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Trudinger Inequalities without Derivatives

Paul MacManus§ and Carlos Pérez ¶

Abstract: We prove that the Trudinger inequality holds on connected homogeneous
spaces for functions satisfying a very weak type of Poincaré inequality. We also
illustrate the connection between this result and the John-Nirenberg theorem for
BMO.

Introduction

The Sobolev Embedding Theorem says that functions in W 1,q
loc (Rn) actually lie in Lr

loc for
r = nq/(n− q) when 1 ≤ q < n. A more precise version of this statement is the following
local inequality: (

1

|B|

∫
B

|f − fB|r
) 1

r

≤ C r(B)(
1

|B|

∫
B

|∇f |q)
1
q (1)

for any ball B. When q tends to n the constant C on the righthand side blows up and so
the limiting case with q = n, i.e., W 1,n

loc ⊆ L∞loc, is false. The correct result in this instance is
that W 1,n

loc lies locally in the class exp Ln′ , where n′ is the conjugate exponent to n. The
corresponding inequality, called Trudinger’s Inequality, is

‖f − fB‖exp Ln′ (B) ≤ C (

∫
B

|∇f |n)
1
n . (2)

It should be mentioned that it was also derived by Yudovich in [Y]. See [GT], for instance,
for a proof in the case that f has compact support. The norm on the lefthand side is the
Luxemburg (or Orlicz) norm associated to the function Φ(t) = exp tn

′ − 1 (see Section 2).
Trudinger’s inequality has proved to be one of the key results in the study of parabolic and
elliptic equations at the critical index (which is n in the case of Rn). In addition, the sharp
value for the constant C appearing on the righthand side (see Moser [Mo], and Adams [Ad]
for the higher dimensional version) plays a major role in geometry, especially in the
problem of prescribing Gaussian curvatures on spheres.

The papers [HaK1], [HaK2], [FPW], and [MP] show how the inequality (1) is really a
consequence of the self-improving nature of simpler inequalities, such as (3) and (4) below,
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and that this self-improving phenomenon holds in great generality. The following
(Poincaré) inequality holds for any f ∈ W 1,1

loc (Rn):

1

|B|

∫
B

|f − fB| ≤ C
r(B)

|B|

∫
B

|∇f | (3)

This can be deduced from the representation formula |f − fB| ≤ C I1(|∇f |χ
B

), where I1 is
the fractional integral of order n− 1. An immediate consequence is that

1

|B|

∫
B

|f − fB| ≤ C r(B)

(
1

|B|

∫
B

|∇f |q
) 1

q

. (4)

When q = n, this transforms into

1

|B|

∫
B

|f − fB| ≤ C

(∫
B

|∇f |n
) 1

n

. (5)

Haj lasz and Koskela [HaK2] showed that if X is a connected metric space and if
f ∈ L1

loc(X) satisfies the inequality (5) for all balls B but with |∇f | on the right replaced
by any function g ∈ Ln

loc, then f satisfies (2) (with |∇f | replaced by g). Their proof follows
the classical path of showing that f satisfies (1) for all 1 ≤ r < ∞ and that the constant C
in (1) is comparable to r1−1/n as r →∞. Expanding the exponential in a power series and
using these estimates to bound the sum of the series yields (2).

In this paper we extend the result of Haj lasz and Koskela by showing that the
inequality (5) still self-improves to a Trudinger-type inequality when the righthand side of
(5) is replaced by a general functional a that satisfies the condition Tp defined below, and
that we can insert a very general weight in the inequality. Furthermore, our proof is direct
in that it does not depend on passing through the inequalities (1). We also illustrate the
connection between this result and the archetypical self-improving theorem, the
John-Nirenberg Theorem, by showing that the latter can be viewed as a limiting case of
the former obtained by letting p →∞ in the condition Tp.

Let (S, d, µ) be a space of homogeneous type, and a : B → [0,∞) be a functional defined
on the family B of all balls in S. Recall that d denotes a pseudo-metric on S and that µ is
a measure that is doubling with respect to d. K will denote the pseudo-metric constant,
this constant being 1 in the metric case.

Definition 1.1 . Let 1 < p < ∞. We say that the functional a satisfies the Tp condition if
there exists a finite constant c such that for each ball B∑

j

a(Bj)
p ≤ cp a(B)p (6)

whenever {Bj} is a family of pairwise disjoint sub-balls of B.

2



We will use ‖a‖ to denote the smallest constant c for which (6) holds. We always have

‖a‖ ≥ 1. Examples are a(B) =
(∫

B
gp
) 1

p where g ∈ Lp
loc(S) and, more generally,

a(B) = ν(B)
1
p

where ν is a locally finite measure. Observe that these conditions are increasing, in the
sense that if r < s, then any functional satisfying Tr also satisfies Ts. Also observe that this
condition is much stronger than the Dr condition:∑

j

a(Bj)
rµ(Bj) ≤ cp a(B)pµ(Bj)

whenever {Bj} is a family of pairwise disjoint sub-balls of B, since in particular a is
essentially increasing. The Dr condition was considered in [FPW] and [MP] to deduce Lp

type self–improving properties.

