Michigan Math. J. 58 (2009)

Universal Functions with Prescribed Zeros
and Interpolation Properties

Luis BERNAL-GONZALEZ, ANTONIO BONILLA,
& MARKUS NIEB

Dedicated to Professor José Méndez on the occasion of his sixtieth birthday

1. Introduction

Roughly speaking, universality means “existence of a dense orbit”. Thus, in some
sense, universal functions are ‘“uncontrolled”. In this paper, we study the existence
of functions that are universal with respect to differential operators and that are, at
the same time, “controlled” by prescribed interpolation properties, including pre-
scribed zeros and multiplicities. Precise definitions are given in what follows.

We denote by N, Z, C, and Ny the set of positive integers, the set of all inte-
gers, the complex plane, and the set N U {0}, respectively. If A C C then A°, A,
and 0A will stand (respectively) for the interior, the closure, and the boundary of
A in C. We use C, to denote the extended complex plane. Recall that a domain
is a nonempty connected open subset of C.

Let H(S2) be the linear space of holomorphic functions on a domain 2. In par-
ticular, H(C) is the space of entire functions. Consider the metric

=L If =l
d(f.h) = ; 5 T ir—hlg (SheH@).

where
N f —hllm = _Su,B|f(Z) — h(2)|.

Here {C; : j > 1} is a fixed exhaustive sequence of compact subsets of €2; that
is, C; C Chh (=D and Q = U;’i, C;. Itis possible to select {C; : j > 1} so
that each connected component of C, \ C; contains some connected component
of C \ €2; in particular, if €2 is simply connected (i.e., if C, \ 2 is connected)
then we can choose every C; without “holes”.

The aforementioned metric d generates on H(£2) the topology of uniform con-
vergence on compact subsets of 2; see [5]. In the sequel, we will always consider
the complete metric space (H(2),d).
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According to Baire’s category theorem, every complete metric space X is a Baire
space; in other words, the intersection of countably many open dense subsets of
X is also dense in X. In a Baire space X, a subset is residual when it contains a
dense Gs-subset of X. In particular, this applies to (H(2),d).

Throughout this paper, we will use the following notion of universality.

DEeFINITION 1. Let (X, dy) and (Y, dy) be metric spaces and let £ = (L;);c; be
a family of continuous mappings L;: X — Y.

(i) Anelement x € X is called L-universal if
Y={Ljx:jelJ}.

The set of all such elements x € X is denoted by /(£). The family L is called
universal if U(L) #£ B.

(i1) L is called topologically transitive if it has the following property: For every
xeX,yeY,ande > 0, thereisaz € X and a j € J such that

dx(x,z) <& and dy(y,L;jz) <e.

In fact, the last definition can be easily extended to the setting of topological
spaces, but such a generality will not be needed here. If X =Y and L: X — X
is a continuous self-map, then L is said to be universal (topologically transitive,
resp.) if the family £ = {L" : n > 1} of its iterates is universal (topologically
transitive, resp.). If X, Y are topological vector spaces and the L; (or L, if we are
dealing with self-maps) are linear, then it is customary to say hypercyclic instead
of universal. Readers interested in these concepts are referred to the surveys [10]
and [13].

In 1952, MacLane [14] stated that there exist entire functions ¢ such that the
set of derivatives {¢"” : n € N} is dense in (H(C),d) or, equivalently, ¢ € U(D)
for D = {D" : n € N}, where D is the differentiation operator on H(C) given by
Df = f’. In 1994, Herzog [12] posed the following question: Which additional
properties of elements of X are compatible with universality? For /(L) residual
and A C X a Gs-subset, he proved that under certain conditions on A and L (see
Section 2) the set A NU(L) is residual in A.

