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Sharp Weighted Endpoint Estimates for
Commutators of Singular Integrals

Carlos Pérez & Gladis Pradolini

1. Introduction and Statements of the Main Result

The main purpose of this paper is to improve the main result in [P2] by means
of a direct proof that avoids the classical good-λ technique considered there. The
good-λmethod, introduced by Burkholder and Gundy in [BG], is a powerful tool
but has the disadvantage that it is essentially adapted to measures satisfying theA∞
condition, such as the Lebesgue measure. The approach we consider here is more
related to the classical argument of Calderón and Zygmund for proving that sin-
gular integral operators satisfy the weak-type(1,1)-property, an approach whose
advantage is that it allows us to consider more general measure. The method, how-
ever, must be different because commutators of singular integral operators with
BMO functions are not of weak-type(1,1), as shown in [P2].

Let b be a locally integrable function onRn, usually called thesymbol,and let
T be a Calderón–Zygmund singular integral operator (see [C] or [J]). Consider
the commutator operator [b, T ] defined for, say, smooth functionsf by

[b, T ]f = bT (f )− T(bf ). (1)

A now classical result of Coifman, Rochberg, and Weiss [CRW] states that [b, T ]
is a bounded operator onLp(Rn), 1 < p < ∞, whenb is a BMO function. In
fact, BMO is also a necessary condition for the commutator [b,R] to be bounded
onLp(Rn), whereR = (R1, . . . , Rn) is the vector-valued Riesz transform. We
will always assume thatb ∈BMO(Rn) unless otherwise noted.

None of the different proofs of this result follows the usual scheme of the clas-
sical Calderón–Zygmund theory of singular integral operatorsT . Indeed, the key
result in this theory is that any of these operators satisfies the weak-type(1,1)-
property, which is derived from the assumption thatT is bounded onL2(Rn) com-
bined with a mild regularity of the kernel. Once the weak-type(1,1)-inequality
is obtained, interpolation and duality yield the boundedness of the operator on
Lp(Rn) for all 1 < p < ∞. However, simple examples show that commutators
(with BMO symbols) fail to be of weak-type(1,1), as found in [P2]. To remedy
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the situation, it is shown there that commutators satisfy a “L(logL)”-type esti-
mate. To be precise, we have the following result.

Theorem 1.1 [P2]. Let T be any Calderón–Zygmund singular integral opera-
tor. Then there exists a positive constantC depending upon the BMO norm ofb
such that, for all functionsf and all λ > 0,

|{y ∈Rn : |[b, T ]f(y)| > λ}| ≤ C
∫

Rn

|f(y)|
λ

(
1+ log+

( |f(y)|
λ

))
dy. (2)

The proof of this estimate is based on showing that there is an intimate relationship
between commutators and iterations of the Hardy–Littlewood maximal function
(in this case,M 2 = M BM) via the good-λ technique of Burkholder and Gundy
[BG]. More precisely, if we let8(t) = t(1+ log+ t) and letw be a weight satis-
fying theA∞ condition, then there exists a positive constantC depending on the
BMO constant ofb such that, for any smooth function with compact supportf,

sup
t>0

1

8(1/t)
w({y ∈Rn : |[b, T ]f(y)| > t})

≤ C[w]A∞ sup
t>0

1

8(1/t)
w({y ∈Rn : M 2f(y) > t}). (3)

Using this estimate withw = 1 and analyzing the behavior ofM 2, we obtain the
desired estimate (2)—where, in fact, the Lebesgue measure can be replaced by
any weight function satisfying theA1 condition. TheLp versions of these esti-
mates and their consequences are further exploited in [P3].

As mentioned before, we provide a different proof of (2) whose advantage is
that it allows us to derive a sharp two-weight inequality that is similar in spirit to
the following one for Calderón–Zygmund singular integral operators.

Theorem 1.2 [P1]. Let T be any Calderón–Zygmund operator and letε > 0.
Then, for any weightw, functionf, andt > 0, there is a constantCε such that

w({x ∈Rn : |Tf(x)| > t}) ≤ Cε
t

∫
Rn
|f(x)|ML(logL)ε (w)(x) dx. (4)

The point here is that no assumption on the weight is assumed. HereMA = MA(L)

denotes a maximal-type function defined by the expression

MA(L)f(x) = sup
Q3x
‖f ‖A,Q,

whereA is anyYoung function and‖f ‖A,Q denotes theA-average overQ defined
by means of the Luxembourg norm

‖f ‖A,Q = inf

{
λ > 0 :

1

|Q|
∫
Q

A

( |f |
λ

)
dx ≤ 1

}
. (5)

For our applications, the main examples are given byA(t) = t(1+ log+ t)α,
α ≥ 0.

