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Sharp Weighted Endpoint Estimates for
Commutators of Singular Integrals

CARLOS PEREZ & GLADIS PRADOLINI

1. Introduction and Statements of the Main Result

The main purpose of this paper is to improve the main result in [P2] by means
of a direct proof that avoids the classical gaotechnique considered there. The
good-. method, introduced by Burkholder and Gundy in [BG], is a powerful tool
but has the disadvantage thatitis essentially adapted to measures satisfying the
condition, such as the Lebesgue measure. The approach we consider here is more
related to the classical argument of Calderén and Zygmund for proving that sin-
gular integral operators satisfy the weak-tyfgel)-property, an approach whose
advantage is that it allows us to consider more general measure. The method, how-
ever, must be different because commutators of singular integral operators with
BMO functions are not of weak-typ@, 1), as shown in [P2].

Let b be a locally integrable function dR”, usually called thesymbol,and let
T be a Calder6n—Zygmund singular integral operator (see [C] or [J]). Consider
the commutator operatob [ T] defined for, say, smooth functionsby

[b.T1f =bT(f) —T(bf). (1)

A now classical result of Coifman, Rochberg, and Weiss [CRW] statesitha@f [

is a bounded operator ai¥’(R"), 1 < p < oo, whenb is a BMO function. In
fact, BMO is also a necessary condition for the commutatoR] to be bounded
on L?(R"), whereR = (R%, ..., R") is the vector-valued Riesz transform. We
will always assume thdte BMO(R") unless otherwise noted.

None of the different proofs of this result follows the usual scheme of the clas-
sical Calderon—Zygmund theory of singular integral operafordeed, the key
result in this theory is that any of these operators satisfies the weakidtyhe
property, which is derived from the assumption tfias bounded or.?(R") com-
bined with a mild regularity of the kernel. Once the weak-typel)-inequality
is obtained, interpolation and duality yield the boundedness of the operator on
LP?(R") forall1 < p < oo. However, simple examples show that commutators
(with BMO symbols) fail to be of weak-typé, 1), as found in [P2]. To remedy
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24 CARrRLOS PEREZ & GLADIS PRADOLINI

the situation, it is shown there that commutators satisfy. edg L)"-type esti-
mate. To be precise, we have the following result.

THEOREM 1.1 [P2]. LetT be any Calderon—-Zygmund singular integral opera-
tor. Then there exists a positive constahtiepending upon the BMO norm bf
such that, for all functiong and all » > 0,

I eR" b, T] f(0)] > A)] < cfﬂ |fi—”'(u |og+<@)> dy. ()

The proof of this estimate is based on showing that there is an intimate relationship
between commutators and iterations of the Hardy—Littlewood maximal function
(in this caseM? = M o M) via the goodx technique of Burkholder and Gundy
[BG]. More precisely, if we letb(r) = (1 + log™ ¢) and letw be a weight satis-
fying the A, condition, then there exists a positive constardepending on the
BMO constant ob such that, for any smooth function with compact supgort

b <I>(1/ )w({yERn b, T1 ()] > t})

1 n. 2

<

< Clw]a, :lsggaq)(l/ )w({y eR":Mf(y) >1th. (3)
Using this estimate witly = 1 and analyzing the behavior 812, we obtain the
desired estimate (2)—where, in fact, the Lebesgue measure can be replaced by
any weight function satisfying tha; condition. TheL?” versions of these esti-
mates and their consequences are further exploited in [P3].

As mentioned before, we provide a different proof of (2) whose advantage is

that it allows us to derive a sharp two-weight inequality that is similar in spirit to
the following one for Calderon—-Zygmund singular integral operators.

THEOREM 1.2 [P1l]. LetT be any Calderén—Zygmund operator and det- 0.
Then, for any weighi, function f, ands > 0, there is a constanf, such that

c
w(lx €R"HITFO] > 1) = fR 1O Miogry ) (). (4)

The point here is that no assumption on the weight is assumed.Mieee My,
denotes a maximal-type function defined by the expression

Mawy f(x) = supll flla, o>
O>x

whereA is any Young function anfif || 4, o denotes thet-average ove@ defined
by means of the Luxembourg norm

_ 1 HAPS

For our applications, the main examples are givenAlty) = (1 + log*t )%,
a > 0.
We will consider a more general version of (1) denotedfy(m = 0,1, 2, ...)
and usually called higher-order commutators. They are defined by the formula
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,"=[b,....[b,T];
(m times

in the particular case of Calderén—Zygmund operators, they can be expressed by
means of its kernek :

T/ f(x) = fR (B — BN K ) f) dy,

where f is an appropriate test function. As usual, we assume that the k&rnel
satisfies the so-called standard estimates (cf. [C] or [J]).
Our result is the following.