By using his theorem, Herzog derived the existence of D-universal functions
having a zero-free gth and (g + 1)th derivative (g € Ny). This result was extended
by the first author (see [1] and [2, Thm. 12]) for infinite-order differential oper-
ators ®(D) = Ziozo a, D", where D is again the differentiation operator (with
D° = I, the identity operator) and ®(z) = Z;o:o a,z" is an entire function of
subexponential type; that is, given ¢ > 0, there is a positive constant A = A(¢)
with |®(z)| < Ae®l?l for all z € C. Recall that an entire function & is said to be of
exponential type if there are positive constants A and B with |®(z)| < Ae®!? for
all z € C. Of course, every entire function of subexponential type is of exponen-
tial type. By an operator we mean a continuous linear self-map on a topological
vector space. It is not difficult to see that if ® is of subexponential type then (D)
defines an operator on H(£2) (and on H(C), assuming only that ® is of exponen-
tial type).
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In [15, Thm. 3.3], the third author showed the existence of D-universal functions
that solve a given interpolation problem in C. Independently and with a differ-
ent approach, Costakis and Vlachou [7] arrived at the same conclusion for any
simply connected domain. Moreover, in [15, Thm. 2.3] it is proved that there are
MacLane-universal entire functions having zeros at prescribed points with pre-
scribed orders. On the other hand, a celebrated result due to Godefroy and Shapiro
(see Section 2) asserts the universality on H(C) of every differential operator ® (D)
as described here that is not a multiple of the identity. Recently, the first author [3]
demonstrated the existence of @ (D)-universal holomorphic functions with given
interpolation properties.

Our aim in this paper is to prove the existence of holomorphic functions f on a
simply connected domain 2 that simultaneously satisfy the following conditions:

(a) fis ®(D)-universal;

(b) f haszeros (only) at the points of a given subset of 2, with preassigned orders;
and

(c) f assumes prescribed values at prescribed points.

This will be accomplished in Section 3.

The combination of universal Taylor series with the property (b) or (c) has been
considered by Costakis [6]. His improvement on Herzog’s theorem is also one of
our auxiliary results (see Theorem 3).

2. Preliminary Results

This section is devoted to establishing a number of statements that will be needed
in the proof of our main result. We begin by presenting the following version, due
to Grosse-Erdmann [11], of the well-known Birkhoff transitivity theorem.

THEOREM 2. Let A be a nonempty Gs-subset of a complete metric space, let Y
be a separable metric space, and let L = (Lj)jc; be a family of continuous map-
pings L;j: A — Y. Then the following assertions are equivalent:

(1) there is a dense set of elements of A that are L-universal,

(ii) L is topologically transitive.

If either condition holds then the set U(L) is a dense Gs-set, and so is residual,
inA.

Recall that a Polish space is a separable complete metric space. Next, we state
the Herzog criterion [12] concerning inherited universality—more precisely, the
(slightly improved) version due to Costakis [6].

THEOREM 3. Assume that X is a Polish space and that Y is a separable metric
space. Also let dx,dy be the corresponding metrics. Let L,: X — Y be a se-
quence of continuous functions with U({L,}) residual in X. For any B C X, let
L,|p be the restriction of L, to B. Consider a sequence { By }ren of Baire spaces
that are subsets of X satisfying
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A=()B #0, (1)
keN
B, NU{L,}) is residual in By. 2)
If, in addition,
lim sup inf (dx (by, h) + dy (L, by, L,h)) =0 3)
k=00 cN heA

holds for every sequence {by}ren With by, € By, then the set U({L,| }) is residual
inA.

We also present the following result about the “internal control” property of dif-
ferential operators (see [4]). We omit its easy proof, which is based on the Cauchy
integral formula for derivatives.

THEOREM 4. Let Q2 C C be a domain and let ® be an entire function of sub-
exponential type. Assume that K, L are compact sets in C with L C K°. Then
there exists a constant C = C(K, L) € (0, +00) such that

I®D) flle = Cllfllx forall feH(S).

The previously mentioned theorem of Godefroy and Shapiro states that if @ is an
entire function of exponential type then the differential operator @ (D) is univer-
sal on H(C) [8, Sec. 5]. By restricting the class of operators, we may extend the
result to all domains without holes. Specifically, we have the following assertion,
which can be found in [2, Thm. 8].

