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On sufficient conditions for the boundedness of the
Hardy-Littlewood maximal operator between weighted

Lp–spaces with different weights

Carlos Pérez

1 Introduction and main results

Let M be the Hardy–Littlewood maximal operator defined for locally integrable
functions f by

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all the cubes containg x, and let 1 < p < ∞.
B. Muckenhoupt [10] characterized the weights w satisfying the weighted norm in-
equality ∫

Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(w(y)f(y))p dy (1)

for all nonnegative functions f , as those weights satisfying the Ap condition(
1

|Q|

∫
Q

w(y)p dy

)1/p(
1

|Q|

∫
Q

w(y)−p′ dy

)1/p′

≤ c (2)

for all cubes Q. It is natural to consider a similar problem for a couple of weights
(w, v). However, simple examples show (cf. [6] p. 395) that the analogous necessary
condition for (w, v)(

1

|Q|

∫
Q

w(y)p dy

)1/p(
1

|Q|

∫
Q

v(y)−p′ dy

)1/p′

≤ c, (3)

for all cubes Q is not sufficient for the boundedness of M from Lp(vp) to Lp(wp).
E. Sawyer has shown in [13], that the correct necessary and sufficient condition is
given by
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∫
Q

(w(y)M(v−p′χ
Q
)(y))p dy ≤ c

∫
Q

v(y)−p′ dy, (4)

for all cubes Q. E. Sawyer’s condition involves the operator M itself, and it is
interesting to obtain sufficient conditions close in form to the necessary and simpler
one (3). The first result in that direction was obtained by C. Neugebauer in [11].
He noticed that if (w, v) is a couple of weights such that for some r > 1(

1

|Q|

∫
Q

w(y)pr dy

)1/pr (
1

|Q|

∫
Q

v(y)−p′r dy

)1/p′r

≤ c (5)

for all cubes Q, then∫
Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy (6)

for all nonnegative functions f .
In this paper we take up this problem and show with a different approach that

(6) holds assuming very weak conditions on the weights. We shall see that it is
enough to replace the average norm associated to the weight v−1 in (3) by a stronger
norm defined in terms of any Banach function space whose associated space satisfies
certain mapping property.

To be precise we let X be a Banach function space over Rn with respect to the
Lebesgue measure dx (cf. next section). Given a measurable function f and any
cube Q we define the X–average of f over Q by

‖f‖
X,Q

=
∥∥∥τ`(Q)

(f χ
Q
)
∥∥∥

X

, (7)

where τδ, δ > 0, is the dilation operator τδf(x) = f(δx), χ
E

is the characteristic
function of E and `(Q) is the sidelength of the cube Q.

We define a natural maximal operator associated to the space X.

Definition 1.1 For each locally integrable function f the maximal operator M
X

is
defined by

M
X
f(x) = sup

x∈Q
‖f‖

X,Q
,

where the supremum is taken over all the cubes containing x.
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Let X = LB be the Orlicz space defined by the Young function B (cf. section 2
or [7] [8]). Then the maximal operator M

X
= M

B
is defined in terms of the average

‖f‖
X,Q

= ‖f‖
B,Q

= inf{λ > 0 :
1

|Q|

∫
Q

B

(
|f(y)|

λ

)
dy ≤ 1}

(cf. [1]). If X is the Lorentz space X = Ls,q, then the maximal operator is

M
X
f(x) = Ms,qf(x) = sup

x∈Q

1

|Q|1/s

∥∥f χ
Q

∥∥
s,q

(cf. [12], [14] and [3]).
Given a Banach function space X, X ′ will denote its associate space, which is

another Banach function space (cf. next section).

Theorem 1.2 Let 1 < p < ∞, and let X be a Banach function space such that
M

X′
: Lp(Rn) → Lp(Rn). Suppose that (w, v) is a couple of weights such that there

is a positive constant K for which(
1

|Q|

∫
Q

w(y)p dy

)1/p

‖v−1‖
X,Q

≤ K, (8)

for all cubes Q. Then∫
Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy (9)

for all nonnegative functions f .

A particular example is when X = Lp′r, with r > 1. In this case the associate
space is X ′ = L(p′r)′ whose corresponding maximal operator is given by

MX′f(x) = M(p′r)′f(x) = sup
x∈Q

(
1

|Q|

∫
Q

|f(y)|(p
′r)′ dy

)1/(p′r)′

,

which is bounded on Lp(Rn). On the other hand, observe that when r = 1 X ′ = Lp,
whose corresponding maximal function Mp is not bounded on Lp(Rn) since M itself
fails to be bounded on L1(Rn).
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Corollary 1.3 Let 1 < p < ∞, and suppose that (w, v) is a couple of weights such
that for some r > 1, there is a positive constant K for which(

1

|Q|

∫
Q

w(y)p dy

)1/p(
1

|Q|

∫
Q

v(y)−p′r dy

)1/p′r

≤ K, (10)

for all cubes Q. Then∫
Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy (11)

for all nonnegative functions f .

We can deduce a better result using the scale of Lorentz spaces: if X = Lp′r,∞,
then X ′ = L(p′r)′,1 and MX′ is bounded on Lp(Rn) (cf. section 6). Hence

Corollary 1.4 Let 1 < p < ∞, and 1 < r < ∞. Suppose that (w, v) is a couple of
weights such that there is a positive constant K for which(

1

|Q|

∫
Q

w(y)p dy

)1/p
1

|Q|1/rp′

∥∥χ
Q
v−1
∥∥

Lrp′,∞ ≤ K, (12)

for all cubes Q. Then∫
Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy (13)

for all nonnegative functions f .