We will consider a more general version of (1) denoted byT mb (m = 0,1,2, . . . )
and usually called higher-order commutators. They are defined by the formula
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T mb = [b, . . . , [b, T ]]︸ ︷︷ ︸
(m times)

;

in the particular case of Calderón–Zygmund operators, they can be expressed by
means of its kernelK:

T mb f(x) =
∫

Rn
(b(x)− b(y))mK(x, y)f(y) dy,

wheref is an appropriate test function. As usual, we assume that the kernelK

satisfies the so-called standard estimates (cf. [C] or [J]).
Our result is the following.

Theorem 1.3. LetT be a Calderón–Zygmund singular integral operator, and let
b ∈BMO and ε > 0. Then there exists a positive constantC such that

w({x ∈Rn : |T mb f(x)| > λ})
≤ C

∫
Rn
8m

(
‖b‖mBMO

|f(x)|
λ

)
ML(logL)m+ε (w)(x) dx, (6)

where8m(t) = t(1+ log+ t)m. The constantC is independent of the weightw,
the functionf, andλ > 0.

Observe that there is no restriction on the class of weights considered. Observe also
that, since8m is submultiplicative (i.e.,8m(ab) ≤ C8m(a)8m(b) with a, b ≥
0), we have

w({x ∈Rn : |T mb f(x)| > λ})
≤ C8m(‖b‖mBMO)

∫
Rn
8m

( |f(x)|
λ

)
ML(logL)m+ε (w)(x) dx.

Inequalities similar to (6) have turned out to be very useful in the study of the
two-weight problem for singular integral operators (see [CP1; CP2]). On the other
hand, it would be interesting to know whether or not this inequality holds when
ε = 0.

2. Some Preliminaries and Notation

In this section we summarize a few facts about Orlicz spaces. (For more in-
formation, see Bennett and Sharpley [BS] or Rao and Ren [RR].) A function
B : [0,∞)→ [0,∞) is adoubling Young functionif:

(a) it is continuous, convex, and increasing;
(b) B(0) = 0 andB(t)→∞ ast →∞; and
(c) it satisfiesB(2t) ≤ CB(t) for all t > 0.

For Orlicz norms we are usually concerned about the behavior ofYoung functions
for t large. Given two functionsB andC, we writeB(t) ∼= C(t) if B(t)/C(t) is
bounded and bounded below fort ≥ c > 0.

Recall that we defined the localized Luxembourg norm by equation (5); an
equivalent norm that is often useful in calculations is due to Krasnosel’ski˘ı and
Rutickiı̆ [KR, p. 92] (also see[RR, p. 69]):
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‖f ‖A,Q ≤ inf
µ>0

{
µ+ µ

|Q|
∫
Q

A

( |f |
µ

)
dx

}
≤ 2‖f ‖A,Q. (7)

Given aYoung functionA, we useĀ to denote the complementaryYoung func-
tion associated toA; it has the property that, for allt > 0,

t ≤ A−1(t)Ā−1(t) ≤ 2t.

The basic property that we will use is the following generalized Hölder inequality:

1

|Q|
∫
Q

|fg| ≤ 2‖f ‖A,Q‖g‖Ā,Q. (8)

In particular, we shall work withA(t) = t(1+ log+ t)m, m = 1,2, . . . , with
maximal function denoted byML(logL)m. The complementery Young function is
given byĀ(t) ≈ exp(t1/m), with the corresponding maximal function denoted by
MexpL1/m .

The first generalized Young inequality states thatA−1(t) · B−1(t) ≤ C−1(t) for
t > 0; it follows that

C(st) ≤ A(s)+ B(t) (9)

holds for alls, t > 0.

3. Proof of the Theorem

In this section we prove Theorem 1.3 by induction from the casem = 1. We will
use the following strong-type version of our estimate derived in [P3].

