -15 \dots 15^{\circ}C$; $Tc = 30 \dots 70^{\circ}C$	
Potencia frigorífica (W)	$ \begin{array}{l} Qf_b=34182,0594205192+1338,80041057665^{*}te-181,061527560948^{*}tc+21,9386472136363^{*}te^{2}-6,30726541779046^{*}te^{*}tc-1,66894902059292^{*}tc^{2}+0,125997926826949^{*}te^{3}-0,141150497043837^{*}tc^{*}te^{2}-0,042558712515517^{*}te^{*}tc^{2}+0,00640293148361632^{*}tc^{3} \end{array} $			
Potencia absorbida (W)	$ \begin{split} Wc_b &= \ 3029, 13629398525 + \ 72, 8326034809107*te + \ 52, 9091338397725*tc + \\ 1, 84517537266759*te^2 - \ 2, 65732099508514*te*tc + \ 0, 682796190277822*tc^2 + \\ 0, 0220332751013919*te^3 - \ 0, 0390711762668069*tc*te^2 + \ 0, 0335307970781494*te*tc^2 + \\ 0, 00816149625302938*tc^3 \end{split} $			
Caudal másico (kg/h)	$eq:mr_b=591,531559392941+20,9933137224985*te+0,887099463983512*tc+0,308415779579301*te^2+0,0496281596050882*te*tc-0,02376838276502*tc^2+0,00202514670722067*te^3-0,000219081449467388*tc*te^2-0,00070668430447639*te*tc^2+2,59646803865516E-05*tc^3 \\$			
		Regresiones polinón	nicas	
rendimiento volumétrico	polEtaV=1,00145910E+00+3,44317462E-04*te+2,55772025E-05*te^2+8,33248161E- 07*te^3+1,48509178E-03*tc-3,97129076E-05*tc^2+3,89392137E-08*tc^3+5,17989624E- 05*te*tc-1,00348746E-07*te*tc^2-2,76776140E-06*te^2*tc+2,06549840E-08*te^2*tc^2			
rendimiento energético	polEtaE=5,95818 06*te^3+4,08289 03*te*tc-1,40620	2547E-03-3,95599719E-02 276E-02*tc-7,86764878E- 891E-05*te*tc^2+1,64122	*te-9,81469348E-04*te^2-5,52370255E- 04*tc^2+4,42023977E-06*tc^3+1,62920914E- 105E-05*te^2*tc-1,43638919E-08*te^2*tc^2	

Gráficas representando los rendimientos isentrópicos y volumétricos en distintas condiciones de funcionamiento.

 $\Pi_s = f(T_e), T_c = 45^{\circ}C$

Gráficas representando los rendimientos isentrópicos y volumétricos en distintas condiciones de funcionamiento.

 $\eta_s = f(T_c), T_e = -10^{\circ}C$

100

Gráficas representando los rendimientos isentrópicos y volumétricos en distintas condiciones de funcionamiento.

 $\eta_s = f(Q_f)$

 $\eta_v = f(T_c), T_e = -10^{\circ}C$

Anexo 5.3. Gráficas representando los rendimientos isentrópicos y volumétricos en distintas condiciones de funcionamiento.

 $\eta_v = f(T_e), T_c = 45^{\circ}C$

Gráficas representando los rendimientos isentrópicos y volumétricos en distintas condiciones de funcionamiento.

 $\Pi_v = f(Q_f)$

Gráficas representando los rendimientos isentrópicos y volumétricos en distintas condiciones de funcionamiento.