Theorem 1.2 Assume that S is connected, that the functional a satisfies the Tp condition
for some 1 < p < ∞, and that w is a doubling measure on S that is absolutely continuous
with respect to µ. Let δ > 0 be given. For any ball B define B̂ to be (1 + δ)KB.

If f is a locally integrable function for which there exist constants τ ≥ 1 and ‖f‖a > 0
such that for all balls B

1

µ(B)

∫
B

|f − fB| dµ ≤ ‖f‖a a(τB), (7)

then there exists a constant C independent of f such that

‖f − fB‖
exp Lp′ (B,w)

≤ C ‖f‖a a(τB̂). (8)

for any ball B.

Note the important fact that the functional a need not depend on f , in contrast to the

classical case where the functional is given by a(B) =
(∫

B
|∇f |n

) 1
n In particular, no

differentiability structure is needed.

In the proof of the theorem one cannot take δ = 0 in general as we usually do not have
enough geometric control to work inside the original ball all the time. For the same reason,
when one proves an inequality such as (7) the constant τ is typically greater than one. If S
has more geometric structure, then there is an attractive, and by now standard, procedure
for showing that the constant τ in a Poincaré inequality such as (7) can be replaced by 1.
It is sufficient that all balls in S satisfy a chain condition such as the Boman chain
condition. This holds, for example, when S is a length space, i.e., the quasimetric is a
metric and the distance between two points is given by the infimum of the lengths of all
rectifiable curves joining them. See [B], [Bo], [FGW], [FPW], [GN], [HaK2], [Je], [L2], and
the references therein.
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The hypothesis that S be connected can be relaxed. What is really required is
Proposition 2.4 below hold. If, for example, S is connected and a new homogenous space
S ′ is obtained by removing a set of measure zero from S (and keeping the same quasimetric
and measure) then S ′ satisfies the proposition and so the theorem is valid for this new
space.

The theorem covers a wide variety of previously known special cases. A basic example is
the space (Rn, ρ, dx) where ρ is the metric associated to a collection X1, · · · , Xm of
Hörmander vector fields (cf. [FP], [NSW] and [SCa]). The starting point here is the
following estimate from [Je]:

1

|B|

∫
B

|f(x)− fB| dx ≤ C
r(B)

|B|

∫
B

|Xf(x)| dx, (9)

where |Xf | =
∑
|Xif |. Consequently,

‖f − fB‖
exp LQ′

(B,w)

≤ C r(B)

(∫
bB |Xf(x)|Q dx

)1/Q

, (10)

where Q is the “homogeneous ” dimension and 1/Q + 1/Q′ = 1. This type of estimate was
first considered in [Fr] in the compactly supported case and the general case was studied
[GN] and [L1].

Another example is Buser’s version [Bu] of the Poincaré inequality for complete
manifolds (M, g) with Ricci curvature bounded below by −a2 g with a ≥ 0. Here the
gradient and measure are the Riemannian ones and the relevant Poincaré inequality is:

1

|B|

∫
B

|f − fB| ≤ C ea C r(B) r(B)

|B|

∫
B

|∇f |. (11)

The corresponding Trudinger estimate is

‖f − fB‖
exp Ln′ (B,w)

≤ C r(B)ea C r(B)

(∫
bB |∇f |n

)1/n

, (12)

The measures on these manifolds need not be globally doubling. Nevertheless, they will be
locally doubling. Indeed, on a ball of radius R the measure will satisfy (16) with
cµ = Cea

√
n−1R and D being the dimension of the manifold (see [SCo]). This local estimate

for the doubling constant is all that is needed for the proof of Theorem 1.2 to yield (12).

We will show in Section 4 that Theorem 1.2 is false in general when the hypothesis that
S is connected is dropped. The best estimate that can be obtained in the non-connected
case is a BMO (or exponential) type estimate. In fact, this estimate can be obtained for
functionals a satisfying a condition that is considerably weaker than any Tp, although we
need to assume more about w.