Theorem 3.1 [P3]. Let T be any Calderón–Zygmund singular integral opera-
tor, and let1< p <∞ andb ∈BMO. Then for eachδ > 0 there exists a positive
constantC = Cδ such that, for all functionsg,∫

Rn
|T mb g(x)|pw(x) dx

≤ Cδ‖b‖mpBMO

∫
Rn
|g(y)|pML(logL)(m+1)p−1+δ (w)(y) dy. (10)

3.1. The Casem = 1

A simple homogeneity shows that we may assume‖b‖BMO = 1. Given that as-
sumption, we need only show that

w({x ∈Rn : |[b, T ]f(x)| > λ}) ≤ C
∫

Rn
8

( |f(x)|
λ

)
ML(logL)1+ε (w)(x) dx,

where8(t) = 81(t) = t(1+ log+ t).
We consider the standard Calderón–Zygmund decomposition off at levelλ and

obtain a collection of dyadic non-overlapping cubesQj = Qj(xQj , rj ) that satisfy

λ <
1

|Qj |
∫
Qj

|f | ≤ 2nλ. (11)
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We set� = �λ = ⋃
j Qj ; then |f(x)| ≤ λ a.e.x ∈ Rn \ �. We write f =

g + h, whereg is defined by

g(x) =
{
f(x) if x ∈Rn \�,
fQj if x ∈Qj.

As usual, we use the notationfQ = 1
|Q|
∫
Q
f for a locally integrable functionf

and a cubeQ. Observe that|g(x)| ≤ 2nλ a.e.
We split the “bad part”h ash =∑j hj, wherehj(x) = (f(x) − fQj)χQj (x).

We will use the notationw∗(x) = w(x)χRn\�̃(x) andwj(x) = w(x)χRn\3Qj ,
whereQ̃j = 3Qj and�̃ =⋃j Q̃j . Then

w({x ∈Rn : |[b, T ]f(x)| > λ})
≤ w({x ∈Rn \ �̃ : |[b, T ]g(x)| > λ/2})+ w(�̃)
+ w({x ∈Rn \ �̃ : |[b, T ]h(x)| > λ/2})
= I + II + III .

As we will see from the proof, part I (precisely the piece associated to the “good
part”) is the one that carries a higher degree of singularity. Now we use Theorem
3.1, withm = 1 and withp, δ such that 1< p < 1+ ε/2 andδ = ε− 2(p−1) >
0. Then

I ≤ C

λp

∫
Rn
|[b, T ]g(x)|pw∗(x) dx

≤ C

λp

∫
Rn
|g(x)|pML(logL)1+ε (w

∗)(x) dx

≤ C
λ

∫
Rn
|g(x)|ML(logL)1+ε (w

∗)(x) dx

= C

λ

(∫
Rn\�
|f(x)|ML(logL)1+ε (w)(x) dx +

∫
�

|g(y)|ML(logL)1+ε (w
∗)(y) dy

)
.

It is clear that we need only estimate the second term in the last expression; to do
so, we use the following fact:

For arbitraryYoung functionA,nonnegative measurewwithMAw(x) <

∞ a.e., cubeQ, andR > 1, we have

MA(χRn\RQw)(y) ≈ MA(χRn\RQw)(z)

for eachy, z∈Q; hence

MA(χRn\RQw)(y) ≈ inf
y∈QMA(χRn\RQw)(y) (12)

for eachy ∈Q.
This is an observation whose proof follows exactly as for the case of the Hardy–
Littlewood maximal operatorM, which corresponds to the caseA(t) = t (see e.g.
[GR, p. 159]).
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Hence we can continue estimating the second term with∫
�

|g(x)|ML(logL)1+ε (w
∗)(x) dx

≤
∑
j

∫
Qj

|fQj |ML(logL)1+ε (wj )(x) dx

=
∑
j

(∫
Qj

|f(x)| dx
)

1

|Qj |
∫
Qj

ML(logL)1+ε (wj )(x) dx

≤ C
∑
j

(∫
Qj

|f(x)| dx
)

inf
Qj
ML(logL)1+ε (wj )

= C
∑
j

∫
Qj

|f(x)|ML(logL)1+ε (w)(x) dx

≤ C
∫

Rn
|f(x)|ML(logL)1+ε (w)(x) dx.

