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Ap weights for nondoubling measures in Rn and
applications

Joan Orobitg § and Carlos Pérez ¶

Abstract: We study an analogue of the classical theory of Ap(µ) weights in Rn

without assuming that the underlying measure µ is doubling. Then, we obtain
weighted norm inequalities for the (centered) Hardy-Littlewood maximal function
and corresponding weighted estimates for nonclassical Calderón-Zygmund operators
(in the sense of [NTV1]). We also consider commutators of those Calderón-Zygmund
operators with bounded mean oscillation functions (BMO), extending the main
result from [CRW]. Finally, we study self–improving properties of Poincaré–B.M.O.
type inequalities within this context, more precisely we show that if f is a locally
integrable function satisfying 1

µ(Q)

∫
Q
|f − fQ| dµ ≤ a(Q) for all cubes Q, then it is

possible to deduce higher Lp integrability result of f assuming certain simple
geometric condition on the functional a.

1 Introduction

The classical theory of harmonic analysis for maximal functions and singular integrals on
(Rn, µ) has been developed under the assumption that the underlying measure µ satisfies the
doubling property, i.e., there exists a constant C > 0 such that µ(B(x, 2r)) ≤ C µ(B(x, r))
for every x ∈ Rn and r > 0. However, some recent results on Calderón-Zygmund operators
([NTV1], [NTV2], [T1], [T2]) and functions of bounded mean oscillation ([MMNO], [T3])
show that it should be possible to dispense with the doubling condition for most of the
classical theory. The purpose of this paper is to present some results which strengthen this
point of view.

The use of doubling measures in Rn has two main advantages: (a) one can work with
the nested property of dyadic cubes and (b) the faces (or edges) of the cubes have measure
zero. The easiness and utility of the dyadic scheme is well known. The profit of (b) is the
continuity of the measure µ on cubes. That is, given cubes R0 ⊂ R1 one can find a monotone
family of cubes {Rs}, s ∈ [0, 1], such that Rs ⊂ Rt if s < t and the map L(s) = µ(Rs) is
continuos on [0, 1].

Following the previous paper [MMNO], we will renounce (a) but we shall maintain prop-
erty (b). Thus, our point of departure is to consider nonnegative Radon measures µ in Rn

without mass-points. Then a result of geometrical measure type (see [MMNO, Theorem 2])
assures that we may choose an orthonormal system in Rn so that any cube Q with sides par-
allel to the coordinates axes satisfies the above property (b)(µ(∂Q) = 0). Through this work
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we shall assume (making a rotation if necessary) that the measure µ and the orthonormal
system have this property. Moreover, we only shall consider cubes with sides parallel to the
coordinate axes.

Our measure satisfies a Calderón-Zygmund decomposition (see [MMNO] or Section 2
later), which is one of the basic and most frequently used tools in the classical theory. This
fact and the argument of its proof will allow us to recover many results without assuming that
the measure µ is doubling. Related to the Calderón-Zygmund decomposition, the Hardy-
Littlewood maximal operator also plays a central role. Given a locally integrable function f
one defines the (centered) Hardy-Littlewood maximal function M as

Mf(x) = sup
r>0

1

µ(Q(x, r))

∫
Q(x,r)

|f | dµ,

where Q(x, r) denotes the cube centered at x with sidelength equals to r. The noncentered
maximal function N is defined as

Nf(x) = sup
Q3x

1

µ(Q)

∫
Q

|f | dµ,

where the supremum is taken over all cubes Q containing x. Clearly, Mf(x) ≤ Nf(x)
and when the measure µ is doubling it also holds Nf(x) ≤ C Mf(x). However, if µ is
nondoubling the maximal functions Mf and Nf may be very different. For instance, it is
well known that the operator M acts on Lp(µ), p > 1, and from L1(µ) to L1,∞(µ), whereas
this is not the case in general for the operator N . On the other hand, weights for the
noncentered case N has been studied and characterized by Jawerth [Ja].

The first part of this paper is devoted to develop an analogue of the classical theory of
Ap(µ) weights with underlying measure µ as above. Then, we will obtain weighted norm
inequalities for M and corresponding weighted estimates for Calderón-Zygmund operators.
This result for singular integrals will follow as a consequence of a version of the classical
estimate by Coifman proved in [C]. We will also consider commutators of Calderón-Zygmund
operators with BMO extending the main result from [CRW].

In the second part of the paper we will study BMO–Poincaré type inequalities. We will
obtain similar results to those obtained in [FPW] and [MP] where the underlying measure
was assumed to be doubling. The main idea is as follows. Let a : Q → [0,∞) be a functional
defined on the family of cubes with sides parallel to the coordinates axes. We want to show
that if f is a locally integrable function satisfying

1

µ(Q)

∫
Q

|f − fQ| dµ ≤ a(Q)

for all cubes Q, then it is possible to deduce higher Lp integrability result of f assuming
certain simple geometric condition on a (see (15) below). Of course, the case a(Q) ≡ C
corresponds to BMO but it is also related to Poincaré when considering

a(Q) =
`(Q)

µ(Q)

∫
Q

g dµ.
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The paper is organized as it follows. Section 2 is devoted to define the Ap(µ) class of
weights and to study their properties. In Section 3 we shall prove the Lp(w)-boundedness
of M when w ∈ Ap(µ) (Muckenhoupt’s Theorem). Weights and commutators for nonclas-
sical singular integral operators are discussed in Section 4. Self-improving properties are
considered in Section 5.

Acknowledgment. We are grateful to J. Mateu and J. Verdera for their interest and
discussions concerning the results of this paper. We thank E. Saksman for sending us his
preprint [Sa]. The second author is very grateful for the hospitality of the Centre de Recerca
Matemàtica at the Universitat Autònoma de Barcelona where this work was completed.
Finally we are very grateful to the referee for the careful reading of the paper and for
providing us with some enlightening examples (see Remark 2.4).

2 Ap(µ) theory of weights

The purpose of this section is to describe a Ap theory of weights adapted to our more general
underlying measure µ. For this purpose we state a version of the classical Calderón-Zygmund
type decomposition adapted to our situation.

A useful tool to prove the above lemma will be the following auxiliary maximal function.
For a given cube Q and for each x in the interior of Q we define the basis

CQ(x) = {Qx(r)}

where Qx(r) is the unique cube with sidelength r contained in Q which minimizes the distance
from x to the center of Qx(r). The radius of a cube Q is defined to be half of the sidelength.
We define the corresponding maximal function

MQf(x) = sup
R:R∈CQ(x)

1

µ(R)

∫
R

|f(y)| dµ(y),

Observe that the properties on µ imply that the function hx(r) := 1
µ(Qx(r)

∫
Qx(r)

|f | dµ is

continuous on [0, `(Q)] for all x in the interior of Q.