Definition 1.3 . We say that a ∈ T∞ if there exists a finite constant c such that for each
ball B and each ball B′ ⊂ B

a(B′) ≤ c a(B). (13)
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Clearly, Tp ⇒ T∞ when p < ∞. As before, ‖a‖ will denote the smallest constant c for
which (13) holds. The condition T∞ is simply the limit as p →∞ of the condition Tp.
Observe that the functional a(B) ≡ 1, the functional associated to the space BMO, satisfies
T∞. The correct theorem now is:

Theorem 1.4 Suppose that in the previous theorem we remove the hypothesis that S is
connected and instead assume that a ∈ T∞ and that w is an A∞ weight with respect to µ.
Then there exists a constant C independent of f such that for any ball B we have

‖f − fB‖
exp L(B,w)

≤ C ‖f‖a a(τB̂). (14)

This is not much more than the John-Nirenberg Theorem for spaces of homogeneous type.
The John-Nirenberg result is well known in this context, although the only proof we have
seen is that in [ST] and it contains a variety of minor errors. In order to tailor the result to
our setting, we give a complete proof of Theorem 1.4 in Section 5. The proof is different
than that in [ST].

We would like to thank R. Wheeden for suggesting a technique of Hedberg as an
approach to proving Theorem 1.2 (see the last part of Section 3). We are also grateful to P.
Haj lasz and P. Koskela for showing us their unpublished work.

2 Preliminaries

A Young function Φ is a convex, homeomorphism from [0,∞) onto [0,∞). For any such
function we define the norm

‖g‖Φ(L)(B,µ) = inf{λ > 0 :
1

|B|

∫
B

Φ

(
|g|
λ

)
dµ ≤ 1}.

Such a norm is called a Luxemburg, or Orlicz, norm. For notational convenience we denote
the norm associated to the Young function Φ(t) = exp tr − 1 by ‖·‖exp Lr .

A quasimetric d on a set S is a function d : S × S → [0,∞) satisfying
(i) d(x, y) = 0 if and only if x = y
(ii) d(x, y) = d(y, x) for all x, y
(iii) There exists a finite constant K ≥ 1 such that

d(x, y) ≤ K(d(x, z) + d(z, y))

for all x, y, z. Given x ∈ S and r > 0, we let B(x, r) = {y ∈ S : d(x, y) < r} and refer to
B(x, r) as the ball with center x and radius r. We equip S with a topology by saying that
a subset U of S is open if for any x ∈ U there is some r > 0 for which B(x, r) ⊂ U . Note
that the balls defined above are not necessarily open sets in this topology.

A space of homogeneous type (S, d, µ) is a set S together with a quasimetric d and a
nonnegative Borel measure µ on S such that every ball is a Borel set of finite measure, and
the doubling condition

0 < µ(B(x, 2r)) ≤ C µ(B(x, r)), (15)
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holds for all x ∈ S and r > 0. Although balls are not necessarily open sets, a result of
Maćıas and Segovia [MS] says that one can always find a continuous quasimetric d′ which is
equivalent to d (i.e., there are constants c1 and c2 such that c1d

′(x, y) ≤ d(x, y) ≤ c2d
′(x, y)

for all x, y ∈ S); in particular, every ball is open in the homogeneous space (S, d′, µ).

If a ball B is given, then xB denotes the center of B, while the radius will be denoted
either by rB or r(B).

We denote by D = log2 C the doubling order of µ, where C is the smallest constant in
(15). By iterating (15), we then have

µ(B)

µ(P )
≤ cµ

(
r(B)

r(P )

)D

(16)

for every pair P, B of balls such that P ⊂ B.

All constants in remainder of this section will depend only on those of S, i.e., K, cµ, and
D.

2.1 A Decay Estimate

In general there is no lower bound corresponding to (16), however such a lower bound can
be obtained when S is connected.

Proposition 2.1 If S is connected, there is a positive constant α for which

c (
r(B)

r(P )
)α ≤ µ(B)

µ(P )
(17)

for arbitrary balls B and P such that P ⊂ B and B 6= S.

Proof: Let B = B(x, R) be any ball that is not all of S. The sets {y : d(y, x) > R/(2K)}
and {y : d(y, x) < R/(2K)} are disjoint, open, and non-empty. The connectedness of S
therefore implies that there is a point z for which d(z, x) = R/(2K). A simple calculation
using the quasimetric shows that Bz = B(z, R/(4K2)) lies in B but does not intersect λB,
where λ = (4K2)−1. The bound (15) implies that µ(Bz) ≥ εµ(B) for some positive
constant ε depending only on the constants of S. Consequently, µ(λB) ≤ (1− ε)µ(B).
Iteration of this inequality shows that the required inequality holds when B is of the form
λ−nP , and hence when B has the same center as P . The general case can be deduced fairly
simply from this case and the doubling property of µ.

2

Remark 2.2 The lemma holds under the weaker assumption that annuli in S are not
empty, i.e, that B(x, R) \B(x, r), x ∈ S and 0 < r < R < ∞, is never empty. See also
[W,p. 269].