For II we have

II = w(�̃) ≤ C
∑
j

w(Q̃j )

|Q̃j |
|Qj | ≤ C

λ

∑
j

w(Q̃j )

|Q̃j |
∫
Qj

|f(x)| dx

≤ C
λ

∑
j

∫
Qj

|f(x)|Mw(x) dx

≤ C
λ

∫
Rn
|f(x)|Mw(x) dx.

Observe that this part is smoother than I since we obtain a smaller operatorM on
the right-hand side. Similarly, part III is smoother than I but rougher than II, as
we now show. Indeed, first note that

[b, T ]h(x) =
∑
j

[b, T ]hj(x)

=
∑
j

(b(x)− bQj)Thj(x)−
∑
j

T ((b − bQj)hj )(x),

where (as before)bQ = 1
|Q|
∫
Q
b. Then

III ≤ w
({
x ∈Rn \ �̃ :

∣∣∣∣∑
j

(b(x)− bQj)Thj(x)
∣∣∣∣ > λ

4

})

+ w
({
x ∈Rn \ �̃ :

∣∣∣∣∑
j

T ((b − bQj)hj )(x)
∣∣∣∣ > λ

4

})
= A+ B.
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Using the standard estimates of the kernelK, we have

A ≤ C
λ

∫
Rn\�̃

∑
j

|b(x)− bQj ||Thj(x)|w(x) dx

≤ C
λ

∑
j

∫
Rn\3Qj

|b(x)− bQj |w(x)
∫
Qj

|hj(y)||K(x − y)−K(x − xQj)| dy dx

≤ C
λ

∑
j

∫
Qj

|hj(y)|
∫

Rn\3Qj
|K(x− y)−K(x− xQj)||b(x)− bQj |wj(x) dx dy

≤ C
λ

∑
j

∫
Qj

|hj(y)|
∞∑
k=1∫

2krj≤|x−xQj |<2k+1rj

|y − xQj |
|x − xQj |n+1

|b(x)− bQj |wj(x) dx dy

≤ C
λ

∑
j

(∫
Qj

|hj(y)| dy
) ∞∑
k=1

2−k

(2k+1rj )n

∫
|x−xQj |<2k+1rj

|b(x)− bQj |wj(x) dx.

To control the sum onk, we use standard estimates together with the generalized
Hölder inequality and the John–Nirenberg theorem. Indeed, ify ∈ Qj then we
have

∞∑
k=1

2−k

(2k+1rj )n

∫
|x−xQj |<2k+1rj

|b(x)− bQj |wj(x) dx

≤ C
∞∑
k=1

2−k

(2k+1rj )n

∫
2k+1Qj

|b(x)− b2k+1Qj
|wj(x) dx

+
∞∑
k=1

2−k

(2k+1rj )n

∫
2k+1Qj

|b2k+1Qj
− bQj |wj(x) dx

≤ C
∞∑
k=1

2−k‖b − b2k+1Qj
‖expL,2k+1Qj

‖wj‖L logL,2k+1Qj

+
∞∑
k=1

2−k(k +1)M(wj )(y)

≤ C
(
ML(logL)(wj )(y)

∞∑
k=1

2−k +M(wj)(y)
∞∑
k=1

2−k(k +1)

)
≤ CML logL(wj )(y).

Then we can continue the estimate ofA using (12) as follows:
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A ≤ C
λ

∑
j

∫
Qj

|hj(y)|ML logL(wj )(y) dy

≤ C
λ

(∑
j

∫
Qj

|f(y)|ML logL(w)(y) dy +
∑
j

∫
Qj

|fQj |ML logL(wj )(y) dy

)

≤ C
λ

(∫
Rn
|f(y)|ML logL(w)(y) dy

+
∑
j

∫
Qj

|f(x)| dx 1

|Qj |
∫
Qj

ML logL(wj )(y) dy

)

≤ C
λ

(∫
Rn
|f(y)|ML logL(w)(y) dy +

∑
j

∫
Qj

|f(x)|ML logL(w)(x) dx

)

≤ C
λ

∫
Rn
|f(y)|ML logL(w)(y) dy.