We also denote by Ωt = {x ∈ Q : MQ(g)(x) > t} the level set of MQ(g).

Recall that a family of cubes {Qj} is quasidisjoint if there exists a universal constant C
such that

∑
j χQj

≤ C, where χE denotes the characteristic function of the set E.

Lemma 2.1 (The Besicovitch-Calderón–Zygmund decomposition ). Let Q be a cube and
let g ∈ L1(µ)(Q) be a non-negative function. Also let t be a positive number such that
t > gQ = 1

µ(Q)

∫
Q

g dµ and such that Ωt is not empty. Then there is a family of quasidisjoint

cubes {Qj}contained in Q satisfying

1

µ(Qj)

∫
Qj

g dµ = t
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for each j and such that

g(x) ≤ t for x ∈ Q \
⋃
j

Qj, µ–a.e. (1)

In fact we can write ⋃
j

Qj =

B(n)⋃
k=1

⋃
i∈Fk

Qi, (2)

where each of the family {Qi}i∈Fk
, k = 1, · · · , B(n), is formed by pairwise disjoint cubes.

B(n) > 1 is usually called the Besicovitch constant.

Proof: Since Ωt is not empty, for any x ∈ Ωt there is a cube Px ∈ CQ(x) such that
(µ(Px))

−1
∫

Px
g dµ > t. Therefore, since hx is continuous, we have a cube Qx ∈ CQ(x)

satisfying

1

µ(Qx)

∫
Qx

g dµ = t

with Qx ( Q. Now, observe that we can not apply directly the Besicovitch Covering Theorem
since x may not be the center of Qx. To overcome this obstacle we proceed as in [MMNO].
For any cube Qx we define the rectangle Rx in Rn as the unique rectangle in Rn centered
at x such that Rx ∩ Q = Qx. Clearly, the ratio of any two sidelengths of Rx is bounded
by 2. So, by the Besicovitch Covering Theorem we have a countable collection of rectangles
Rj such that they cover Ωt, and every point of Rn belongs to at most B(n) rectangles Ri.
Replacing each Rj by its corresponding cube Qj we get the cubes from the Lemma. Finally,
(1) follows by the Lebesgue differentiation theorem since x ∈ Q \Ωt implies g(x) ≤ t , µ-a.e.

2

A nonnegative, locally integrable function is called a weight. We will consider weights
which satisfy the following conditions.

Definition 2.2 Let 1 < p < ∞ and p′ = p/(p − 1). We say that a weight w satisfies the
Ap(µ) condition if there exists a constant K such that for all cubes Q(

1

µ(Q)

∫
Q

w dµ

)(
1

µ(Q)

∫
Q

w1−p′ dµ

)p−1

≤ K. (3)

We also say that a weight w satisfies the As
1(µ) = A1(µ) condition if there exists a constant

K such that for all cubes Q,

1

µ(Q)

∫
Q

w dµ ≤ K ess inf
x∈Q

w(x).

Finally, we define the A∞(µ) class as A∞(µ) =
⋃

p>1 Ap(µ)
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Observe that trivially, A1(µ) ⊂ Ap(µ) for all p > 1 and Ap(µ) ⊂ Aq(µ) if p < q.

The reason we use the notation As
1(µ) = A1(µ) (s from strong) is to distinguish this class

from the class Aw
1 (µ) (w from weak) of weights w such that for some constant C

Mw(x) ≤ C w(x)

almost everywhere in x. Observe that As
1(µ) ⊂ Aw

1 (µ) and indeed, in the classical situation,
i.e. if the underlying measure is doubling, both conditions are equivalent and hence As

1(µ) =
Aw

1 (µ). However, and this is a big gap between the two theories, we will show in Section 3
that, in general, we have that As

1(µ) ( Aw
1 (µ). In fact the class Aw

1 (µ) is too large since it is
also shown there that it is not a subset of Aw

∞(µ) in general.

We start by proving some of the classical results that hold in our more general situation.
However, as we shall see in next section not all of them will be true.

We will use the standard notation w(E) =
∫

E
w dµ, for any measurable set E.

Lemma 2.3 For a weight w the following conditions are equivalent:
a) w ∈ A∞(µ).
b) For every cube Q

1

µ(Q)

∫
Q

w dµ ≈ exp

(
1

µ(Q)

∫
Q

log w dµ

)
.

c) There are constants 0 < α, β < 1 such that for every cube Q

µ({x ∈ Q : w(x) ≤ β wQ}) ≤ α µ(Q). (4)

d) There are positive constants C and β such that for every cube Q and for every λ > wQ

w({x ∈ Q : w(x) > λ}) ≤ Cλ µ({x ∈ Q : w(x) > β λ}).

e) w satisfies a reverse Hölder inequality, namely there are positive constants c and δ such
that for every cube Q (

1

µ(Q)

∫
Q

w1+δ dµ

) 1
1+δ

≤ c

µ(Q)

∫
Q

w dµ.

f) There are positive constants c and ρ such that for any cube Q and any measurable set E
contained in Q then

w(E)

w(Q)
≤ c

(
µ(E)

µ(Q)

)ρ

. (5)

g) w satisfies the following condition: there are positive constants α, β < 1 such that whenever
E is a measurable set of a cube Q

µ(E)

µ(Q)
< α implies

w(E)

w(Q)
< β. (6)
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Remark 2.4 If one removes our standing assumption on the measure µ (that is, µ(∂Q) = 0
for any cube Q with sides parallel to the coordinates axes) then the Lemma 2.3 may be false,
as the following examples show (similar one dimensional examples can be found in the recent
paper [GMOPST]).

The referee provided us with these examples. We thank his/her anonymous and lucid con-
tribution.

First, consider on the line the Radon measure µ =
∑

k≥1 2−k2
δuk

, where uk is a decreasing
sequence of positive numbers such that uk ↓ 0 and δx is the point mass at x. Also let w be
the weight which takes on the value 2k2−k at uk for each k. Then one can easily check that
w ∈ A1(µ) and hence for all Ap(µ), p > 1. Moreover, the maximal operator M acts from
L1(w) to L1,∞(w) (because w ∈ A1(µ)) and so M acts on Lp(w), p > 1. However, it is clear
that w /∈ L1+ε

loc (µ) for any ε > 0 and so w doesn’t satisfy any reverse Hölder inequality.