6



2.2 Whitney-type balls

In the proof of Theorem 1.2 we will need to make use of chains of balls that join a ball at
one scale to another ball at a smaller scale. The proposition below will allow us to do this.
A similar proposition appears in [HaK2] in the case of metric spaces. We give a proof of
the proposition as we no longer have a metric and to make explicit property iv) which will
be important in the next section.

For a point x ∈ S and 0 < ε ≤ (2K)−1 the family of Whitney balls is defined by

Wε(x) = {B(y, εd(y, x)) : y ∈ S \ {x}}

Our choice of ε ensures that the following important properties hold:

i) For any B ∈ Wε(x) and any z ∈ B we have
1

2K
≤ d(z, x)

d(xB, x)
≤ 2K. Observe that the

radii are comparable to the distance to x; more specifically
1

2Kε
≤ d(z, x)

rB

≤ 2K

ε
.

ii) If B1 and B2 are two balls in Wε(x) whose intersection is not empty, then
1

4K2
≤ rB1

rB2

≤ 4K2 and consequently B2 ⊆ 10K4B1.

By a chain we mean a collection of sets {Vj}, 1 ≤ j ≤ m, such that Vj ∩ Vk 6= ∅ if, and
only if, |j − k| ≤ 1. The Vj are called the links of the chain. Two non-empty sets A and B
are said to be linked by a family of sets O if there is a chain whose first link is A, whose
last link is B, and whose remaining links (if any) lie in O.

The following is a standard result from point set topology (Theorem 9, p.136 of [Ku])

Lemma 2.3 Any two non-empty subsets of a connected space are linked by any open cover
of the space.

1.2.

Proposition 2.4 Suppose that S is connected and that B(x, R)c is not empty. Then for
any 0 < r < R there is a chain having the following properties:

i) All the links of the chain are elements of Wε(x) with centers in the annulus
A(R, r) = {y : r ≤ d(y, x) ≤ R}.

ii) The first link has radius comparable to εR.

iii) The last link has non-empty intersection with B(x, r) and has radius comparable to εr.

iv) The number of links in the chain is at most c ε−D(1 + log(R/r)).

7



Proof: Set U = {y : d(y, x) > R} (this may be empty). Then U , B(x, r), and the elements
of Wε(x) with centers in A(R, r) form an open cover of S. Apply the lemma using this open
cover to the sets B(x, R)c and B(x, r). We get a chain C0 whose first link is B(x, R)c, whose
last link is B(x, r), and whose remaining links come from the open cover. In fact, a simple
argument using the definition of a chain shows that the remaining links are neither U nor
B(x, r). There are at least three links in the chain because r < R. Removing the first and
last links we get a new chain C satisfying i). We will show that this is the chain we seek.

We will use the following observation which is an easy consequence of property i) of
Wε(x). For any ball B ∈ Wε(x) having non-empty intersection with B(x, λ) and with
B(x, λ)c, we have

ελ

2K
≤ rB ≤ 2Kελ. (18)

The second link of C0 intersects both the third link and the first link. It follows that the
second link intersects both B(x, R)c and B(x, R). However, the second link is in Wε(x) and
so, by the inequality above, this link has radius comparable to εR. The second link of C0 is
the first one of C, so we have proven ii). Essentially the same argument proves iii).

Now, a simple argument using A(r, R) ⊂ ∪M
j=1A( R

2j ,
R

2j−1 ) with M ≈ log R
r
, shows that iv)

follows if the number of links of C that intersect an annulus of the form A(2−N+1, 2−N) is
bounded by a constant times ε−D (independently of N). Let MN be the number of links
intersecting this annulus. Property i) of Wε(x) implies that any element of Wε(x)
intersecting this annulus has radius comparable to 2−Nε. This implies that all the relevant
links lie in a ball BN = B(x, c2−N) and, by (16), that each one has measure at least
c−1
1 εDµ(BN). The definition of a chain implies that any point of S can only lie in at most

two links. Consequently, MN c−1
1 εDµ(BN) ≤ 2µ(BN), and so MN ≤ 2c1 ε−D.

2

3 Trudinger’s type inequality for connected spaces

The purpose of this section is to prove Theorem 1.2. We fix δ > 0 and a ball B0. Recall
that we are assuming that f is a locally integrable function for which there exist constants
τ ≥ 1 and ‖f‖a > 0 such that for all balls B

1

µ(B)

∫
B

|f − fB| dµ ≤ ‖f‖a a(τB), (19)

where a is a functional satisfying the Tp condition ( Definition 1.1). The constants K, D,
and cµ will be refered to as the geometric data, and any constant that depends only on
these will be called a geometric constant. Constants denoted by c, c0, . . . will be geometric
constants. All other constants will depend (at most) on the geometric data, τ , δ−1, ‖a‖, p,
and the doubling constants of w. We can, and do, make the assumption that ‖f‖a = 1.