To estimateB, we combine inequality (4) for singular integrals together with
(again) observation (12):

B = w∗
({
x ∈Rn :

∣∣∣∣T(∑
j

(b − bQj)hj
)
(x)

∣∣∣∣ > λ

4

})

≤ C
λ

∫
Rn

∣∣∣∣∑
j

(b(x)− bQj)hj )(x)
∣∣∣∣ML(logL)ε (w

∗)(x) dx

≤ C
λ

∑
j

∫
Qj

|b(x)− bQj ||f(x)− fQj |ML(logL)ε (wj )(x) dx

≤ C
λ

∑
j

inf
Qj
ML(logL)ε (wj )(x)

(∫
Qj

|b(x)− bQj ||f(x)| dx

+
∫
Qj

|b(x)− bQj ||fQj | dx
)

= B1+ B2.

The estimate forB2 is simple since, by (12),

B2 = C

λ

∑
j

inf
Qj
ML(logL)ε (wj )(x)

∫
Qj

|b(x)− bQj ||fQj | dx

≤ C
λ

∑
j

1

|Qj |
∫
Qj

|b(x)− bQj |
∫
Qj

|f(x)|ML(logL)ε (wj )(x) dx

≤ C
∫

Rn
|f(x)|ML(logL)ε (w)(x) dx.
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ForB1 we have, by the generalized Hölder inequality (8),

B1= C

λ

∑
j

inf
Qj
ML(logL)ε (wj )(x)

∫
Qj

|b(x)− bQj ||f(x)| dx

≤ C
λ

∑
j

inf
Qj
ML(logL)ε (wj )(x)|Qj |‖f ‖L logL,Qj .

Now, combining formula (7) with (11) and recalling that8(t) = t(1+ log+ t),
we have

1

λ
|Qj |‖f ‖L logL,Qj ≤

1

λ
|Qj | inf

µ>0

{
µ+ µ

|Qj |
∫
Qj

8

( |f(x)|
µ

)
dx

}

≤ |Qj | +
∫
Qj

8

( |f(x)|
λ

)
dx

≤ 1

λ

∫
Qj

|f(x)| dx +
∫
Qj

8

( |f(x)|
λ

)
dx

≤ 2
∫
Qj

8

( |f(x)|
λ

)
dx.

Then

B1 ≤ C
∫
Qj

8

( |f(x)|
λ

)
ML(logL)ε (wj )(x) dx

≤ C
∫

Rn
8

( |f(x)|
λ

)
ML(logL)ε (w)(x) dx.

This concludes the proof of the casem = 1.

3.2. The General Case

We will use an induction argument and will omit some technical arguments that
are similar to the casem = 1. Again, a simply homogeneity argument using that
T mb (f/‖b‖mBMO) = T mb/‖b‖BMO

(f ) shows that we may assume‖b‖BMO = 1. We con-
sider again the Calderón–Zygmund decomposition off at levelλ. Then, with the
same notation as in the proof of the casem = 1, we have

w({y ∈Rn : |T mb f(y)| > λ}) ≤ w({y ∈Rn \ �̃ : |T mb g(y)| > λ/2})+ w(�̃)
+ w({y ∈Rn \ �̃ : |T mb h(y)| > λ/2})
= I + II + III.

From (10) withp andδ such that

1< p < 1+ ε/(m+1) and δ = ε − (m+1)(p −1) > 0,
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we have

I ≤ C
λ

∫
Rn
|g(y)|ML(logL)m+ε (w

∗)(y) dy

≤ C
λ

∫
Rn
|f(y)|ML(logL)m+ε (w)(y) dy,

as in the casem = 1. Similarly, for II we have

II ≤ C
λ

∫
Rn
|f(x)|Mw(x) dx. (13)

To estimateIII, we split the operator as in [GHST]:

T mb hj(x) =
∫

Rn
(b(x)− b(y))mK(x − y)hj(y) dy

=
m∑
l=0

Cl,m(b(x)− α)m−l
∫

Rn
(b(y)− α)lK(x − y)hj(y) dy

= C(b(x)− α)mThj(x)+ T((b − α)mhj )(x)

+
m−1∑
l=1

Cl,m(b(x)− α)m−l
∫

Rn
(b(y)− α)lK(x − y)hj(y) dy,

whereα is a number to be chosen soon. Then the last term is further broken as
follows:

m−1∑
l=1

Cl,m(b(x)− α)m−l
∫

Rn
(b(y)− α)lK(x − y)hj(y) dy

=
m−1∑
l=1

Cl,m

m−l∑
h=0

Ch,m,l

∫
Rn
(b(x)− b(y))h(b(y)− α)m−hK(x − y)hj(y) dy

=
m−1∑
h=0

Cm,h

∫
Rn
(b(x)− b(y))h(b(y)− α)m−hK(x − y)hj(y) dy

= CT((b − α)mhj )(x)+
m−1∑
h=1

Cm,hT
h
b ((b − α)m−hhj )(x).