THEOREM 1.3. LetT be a Calderon—Zygmund singular integral operator, and let
b€ BMO ande > 0. Then there exists a positive constéhsuch that

w{x eR" 1 |T)"f(x)| > A})

= Cf cDm(||b||glr\/10|f§\—x>|)1WL(IogL)'"+S(w)(x)dxv (6)

where®,,(t) = t(1+ log™ #)™. The constanC is independent of the weight,
the functionf, and A > 0.

Observe thatthere is no restriction on the class of weights considered. Observe also
that, sinced,, is submultiplicative (i.e.®,,(ab) < C®,,(a)®,,(b) with a, b >
0), we have

w{x eR" 1T, f(x)| > A})

m Lf (0l
= CP,(lIbllgwo) . P | = JMLogrymse (W) (x) dx.

Inequalities similar to (6) have turned out to be very useful in the study of the
two-weight problem for singular integral operators (see [CP1; CP2]). Onthe other
hand, it would be interesting to know whether or not this inequality holds when
e=0.

2. Some Preliminaries and Notation

In this section we summarize a few facts about Orlicz spaces. (For more in-
formation, see Bennett and Sharpley [BS] or Rao and Ren [RR].) A function
B: [0, 00) — [0, c0) is adoubling Young functioff:
(a) itis continuous, convex, and increasing;
(b) B(0) = 0andB(t) — oo ast — oco; and
(c) it satisfiesB(2t) < CB(¢) forall t > 0.
For Orlicz norms we are usually concerned about the behavior of Young functions
for t large. Given two function® andC, we write B(r) = C(¢) if B(t)/C(¢) is
bounded and bounded below for- ¢ > 0.

Recall that we defined the localized Luxembourg norm by equation (5); an
equivalent norm that is often useful in calculations is due to Krasnosediski”
Rutickil [KR, p. 92] (also se¢RR, p. 69]):
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|/
I flla,0 = Inf {u+ A(—) dX} < 2| flla,o- (7)
he= 0] u ne
Given a Young functiom, we useA to denote the complementary Young func-
tion associated td; it has the property that, for afl> O,
t < AN )ATN() < 21.

The basic property that we will use is the following generalized Holder inequality:
1
—flfgl =2 fllacllgllzo- 8)
101 Jo

In particular, we shall work withA(z) = t(1+ log™ 1), m = 1,2, ..., with
maximal function denoted b¥/; og.)». The complementery Young function is
given by A(¢) ~ exp(t¥™), with the corresponding maximal function denoted by
Mexle/m.
The first generalized Young inequality states that(z) - B—1(r) < C () for
t > 0; it follows that
C(st) < A(s) + B(1) )

holds for alls, r > O.

3. Proof of the Theorem

In this section we prove Theorem 1.3 by induction from the ease 1. We will
use the following strong-type version of our estimate derived in [P3].

THeoreM 3.1 [P3]. LetT be any Calderdn—Zygmund singular integral opera-
tor, and letl < p < co andb € BMO. Then for eactd > 0 there exists a positive
constantC = C; such that, for all functiong,

/R’ITbmg(X)Ipw(X)dx

§C5||b||glﬁo/R |8 (DI M (10g Lyom+vp-1+5 (W) (y) dy.  (10)

3.1. The Caser =1

A simple homogeneity shows that we may assUibgsvo = 1 Given that as-
sumption, we need only show that

X
w{x eR" 1 [b, T] f(x)| > A} < C/ q><|JC()L—)|>ML(IogL)1“(w)(X)dX,
Rn
whered (1) = ®4(t) = t(1+ log™t1).
We consider the standard Calderén—Zygmund decompositigrablevelr and

obtain a collection of dyadic non-overlapping culigs= Q;(xy,, r;) that satisfy

1
A< 2" 11
o1/, |f|< 11)
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We setQ2 = Q; = |J; Q;; then|f(x)| < » a.e.x € R"\ Q. We write f =
g + h, whereg is defined by

f(x) if xeR"\ Q,
fQj if XEQJ'.