More interesting examples are provided by the theory of Orlicz spaces.

Theorem 1.5 Let 1 < p < ∞, and let B be a doubling Young function such that∫ ∞

c

(
tp
′

B(t)

)p−1
dt

t
< ∞, (14)

for some positive constant c.
i)Let (w, v) be a couple of weights such that there is a positive constant K for which(

1

|Q|

∫
Q

w(y)p dy

)1/p

‖v−1‖
B,Q

≤ K, (15)
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for all cubes Q. Then∫
Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy (16)

for all nonnegative functions f .
ii) Condition (14) is also a necessary condition. That is, suppose that B has the
property that ∫

Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy

for all nonnegative functions f , whenever the couple of weights (w, v) satisfies(
1

|Q|

∫
Q

w(y)p dy

)1/p

‖v−1‖
B,Q

≤ K,

for all cubes Q. Then B satisfies (14).

Particular examples are given by

B(t) ≈ tp
′
logp′−1+δ(1 + t),

or the weaker one

B(t) ≈ tp
′
logp′−1(1 + t)[log log(1 + t)]p

′−1+δ,

with δ > 0.
The key fact is the boundedness of MB̄ on Lp(Rn), and the relevant class of

Young functions is the following.

Definition 1.6 Let 1 < p < ∞. We say that a doubling Young function B satisfies
the Bp condition if there is a positive constant c such that∫ ∞

c

B(t)

tp
dt

t
≈
∫ ∞

c

(
tp
′

B̄(t)

)p−1
dt

t
< ∞.

Then we have the following characterization.

Theorem 1.7 Let 1 < p < ∞. Suppose that B is a Young function. Then the
following are equivalent.
i)

B ∈ Bp ; (17)
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ii) there is a constant c such that∫
Rn

M
B
f(y)p dy ≤ c

∫
Rn

f(y)p dy (18)

for all nonnegative functions f ;
iii) there is a constant c such that∫

Rn

M
B
f(y)p w(y)dy ≤ c

∫
Rn

f(y)p Mw(y)dy (19)

for all nonnegative functions f and w;
iv) there is a constant c such that∫

Rn

Mf(y)p w(y)

[M
B̄
(u1/p)(y)]p

dy ≤ c

∫
Rn

f(y)p Mw(y)

u(y)
dy, (20)

for all nonnegative functions f , w and u.

A consequence is the following inequality:

Corollary 1.8 Let 1 < p < ∞. Suppose that w is a weight. Then∫
Rn

Mf(y)p M [p′]+1w(y)1−pdy ≤ c

∫
Rn

f(y)p w(y)1−pdy (21)

for all nonnegative functions f .

As usual [r] denotes the integer part of r.
Acnowledgement. We wish to thank the referee for the careful reading of this

paper.

2 Preliminaries

In this section we provide the necessary background from the theory of function
spaces that will be used later. We begin by recalling some basic facts about the
theory of Banach function spaces introduced by W.A.J. Luxemburg in [9], and we
shall refer the reader to [2] for a complete account. Let (R, µ) be a measure space,
and let M+(R) be the cone of µ–measurable functions on R whose values lie in
[0,∞]. A mapping ρ : M+(R) → [0,∞] is called a Banach function norm if, for all
f, g, fn, (n = 1, 2, 3, . . .) in M+(R), for all constants a ≥ 0, and for all µ–measurable
subsets E of R, the following properties hold:
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i) ρ(f) = 0 iff f = 0 µ–a.e.; ρ(af) = aρ(f);
ρ(f + g) ≤ ρ(f) + ρ(g)

ii) 0 ≤ g ≤ f µ–a.e. implies ρ(g) ≤ ρ(f)
iii) 0 ≤ fn ↑ f µ–a.e. implies ρ(fn) ↑ ρ(f)
iv) µ(E) < ∞ implies ρ(χ

E
) < ∞

v) µ(E) < ∞ implies
∫

E
f dµ ≤ CE ρ(f),

for some constant CE, 0 < CE < ∞, depending on E and ρ but independent of f .
Let M(R) denote the collection of all µ–measurable functions on R. The collection
X = X(ρ) of all functions f ∈ M(R) for which ρ(|f |) = ‖f‖

X
< ∞ is called

a Banach function space. The most important property of the Banach function
spaces is the generalized Hölder inequality∫

R

|f(y)g(y)| dµ(y) ≤ ‖f‖
X
‖g‖

X′
, (22)

where X ′ is the associate space to X.
A Banach function space X is said to be rearrangement–invariant if whenever

f, g ∈ X are equimeasurable, then ‖f‖
X

= ‖g‖
X
. Recall that two functions are

equimeasurable if µf (t) = µg(t), t > 0, where µf (t) = µ{x ∈ R : |f(x)| > t}, is the
distribution of f . Most of the properties of the rearrangement–invariant spaces can
be formulated in terms of the fundamental function of X, ϕ