The second example is a refinement of the previous one. We consider a Radon measure
ν on the line that is not atom-free but it is fairly nice: it gives positive finite measure to
all bounded intervals. Specifically, let ν be the sum of the Lebesgue measure on R and∑

k≥1 2−k2
(δuk

+ δ−uk
) where now uk = 2−k3

. Define w(±uk) = 2k2−k for each k and w equals
1 everywhere else. Then w ∈ Ap(ν) for all p > 1 (w /∈ A1(ν)), as can be checked case-by-case
(the point masses make only a bounded difference to the quantities on the left hand side of
(3) except for small intervals Q close to the origin; in the exceptional case, the one or two
point masses in the interval that are furthest from the origin dominate). Again, it is clear
that w /∈ L1+ε

loc (µ) for any ε > 0.

As a third example, we define µ to be the measure on R2 which is the product of ν and
Lebesgue measure on R. Picking cubes oriented in coordinate directions, µ has the same
behaviour as ν. The extra subtely is that µ is a non-atomic Radon measure to which the
results in this paper apply. But it doesn’t contradict our results because now we have chosen
the one orientation for cubes that violates condition (b) on the Introduction.

Proof of Lemma 2.3: We will write the complete proof of this lemma even though
several of the implications are trivial. In the literature (the Lebesgue measure case) there
are different ways to prove the main implication a) ⇒ e) , but only the one that we present
can be adapted to our setting. Here we combine the methods from [CF] and [GCRdF].

a) ⇒ b)

By Jensen’s inequality it is enough to show that

1

µ(Q)

∫
Q

w dµ ≤ C exp

(
1

µ(Q)

∫
Q

log w dµ

)
Since the Ap classes are increasing on p, if w ∈ A∞(µ) there exists some p0 > 1 such that

w ∈ Ap for p ≥ p0. Then, there exists a constant K such that for p ≥ p0(
1

µ(Q)

∫
Q

w dµ

)(
1

µ(Q)

∫
Q

w1−p′ dµ

)p−1

≤ K.
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Letting p tend to ∞ we obtain b).

b) ⇒ c)

Dividing w by an appropiate constant (to be precise exp
(

1
µ(Q)

∫
Q

log w dµ
)
) we may

assume that
∫

Q
log w dµ = 0 and, consequently wQ ≤ C.

µ({x ∈ Q : w(x) ≤ β wQ}) ≤ µ({x ∈ Q : w(x) ≤ β C})

= µ

(
{x ∈ Q : log(1 +

1

w(x)
) ≥ log(1 +

1

β C
)}
)

≤ 1

log(1 + 1
β C

)

∫
Q

log(1 +
1

w
) dµ =

1

log(1 + 1
β C

)

∫
Q

log(1 + w) dµ

since
∫

Q
log w dµ = 0. Now, since log(1 + t) ≤ t, t ≥ 0, we get:

µ({x ∈ Q : w(x) ≤ β wQ}) ≤
1

log(1 + 1
β C

)

∫
Q

w dµ ≤ C µ(Q)

log(1 + 1
β C

)
≤ 1

2
µ(Q),

if we choose β small enough.

c) ⇒ d)

Since we assume that λ > wQ we may consider the Besicovitch-Calderón–Zygmund
decomposition {Qj} of w and we find a family of quasidisjoint cubes satisfying

λ <
1

µ(Qj)

∫
Qj

w dµ ≤ 2 λ

for each j. By the properties of the cubes combined with (4) we have

w({x ∈ Q : w(x) > λ}) ≤
B(n)∑
k=1

∑
i∈Fk

w(Qi)

≤ 2λ

B(n)∑
k=1

∑
i∈Fk

µ(Qi) ≤
2 λ

1− α

B(n)∑
k=1

µ({x ∈ Qi : w(x) > β wQi
})

≤ 2 λ B(n)

1− α
µ({x ∈ Q : w(x) > β wQ})

since wQi
> λ > wQ.

d) ⇒ e)

We will be using the formula∫
X

f(x)p dν = p

∫ ∞

0

λpν({x ∈ X : f(x) > λ}) dλ

λ
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which holds for every nonnegative measurable function f and in any arbitrary measure space
(X, ν) with nonnegative measure ν. Then for arbitrary positive δ we have

1

µ(Q)

∫
Q

w1+δ dµ =
δ

µ(Q)

∫ ∞

0

λδw({x ∈ Q : w(x) > λ}) dλ

λ

=
δ

µ(Q)

∫ wQ

0

λδw({x ∈ Q : w(x) > λ}) dλ

λ
+

δ

µ(Q)

∫ ∞

wQ

λδw({x ∈ Q : w(x) > λ}) dλ

λ

≤ (wQ)1+δ +
δ

µ(Q)

∫ ∞

wQ

λδw({x ∈ Q : w(x) > λ}) dλ

λ

≤ (wQ)1+δ +
C δ

µ(Q)

∫ ∞

wQ

λδ+1µ({x ∈ Q : w(x) > β λ}) dλ

λ

≤ (wQ)1+δ +
C δ

β1+δ

1

µ(Q)

∫ ∞

wQ β

λδ+1µ({x ∈ Q : w(x) > λ}) dλ

λ

≤ (wQ)1+δ +
C δ

β1+δ

1

µ(Q)

∫
Q

w1+δ dµ.

If we choose δ small enough such that C δ
β1+δ < 1 the last term can be absorbed by the first

term of the string of inequalities.

e) ⇒ f)

This is just Hölder’s inequality with r = 1 + δ. Indeed if E ⊂ Q

w(E)

µ(Q)
=

1

µ(Q)

∫
Q

χEw dµ ≤
(

1

µ(Q)

∫
Q

wr dµ

)1/r (
µ(E)

µ(Q)

)1/r′

≤

C

µ(Q)

∫
Q

w dµ

(
µ(E)

µ(Q)

)1/r′

and this implies the A∞ condition (5) with ρ = 1/r′.

f) ⇒ g)

This is immediate.

g) ⇒ c)

First observe that condition (6) is equivalent to saying that there are positive constants
α′, β′ < 1 such that whenever E is a measurable set of a cube Q

w(E)

w(Q)
< α′ implies

µ(E)

µ(Q)
< β′. (7)

Then let E = {x ∈ Q : w(x) > bwQ} where b ∈ (0, 1) is going to be chosen now and let
E ′ = Q \ E = {x ∈ Q : w(x) ≤ bwQ}. Then w(E ′) ≤ b wQµ(E ′) ≤ b w(Q). Then if we take
b = β′ we have that µ(E ′) ≤ α′ µ(Q). This yields (4).