As usual, we use the notatiofy = é fQ f for a locally integrable functiory

and a cube). Observe thatg(x)| < 2" a.e.

We split the “bad parth ash = Zj h;, whereh;(x) = (f(x) — fo,)xo; (x).
We Will~use the nota:tionu*(x)~ = w(x) Xgm g (¥) andw;(x) = w(x)xrm3g;»
whereQ; = 3Q; andQ = J; Q,. Then

w{x eR* 1[6, T] f(x)| > A})
<w({xeR"\Q:|[b, T1g(x)| > 1/2) + w(S)
+w{xeR"\ Q:|[b, T1h(x)| > 1/2})
=1+1+1I.

glx) = {

As we will see from the proof, part | (precisely the piece associated to the “good
part”) is the one that carries a higher degree of singularity. Now we use Theorem
3.1, withm = 1and withp, § suchthatl< p <1+¢/2and§ =¢—-2(p -1 >
0. Then

C *
| < A—p/Rnltb, T1g(0)1w"(x) dx

C
< 7 |8 P M 10g L)+ (W) (x) dx
R”

C
<< / 1800 My ogytee (w*)(x) dx
Rl'l

C
_ ;( / (O My gogiytee (w) (x) dx + f |g<y>|ML<|ogL>1+e<w*><y>dy>.
RN\Q Q

It is clear that we need only estimate the second term in the last expression; to do
S0, we use the following fact:

For arbitrary Young functiod , nonnegative measunewith M w(x) <
oo a.e., cube), andR > 1, we have

MA(xr\row)(Y) & Ma(XRm\ROW)(2)
for eachy, z € Q; hence
My(xrm\row)(y) ~ ylng M4(xrm\row)(¥) 12)
for eachy € Q.

This is an observation whose proof follows exactly as for the case of the Hardy—
Littlewood maximal operatod, which corresponds to the cagé) = ¢ (see e.qg.
[GR, p. 159]).
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Hence we can continue estimating the second term with

A|g(x)|ML(IogL)1+f(U)*)(x)dx

< Z/ [ fo;IML(0gLyt+ (w))(x) dx
~ Jo,
j

1
:Z</ |f(x)|dx)_/ M 1og 1)1+ (w)) (x) dx
TR 1051 Jo,
=C Z( 0 If(x)ldx> Igf M (tog Lyt (w))
J J J
= C ZL |f(-x)|ML(|QgL)1+s(U))()C) dx
i U

. |f(x)|ML(|ogL)l+s (w)(x)dx.

For Il we have

— (QJ (Q])
1= w<s2><c]Z o IQJI_/\; TR lef(X)ldx

C
<= | 1S OIMw(x) dx
J g

< / ()| Mw(x) dx.
o S

Observe that this part is smoother than | since we obtain a smaller op&fator
the right-hand side. Similarly, part |11 is smoother than | but rougher than 1l, as
we now show. Indeed, first note that

[b, T1h(x) = ) [b, T1hi(x)

J

= Z(b(x) — bo)Th;(x) = Y T((b — bg)h;)(x),
j J

-4l)
-2)

where (as before), = & Job- Then

Il §w({xeR \ Q

+w<{xeR"\§z:

D (b(x) — bo)Th;j(x)
J

> T((b = bg,) ) (x)
J

=A+B.
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Using the standard estimates of the kerkielve have

A< %fR\Q Z|b(x) — bo, | Th;(x)|w(x) dx

—Z/

R”\3Q

1b(x) — b, w(x) / I (IIK(x — y) — K(x — xg) dydx
Qj

| /\

—Z/ |h,<y>|/ K(x — ) — K(x — xg)|Ib(x) = b, lw;(x) dx dy
A5 g R"\30;

IA

C / >
- [h; ()]
A ; 9; l kZ=;

ly — xg,l
Y7ol bo |w;(x)dx d
/zkr/<”Q.|<zk+1r,| |n+1| (x) — bo,|w;(x) dx dy

X — X0

IA

C
- (/ |hj (y)ldy) (2k+1r,)" /|x o KZMV}Ib(x)—bQ,-Iw,-(x)dx.