X
, given by

ϕ
X
(t) = ‖χ

E
‖

X
,

where µ(E) = t. Observe that the particular choice of the set E with µ(E) =
t is immaterial by the rearrangement–invariance of X. ϕ

X
is quasiconcave and

continuous, except perhaps at the origin. Furthermore, if X ′ is the associated space
of X the following identity holds

ϕ
X
(t)ϕ

X′
(t) = t, t > 0. (23)

Examples of rearrangement–invariant spaces include the Lebesgue Lp spaces,
the minimal and maximal Lorentz spaces Λ, M , (cf. [2]). Also, the Orlicz and Ls,q

spaces that we are going to describe briefly next.
A function B : [0,∞) → [0,∞) is a Young function if it is continuous, convex

and increasing satisfying B(0) = 0 and B(t) → ∞ as t → ∞. We shall assume
that B is normalized so that B(1) = 1. Also, we shall require that B satisfies the
doubling condition
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B(2t) ≤ C B(t), t > k (24)

for some constants C > 0, k ≥ 0. We shall make use of the following property

B(t) ≈ t B′(t), t > 0, (25)

and that t → B(t)
t

is increasing.
Each Young function B has associated a complementary Young function B̄ that

satisfies
t ≤ B−1(t)B̄−1(t) ≤ 2t, t > 0. (26)

Let (X, µ) be a measure space and let B be a Young function. The Orlicz space
LB(µ) consists of all µ–measurable functions f such that∫

X

B

(
|f(y)|

λ

)
dµ(y) < ∞,

for some λ > 0. LB(µ) can be normed by the Luxemburg norm defined by

‖f‖
B,µ

= inf{λ > 0 :

∫
X

B

(
|f(y)|

λ

)
dµ(y) ≤ 1}.

LB(µ) is a rearrangement–invariant space with fundamental function given by

ϕ
B
(t) = ϕ

LB(µ)
(t) =

1

B−1(1
t
)
. (27)

In particular if E is a measurable subset of X, then

‖χ
E
‖B,µ =

1

B−1( 1
µ(E)

)
. (28)

Finally, the associated space to LB(µ) is LB̄(µ).
A function f belongs to the Lorentz space Ls,q, 0 < s, q ≤ ∞, if

‖f‖
Ls,q(µ)

=

[
q

∫ ∞

0

(
t µ{x ∈ Rn : |f(x)| > t}1/s

)q dt

t

]1/q

< ∞,

whenever q < ∞, and

sup
0<t<∞

t µ{x ∈ Rn : |f(x)| > t}1/s < ∞,
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if q = ∞. For each 1 < s, q ≤ ∞ Ls,q is a rearrangement–invariant Banach function
space with fundamental function

ϕ(t) = t1/s,

and associated space Ls′,q′ .

3 The general case

Let X be a Banach function space over Rn with respect to the Lebesgue measure.
Recall that for any measurable function f and arbitrary cube Q we defined the
X–average of f over Q by

‖f‖
X,Q

=
∥∥∥τ`(Q)

(f χ
Q
)
∥∥∥

X

, (29)

where τδ, δ > 0, is the dilation operator τδf(x) = f(δx), χ
E

is characteristic function
of E and `(Q) is the sidelength of the cube Q.

Note that Hölder’s inequality for Banach function spaces (22) yields after the
change of variable y = `(Q)z

1

|Q|

∫
Q

f(y)g(y) dy ≤ ‖f‖
X,Q
‖g‖

X′,Q
. (30)

We also introduce the following maximal operator associated to the space X.
For each locally integrable function f we have also defined M

X
by

M
X
f(x) = sup

x∈Q
‖f‖

X,Q
,

where the supremum is taken over all the cubes containing x.
Proof of Theorem 1.2: Since the set of bounded functions with compact

support is dense in Lp(vp) it is enough to show that there is a constant c such that∫
Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy, (31)

for each nonnegative bounded function with compact support f .
For each integer k, and for any constant a > 2n we let Ωk and Dk be the sets

Ωk = {x ∈ Rn : ak < Mf(x)},
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Dk = {x ∈ Rn : Mdf(x) >
ak

4n
}.

Here Md denotes the dyadic Hardy–Littlewood maximal operator. By Lemma 4.1
below with t = ak (note that the lemma also holds for the degenerate Young func-
tion B(t) = t, the classical Calderón–Zygmund decomposition) there is a family of
maximal nonoverlapping dyadic cubes {Qk,j} for which Ωk ⊂ ∪j3Qk,j, Dk = ∪jQk,j,
and

ak

4n
<

1

|Qk,j|

∫
Qk,j

f(y) dy ≤ ak

2n
. (32)

We can now estimate the left side of (31) as follows∫
Rn

Mf(y)p w(y)pdy =
∑

k

∫
Ωk−Ωk+1

Mf(y)p w(y)pdy ≤ (33)

≤ ap
∑

k

akpwp(Ωk) ≤ C
∑
k,j

akpwp(3Qk,j) ≤

≤ C
∑
k,j

(
1

|Qk,j|

∫
Qk,j

f(y) dy

)p

wp(3Qk,j) =

= C
∑
k,j

(
1

|Qk,j|

∫
Qk,j

f(y)v(y) v(y)−1 dy

)p

wp(3Qk,j) ≤

≤ C
∑
k,j

(
1

|3Qk,j|

∫
3Qk,j

f(y)v(y) v(y)−1 dy

)p

wp(3Qk,j).