THEOREM 5. Let @ be a nonconstant entire function of subexponential type and
consider the operator S = ®(D): H(2) — H(2), where Q is a simply con-
nected domain of C. Then S is universal. In fact, U(S) is residual in (H(2),d)
for S ={S" : n e N}

The final lemma in this section combines interpolation and approximation. It is
a kind of Hermite interpolation using exponential functions instead of polyno-
mials. The result improves [3, Lemma 2.1]. By ¢, (a € C) we denote the function
e,(z) := exp(az), and span X will stand for the linear span of a subset X of a
vector space.

LEMMA 6. Assume that L, K are compact subsets of a domain Q C C with
L C K°, that a, ...,a, are different points in L, that m is a natural number, and
that G is a nonempty open subset of C. Then there exist a positive constant M =
M(L,K,a,...,a,, G,m) and a finite set of functions

{ajr:j=1,...,n; k=0,...,m — 1} C span{e, : a € G},
depending only on G, m, and the points a1, ..., a,, that satisfy the following prop-
erty. For each pair of functions f,h € H(S2), the function ¢ defined by

n m—1

0(2) =h@)+ Y > (D) — @) ej(2)

j=1 k=0
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satisfies:

(@) ¢ € H(Q);

() ¢a) = fa) (j=1,....n50 =0,....,m — 1);
© llo = fll =Mlh— flik.

Proof. We can assume that G # C, so we choose a point ¢ € G and select a posi-
tive number d satisfying

o .
d<mlnf{|1_C|.Z€C\G} (4)

and
d< mn ———. (®)]

We define

M(2) = [ Jlealz —a) = D™ (G =1,....n),
%)

(ea(z — aj) — DX T;(z)
k'd* Hj(aj)
(j=1,...,n; k=0,....m—1).

Bjx(z) :=ec(z — a))

From (5), it follows that
0<dlaj —al <1<2m

forall j,l € {l,...,n} with j # [, so I1;(a;) # Oforall j € {l,...,n}. Also, an
easy calculation shows that

- 1 if t=j and 0 =k,
”(a;)z{

ok 0 if t# joro <k,
where o € {0, 1,...,m — 1} is always assumed. We have no information about the
values of ﬂ;;{)(a,) fort = j and 0 > k. Hence, for each j € {1,...,n} we set
aj,m—l(Z) = IBj,m—l(Z) and
m—1
4k (2) == Bix(D) — Y Ba)e;(x) (k=0,1,....m—2),
v=k+1

where the last expression makes sense only if m > 2. By induction we obtain
©) _ 1 if t=jand o0 =k,
o pla) = . .
’ 0 ift#joro #k.
Observe that each function B; x, and so each function «; x, is a finite linear com-
bination of functions of the form e ;s with 0 < s < m(n + 1). But each point
¢ + sd is in G because of (4). Hence, the functions o ; are in span{e, : a € G}.

Let L, K be compact subsets as in the statement. By using Theorem 4 (with
®(z) = z¥) or simply the Cauchy estimates, we obtain
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le®ll. < Millgllk  (keNo, g € H(RQ))

for some positive constant M that is independent of g. Now we set

n m—1

M:=1+ Z ZMk”aj,k”L-

j=1 k=0

Finally, if we fix holomorphic functions f,/ on 2 and define the corresponding
function ¢ as in the statement, then properties (a), (b), and (c) are obvious. O

3. Main Result

Suppose that 2 is a domain in C, and let w = {Wilken, ¥ = Vitken, m =
{my}ren, and B = {Br}ren be sequences satisfying: w C 2,y C , 8 C C\{0},
m C N, wNy = @ the points wy, k € N (as well as the points y;, k € N) are pair-
wise distinct; and neither w nor y have accumulation points in 2. To each such
set of sequences we can associate the set A = A(w,m; y, B) defined by
A:={fe€eHQ): f(wy) =0 of order my, f(yx) = B (ke€N),

and f(z) #0if ze Q\ w}. (6)

In other words, A is the set of holomorphic functions in 2 with prescribed zeros

and interpolation conditions (corresponding to w, m, y, 8). First, we note in the
following proposition that A possesses good topological properties.