Therefore we have shown that c) ⇔ d) ⇔ e) ⇔ f) ⇔ g)
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c) ⇒ a)

We use again that condition e) is symmetric, namely that condition (7) holds. We also
use that the measure w dµ does not see hyperplanes parallel to the axes since the same is
true for dµ. Now, if we write dµ = w−1wdµ and since c) ⇔ e) we have that there are positive
constants c and δ such that(

1

w(Q)

∫
Q

(w−1)1+δ wdµ

) 1
1+δ

≤ c

w(Q)

∫
Q

w−1 wdµ.

Hence
w(Q)

µ(Q)

(
1

µ(Q)

∫
Q

w−δ dµ

)1/δ

≤ C.

Then, if we let δ = 1
p−1

, that is, p = 1
δ

+ 1 > 1 we have that w ∈ Ap.

The proof of the Lemma is now complete.
2

Now w ∈ Ap(µ), p > 1, obviously implies that w1−p′ ∈ Ap′(µ). Consequently, it is easy to
deduce the following corollary.

Corollary 2.5 Let p > 1 and let w ∈ Ap(µ), then:
(i) There is ε > 0 such that w ∈ Ap−ε(µ) and therefore

Ap(µ) =
⋃
q<p

Aq(µ)

(ii) There is η > 0 such that w1+η ∈ Ap(µ).

It is well known that there is an intimate relationship between the Ap weights and the
John-Nirenberg space BMO(µ) of locally integrable functions with bounded mean oscilla-
tion, namely if

sup
Q

1

µ(Q)

∫
Q

|f − fQ| dµ < ∞,

where the supremum is taken over all cubes Q with sides parallel to the cordinates axes.
As a consequence of the John-Nirenberg property for BMO(µ) ([MMNO]) and the above
lemma, we have the following relationship between weights and BMO.

Corollary 2.6
(i) If w ∈ A∞(µ) then log(w) ∈ BMO(µ).
(ii) Fix p > 1 and let b ∈ BMO(µ). Then there exists ε > 0 depending upon the BMO(µ)
constant of b such that exb ∈ Ap(µ) for |x| < ε.

We will skip the proof because the classical one (e.g. [GCRdF, chapter IV]) also works
in our setting.
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3 Muckenhoupt’s Theorem

The purpose of this section is to state show the following result similar to the classical
theorem of Muckenhoupt.

THEOREM 3.1 Let 1 < p < ∞ and suppose that w ∈ Ap(µ). Then, there exists a constant
C such that for all functions f∫

Rn

Mf(x)p w(x)dµ(x) ≤ C

∫
Rn

|f(x)|p w(x)dµ(x).

Further, suppose that w ∈ As
1(µ), Then, there exists a constant C such that for all functions

f

w({x ∈ Rn : Mf(x) > λ}) ≤ C

λ

∫
Rn

|f(x)|w(x)dµ(x).

Recall that this theorem is well known within the classical situation of Rn, when the
underlying measure is the Lebesgue measure, or more generally when the underlying measure
is doubling. Again we will omit its proof because it follows from the standard arguments.
The Ap condition (3) and Lemma 2.1 give the weak type (p,p) boundedness of M . Then
Corollary 2.5 and the Marcinkiewicz interpolation theorem complete the proof. On the other
hand, Jawerth [Ja] and Christ and Feffermann [ChF] gave a shorter proof of Muckenhoupt
result without using the reverse Hölder inequality; this approach doesn’t work in our context.

In contrast with Theorem 3.1 we have the following negative results showing that the
class Aw

1 is not the right class for the centered maximal function.

Remark 3.2 Let 1 < p < ∞. The following inequality is false in general:∫
Rn

Mf(x)p w(x)dµ(x) ≤ C

∫
Rn

|f(x)|p Mw(x)dµ(x). (8)

As a consequence, the following inequality is also false in general:

w({x ∈ Rn : Mf(x) > λ}) ≤ C

λ

∫
Rn

|f(x)|Mw(x)dµ(x).

Example (suggested to us by F. Soria and A. Vargas):

Take µ on Rn defined as dµ = exp(−
∑n

i=1 xi)dx, where dx denotes the Lebesgue measure
on Rn, and let w(x) = exp(

∑n
i=1 xi). Thus, w dµ = dx. Again, Q(x, r) denotes the cube

centered at x with sidelength equals to r. Therefore by trivial computations we get that

w(Q(x, r))

µ(Q(x, r))
= rn

(
n∏

i=1

e−xi(er/2 − e−r/2)

)−1

= w(x)

(
r

er/2 − e−r/2

)n
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and

Mw(x) = sup
r>0

w(Q(x, r))

µ(Q(x, r))
= anw(x).

Observe that this means that w ∈ Aw
1 (µ). In this example the inequality (8) is equals to∫

Rn

(Mf)p dx ≤ C

∫
Rn

|f(x)|p dx. (9)

Let f be the characteristic function of Q0, the cube of sidelength 1 and centered at
(1/2, . . . , 1/2). Clearly,

∫
|f(x)|p dx = 1. For each positive integer j we define Qj =

(j, . . . , j) + Q0 and let Pj be the cube centered at (j + 1, . . . , j + 1) with sidelength 2(j + 2).
Simply geometry and easy computations give that if x ∈ Qj

Mf(x) ≥ µ(Q0)

µ(Pj)
≥ (1− e−1)n

en
.

Consequently ∫
(Mf)p dx = ∞

and (9) doesn’t hold.

Note that this example shows that

w ∈ Aw
1 (µ) \ A∞(µ).

Remark 3.3 As a consequence of the above example, the following Wiener type inequality
is false in general: There exists a constant C such that for any cube Q (including Rn as
degenerate case with µ(Rn) = ∞) and for λ > |f |Q

C

λ

∫
{x∈Q:|f(x)|>λ}

|f(x)| dµ ≤ µ({x ∈ Q : Mf(x) > λ}). (10)

Proof: Assume that (10) is true and take f = w ∈ Aw
1 (µ), Mw(x) ≤ A w(x). Then for

λ > wQ

1

λ

∫
{x∈Q: w(x)>λ}

w(x) dµ ≤ Cµ({x ∈ Q : w(x) > A−1λ}).