We will make constant use of the next lemma, often without refering to it. It holds for
any functional a, not simply those satisfying the condition Tp.
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Lemma 3.1 If B and P are balls with P contained in B, then

|fB − fP | ≤ cµ

(
r(B)

r(P )

)D

a(τB)

The lemma follows easily from (16) and (19). The next result shows that the polynomial
control of the growth of the averages given in the lemma can be improved to logarithmic
control once we assume that a satisfies Tp. The key here is Proposition 2.4.

Proposition 3.2 Let B be a ball and λ ≤ 1. Then

|fB − fλB| ≤ C(1 + log λ−1)1/p′a(2KτB)

Proof: Let λ < 1, then by replacing B by a smaller multiple of itself, if necessary, and by
using the previous lemma we can assume that Bc is not empty.

Set ε = (20K)−5τ−1. Let x be the centre of B, R be the radius of B, and C = {Bi}N
i=1

be the chain obtained by applying Proposition 2.4 with the ε just defined and r = λR. One
consequence of Proposition 2.4 i) is that all of the Bi lie in 2KB. Part ii) of the same
proposition says that the radius of B1 is comparable to R and so, by the previous lemma,

|fB1 − fB| ≤ Ca(2KτB) (20)

In a similar manner, Proposition 2.4 iii) implies that |fBN
− fλB| ≤ Ca(c0τλB). When

λ ≤ c−1
0 this yields

|fBN
− fλB| ≤ Ca(2KτB) (21)

If λ ≥ c−1
0 , then the proposition follows from the lemma, so we only need to consider the

case λ ≤ c−1
0 . In this case both (21) and (20) hold, and as a result we have reduced the

proposition to showing that

|fBN
− fB1| ≤ C(1 + log λ−1)1/p′a(2KτB)

Now define B̂i to be 10K4Bi and ε0 to be (2K)−1. All the Bi are elements of Wε(x) and

property ii) of Wε(x) guarantees that Bi+1 is contained in B̂i. Consequently,

|fBi
− fBi+1

| ≤ ca(τB̂i), and

|fBN
− fB1| ≤ c

N−1∑
i=1

a(τB̂i) ≤ c

(
N−1∑
i=1

a(τB̂i)
p

)1/p

N1/p′

≤ C(1 + log λ−1)1/p′

(
N−1∑
i=1

a(τB̂i)
p

)1/p

The last inequality follows from Proposition 2.4 iv). Our choice of ε ensures that the balls

τB̂i all lie in 2KB and that they belong to Wε0(x).

9



We claim that the balls {τB̂i} can be divided into C0 + 1 subfamilies of disjoint balls.
Assuming this for the moment, we apply the condition Tp to each of the subfamilies to
obtain (∑

i

a(τB̂i)
p

)1/p

≤ C a(2KτB)

and this gives the result we seek.

It remains to justify the claim. Let F denote the family of balls τB̂i. If we can show
that any element of F intersects at most C0 other elements, then a simple counting
argument proves the claim. Suppose that F ∈ F intersects M other elements of F . Denote
these by F1, . . . , FM . Let z ∈ Fi ∩F . As F ⊆ Wε0(x), both F and Fi have radii comparable
to rz = d(z, x). This implies that all of the Fi lie in B(x, crz) and have radius comparable
to this ball. However, the Fi have finite overlap bounded by 2 (as they are the links of a
chain) and therefore, using the doubling of µ, M is bounded by a constant C0.

2

We next introduce a maximal operator associated to the functional a:

A(x) = sup
B:x∈B⊂τ bB0

(
a(B)

w(B)1/p

) (
w(τB̂0)

1/p

a(τB̂0)

)

We always have A(x) ≥ 1. The next lemma shows that A satisfies a (p, p) weak type
property and it will play an important role in the proof of Theorem 1.2.

Lemma 3.3

w({x ∈ τB̂0 : A(x) > λ}) ≤ C ‖a‖p

λp
w(τB̂0)

and as consequence for 0 < s < p we have(
1

w(τB̂0)

∫
B0

A(x)s dw

)1/s

≤ Cs ‖a‖.