PROPOSITION 7. The set A defined in (6) is a nonempty Gs-subset of H(2); in
addition, it is a Baire space when endowed with the compact-open topology in-
herited from H(S2).

Proof. By the Weierstral3 factorization theorem (see e.g. [18, Thm. 15.9]), we know
that there exists a function 2 € H(2) such that

h(wi) =0 of order m; (keN) and h(z) #0 if z # w; (keN).

Each y; is different from all the wy, so Bx/h(yx) is well-defined. For each k € N,
let orx be a fixed logarithm of S /h(yy). By [18, Thm. 15.13] there exists a function
g € H(2) with g(yx) = . Then the function

f(2) =% h(z)

is an element of A, hence A # (.
Now consider the exhaustive sequence {C, : n > 1} given in Section 1. Setting

M, :={z€C, :|z—wi| >1/n forall ke N},
we obtain that A is the intersection of the open sets
Ap = {feHEQ) : |fY(wp)] < L for 0 < v <my, f"(wy) #0,
|f(re) = Bil < for 1 < k < n, mingey,| f(2)| > 0},

n
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where n > 1. So, A is a Gs-subset of (H(S2),d). Finally, since A is a Gs-subset
in a complete metric space, Alexandroff’s theorem (see [17]) guarantees that the
topological space A is completely metrizable. Hence, it is a Baire space. UJ

Now, we suppose that €2 is a simply connected domain. Before establishing the
promised result on interpolation in its full strength, we present the following “dis-
crete” version of it, which will be used in the proof of Theorem 9.

LEMMA 8. Let L be a compact subset of 2, let wy,...,w,, and y1,...,Yn, be
pairwise distinct points in L°, and let my, ...,m,, € Nand B, ..., B, € C\ {0},
where ny,n, € N. We define

B:={feH): f(wy) =0 oforder my ifk =1,...,ny,

Sfv) =Brifk=1,...,na,
f()#£0ifze L\{wg 1k =1,....,m}}.

Endow B with the compact-open topology inherited from H(2). Let ® be a non-
constant entire function of subexponential type, and let S = ®(D) and § =
{S" : neN}. Then U(S) N B is a dense Gs-subset of B.

Proof. In a similar manner as for the set A in Proposition 7, we deduce that B is
also a Gs-subset of H(2). According to Theorem 2, it suffices to show that S is
topologically transitive. We therefore fix f € B, g € H(S2), acompact set K C €2,
and a number ¢ > 0. We have to show the existence of some ¢ € B and some
N e N with

SUII;|</7(Z) —f@l<e (N
and
suII{)ISNgo(Z) —g(@)| <e. 8)

Since f # 0 and 2 is simply connected, we can find a compact set L; C 2
satisfying the following properties:
e C\ L, is connected;
e KULCLY;
* JL, is a regular Jordan curve; and
e fis zero-free on dL;.

Thus
d := mi 0.
ng;gllf(z)l >
If f has further zeros on L{ (apart from wy, ..., wy, ), we denote themby ¢i, ..., {p,.
Denote by ry, ..., r,, their respective orders.

By hypothesis, the entire function ® is nonconstant, so the open set
G:={zeC:|P(2)] <1}

is nonempty. Choose a compact subset L, C €2 with LS D Ly, and let
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M = M(LI’LZ?wly"'vwnlsyl’"'7y1127§1""7§n35G7
max{mi,...,mu,ri,...,7n;})

be the positive constant provided by Lemma 6. According to Theorem 5, there
exists an S-universal function i € H(2) with

1
= fle, < Mmin{d,s}.