This is precisely condition d) in Lemma 2.3. So that w would belong to A∞(µ), but as we
remarked in the above example the class Aw

1 (µ) is not always contained in A∞(µ).
2

We finish this Section by noting some gaps of our approach. The first one is that we
don’t know if the Lp(w)-boundedness of M implies that w ∈ Ap(µ). We only can obtain the
weaker condition (

1

µ(3Q)

∫
Q

w dµ

)(
1

µ(3Q)

∫
Q

w1−p′ dµ

)p−1

≤ K.

11



Let f ∈ L1
loc(µ) and take s ∈ (0, 1). It is well known that if the measure µ is doubling

then (Mf)s belongs to the class A1 ([CR].) In our setting we don’t know if this result is
true.

If we have two As
1(µ) weights w1 and w2 and if 1 < p < ∞, then it is easy to check

that w1w
1−p
2 belongs to the class Ap(µ). However, we don’t know if the converse is true. Of

course, if the factorization theorem were true then we would get the distance in BMO(µ)
to L∞(µ), that is, for f ∈ BMO(µ) we would have

inf {‖f − g‖∗ : g ∈ L∞(µ)} '
(
sup{λ > 0 : eλf ∈ A2(µ)}

)−1
.

When the measure µ is the Lebesgue measure this result is known as Garnett-Jones formula
(see [GCRdF, p. 445]).

4 Weights and singular integral operators

This section is devoted to deduce some weighted inequalities for non-classical Calderón-
Zygmund integral operators. The theory of Calderón-Zygmund operators on nonhomoge-
neous spaces has been developed by Nazarov, Treil and Volberg (see [NTV1] and [NTV2]).
We mention that Tolsa has also constructed a satisfactory theory for the particular case of
the Cauchy integral operator ([T1], [T2]).

Fix d > 0 (not necessarily integer). Throughout this section, µ will denote a non-negative
“d-dimensional” Borel measure, i.e., a measure satisfying

µ(B(x, r)) ≤ rd for all x ∈ Rn, r > 0.

Given a kernel K on Rn×Rn —i.e. a locally integrable, complex-valued function defined off
the diagonal— we say that it satisfies the standard “d-dimensional” estimates if there exist
δ ∈ (0, 1] and A > 0 such that

1. |K(x, y)| ≤ A|x− y|−d

2. |K(x, y)−K(z, y)| ≤ A
|x− z|δ

|x− y|d+δ

3. |K(y, x)−K(y, z)| ≤ A
|x− z|δ

|z − y|d+δ

whenever x, y, z ∈ Rn and |x− z| ≤ 1
2
|x− y|.

A bounded linear operator T on L2(µ) is called a Calderón-Zygmund integral operator
with Calderón-Zygmund kernel K if for every f ∈ L2(µ),

Tf(x) =

∫
Rn

K(x, y)f(y) dµ(y)

for µ-almost every x ∈ Rn \ supp f .
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A way to define the L2-boundedness is as follows. Consider the family of the truncated
operators Tε,

Tεf(x) =

∫
|y−x|>ε

K(x, y)f(y)dµ(y) .

We say that T is bounded in L2(µ) if all Tε are uniformly (in ε) bounded in L2(µ). In
[NTV1] it is proved that this holds if and only if the Tε (and its adjoint) are uniformly
bounded on characteristic functions of squares. Moreover, the L2-boundedness is equivalent
to the Lp-boundedness, for any p ∈ (1,∞). We refer the reader to the cited works of Nazarov,
Treil and Volberg to get an exhaustive information on Calderón-Zygmund operators on non-
homogeneous spaces.

Our starting point is that we have a Calderón-Zygmund integral operator T with a kernel
K as before. Therefore, the operator T is bounded on Lp(µ) and we want to conclude that
T is bounded on Lp(w) if w ∈ Ap(µ). Precisely,∫

Rn

|Tεf(x)|pw(x)dµ(x) ≤ C

∫
Rn

|f(x)|pw(x)dµ(x) (11)

where C is a constant independent of ε and f . However, not all weights satisfying (11)
belong to the class Ap(µ). There is an example of this fact in [Sa]. In the example of E.
Saksman the operator T is the Hilbert transform and the measure µ is the Lebesgue measure
restricted to a particular open set of R.

We have all ingredients to prove (11), in fact we have the well–known method (e.g. [St,
p. 205–209]), the classical “good λ inequality” (as used in [V]) and weights for the centered
maximal function (our contribution).

Without loss of generality we assume that µ(∂Q) = 0 for any cube Q, (we need this
property to apply our weight’s properties). For technical reasons we redefine the truncated
operators Tε,

Tεf(x) =

∫
y 6∈Q(x,ε)

K(x, y)f(y)dµ(y) ,

where Q(x, ε) is the cube centered at x and sidelength ε. Observe that the difference between
the truncated operator using a ball of radius ε and the trucated operator using a cube of
sidelength ε is pointwise bounded by the centered maximal function. Therefore, they have
the same behavior with respect to the Lp-boundedness.

For each ε > 0 and f ∈ Lp(µ) we define the maximal operator

T ∗
ε f(x) := sup

δ>ε
|Tδf(x)|

(It is known that T ∗
ε f ∈ Lp(µ) and the operator T ∗

ε is weak type (1,1) [NTV2], [T2]).

Then we will prove that for any w ∈ A∞ and for appropiate constants a, β and γ we have
that

w ({x : T ∗
ε f(x) > (1 + β)t, Mf(x) ≤ γt}) ≤ aw ({x : T ∗

ε f(x) > t}) (12)

holds for all t > 0. Therefore, if ap < (1 + β)−1 this relative distributional inequality easily
gives:

13



THEOREM 4.1 Let 0 < p < ∞ and suppose that w ∈ A∞(µ) then the inequality∫
Rn

|T ∗
ε f(x)|pw(x)dµ(x) ≤ C

∫
Rn

Mf(x)pw(x)dµ(x) ,

holds for every f for which the left hand side is finite.

Clearly, (11) is a corollary of this theorem.

Since the statement of inequality (12) is somewhat simpler when w ≡ 1 (and since its
proof easily implies the general case), we first consider that special situation. The set
Ω = {x ∈ Rn : T ∗

ε f(x) > t} is open (by definition of T ∗
ε and because µ(∂Q) = 0 for

any cube Q). Therefore we can decompose it as a disjoint union Ω = ∪Qj of Whitney cubes:
they are mutually disjoint and 2 diam (Qj) ≤ dist (Qj, Ω

c) ≤ 8 diam (Qj).