To control the sum ok, we use standard estimates together with the generalized
Hdlder inequality and the John—Nirenberg theorem. Indeed,dfQ; then we
have

[ ok /
@y Ib(x) = b, lw;(x) dx
; (2k+1rj) |X*xQ<\<2k+1rj i1
00 —
Z (2k+1r )n /2k+1Q.|b(X) - b2k+1Qj|U)j(_x) dx
k=1 j

00 o~k
+ ; @iy Lk+le|b2k+1Q, — bg;lwj(x) dx

—k
=C Z 27016 = boerag llexpr,2+10; 1w ll Liog L, 26410,
k=1

+ Y 27Kk + DM (w))(y)
k=1

< C<ML<.ogL><w,-><y> o2t My (Y 27k + 1))

=1 =1
< CMpiogr (w;)(y).

Then we can continue the estimatedfising (12) as follows:
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C
Ass Z/Q (5 101 () (») dy
j J

C
sx(Z/Q|f<y>|ML.ogL(w>(y>dy+ZfQ|fQ_,-|ML.ogL<wj><y>dy)
j J j J
C
< ;(/n|f<y>|MuogL<w><y)dy
+Z/|f<x)|dx|Q /ML.ongj)(y)dy)
./
< x(/”|f(y>|ML.ogL(w><y>dy+Z/Q |f<x)|ML.ogL<w><x)dx)
j J
C
= / () Mo iogr (w)(y) dy.
er

To estimateB, we combine inequality (4) for singular integrals together with
(again) observation (12):
; })
> —
4

B= w*({x eR": ‘T(Z(b - ij)hJ-)(x)
J
ML(IogL)f(w*)(x) dx

C
< X/ ’} (b(x) — b)) (x)
R” .
J

C
= Z/Q.Ib(x) — bo,I1f(x) = fo;IMLogLye (w))(x) dx
j i
C .
< 2inf MLuogL)s(w,,a(x)( /Q 16(x) = bo, 1 ()| dx
J J

+[ 1b(x) — bo;|| fo,l dx)
Qj
= B1+ Bo.

The estimate foB; is simple since, by (12),

C .
- Zlgf M og e () () /Q 1b(x) — bg, I fo, | dx

€ 1
=g J P be'/ | £ Mg 1y () (1) di
it Jo;

< C/ | f (ML iiogrys (w)(x) dx.
R'l
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For B; we have, by the generalized Holder inequality (8),

C .
= & 2 inf Mudoguy w)() [ 1b(x) = bo I ()] d
; 9 Q;

C .
< n E |8f M ogLy: (W) ()| Q11 fllL1ogL, 0;-
. J
j

Now, combining formula (7) with (11) and recalling thé@i(r) = #(1+ log™ 1),
we have

1001 fleat. o, = 51051 n {M-F@/Q ('f(x)') }
|Qj|+/Qch<|fix)|)dx
%/Qj|f(x)|dx+/gj®(|f;x)|>dx
SZ/Qj¢(|fE\X)|>dx

/\

IA

IA

Then
x)
Bec | ob('f(A ')Mulogms(w,)(x)dx
Qj
(x)
< C/ q;('fk |>ML(I0gL)5(w)(x) dx.
This concludes the proof of the cage= 1. O

3.2. The General Case

We will use an induction argument and will omit some technical arguments that
are similar to the case = 1. Again, a simply homogeneity argument using that
T (f/1D1EMO) = Ty pjewo (f) ShOws that we may assuriig|svo = 1 We con-
sider again the Calderén—Zygmund decompositiofi af levelir. Then, with the
same notation as in the proof of the case- 1, we have

w({y eR" 1T f()] > ) < w({y eR"\ Q: [T)g(»)| > 1/2}) + w(Q)
+w({y eR"\ Q:|T"h(y)| > 1/2))
=141+l
From (10) withp andé such that
l<p<lt+eg/(m+1) and §=e—(m+(p—-1 >0,
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we have

C
I < x/ &M My iiogLyn+e (wW*)(y) dy
Rn

IA

C
T/ | fF DML itogyn+e (w)(y) dy,
R’l

as in the caser = 1. Similarly, for Il we have

I < g/ | f(x)|Mw(x)dx. 13)
A. Rn

To estimatdll, we split the operator as in [GHST]:

Ty (x) = fR (B = b()"K(x = W) dy

= Crmb(x) —a)""! /R () = 'K (x = y)hy(y) dy

=0
=Cb(x) —a)"Thij(x) + T((b — a)"h;)(x)

m—1

+ Y Crm(b(x) — )" /R () — @)K (x = y)hi(y) dy,

=1

wherea is a number to be chosen soon. Then the last term is further broken as
follows:

m—1
> Crmb(x) =) B0 = )'K (x = y)hj(y) dy
l=l n

-1 m—I1

Cim Y Chmi /R (b(x) = b(YN"(b(y) — )" "K(x — y)hj(y) dy
h=0 "