For each integer k, j we let we let Ek,j = Qk,j − Qk,j ∩ Dk+1. Then {Ek,j} is a
disjoint family of sets, and by Lemma 4.2 (as above the lemma is also valid for the
degenerate Young function B(t) = t) there is a positive constant β such that for
each k, j |Qk,j| < β |Ek,j|. This together with (30), and (8) allows to dominate last
sum by

C
∑
k,j

‖fv‖p

X′,3Qk,j

‖v−1‖p

X,3Qk,j
wp(3Qk,j) =

= C
∑
k,j

‖fv‖p

X′,3Qk,j

‖v−1‖p

X,3Qk,j

wp(3Qk,j)

|3Qk,j|
|Qk,j| ≤

≤ CKp
∑
k,j

‖fv‖p

X′,3Qk,j

|Ek,j| ≤

10



≤ C
∑
k,j

∫
Ek,j

M
X′

(fv)(y)p dy ≤ C

∫
Rn

M
X′

(fv)(y)p dy ≤

≤ C

∫
Rn

(f(y)v(y))p dy,

since the sets {Ek,j} are pairwise disjoint, and because we are assuming that M
X′

:
Lp(Rn) → Lp(Rn). This concludes the proof of the theorem.

2

It is a simple consequence of this Theorem that condition (8) is stronger than
Ap since the later is necessary for the boundedness of M from Lp(vp) to Lp(wp).
However, there is a direct argument that we shall outline. It is enough to show that
there is a positive constant c such that(

1

|Q|

∫
Q

f(y)p′ dy

)1/p′

≤ c ‖f‖
X,Q

, (34)

for all cubes, and for all nonnegative functions f . Let us assume that f ≥ 0, and Q
is fixed. By assumption on M

X′
, there is a constant c such that∫

Rn

M
X′

g(y)p dy ≤ c

∫
Rn

g(y)p dy (35)

for all nonnegative functions g. Consider g = fp′−1χ
Q
. Then∥∥fp′−1

∥∥p

X′,Q
|Q| ≤

∫
Q

M
X′

(fp′−1χ
Q
)(y)p dy ≤ c

∫
Q

f(y)p′ dy.

This together with (30) gives

1

|Q|

∫
Q

f(y)p′ dy =
1

|Q|

∫
Q

f(y) f(y)p′−1 dy ≤ ‖f‖
X,Q

∥∥fp′−1
∥∥

X′,Q
≤

≤ c‖f‖
X,Q

(
1

|Q|

∫
Q

f(y)p′ dy)1/p,

which readily gives (34).
We conclude this section by proving a weighted inequality “dual” to the classical

Fefferman–Stein inequality∫
Rn

Mf(y)p w(y)dy ≤ c

∫
Rn

f(y)p Mw(y)dy.
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The main interest follows from the fact that its “dual” inequality, namely∫
Rn

Mf(y)p′ Mw(y)1−p′dy ≤ c

∫
Rn

f(y)p′ w(y)1−p′dy

is false in general (consider f = w positive and integrable).

Theorem 3.1 Let 1 < p < ∞, and let X be a Banach function space such that
M

X′
: Lp(Rn) → Lp(Rn).

i) There is a constant c such that∫
Rn

Mf(y)p 1

[M
X
(u1/p)(y)]p

dy ≤ c

∫
Rn

f(y)p 1

u(y)
dy, (36)

for all nonnegative functions f and u.
ii) If furthermore X is rearrangement–invariant with fundamental function ϕ

X
, then

there is a positive constant c such that∫ c

0

ϕ
X′

(t)p

t

dt

t
< ∞. (37)

We do not know whether condition (37) it is also sufficient for the boundedness of
M

X′
on Lp(Rn) as in the Orlicz or Lorentz cases (see Theorems 1.7 6.1 respectively).

Proof: We notice first that (36) is equivalent to∫
Rn

M(fg)(y)p 1

[M
X
(g)(y)]p

dy ≤ c

∫
Rn

f(y)p dy,

for all nonnegative functions f and g. Now, it follows from the generalized Hölder’s
inequality (30) that

∫
Rn

M(fg)(y)p 1

[M
X
(g)(y)]p

dy ≤
∫

Rn

M
X′

(f)(y)pM
X
(g)(y)p 1

[M
X
(g)(y)]p

dy ≤

≤ C

∫
Rn

f(y)p dy,

since M
X′

: Lp(Rn) → Lp(Rn). This gives i).
As for ii) we denote by Q(x, r) the cube centered at x ∈ Rn and with sidelength

equal to r. Taking f = u = χ
Q(0,1)

in (36) we have,∫
Rn

Mf(y)p 1

[M
X
(f)(y)]p

dy ≤ C. (38)
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On the other hand the rearrangement–invariance of X yields

M
X
(f)(y) = sup

y∈Q

∥∥∥τ`(Q)
(χ

Q∩Q(0,1)
)
∥∥∥

X

= sup
y∈Q

∥∥χ`(Q)−1(Q∩Q(0,1))

∥∥
= sup

y∈Q
ϕ

X
(|`(Q)−1(Q ∩Q(0, 1))|) = sup

y∈Q
ϕ

X

(
|Q ∩Q(0, 1)|

|Q|

)
.