Moreover, the family 4Qj is almost disjoint with constant 4n and obviously 4Qj ⊂ Ω. We
are going to show that, given β > 0 and 0 < α < 1 there exists γ = γ(β, α, n) such that for
all j

µ ({x ∈ Qj : T ∗
ε f(x) > (1 + β)t and Mf(x) ≤ γt}) ≤ αµ(4Qj). (13)

Then summing over j,

µ ({x : T ∗
ε f(x) > (1 + β)t and Mf(x) ≤ γt}) ≤ α4nµ(Ω).

Choosing α so that α4n < 1 we get (12) for the special case w ≡ 1. For general w, recall
that if w belongs to A∞(µ) there are positive constants c and ρ such that for all cubes Q
and all subsets E ⊂ Q,

w(E)

w(Q)
≤ c

(
µ(E)

µ(Q)

)ρ

.

Looking back at (13) we obtain

w ({x ∈ Qj : T ∗
ε f(x) > (1 + β)t and Mf(x) ≤ γt}) ≤ cαρw(4Qj) .

Summing again over j,

w ({x : T ∗
ε f(x) > (1 + β)t and Mf(x) ≤ γt}) ≤ cαρ4nw(Ω) .

Choosing α so that cαρ4n < (1 + β)−1 we would finally get (12).

We have only to prove (13). Fix j and set Q = Qj and r = l(Q). Assume that there
exists b ∈ Q so that Mf(b) ≤ γt (if not the set appearing in (13) would be empty). Let
z be a point in Ωc (that is, T ∗

ε f(z) ≤ t) such that dist (z, Q) = dist (Q, Ωc). Now turn our
attention to some simple geometric facts about the cube Q and observe that

Q ⊂ P ≡ Q(b,
5

2
r) ⊂ 4Q ⊂ B ≡ Q(z, 18r) .
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Set f1 = fχB and f2 = f − f1. Then, for x ∈ Q and δ > ε,

|Tδf1(x)| ≤ |Tδ(fχP )(x)|+ C

rd

∫
B

|f(y)| dµ(y)

≤ T ∗
ε (fχP )(x) + CMf(b)

≤ T ∗
ε (fχP )(x) + Cγt

and so
|Tδf(x)| ≤ |Tδf2(x)|+ T ∗

ε (fχP )(x) + Cγt.

To compare Tδf2(x) with Tδf2(z) we use the standard arguments (see [St, p. 208]). We get

|Tδf2(x)− Tδf2(z)| ≤ CMf(b)

and
|Tδf2(z)| ≤ T ∗

ε f(z) ≤ t.

Therefore
T ∗

ε f(x) ≤ T ∗
ε (fχP )(x) + (1 + Cγ)t , x ∈ Q .

Now choose γ so that 2Cγ ≤ β and consequently

{x ∈ Q : T ∗
ε f(x) > (1 + β)t and Mf(x) ≤ γt} ⊂ {x ∈ Q : T ∗

ε (fχP )(x) >
β

2
t}

Finally, using that T ∗
ε is weak type (1,1) we have

µ

(
{x ∈ Q : T ∗

ε (fχP )(x) >
β

2
t}
)
≤ C

βt

∫
P

|f(y)|dµ(y) =

=
C

βt

µ(P )

µ(P )

∫
P

|f(y)|dµ(y) ≤ C

βt
µ(P )Mf(b) ≤

≤ C

β
γµ(4Q) ≤ αµ(4Q),

always provided that γ is chosen small enough so that Cβ−1γ ≤ α.

As an application of our result we shall prove that the commutator [b, Tε] defined as

[b, Tε]f = b · Tεf − Tε(b · f)

is a bounded operator in Lp(µ) when b ∈ BMO(µ). This is an extension of the classical
result of Coifman, Rochberg and Weiss [CRW].

THEOREM 4.2 Let b ∈ BMO(µ), w ∈ Ap(µ), p > 1, and let T be a Calderón-Zygmund
operator. Then

||[b, Tε]f ||Lp(w) ≤ C||b||∗||f ||Lp(w).
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Our proof is very close to the less known proof of the theorem in [CRW], see for instance
[GCRdF, p. 473]. Tolsa [T3] has proved that the same result holds when w ≡ 1 if one
replaces b ∈ BMO(µ) by b ∈ RBMO(µ), another space of functions of bounded mean
oscillation more adapted to work with singular integrals and sharp maximal functions. His
proof doesn’t use weights, but it is based on the use of a sharp maximal operator.

Proof: To simplify notation we will write T instead of Tε. By Corollary 2.5 ii) there is
η > 0 such that w1+η ∈ Ap(µ). Then using Corollary 2.6 (ii) we choose δ > 0 such that
exp(s p b(1+η)/η) ∈ Ap(µ) if 0 ≤ s(1+η)/η < δ with uniform constant. For z ∈ C we define
the operator

Szf = ezbT (e−zbf).

We claim that
‖Szf‖Lp(w) ≤ C‖f‖Lp(w)

uniformly on |z| ≤ s < δη/(1 + η).

The function z 7→ Szf is analytic, and by the Cauchy theorem, if s < δη/(1 + η),

d
dz

Szf |z=0
=

1

2πi

∫
|z|=s

Szf

z2
dz.

Observing that
d
dz

Szf |z=0
= [b, T ]f

and applying the Minkowski inequality to the previous equality we conclude

‖ [b, T ]f ‖Lp(w)≤
1

2π

∫
|z|=s

‖Szf ‖Lp(w)

s2
|dz| ≤ C

s
‖ f ‖Lp(w) .

Thus, we are left with proving the claim, which is equivalent to∫
|Tf(x)|p exp(<(z)pb(x)) w(x) dµ(x) ≤ C

∫
|f(x)|p exp(<(z)pb(x)) w(x) dµ(x) (14)

We write w0 := exp(<(z)p b(1 + η)/η) and w1 := w1+η. Since w0 and w1 belong to Ap(µ) we
have ∫

|Tf(x)|pw0(x) dµ(x) ≤ C

∫
|f(x)|pw0(x) dµ(x)

and ∫
|Tf(x)|pw1(x) dµ(x) ≤ C

∫
|f(x)|pw1(x) dµ(x).