If we now takeα = bQj then we obtain∑
j

T mb hj(x) = C
∑
j

(b(x)− bQj)mThj(x)+
∑
j

T ((b − bQj)mhj )(x)

+
m−1∑
h=1

Cm,hT
h
b

(∑
j

(b − bQj)m−hhj
)
(x).
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Thus,

III ≤ w
({
y ∈Rn \ �̃ :

∣∣∣∣∑
j

(b(y)− bQj)mThj(y)
∣∣∣∣ > λ

6

})

+ w
({
y ∈Rn \ �̃ :

∣∣∣∣∑
j

T ((b − bQj)mhj )(y)
∣∣∣∣ > λ

6

})

+ w
({
y ∈Rn \ �̃ :

∣∣∣∣ m−1∑
h=1

Cm,hT
h
b

(∑
j

(b − bQj)m−hhj
)
(y)

∣∣∣∣ > λ

6

})
= A+ B + C.

To estimateA, we proceed as in the casem = 1 to obtain

A ≤ C
λ

∫
Rn\�̃

∑
j

|b(x)− bQj |m|Thj(x)|w(x) dx

≤ C
λ

∑
j

(∫
Qj

|hj(y)| dy
) ∞∑
k=1

2−k

(2k+1rj )n

×
∫
|x−xQj |<2k+1rj

|b(x)− bQj |mwj(x) dx.

If y ∈ Qj then, by the generalized Hölder inequality and the John–Nirenberg
theorem (recall that‖b‖BMO = 1), we have

∞∑
k=1

2−k

(2k+1rj )n

∫
|x−xQj |<2k+1rj

|b(x)− bQj |mwj(x) dx

≤
∞∑
k=1

2−k

(2k+1rj )n

∫
2k+1Qj

|b(x)− b2k+1Qj
|mwj(x) dx

+
∞∑
k=1

2−k

(2k+1rj )n

∫
2k+1Qj

|b2k+1Qj
− bQj |mwj(x) dx

≤ C
∞∑
k=1

2−k‖(b − b2k+1Qj
)m‖expL1/m,2k+1Qj

‖wj‖L(logL)m,2k+1Qj

+ C
∞∑
k=1

2−k(k +1)M(wj )(y)

≤ CML(logL)m(wj )(y).

Then
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A ≤ C
λ

∑
j

∫
Qj

|hj(y)|ML(logL)m(wj )(y) dy

≤ C
λ

(∑
j

∫
Qj

|f(y)|M(L logL)m(w)(y) dy

+
∑
j

∫
Qj

|fQj |ML(logL)m(wj )(y) dy

)

≤ C
λ

∫
Rn
|f(y)|ML(logL)m(w)(y) dy,

where we have used observation (12). Again, this observation combined with in-
equality (4) yields

B = w∗
({
x ∈Rn :

∣∣∣∣T(∑
j

(b − bQj)mhj
)
(x)

∣∣∣∣ > λ

6

})

≤ C
λ

∑
j

∫
Qj

|b(x)− bQj |m|f(x)− fQj |ML(logL)ε (wj )(x) dx

≤ C
λ

∑
j

inf
Qj
ML(logL)ε (wj )(x)

(∫
Qj

|b(x)− bQj |m|f(x)| dx

+
∫
Qj

|b(x)− bQj |m|fQj | dx
)

= B1+ B2.