Now, since ϕ
X

is increasing it is easy to see that there exist positive constants a, b
such that whenever |y| > a

M
X
(f)(y) = ϕ

X

(
b

|y|n
)

. (39)

Hence, by using polar coordinates and (23) we get∫
Rn

Mf(y)p 1

[M
X
(f)(y)]p

dy ≥ C

∫
|y|>a

1

|y|np ϕ
X

(
b

|y|n
)−p

dy =

= C

∫ ∞

a

1

rnp
ϕ

X

(
b

rn

)−p

rn dr

r
= C

∫ ∞

a1

1

rp
ϕ

X

(
1

r

)−p

r
dr

r
=

= C

∫ c

0

tp

ϕ
X
(t)p

1

t

dt

t
= C

∫ c

0

ϕ
X′

(t)p

t

dt

t
.

This estimate together with (38) concludes the proof of the Theorem.
2

We shall conclude this section showing that if X is rearrangement–invariant,
condition ∫ c

0

ϕ
X′

(t)p

t

dt

t
< ∞,

in Theorem 3.1 is also necessary for the statement in Theorem 1.2.

Proposition 3.2 Let 1 < p < ∞, and let X be a rearrangement–invariant Banach
function space with the property that∫

Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy

for all nonnegative functions f , whenever the couple of weights (w, v) satisfies
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(
1

|Q|

∫
Q

w(y)p dy

)1/p

‖v−1‖
X,Q

≤ K, (40)

for all cubes Q. Then ∫ c

0

ϕ
X′

(t)p

t

dt

t
< ∞.

Proof: For the proof take any nonnegative locally integrable function g, and con-
sider the couple of weights (w, v) = (M

X
(g1/p)−1, g−1/p). Since(

1

|Q|

∫
Q

M
X
(g1/p)(y)−p dy

)1/p

‖v−1‖
X,Q

≤

≤
(

1

|Q|

∫
Q

∥∥g1/p
∥∥−p

X,Q
dy

)1/p ∥∥g1/p
∥∥

X,Q
= 1,

(w, v) satisfies condition (40). Hence, by hypothesis on X there is a constant c such
that ∫

Rn

Mf(y)p 1

[M
X
(g1/p)(y)]p

dy ≤ c

∫
Rn

f(y)p 1

g(y)
dy, (41)

for all nonnegative functions f . Finally, by Theorem 3.1 X must satisfy∫ c

0

ϕ
X′

(t)p

t

dt

t
< ∞.

2

4 The Bp condition

Recall that a doubling Young function B satisfies the Bp condition if there is a
positive constant c for which ∫ ∞

c

B(t)

tp
dt

t
< ∞.

Since sometimes is more convenient to deal with the complementary function B̄
of B, it can be checked using (26) and (25) that the Young function B satisfies the

14



Bp condition if there is a positive constant c for which∫ ∞

c

(
tp
′

B̄(t)

)p−1
dt

t
< ∞. (42)

We now give the proof of Theorem 1.5 which relates the Bp condition, the bound-
edness of M

B
on Lp and with dual weighted estimates for M .

4.1 Proof of Theorem 1.7

For the proof that i) implies ii) we need the following lemma.

Lemma 4.1 Suppose that B is a Young function, and that f is a nonnegative
bounded function with compact support. For each t > 0, let Ωt = {y ∈ Rn :
M

B
f(y) > t}. Then, if Ωt is not empty, we have

Ωt ⊂ ∪j3Qj, (43)

where Qj is the family of nonoverlapping maximal dyadic cubes satisfying

t

4n
< ‖f‖

B,Qj
≤ t

2n
(44)

for each integer j.
Furthermore it follows that

|Ωt| ≤ C

∫
{y∈Rn:f(y)>t/2}

B

(
f(y)

t

)
dy. (45)

and

{y ∈ Rn : Md
B
f(y) >

t

4n
} = ∪jQj. (46)

We defer the proof of the lemma for the moment, and assume i). To prove ii) we
shall use the classical approach (cf. for instance [6] Ch. 2.) Hence, (45) and the

change of variable t = f(y)
s

yield∫
Rn

M
B
f(y)p dy = p

∫ ∞

0

tp|{y ∈ Rn : M
B
f(y) > t}| dt

t
≤

≤ C

∫ ∞

0

tp
∫
{y∈Rn:f(y)>t/2}

B

(
f(y)

t

)
dy

dt

t
= C

∫
Rn

∫ 2f(y)

0

tpB

(
f(y)

t

)
dt

t
dy =

15



= C

∫
Rn

f(y)p dy

∫ ∞

1/2

B(t)

tp
dt

t
= C

∫
Rn

f(y)p dy,

since B ∈ Bp. This proves that i) implies ii).
For the proof that ii) implies iii) we discretize as in Theorem 1.2. We fix a

constant a > 2n, and for each integer k we let Ωk, and Dk be the sets

Ωk = {x ∈ Rn : M
B
f(x) > ak},

Dk = {x ∈ Rn : Md
B
f(x) >

ak

4n
}.

Here Md
B

denotes the dyadic version of M
B
. Hence, by Lemma 4.1 with t = ak there

is a family of maximal nonoverlapping dyadic cubes {Qk,j} for which Ωk ⊂ ∪j3Qk,j,
Dk = ∪jQk,j, and

ak

4n
< ‖f‖

B,Qk,j
≤ ak

2n
. (47)

We shall need the following lemma.