Now, by the Stein-Weiss interpolation theorem (e.g. [BeL, p.115]) we have that∫
|Tf(x)|pw1−θ

0 wθ
1 dµ(x)

≤ C

∫
|f(x)|pw1−θ

0 wθ
1 dµ(x)

and taking θ = (1 + η)−1 we get (14).
2
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5 BMO–Poincaré inequalities

In this section we shall apply the results from Section 2 to extend the main theorem from
[FPW] and [MP] to our setting. It has been shown in these papers that there is a unified
theory of some well known classical results concerning Lp properties of functions with some
kind of smoothness, more precisely with control on the oscillation. In particular it is shown
for instance both the classical Sobolev theorem and the Lp property of BMO functions are
part of a more general phenomenon of self–improving properties.

As in [FPW] and [MP] we impose the following discrete condition on the functional a
relative to a locally integrable weight function w.

Recall that a functional a is a function a : Q → [0,∞) whereQ denotes the family of cubes
with sides parallel to the coordinates axes. Recall that we use the notation w(E) =

∫
E

w dµ.

Definition 5.1 Let 0 < r < ∞ and w be a weight function. We say that the functional a
satisfies the weighted Dr condition if there exists a finite constant C such that for each cube
Q and any family ∆ of pairwise disjoint subcubes of Q,∑

P∈∆

a(P )rw(P ) ≤ Cr a(Q)rw(Q). (15)

We denote by ‖a‖ the best constant C.

We introduce the notation

‖g‖Lr,∞(Q,w) = sup
t>0

t

(
w({x ∈ Q : |g(x)| > t})

w(Q)

)1/r

for the normalized weak or Marcinkiewicz Lr norm.

Before we present our result we need to make some observations in order to adapt to our
setting some well known properties of the so–called optimal polynomials defined as follows.
Fix a cube Q and a nonnegative integer m. The space Pm of real-valued polynomials of
degree at most m is a Hilbert space with the inner product

1

µ(Q)

∫
Q

fg dµ.

Consider the orthonormal basis {ϕν}, |ν| ≤ m, obtained by applying the Gram–Schmidt
orthonormalization process to the power functions {xν}, |ν| ≤ m. Observe that

‖ϕν‖L∞(Q) ≤ C

(
1

µ(Q)

∫
Q

|ϕν |2 dµ

)1/2

= C (16)

since the space Pm is finite dimensional, and so all norms on it are equivalent. The constant
C depends only on m.
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We let PQ be the operator defined by

PQf(x) =
∑
|ν|≤m

1

µ(Q)

∫
Q

fϕν dµ ϕν(x),

which is a projection from L1(Q) onto Pm. By (16) we have the following key property:

‖PQf‖L∞(Q) ≤
γ

µ(Q)

∫
Q

|f(y)| dµ(y), (17)

where γ = C2. Observe that when m = 0, PQf = fQ = 1
µ(Q)

∫
Q

f dµ. These polynomials
PQf are optimal in the sense that

inf
π∈Pm

1

µ(Q)

∫
Q

|f − π| dµ ≈ 1

µ(Q)

∫
Q

|f − PQf | dµ.

In fact we may replace the L1 norm by any Lp norm, 1 < p < ∞. Indeed, the inequality
in the direction “≤” is trivial. To prove the opposite inequality, observe that since PQ is a
projection we have PQπ = π for any polynomial of degree at most m, and therefore

1

µ(Q)

∫
Q

|f − PQf | dµ ≤ 1

µ(Q)

∫
Q

(|f − π|+ |PQ(f − π)|) dµ

≤ 1

µ(Q)

∫
Q

|f − π| dµ + ‖PQ(f − π)‖L∞(Q) ≤
1 + γ

µ(Q)

∫
Q

|f − π| dµ

by (17).

THEOREM 5.2 Let µ be a measure as above and let w be an A∞(µ) weight. Let a be a
functional satisfying the Dr condition (15). Suppose that f is a locally integrable function
such that for all cubes Q in Rn

1

µ(Q)

∫
Q

|f − PQf | dµ ≤ a(Q) (18)

Then there exists a constant C such that for all the cubes Q in Rn

‖f − PQf‖
Lr,∞(Q,w)

≤ C ‖a‖ a(Q).

Corollary 5.3 Under the same hypothesis of the Theorem, if 0 < p < r, then there exists a
constant C = C(p) independent of f and Q such that(

1

w(Q)

∫
Q

|f − PQf |p wdµ

)1/p

≤ C ‖a‖ a(Q).
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This is a consequence of the well-known inequality(
1

ν(E)

∫
E

|h|p wdµ

)1/p

≤ Cp,r ‖h‖Lr,∞(E),

which holds in any measure space of finite measure, and whenever p lies between zero and r.

Proof of Theorem 5.2. To prove the theorem we adapt the method considered in
[FPW, Appendix] which again is based on the good–λ method.

The first step. For a fixed cube Q we let E(Q, t) = {x ∈ Q : |f(x)− PQf(x)| > t}
and Ω(Q, t) = {x ∈ Q : MQ(f − PQf)(x) > t}. Observe that by the Lebesgue differentation
theorem E(Q, t) ⊂ Ω(Q, t), µ almost everywhere. We want to prove that

sup
t>0

tr
w(Ω(Q, t))

w(Q)
≤ C a(Q)r (19)

with a constant C independent of t > 0. First observe that we may assume that t > a(Q)
since otherwise (19) is easy. With this assumption the Besicovitch-Calderón–Zygmund
decomposition of |f − PQf | gives us a family {Qt

i} of cubes strictly contained in Q, such
that

1

µ(Qt
i)

∫
Qt

i

|f − PQf | dµ = t (20)

and such that Ω(Q, t) ⊂ ∪iQ
t
i µ–almost everywhere. Since w is absolutely continuous with

respect to µ we have

w(E(Q, t)) ≤
∑

i

w(Qt
i).

To any of these cubes Qt
i we perform again the corresponding Besicovitch-Calderón–Zygmund

decomposition of |f − PQf | at level qt with q > 1 and we obtain another family of subcubes
{Qqt

j }, strictly contained in Qt
i, such that for each j

1

µ(Qqt
j )

∫
Qqt

j

|f − PQf | dµ = q t (21)

and hence for each i, {x ∈ Qt
i : |f(x)− PQf(x)| > qt} ⊂

⋃
j Qq t

j (µ–almost everywhere). On

the other hand, if x ∈ Q \ ∪iQ
t
i then x /∈ ∪jQ

q t
j and hence |f(x)− PQf(x)| ≤ qt µ–almost

everywhere. Therefore

E(Q, qt) =
⋃
i

{x ∈ Qt
i : |f(x)− PQf(x)| > qt} ⊂

⋃
j

Qqt
j (22)

µ–almost everywhere and consequently

w(E(Q, qt)) ≤
∑

j

w(Qq t
j ).