Il
3

~
[=N

=

=Y Cui fR () = b(y)"(b(y) — )" 'K (x — y)h;(y) dy

3

h=0
m—1
= CT((b—a)"h)(x) + Y Co s T, ((b — )" "hj)(x).
h=1

If we now takea = bp, then we obtain

D T hi(x) = C Y (b(x) — bo)" Thi(x) + Y _ T((b — bg,)"h;)(x)
j J J

J

m—1
+ Y Cun Ty (Z(b —~ ij)’”_hhj>(x).
h=1 j
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=)

Thus,

HI§u<{yeR”\Q:‘E:wQO—bQWT@QO
J

. A
+w<{yeR”\Q: ZT((b—bQ,.)'"hj)(y) >6})
J
~ -1 N
+w<{yeR”\Q: > m,m’l(?(b—bgj)m%)(y) >6})
=A+B+C.

To estimateA, we proceed as in the cage= 1 to obtain

c
Agxfﬁzym—@ywmmmmm
l‘l\ .

<< ( / |h<y>|dy) (ZM -
xf |b(x) — bg,|"w;(x) dx.
[x—xg,|<2k+ly;

If y € Q; then, by the generalized Holder inequality and the John—Nirenberg
theorem (recall thalth|lsmo = 1), we have

(2k+1yn 1b(x) — bo.|™w;(x) dx
; (2k+1}"j)n \/‘X—XQJ.|<2/H’1rj Qj J

- ; @r)" /2k“Qj|b(x) ~ baing, " w;j(x) dx

[o¢] 2—](
+ —/ |bor+1g, — bo,|"w;(x) dx
; (2k+1r]~)” 2k+1Qj Qi /
oo
—k
=C Z 275 = bzk+1Q_,-)m ||exle/m,2k+1Q_,- lw; ||L(|ogL)m,2k+1Q_,-
k=1

+CY 27k + DM (w))(y)
k=1

< CM_(ogrym (w;)(y).
Then
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S
A

C
=53 [ IO Magogern () () dy
i e

IA

C
;(Z [ 1700 Miatogiyn ) dy
j U9

+Z/Q |fQ_,-|ML(|ogL)m(wj)(y)dy)
j J

IA

C
: / £ Mgog iy () (¥) dy,
er

where we have used observation (12). Again, this observation combined with in-
equality (4) yields
5 D
> —
6

B= w*({x eR": ‘T(Z(b - bQ,)'"hj>(X)
j
C m
= Z[Q |b(x) = bg,|" | f(x) = fo;IMLaogry: (w;)(x) dx
j J

IA

IA

C .
—_inf ML<|ogL>s<w,><x)< / |b(x) = bo,|"| f(x)| dx
Y 9

+/ Ib(x)—bg,.l"’lfg,-ldX)
Q;
= B1+ B».
But it is easy to see that
B> < C/ | f(X)IMpogrys w(x) dx;
RVI

on the other hand, by the generalized Hélder inequality (8) we have

C .
Bi= 5 Y00 Mueonr(w) ) [ 1b0r) = bo, "1 ()l dx
i Qi

IA

C .
2 Inf Muqogr- () (1 Qi1 b = bo)" lexprivm, o ./ ctogy. o
J

IA

C .

- E |2f M qogrys (i) )|l f Il Litog Ly, 0; -
. J
j

Recalling thatd,, (1) = t(1+ log* t)™, by (7) we have
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11 eogrre. o, < 5121 in {HE/Qw('ﬂ“') }
J

<2 / o (M) dx
Qj A
and consequently

B <C Z/ (|f(x>|>ML(I0gL)5(wj)(x) dx

<c f <1>m<'f ;x)')ML<.ogL>s(w><x>dx.

To conclude the proof of the theorem, we are left with the estimat€ farhere
we will use the induction argument:
m—1
~5)

w({yeR”\Q. Zcth;(Z(b bo)" " h; )(y)
N iy A
= w({y € Rn \ Q: m,thh (f Z(b - bQ;)m_hXQj>()’)‘ > 1_2}>
h=1 j

+w<{yeR”\§2:

-1 3
T (Z(b - ij)mth,ij>(y)' > 1—2})
j

=C1+ Cs.