Lemma 4.2 Suppose a > 2n. For all integers k, j we let Ek,j = Qk,j −Qk,j ∩Dk+1.
Then {Ek,j} is a disjoint family of sets which satisfy

|Qk,j ∩Dk+1| <
2n

a
|Qk,j|, (48)

and

|Qk,j| <
1

1− 2n

a

|Ek,j|. (49)

We postpone the proof of this also until the end of the proof of the theorem.
Now, using (47), and (49) we estimate the left side of (19) as in the proof of

Theorem 1.2 by∫
Rn

M
B
f(y)p w(y)dy =

∑
k

∫
Ωk−Ωk+1

M
B
f(y)p w(y)dy ≤ (50)

≤ ap
∑

k

akpw(Ωk) ≤ C
∑
k,j

akpw(3Qk,j) ≤

≤ C
∑
k,j

‖f‖p

B,Qk,j
w(3Qk,j) = C

∑
k,j

‖f‖p

B,Qk,j

w(3Qk,j)

|3Qk,j|
|Qk,j| ≤

16



≤ C
∑
k,j

∥∥∥∥∥f
(

w(3Qk,j)

|3Qk,j|

)1/p
∥∥∥∥∥

p

B,Qk,j

|Ek,j| ≤

≤ C
∑
k,j

∫
Ek,j

M
B
(f(Mw)1/p)(y)p dy ≤ C

∫
Rn

M
B
(f(Mw)1/p)(y)p dy ≤

≤ C

∫
Rn

f(y)p Mw(y)dy,

since we are assuming ii). This proves iii).
Let us assume that iii) holds. Observing that (20) is equivalent with∫

Rn

M(fg)(y)p w(y)

[M
B̄
(g)(y)]p

dy ≤ c

∫
Rn

f(y)p Mw(y)dy,

for all nonnegative functions f , g, and w, iv) follows immediately from (19) after an
application of the inequality

M(fg)(y) ≤ M
B
f(y)M

B̄
g(y), y ∈ Rn,

which is a consequence of the generalized Hölder’s inequality (30).
To prove that iv) implies i) we let w = 1 in (20) obtaining∫

Rn

Mf(y)p 1

[M
B̄
(u1/p)(y)]p

dy ≤ c

∫
Rn

f(y)p 1

u(y)
dy,

for all nonnegative functions f , and u. Since this is (36) in Theorem 3.1 with
X = LB̄, we can apply that proposition to get a constant c > 0 for which∫ c

0

ϕ
B
(t)p

t

dt

t
< ∞. (51)

Here ϕ
B

= ϕ
LB

is the fundamental function of LB. We claim that (51) is equivalent
with B ∈ Bp. Indeed, by (27) and (25) it readily follows that∫ c

0

ϕ
B
(t)p

t

dt

t
=

∫ c

0

1

B−1(1
t
)p

1

t

dt

t
≈ (52)

≈
∫ ∞

c

B(t)

tp
dt

t
,

17



from which we obtain the claim. This concludes the proof of the Theorem save for
the proofs of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1: The proof is a simple adaptation of arguments in [6]
Ch. 2. Since f is bounded with compact support, say suppf ⊂ K,

‖f‖
B,Q

≤ ‖f‖L∞‖χK
‖

B,Q
=

= ‖f‖
L∞

1

B−1

(
|Q|

|Q ∩K|

) ,

and it follows that
‖f‖

B,Q
→ 0

as Q ↑ Rn. Hence, if there are any dyadic cubes Q with ‖f‖
B,Q

> t, they are
contained in cubes of this type which are maximal with respect to inclusion. We let
Ct = {Pj} be the family of the dyadic maximal nonoverlapping cubes satisfying

t < ‖f‖
B,Pj

.

Let P ′
j be the only dyadic cube containing Pj with sidelength twice that of Pj. Then

t < ‖f‖
B,Pj

≤ 2n‖f‖
B,P ′

j

.

The last inequality can easily be deduced from the definition of the Luxemburg norm
using the fact that t → B(t)

t
is increasing. Hence by the maximality of the cubes

{Pj} we get
t < ‖f‖

B,Pj
≤ 2nt. (53)

Observe that from this discussion it is clear that

{y ∈ Rn : Md
B
f(y) > t} = ∪jPj. (54)

Let x ∈ Ωt. By definition, there is a cube R containing x such that

t < ‖f‖
B,R

. (55)

Let k be the unique integer such that 2−(k+1)n < |R| ≤ 2−kn. There is some dyadic
cube with side length 2−k, and at most 2n of them, {Ji : i = 1, . . . , n}, meeting the
interior of R. It is easy to see that for one of these cubes, say J1,

t

2n
<
∥∥χ

J1
f
∥∥

B,R
. (56)

18



This can be seen as follows. If for each i = 1, . . . , 2n we had∥∥∥χJi
f
∥∥∥

B,R

≤ t

2n
,

we would get since R ⊂ ∪2n

i=1Ji that

‖f‖
B,R

=
∥∥∥χ

∪2n
i=1

Ji
f
∥∥∥

B,R

≤

≤
2n∑
i=1

∥∥∥χJi
f
∥∥∥

B,R

≤ 2n t

2n
= t,

contradicting (55). Using that |R| ≤ |J1| < 2n|R| one can also show

t

4n
< ‖f‖

B,J1
. (57)