Proof: The proof is by a standard covering lemma. If A(x) > λ then for some ball

P ⊂ τB̂0 with x ∈ P , we have

λp a(τB̂0)
p w(P )

w(τB̂0)
≤ a(P )p

Pick a Vitali type cover of {x ∈ τB̂0 : A(x) > λ} by such balls {Pi}. Then the balls {Pi}
are pairwise disjoint sub-balls of τB̂0 and {x ∈ τB̂0 : A(x) > λ} ⊂ ∪i cPi. Therefore, using
Tp and doubling of w,

w({x ∈ τB̂0 : A(x) > λ}) ≤
∑

i

w(cPi) ≤ C
∑

i

w(Pi)
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≤ C

λp

w(τB̂0)

a(τB̂0)p

∑
i

a(Pi)
p ≤ C ‖a‖p

λp
w(τB̂0)

The last statement follows from the general fact, known as Kolmogorov’s inequality,
that if s < p then (

1

ν(E)

∫
E

gs dν

)1/s

≤ Cs ‖g‖p,∞(E, ν). (22)

for any measurable set E with finite measure on any arbitrary measure space (X, ν).
2

We will show that for any ω a.e. x ∈ B0

|f(x)− fB0 | ≤ C a(τB̂0)
(

(log A(x))1/p′ + 1
)

(23)

This pointwise estimate is the key. Once we have this the theorem follows immediately.
Indeed, let s > 0. Then a simple manipulation of (23) yields

exp

s

(
|f(x)− fB0|
C a(τB̂0)

)p′
 ≤ exp (s (1 + log A(x))) ≤ CA(x)s

for ω a.e. x ∈ B0. Averaging over B0 we have

1

w(B0)

∫
B0

exp

s

(
|f(x)− fB0|
C a(τB̂0)

)p′
 dw ≤ C

w(B0)

∫
B0

A(x)s dw ≤ C

w(τB̂0)

∫
τ bB0

A(x)s dw

Choosing s small enough, say s = p/2, and appealing to Lemma 3.3 we find that the
righthand side is simply bounded by C, as required.

It remains to prove (23). By replacing B0 by a smaller multiple of itself, if necessary, we

can assume that τB̂0 6= S. Let x ∈ B0 and set η = δ(2K)−1. For k = 1, 2 . . . define Bk to

be B(x, 2−kη r(B0)). Our choice of η guarantees that 2KτBk ⊂ τB̂0. Both B1 and B0 lie in

B̂0, hence
|fB1 − fB0| ≤ Ca(τB̂0)

This means that we can replace fB0 by fB1 in (23).

We are going to estimate |f(x)− fB1| using some ideas going back to Hedberg’s proof of
the Sobolev Embedding Theorem by means of the Hardy–Littlewood maximal function.
See [AH] Chapter 3, for example. By the Lebesgue differentiation theorem, we may assume
that lims→0 fB(x,s) = f(x) for µ a.e., and hence for ω a.e., x ∈ B0 . Let N = N(x) be a
natural number to be chosen in a moment. Then,

|f(x)− fB1| ≤ |fB1 − fBN
|+

∞∑
k=N

|fBk+1
− fBk

| = I + II

11



Using Proposition 3.2 and the fact that 2KτB1 is contained in τB̂0 we find that

I ≤ C N1/p′a(2KτB1) ≤ CN1/p′a(τB̂0)

Now to the second term.

II ≤
∞∑

k=N+1

a(τBk) ≤
∞∑

k=N+1

a(τBk)

w(τBk)1/p
w(τBk)1/p

≤ A(x)
a(τB̂0)

w(τB̂0)1/p

∞∑
k=N+1

w(Bk)1/p

The balls Bk all lie in τB̂0 and τB̂0 is not the whole space, therefore Proposition 2.1
implies that w(Bk) ≤ C ρ−kpw(τB̂0) for some constant ρ > 1. Thus

II ≤ C A(x)a(τB̂0) ρ−N

Combining our estimates for I and II we have

|f(x)− fB1| ≤ Ca(τB̂0) (N1/p′ + A(x)ρ−N)

Finally, choose N to be the first integer strictly greater than (log A(x))(log ρ)−1. Then

|f(x)− fB1| ≤ Ca(τB̂0)
(

(log A(x))1/p′ + 1
)

and, as mentioned before, this yields (23). This completes the proof of Theorem 1.2.
2

4 The Trudinger’s inequality is false for nonconneted

spaces

Consider the subsets of Rd given by Sk = Bk ∪ {0} where Bk is the closed ball centered at
(2−k, 0, · · · , 0) and of radius 2−k/10. Each pair of the Sk have precisely one point in
common, namely, the origin. Denote the Euclidean metric restricted to Sk by ρk. Now set
S = ∪∞k=0Sk. We can use the ρk to define a metric on S by “passing” through the origin.
Set

ρ(a, b) =

{
ρk(a, b) if a, b ∈ Bk

ρk(a, 0) + ρj(0, b) if a ∈ Bk, b ∈ Bj, and k 6= j

It is easy to see that ρ is a metric and that it is equivalent to the usual Euclidean metric on
S. There is an explicit formula for ρ:

ρ(a, b) =

{
|b− a| if a, b ∈ Bk for some k
|a|+ |b| otherwise

12



If we now equip S with this metric and Lebesgue measure we get a space of homogeneous
type. Furthermore, it is compact and d-regular. This last means that the measure of each
ball is comparable to rd.