By Lemma 6 one can find a function ¢ = h + o € H(2), with o € span{e, :
a € G}, that satisfies

0w = FO>w) =0 (6=0,....omp—1; k=1,...,n),

P = fU) =0 (0=0,....,nn =1L k=1,...,n3),

o) = flyi) =B (k=1,....n3),
and
lo — fliz, < Mlh — fllL, < min{d, &}. 9

Condition (7) follows directly from (9) and from the fact K C L;. By (9) we have
lp(z) = f(2)| <d = |f(2)| forall z€dL,,

so we conclude from Rouché’s theorem [18, Chap. 10] that the functions f and ¢
have the same number of zeros, counting multiplicities, in L. Owing to the inter-
polation properties of ¢ (observe that the order of the zero wy, ¢, for ¢ is at least
my, ry, respectively), it follows that ¢ € B.

It remains to show the existence of an N € N such that (8) is fulfilled. By defini-
tion, |®(a)| < 1 for every a € G. Since ®(D)e, = P(c)e, for all c € C, we have
O (D)"e, = ®(c)"e, forevery n € N. Hence ®(D)"e, — 0 (n — 00) compactly
on C whenever a € G and, as a result,

®(D)'a — 0 (n — o0o) compactly on C for every « € span{e, : a € G}.
In particular, there is an N; € N such that
IS"xllx <&/2 (n> Np).

Because & is S-universal, there is an N > N; with ||S¥h — g||x < &/2. Finally,
since ¢ = h + o with « € span{e,, : a € G}, the linearity of S together with the
triangle inequality drives us to (8), as required. U

We are now ready to state our main result.

THEOREM 9. Assume that Q2 C C is a simply connected domain and that ® is
a nonconstant entire function of subexponential type. Let S = ®(D) and S =
{S" : n € N}. Suppose that w = {wi}, v = {yx}, m = {m;}, and B = {Bi} are se-
quences as in the beginning of this section, and suppose the set A = A(w,m; y, B)
is defined as in (6). Then the set A NU(S) is residual in A. In particular, in A
there is a dense Gs-subset all of whose functions are ® (D)-universal.
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Proof. The essential tool for the proof of this theorem will be Theorem 3. There-
fore, let X := (H(L2),d) =: Y. Recall that (H(£2),d) is a Polish space, so it is a
separable metric space as well. Let L,, = S" (n € N). From Theorem 5 we know
that U (S) is residual in (H(S2),d).

Without loss of generality, we can assume that the exhaustive sequence {Cy :
k € N} of compact sets defining the metric d of H(2) (see the Introduction) satis-
fies that there are two strictly increasing sequences { j;(k)}{°, {j2(k)}?° C N such
that C, Nw = {wl,...,w,-l(k)} = C,é3 Nwand Cy Ny = {Vlw--ayjz(k)} = Cko Ny.
We define

By :={f€H(Q): f(wj) =0oforder m; if j =1,..., ji(k),
flyp) =g if j=1,..., ja(k),
f() #0if zeC\w; : j =1,..., i(k)}}.

Obviously, the intersection of the sets By is exactly the set A, which is nonempty
by Proposition 7. An argument similar to the one given in the proof of that propo-
sition shows that each By is a Baire space. Now, Lemma 8 shows the correctness
of condition (2) in Theorem 3.
In order to apply Theorem 3, it remains to prove that for every sequence {b; }ren
with b, € B; we have
lim sup inf (d (b, @) + d(S"by, S"¢)) = 0. (10
k—>00 ,cN pEA
Let k e N and f € By be fixed. Hence, the zeros of f in Cy are exactly given by
the points w; (of orders m;) with j € {1, ..., ji(k)}. Choose a Jordan subdomain
Uy C Q2 such that U, D Cy and

wN U\ C) =8 =y N WU\ Cr),

which is possible because neither w nor y have accumulation points in €2.
Let g € A. Since f/g is holomorphic and zero-free in Uy, there exists a function
¢ holomorphic in Uy such that