The second step (good-lambda inequality).
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Recall that ‖a‖, γ, B(n) ≥ 1 denote the constants in (15), (17) and the Besicovitch
constant respectively. Also, ρ denotes the constant in the A∞ condition (5).

We claim the following:

There exists a constant c such that for each q > γ and 0 < ε ≤ ‖a‖ and t > 0
the following estimate holds

∑
j

w(Qq t
j ) ≤ [B(n)]2

(
ερ c

(q − γ)ρ

∑
i

w(Qt
i) +

‖a‖r

εrtr
a(Q)rw(Q)

)
. (23)

Let us observe first that for t ≤ a(Q) the inequality (23) trivially holds. Indeed, since the
family {Qqt

j } has bounded overlap with constant B(n)2 we have∑
j

w(Qq t
j ) ≤ B(n)2 w(Q) ≤ [B(n)]2

‖a‖r

εrtr
a(Q)rw(Q)

which is smaller than the right side of the inequality.

¿From now on we fix ε > 0 and t > a(Q). Using (2) it is easy to see that we may assume
that the cubes {Qt

i} are pairwise disjoint as well as the cubes {Qtq
j } inside each cube Qt

i.
Therefore we only have to prove (23) without the constant (B(n))2 on its right hand side.

We split the family {Qt
i} in two:

(i) i ∈ I if
1

|Qt
i|

∫
Qt

i

|f − PQt
i
f | < ε t

or (ii) i ∈ II if

1

|Qt
i|

∫
Qt

i

|f − PQt
i
f | ≥ ε t.

Then ∑
j

w(Qq t
j ) =

∑
i∈I

∑
Qqt

j ⊂Qt
i

w(Qqt
j ) +

∑
i∈II

∑
Qqt

j ⊂Qt
i

w(Qqt
j ) = I + II

To estimate the second sum II we will use (18) and (15):

II ≤
∑
i∈II

w(Qt
i) ≤

∑
i∈II

(
1

εt|Qt
i|

∫
Qt

i

|f − PQt
i
f |

)r

w(Qt
i)

≤ 1

εrtr

∑
i

a(Qt
i)

rw(Qt
i) ≤

‖a‖r

εrtr
a(Q)rw(Q).

To estimate I we use that w ∈ A∞(µ) and therefore it satisfies (5). Thus
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I =
∑
i∈I

w(
⋃

Qqt
j ⊂Qt

i

Qqt
j ) ≤ c

∑
i∈I

(
µ(
⋃

Qqt
j ⊂Qt

i
Qqt

j )

µ(Qt
i)

)ρ

w(Qt
i)

Now to estimate the inner unweighted part we first observe that by (17) and (20)

|PQt
i
f − PQf | = |PQt

i
(f − PQf)| ≤ γ

µ(Qt
i)

∫
Qt

i

|f − PQf | dµ = γt

and hence by (21)

qt =
1

µ(Qqt
j )

∫
Qqt

j

|f − PQf | dµ ≤ 1

µ(Qqt
j )

∫
Qqt

j

|f − PQt
i
f | dµ + γt

and then

µ(Qqt
j ) ≤ 1

(q − γ)t

∫
Qqt

j

|f − PQt
i
f | dµ.

Therefore

µ(
⋃

Qqt
j ⊂Qt

i

Qqt
j ) =

∑
Qqt

j ⊂Qt
i

µ(Qqt
j ) ≤

∑
Qqt

j ⊂Qt
i

1

(q − γ)t

∫
Qqt

j

|f − PQt
i
f | dµ

≤ 1

(q − γ)t

∫
Qt

i

|f − PQt
i
f | dµ ≤ ε

q − γ
µ(Qt

i)

since i ∈ I. Combining this estimate we get

I ≤ ερ c

(q − γ)ρ

∑
i∈Fk

w(Qt
i)

and finally ∑
j

w(Qq t
j ) ≤

(
ερ c

(q − γ)ρ

∑
i

w(Qt
i) +

‖a‖
εrtr

a(Q)rw(Q)

)
,

as desired.

The third step. We now are ready to prove (19). Let t0 > 0 be a constant to be
chosen in a moment and let q such that q − γ > 1. Also, we denote E(Q, t0) = E0 and
E(Q, qmt0) = Em for m = 1, 2, · · · . We have the inclusions

E0 ⊃ E1 ⊃ · · ·Em ⊃ · · · .

To each set Em we assign and fix a family of cubes {Qm
i } following the method described

above in the first step of the proof of the theorem. We start by taking the family {Q0
i } =
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{Qt0
i }, corresponding to the first level set E0, and from this we obtain {Q1

i } and we keep
repeating the procedure. Then we have⋃

i

Q0
i ⊃

⋃
i

Q1
i ⊃

⋃
i

Q2
i ⊃ · · · ⊃

⋃
i

Qm
i ⊃ · · ·

and by (22) we have, µ–almost everywhere,

Em ⊂
⋃
i

Qm
i .

Therefore
w(Em) ≤

∑
i

w(Qm
i ) = I(m).

Now, since q > γ we have by the good-λ inequality (23) that

I(m) ≤ C ερI(m− 1) + C
‖a‖r

εr(qm−1t0)r
a(Q)rw(Q),

and hence for each m = 1, 2, · · ·

(qmt0)
rI(m)

w(Q)
≤ C qrερ (qm−1t0)

rI(m− 1)

w(Q)
+ C qr ‖a‖

r

εr
a(Q)r. (24)

Also for m = 0 there is a corresponding inequality:

tr0I(0)

w(Q)
≤ C qr‖a‖r

εr
a(Q)r,

using that I(0) ≤ C w(Q), ε ≤ ‖a‖, and by choosing t0 = q a(Q).

Now for each N = 1, 2, · · · , we define

ϕ(N) = sup
m=0,1,··· ,N

(qmt0)
rI(m)

w(Q)
< ∞.

Then, combining the last inequality with (24) we get

ϕ(N) ≤ C qrερϕ(N) + C qr ‖a‖
r

εr
a(Q)r

and we can choose ε > 0 sufficiently small such that

ϕ(N) ≤ C ‖a‖r a(Q)r.

This means that

tr
w(Et)

w(Q)
≤ C ‖a‖r a(Q)r,

for t of the form t = qmt0, m = 0, 1, · · · . This yields immediately the result for arbitrary t
concluding the proof of the theorem.
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Departament de Matemàtiques Departamento de Matemáticas
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