Take f to be the function
∑∞

k=0 k χ
Bk

and define a functional a by

a(B) = δ0(B) =

{
1 if 0 ∈ B
0 otherwise

It is obvious that a ∈ Tp for all p. Observe that f is essentially log 1

|x| restricted to S.

Thus, the function is of exponential type and no better, in particular f /∈ exp Lp for any
p > 1. If we can show that

1

µ(B)

∫
B

|f − fB| dµ ≤ C a(B). (24)

for every ball B, then we will be done.

There are two cases to consider: 0 ∈ B and 0 /∈ B. In the first case (24) holds because f
is in BMO. Suppose now that 0 /∈ B. The nature of the metric ρ now implies that B
intersects only one of the balls Bk. This means that f is constant on B and so (24) holds
again.

5 Proof of the John–Nirenberg type inequality for a

general space of homogeneous type.

In this section we prove Theorem 1.4. The proof is an adaptation to this context of one of
the proofs of the John-Nirenberg Theorem for Rn. The idea dates back to Calderón and a
related proof can be found in [Jo]. We mention that [Buc] and [MMNO] also contain proofs
of the John-Nirenberg Theorem. However, our proof is more general and shows the
relationship with our generalized Trudinger’s inequality and in particular with the Tp

condition.

We fix δ > 0 and assume that f , a, and w, are as in statement of the theorem. Recall
that for a given ball B, B̂ denotes the ball (1 + δ)KB. As in the previous section,
constants denoted by c, c0, . . . will be geometric constants. All other constants will depend
(at most) on the geometric data, τ , δ−1, ‖a‖, and the A∞ constants of w.

It is clear that we can renormalize f so that ‖f‖a = 1. Thus our initial assumption is

1

µ(B)

∫
B

|f − fB| dµ ≤ a(τB) (25)

for every ball B. Now, it will be convenient to redefine a. Set ã(B) to be the supremum of
a(P ) over all balls P contained in B. Then

a(B) ≤ ã(B) ≤ ‖a‖ a(B),

13



(25) holds with a replaced by ã, and ã satisfies T∞ with constant 1, i.e., ã is increasing. We
shall assume from now on that a is increasing.

Define for each ball B and t > 0

E(B, t) = {x ∈ B :
|f(x)− fB|

a(τB̂)
> t} and ϕ(t) = sup

B

w(E(B, t))

w(B)

We have to prove that for any ball B

‖f − fB‖
exp L(B,w)

≤ C a(τB̂). (26)

This is equivalent to proving that there are positive constants C0 and C1 for which

ϕ(t) ≤ C1e
−t/C0 (27)

for all t > 0. Note that this inequality holds automatically when t is not too large as ϕ(t) is
always bounded by 1. If we can show that

w(E(B, t))

w(B)
≤ 1

2
ϕ(t− t0) (28)

for any B and for all t > t0, where t0 is a positive constant independent of B0, then
iteration of this inequality yields (27).

Fix an arbitrary ball B0. Observe that we may assume that f
B0

= 0. We now follow the

line of argument considered in [MP]. Associated to the fixed ball B0 we define the following
basis

B = {B : xB ∈ B0 and r
B
≤ δ r

B0
} (29)

This family has the following properties:

B ∈ B ⇒ B ⊆ B̂0 (30)

B ∈ B ⇒ τB ⊆ τB̂0 (31)

The maximal function associated to B of a locally integrable function g is

MBg(x) = sup
B:x∈B∈B

1

µ(B)

∫
B

|g| dµ

where we understand that the supremum is zero if x is not contained in any element of B.
This function is zero outside B̂0. The Lebesgue differentiation theorem and the definition
of the basis B imply that |g(x)| ≤ MBg(x) for µ a.e., and hence for ω a.e., x ∈ B0. For
t > 0 set

Ωt = {x ∈ S : MBf(x) > t a(τB̂0)}.

This set is contained in B̂0. For notational convenience we introduce

Av(B) =
1

µ(B)

∫
B

|f | dµ

Notice that since f
B0

= 0 we have that Av(B̂0) ≤ C a(τB̂0) and that E(B0, t) ⊆ Ωt.

The following lemma, although easy, is nevertheless important.

14



Lemma 5.1 Let B ∈ B such that Av(B) > t a(τB̂0). Then r(B) ≤ c0

(
1

t

)1/D

r(B0).

Indeed, since B ⊂ B̂0 we have

t a(τB̂0) < Av(B) ≤ µ(B̂0)

µ(B)
Av(B̂0) ≤ cµ

(
r(B̂0)

r(B)

)D

Av(B̂0) ≤ cD
0

(
r(B0)

r(B)

)D

a(τB̂0),

and the lemma follows.