By letting Ct/(4)n = {Qj}, we have by (53) that

t

4n
< ‖f‖

B,Qj
≤ t

2n
, (58)

for each j, yielding (44). (46) also follows since {y ∈ Rn : Md
B
f(y) > t

4n} = ∪jQj.
Also, we see from (57) that J1 ⊂ Qk, for some k, and then R ⊂ 3J1 ⊂ 3Qk. This
gives

Ωt ⊂ ∪j3Qj,

which is (43). Now, by the left side of the inequality (58), and the definition of
‖f‖

B,Q
we get

|Ωt| ≤ C
∑

j

|Qj| ≤

≤ C
∑

j

∫
Qj

B

(
4nf(y)

t

)
dy ≤ C

∫
Rn

B

(
f(y)

t

)
dy. (59)

To obtain (45) we just use the standard idea of writing f as f = f1 + f2, where
f1(x) = f(x) if f(x) > t

2
, and f1(x) = 0 otherwise. Then M

B
f(x) ≤ M

B
f1(x) +

M
B
f2(x) ≤ M

B
f1(x) + t

2
. Finally, since (59) holds for each f ≥ 0, t > 0 we have

|Ωt| ≤
∣∣{y ∈ Rn : M

B
f1(y) > t

2
}
∣∣ ≤ C

∫
Rn

B

(
f1(y)

t

)
dy =

19



= C

∫
{y∈Rn:f(y)>t/2}

B

(
f(y)

t

)
dy,

concluding the proof of Lemma 4.1.
2

We now conclude the proof of the Theorem by proving Lemma 4.2.
Proof of Lemma 4.2: The family Ek,j is clearly disjoint. We note that (47)

and the definition of the Luxemburg norm implies that

1 <
1

|Qk,j|

∫
Qk,j

B

(
4n

ak
f(y)

)
dy,

and
1

|Qk,j|

∫
Qk,j

B

(
2n

ak
f(y)

)
dy ≤ 1.

Hence by standard properties of the dyadic cubes we can estimate what portion of
Qk,j is covered by Dk+1 as in [4] (cf. [6] p. 398)

|Qk,j ∩Dk+1|
|Qk,j|

=
∑

i

|Qk,j ∩Qk+1,i|
|Qk,j|

=

=
∑

i:Qk+1,i⊂Qk,j

|Qk+1,i|
|Qk,j|

<

<
∑

i:Qk+1,i⊂Qk,j

1

|Qk,j|

∫
Qk+1,i

B

(
4n

ak+1
f(y)

)
dy ≤

≤ 2n

a

1

|Qk,j|

∫
Qk,j∩∪iQk+1,i

B

(
2n

ak
f(y)

)
dy ≤

≤ 2n

a
.

Here we have used that B(2n

a
t) ≤ 2n

a
B(t), t > 0, since 2n

a
< 1, and because t → B(t)

t

is increasing. This gives (48). Finally

|Ek,j|
|Qk,j|

> 1− 2n

a
> 0,

completing the proof of the Lemma and hence that of Theorem 1.7.
2
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4.2 Proof of Corollary 1.8

If we let w = 1 and u is replaced by wp−1 in (20) we have the weighted inequality∫
Rn

Mf(y)p 1

[M
B̄
(w(p−1)/p)(y)]p

dy ≤ c

∫
Rn

f(y)p 1

w(y)p−1
dy,

when B ∈ Bp. Let δ = [p′] − p′ + 1 > 0, and take B(t) ≈ tp

log1+δ(1+t)
. Then B̄(t) ≈

tp
′
log[p′](1+ t) and [M

B̄
(w(p−1)/p)(y)]p = [M

A
(w)(y)]p−1, where A(t) ≈ t log[p′](1+ t).

Then Corollary 1.8 will follow if we prove the pointwise inequality

M
A
w(x) ≤ C M [p′]+1w(x).

It is enough to prove that there is a constant C such that for each cube Q

‖f‖
A,Q

≤ C

|Q|

∫
Q

M [p′]f(y) dy.

By homogeneity we can assume that the right hand side is equal to C. Then, by
the definition of the Luxemburg norm we need to prove

1

|Q|

∫
Q

A(w(y)) dy =
1

|Q|

∫
Q

w(y) log[p′](1 + w(y)) dy ≤ C.

But this is a consequence of iterating the following inequality of E.M. Stein [15]∫
Q

w(y) logk(1 + w(y)) dy ≤ C

∫
Q

Mw(y) logk−1(1 + Mw(y)) dy, (60)

with k = 1, 2, 3, · · · .

2

4.3 Some further considerations about the class Bp

We observe that 1 < p < q < ∞ implies that

Bp ⊂ Bq.

A typical Young function that belongs to the class Bp is B(t) = ts with 1 ≤ s < p.
Another more interesting example is the function B given by

B(t) ≈ tp

log1+δ(1 + t)
,
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or

B(t) ≈ tp

log(1 + t) [log log(1 + t)]1+δ
,

with δ > 0.
Since the function B(t) = ts belongs to Bp we have 1 < s < p and so implies

that B ∈ Bp−ε with 0 < ε < p − s, one could think that the same property would
hold for any Young function in Bp. However, this is false as the following example
shows. For δ > 0, consider the example mentioned above

B(t) ≈ tp

log1+δ(1 + t)
.