S _ s
8(2)
For z = y; with j < j,(k), the left-hand side of (11) is 1 and so ¢ (y;) = p; - 2mi
for some w; € Zif j < ja(k). Next, let h € H(2) with zeros exactly at the points
y; with j > j2(k) and with h(y;) = 1if j < j,(k). That such a function exists
can be proved by an argument similar to the one used in the proof of Proposition 7.
Furthermore, we set

(z € Up). (11)

cri=lhlly, c2:=lgly, c3:=expliely +D,
where V} is again a fixed Jordan domain, this time satisfying C;, C V; C Vi C Ug.
Suppose € > 0. By Walsh’s theorem on simultaneous approximation and inter-
polation [19], there exists a polynomial p satisfying

¢ { ) 1}
——p <min{ —,1, —
Vi Cl-Cr-C3 C1

h
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and, moreover,

o (yj)
h(y;)

p(yj) =

‘We conclude that

=o(y) (G =1L....j2k). (12)

£
— phlly minj 1, .
le — phlly, < {er}

Together with the elementary inequality |e¥ —e®| < e™*{¥L 1wy 4|, we obtain
the next estimate:
f h h
’——w = le? — eIy,
8 Vi

&
< exp(max{||¢lly,. | phllg DI — phily, < c3- =—.
C - C3 Ccy

Thus,
If —ge™llg, <e.
Moreover, by (12) and the properties of 4, the function
9(z) == g(2)e" "D (zeQ)
satisfies ¢ € A. Hence, we obtain the existence of a sequence {¢;} C A fulfilling
If —@sllg, = 0 (s = 00). (13)
Of course, this implies
If = s, > 0 (s = 00). (14)
Given (13) and the estimate in Theorem 4, it now follows that, for every n € N,
I1S"f = S"pslc, = 0 (s — 00). 15)

According to our definition of the metric d, we obtain from (14) and (15) that, for
each k e N, each f € By and each n €N,

;nf d(f,0) +d(S"f,S"p))

oo
1
< mf[Hf ¢lic, + }: ———%us "f = S"pllc; + }: Zj}:: }: 3

Jj= k+l j=k+1
Therefore,
1
sup lnf(d(f @) +d(S"f,5"p)) < Yy (f € Br, keN).
neN ¢

Consequently (10) holds for every sequence {b;} with by € By. Altogether, this
completes the proof. O

FINAL REMARKS. 1. For the case 2 = C, the result cannot be extended to all
entire functions ® of exponential type. Indeed, let us consider for T > 0 the func-
tion ®(z) = e**. Then, for every entire function f,
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X e
(D(D)f(Z) — Z f '(Z) Tn

n=0

= f(z+ 7).

n

This means that a & (D)-universal function is universal with respect to translates.
But in [16] it is pointed out that, as a consequence of Hurwitz’s theorem, this
always causes additional zeros for f that are not necessarily covered by the set A.

2. With essentially the same proof, a little more can be shown. Namely, the
sequence ®(D)": A — H(L2) (n € N) is not only universal—or, equivalently,
topologically transitive—but also topologically mixing. Recall that a sequence of
continuous mappings L, : X — Y between two metric spaces (X, dy) and (Y, dy)
is said to be topologically mixing provided that, forevery x € X, ye Y,and ¢ > 0,
there is an N € N such that for every n > N there exists a z = z(n) € X for
which dx(x,z) < ¢ and dy(y, L,z) < &. Itis easy to see that (L,) is topologi-
cally mixing if and only if (L,,) is topologically transitive for any subsequence
{n; <ny <---} C N(seee.g. [9]). Then the proofs of Lemma 8 and Theorem 9
also work for every subsequence (P (D)) simply by taking into account that
Godefroy—Shapiro’s theorem also holds for subsequences.

3. Finally, we note that if {®; : k € N} is a sequence of nonconstant entire
functions of subexponential type with S; = ®;(D) (k € N), then there exists a
function ¢ € A that is universal with respect to every family Sy = {S} : n e N}.
This is a trivial consequence of the fact that, in every Baire space, the countable
intersection of residual sets is residual.
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