Set M = 2(1 + δ)K2(2K + 1) and let t0 >

(
c0 M

δ

)D

be a constant to be specified more

precisely later on. Observe that for t > t0 we have by Lemma 5.1 that

r(B) ≤ δ

M
r(B0),

whenever B ∈ B with Av(B) > t a(τB̂0).

We need the following Calderon-Zygmund or stopping-time type lemma.

Lemma 5.2 Suppose that Ωt is not empty. Then there exists a countable family {Bi} of
pairwise disjoint balls in B such that

i) ∪iBi ⊆ Ωt ⊆ ∪iB
∗
i , where B∗ = K(2K + 1)B.

ii) For each i, r(Bi) ≤
δ

M
r(B0).

iii) Av(Bi) > t a(τB̂0) for all i.

iv) If σBi ∈ B and σ ≥ 2, then Av(σBi) ≤ t a(τB̂0).

Proof: For x ∈ Ωt there exists a ball B′ ∈ B with x ∈ B′ such that Av(B′) > t a(τB̂0). Let
R = Rx be defined by

R = sup{r(B) : B ∈ B, B is a multiple of B′ and Av(B) > t a(τB̂0)}

Lemma 5.1 and the range of t imply that R ≤ δ

M
r(B0). There exists a ball Bx which is a

multiple of B′, whose radius satisfies R/2 < r(Bx) ≤ R, and for which t a(τB̂0) < Av(Bx).
This ball satisfies ii), iii), and iv). Part iii) implies that

⋃
x∈Ωt

Bx ⊆ Ωt, while we obviously
have Ωt ⊆

⋃
x∈Ωt

Bx. Thus these two inclusions are actually equalities. Picking a Vitali
type sub-cover of {Bx}x∈Ωt gives us a family of pairwise disjoint balls {Bi} ⊂ {Bx}x∈Ωt

satisfying i).
2
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Let E(t) = E(B0, t). Since t > t0 and E(t0) ⊆ Ωt0 we can apply the lemma to Ωt0 to get

Et = Et0 ∩ Et ⊆ Ωt0 ∩ Et ⊆
⋃
i

B∗
i ∩ Et (32)

Now, for x ∈ B∗
i ∩ Et we have

t a(τB̂0) < |f(x)| ≤ |f(x)− f2B∗
i
|+ |f2B∗

i
|

≤ |f(x)− f2B∗
i
|+ Av(2B∗

i ) ≤ |f(x)− f2B∗
i
|+ t0 a(τB̂0).

In the last inequality we have used iv) in Lemma 5.2 and the fact that 2B∗
i ∈ B by our

choice of t0. Consequently,

(t− t0) a(τB̂0) ≤ |f(x)− f2B∗
i
|.

Now we claim that 2̂B∗
i belongs to B. Recall that the ball B belongs to the basis B if its

center is in B0 and its radius is bounded by δ times the radius of B0. It is clear that the
center of 2̂B∗

i is in B0 since Bi belongs to B. Now observe that the radius of 2̂B∗
i equals

Mr(Bi) ≤ δr(B0) by property ii) of Lemma 5.2. This proves the claim. We continue by

using property (31) to deduce that τ 2̂B∗
i ⊆ τB̂0 and the fact that a is an increasing

functional to obtain
(t− t0) a(τ 2̂B∗

i ) ≤ |f(x)− f2B∗
i
|.

Consequently, B∗
i ∩ Et ⊂ E(2B∗

i , t− t0). Thus

w(Et) ≤
∑

i

w(2B∗
i )

w(E(2B∗
i , t− t0))

w(2B∗
i )

≤ ϕ(t− t0)
∑

i

w(2B∗
i )

≤ C ϕ(t− t0)
∑

i

w(Bi) = C ϕ(t− t0) w(∪iBi)

In the last equality we used that the balls {Bi} are disjoint. The balls Bi all lie in B̂0,
therefore w being A∞ with respect to µ implies that there is a positive constant α for which

w(∪iBi) ≤ C

(
µ(∪iBi)

µ(B̂0)

)α

w(B̂0)

We now use iii) of Lemma 5.2 and the observation that Av(B̂0) ≤ a(τB̂0) to obtain

µ(∪iBi) =
∑

i

µ(Bi) ≤
∑

i

1

a(τB̂0)t0

∫
Bi

|f | dµ ≤ 1

a(τB̂0)t0

∫
bB0

|f | dµ ≤ µ(B̂0)

t0

It follows that

w(Et) ≤ Cϕ(t− t0)
w(B̂0)

tα0
≤ C4

w(B0)

tα0
ϕ(t− t0)
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Choosing t0 = max{(2C4)
1/α,

(
c0 M

δ

)D

} yields (28) and so completes the proof of the

theorem.

2
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Departamento de Análisis Matemático
Facultad de Matemáticas
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