By the induction hypothesis, the theorem holdsifat m; then

)

M og L+ (w*)(x) dx

- £ ()] -
<Ccy Z —|b< ) = bo,|" ") My tog 1yps () (x) dx

h=1 j

m—1

C1<CZf ®h<|f;X)|‘Z(b(x)_ij)m_hXQj(x)
J

m—1
. | f(x)] m—
< C Z Zlgjf ML(IogL)h“‘(wj) L q)h< f)\ |b(x) - ij| h) dx.
h=1 i

Lety (t) = expr¥* —1 Then®,X(r)- v, 1, (t) < C®, (), becaused, (1) ~
t/(logt)* andy (1) ~ (logt)*. Then, combining (9) with the John—Nirenberg
theorem and (11), we obtain
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/ d>h<|f(x)| |b( ) Qj|mh> dx
Qj
=< / (Dm<|f('x)|> dx + wmfh(“?(x) — ij|m—h)dx
Qj A 0
= f q)’”<|f(x)l> dx + C|Qj|
Qj A

SC/ d>m<|f(x)|)d
Q; A

HenceC; can finally be estimated by

G < CZ me ML(,OQL)11+;(w,)f <|f(x)|>
i

= CZZ/ m(|f(X)|)ML(logL)h+f(w)(x) dx

h=1 j

<cC / q>m<|f(kx)|>ML(|ogL)mM(w)(x)dx.

We may controlC; in similar way by observing that (9) and Jensen’s inequality

yield
0; 9 *
1
N|Qj|~XLj|f|
EC/ cb,n('f(x)')d
N y

J
The proof is complete. O

J

References

[BS] C. Bennett and R. Sharplelnterpolation of operatorsAcademic Press, New
York, 1988.

[BG] D. L. Burkholder and R. F. Gund¥xtrapolation and interpolation of quasi-
linear operators on martingalegycta Math. 124 (1970), 249-304.

[C] M. Christ, Lectures on singular integral operator€BMS Regional Conf. Ser.
in Math., 77, Amer. Math. Soc., Providence, RI, 1990.
[CRW] R. Coifman, R. Rochberg, and G. Weisgctorization theorems for Hardy

spaces in several variableAnn. of Math. (2) 103 (1976), 611-635.

[CP1] D. Cruz-Uribe and C. PéreSharp two-weight, weak-type norm inequalities
for singular integral operatorsMath. Res. Lett. 6 (1999), 417—-428.



Sharp Weighted Endpoint Estimates for Commutators of Singular Integral37

[CP2]

, Two-weight, weak-type norm inequalities for fractional integrals,
Calderén—Zygmund operators and commutatdmsljana Univ. Math. J. 49
(2000), 697-721.
[GHST] J. Garcia-Cuerva, E. Harboure, C. Segovia, and J. L. Tovkeighted norm
inequalities for commutators of strongly singular integrdisdiana Univ.
Math. J. 40 (1991), 1397-1420.
[GR] J. Garcia-Cuerva and J. L. Rubio de Frandeighted norm inequalities and
related topicsNorth-Holland Math. Stud., 116, North-Holland, Amsterdam,
1985.
[J] J. L. JournéCalderén—-Zygmund operators, pseudodifferential operators and
the Cauchy integral of Calderdib,ecture Notes in Math., 994, Springer-
Verlag, Berlin, 1983.
[KR] M. A. Krasnosel'ski"and Ya. B. Ruticki Convex functions and Orlicz
spacesNoordhoff, Groningen, 1961.
[P1] C. PérezWeighted norm inequalities for singular integral operators,
J. London Math. Soc. (2) 49 (1994), 296-308.

[P2] , Endpoint estimates for commutators of singular integral operators,
J. Funct. Anal. 128 (1995), 163-185.
[P3] , Sharp estimates for commutators of singular integrals via iterations

of the Hardy-Littlewood maximal function&, Fourier Anal. Appl. 3 (1997),
743-756.

[RR] M. M. Rao and Z. D. RenTheory of Orlicz spacedvlonogr. Textbooks Pure
Appl. Math., 146, Dekker, New York, 1991.

C. Pérez G. Pradolini

Departamento de Matematicas Universidad Nacional del Litoral —
Universidad Autbnoma de Madrid CONICET

28049 Madrid Glemes 3450

Spain 3000 Santa Fe

Argentina
carlos.perez@uam.es

gpradoli@intec.unl.edu.ar