But it is easy to see that

B2 ≤ C
∫

Rn
|f(x)|ML(logL)εw(x) dx;

on the other hand, by the generalized Hölder inequality (8) we have

B1= C

λ

∑
j

inf
Qj
ML(logL)ε (wj )(x)

∫
Qj

|b(x)− bQj |m|f(x)| dx

≤ C
λ

∑
j

inf
Qj
ML(logL)ε (wj )(x)|Qj |‖(b − bQj)m‖expL1/m,Qj ‖f ‖L(logL)m,Qj

≤ C
λ

∑
j

inf
Qj
ML(logL)ε (wj )(x)|Qj |‖f ‖L(logL)m,Qj .

Recalling that8m(t) = t(1+ log+ t)m, by (7) we have
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1

λ
|Qj |‖f ‖L(logL)m,Qj ≤

1

λ
|Qj | inf

µ>0

{
µ+ µ

|Qj |
∫
Qj

8m

( |f(x)|
µ

)
dx

}

≤ 2
∫
Qj

8m

( |f(x)|
λ

)
dx

and consequently

B1 ≤ C
∑
j

∫
Qj

8m

( |f(x)|
λ

)
ML(logL)ε (wj )(x) dx

≤ C
∫

Rn
8m

( |f(x)|
λ

)
ML(logL)ε (w)(x) dx.

To conclude the proof of the theorem, we are left with the estimate forC,where
we will use the induction argument:

w

({
y ∈Rn \ �̃ :

∣∣∣∣ m−1∑
h=1

Cm,hT
h
b

(∑
j

(b − bQj)m−hhj
)
(y)

∣∣∣∣ > λ

6

})

≤ w
({
y ∈Rn \ �̃ :

∣∣∣∣ m−1∑
h=1

Cm,hT
h
b

(
f
∑
j

(b − bQj)m−hχQj
)
(y)

∣∣∣∣ > λ

12

})

+ w
({
y ∈Rn \ �̃ :

∣∣∣∣ m−1∑
h=1

Cm,hT
h
b

(∑
j

(b − bQj)m−hfQj χQj
)
(y)

∣∣∣∣ > λ

12

})
= C1+ C2.

By the induction hypothesis, the theorem holds fork < m; then

C1 ≤ C
m−1∑
h=1

∫
Rn
8h

( |f(x)|
λ

∣∣∣∣∑
j

(b(x)− bQj)m−hχQj (x)
∣∣∣∣)
ML(logL)h+ε (w

∗)(x) dx

≤ C
m−1∑
h=1

∑
j

∫
Qj

8h

( |f(x)|
λ
|b(x)− bQj |m−h

)
ML(logL)h+ε (wj )(x) dx

≤ C
m−1∑
h=1

∑
j

inf
Qj
ML(logL)h+ε (wj )

∫
Qj

8h

( |f(x)|
λ
|b(x)− bQj |m−h

)
dx.

Letψk(t) = expt1/k−1. Then8−1
m (t) ·ψ−1

m−h(t) ≤ C8−1
h (t), because8−1

k (t) ≈
t/(log t)k andψ−1

k (t) ≈ (log t)k. Then, combining (9) with the John–Nirenberg
theorem and (11), we obtain
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Qj

8h

( |f(x)|
λ
|b(x)− bQj |m−h

)
dx

≤
∫
Qj

8m

( |f(x)|
λ

)
dx +

∫
Qj

ψm−h(|b(x)− bQj |m−h) dx

≤
∫
Qj

8m

( |f(x)|
λ

)
dx + C|Qj |

≤ C
∫
Qj

8m

( |f(x)|
λ

)
dx.

HenceC1 can finally be estimated by

C1 ≤ C
m−1∑
h=1

∑
j

inf
Qj
ML(logL)h+ε (wj )

∫
Qj

8m

( |f(x)|
λ

)
dx

≤ C
m−1∑
h=1

∑
j

∫
Qj

8m

( |f(x)|
λ

)
ML(logL)h+ε (w)(x) dx

≤ C
∫

Rn
8m

( |f(x)|
λ

)
ML(logL)m−1+ε (w)(x) dx.

We may controlC2 in similar way by observing that (9) and Jensen’s inequality
yield ∫

Qj

8h

( |fQj |
λ
|b(x)− bQj |m−h

)
dx ≤

∫
Qj

8m

( |f |Qj
λ

)
dx + C|Qj |

≈ |Qj | ≈ 1

λ

∫
Qj

|f |

≤ C
∫
Qj

8m

( |f(x)|
λ

)
dx.

The proof is complete.
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