Then, B ∈ Bp, but it can be easily shown that there is no ε > 0 for which B ∈ Bp−ε.
We can remedy this situation if we restrict attention to those Young functions that
are submultiplicative. We say that the Young function B is submultiplicative if

B(ts) ≤ B(t)B(s)

for each t, s > 0.

Lemma 4.3 Let 1 < p < ∞. Assume that B is a submultiplicative Young function
such that B ∈ Bp. Then there exists ε > 0 for which

B ∈ Bp−ε.

Proof: This is a simple consequence of the fact that

B ∈ Bp if and only ᾱ(B) < p.

(Cf. for instance [2] Ch. 5.) Here ᾱ(B) denotes

ᾱ(B) = lim
t→∞

logB(t)

logt
= inft>1

logB(t)

logt
,

and it can be shown that the limit exists, is finite, and strictly positive.
2

Let us make the following observation concerning a particular case of (20). Tak-
ing the weight w = 1, inequality (20) becomes∫

Rn

Mf(y)p 1

[M
B̄
(u1/p)(y)]p

dy ≤ c

∫
Rn

f(y)p 1

u(y)
dy, (61)
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for all nonnegative functions f , and u. Let 1 < r < ∞, and consider B(t) = t(p
′r)′ .

Then B ∈ Bp, and (61) is∫
Rn

Mf(y)p 1

[M(ur(p′−1))(y)](p−1)/r
dy ≤ c

∫
Rn

f(y)p 1

u(y)
dy.

However, this estimate follows from well–known results. Indeed, it is enough to
show that [M

B̄
(u1/p)(y)]−p is an Ap weight by the theorem of Muckenhoupt and

the Lebesgue differentiation theorem. Now, recall that a weight w belongs to Ap if
and only if w = w1 w1−p

2 where w1 and w2 are A1 weights, and that (Mg)δ ∈ A1

0 < δ < 1 (see [6] p. 436). Then it is clear that

[M
B̄
(u1/p)(y)]−p = [M(ur(p′−1))(y)1/r](1−p)

is an Ap weight.
This argument may suggest that [M

B̄
(u1/p)(y)]−p satisfies the Ap condition for

each B ∈ Bp. However, the following example indicates that this is not true in
general, and thus above argument is not sharp enough to get (61).

Let 1 < p < ∞, δ > 0, and let B be the Young function such that B̄(t) ≈
tp
′
logp′−1+δ(1 + t). Then B ∈ Bp but w = M

B̄
(χ

Q(0,1)
)−p 6∈ Ap. Otherwise there

would exist ε > 0 such that w ∈ Ap−ε (cf. [6] p. 399.) Hence for each M > 0 we
would have ∫

|y|>M

w(y)

|y|n(p−ε)
dy < ∞. (62)

(cf. [6] p. 412.) However (39), and (27) yield

w(y) ≈ B̄−1(b |y|n)p, |y| > a,

for some positive dimensional constant a, b. Thus using polar coordinates and (25)∫
|y|>a

w(y)

|y|n(p−ε)
dy ≈

∫
|y|>a

B̄−1(b |y|n)p

|y|n(p−ε)
dy ≈

∫ ∞

a1

B̄−1(t)p

tp−1−ε

dt

t

≈
∫ ∞

a2

tp

B̄(t)p−1−ε

dt

t
≈
∫ ∞

a2

tεp
′

log1+δ(p−1)−ε(p′−1+δ)(t)

dt

t
= ∞,

contradicting (62).
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5 Orlicz spaces and two-weight inequalities

Proof of Theorem 1.5 Part i) follows immediately from Theorem 1.2 together
with Theorem 1.7. Indeed, let X = LB with associate space X ′ = LB̄. Then the
hypothesis M

X′
= M

B̄
: Lp(Rn) → Lp(Rn) in Theorem 1.2 is equivalent with B̄ ∈ Bp

by Theorem 1.7.
Part ii) follows from Proposition 3.2 and the computation in (52).

2

As an easy consequence of this theorem we can obtain sufficient conditions much
in the spirit of [5].

Corollary 5.1 Let 1 < p < ∞. Suppose that ϕ : (0,∞) → (0,∞) is increasing,
that ϕ(2t) ≤ Cϕ(t), t > 0, and that for some positive constant c∫ ∞

c

1

ϕ(t)p−1

dt

t
< ∞. (63)

Assume that (w, v) is a couple of weights which satisfies for some positive constant
K(

1

|Q|

∫
Q

w(y)p dy

)1/p
[

1

|Q|

∫
Q

v(y)−p′ϕ

((
wp(Q)

|Q|

)1/p

v(y)−1

)
dy

]1/p′

≤ K, (64)

for all cubes Q. Then∫
Rn

(w(y)Mf(y))p dy ≤ c

∫
Rn

(v(y)f(y))p dy, (65)

for all nonnegative functions f .

Proof: Consider the Young function defined by B(t) ≈ tp
′
ϕ(t)

Kp′ which satisfies

(14) (i.e. that B̄ ∈ Bp). Now, (64) implies

1

|Q|

∫
Q

B

((
wp(Q)

|Q|

)1/p

v(y)−1

)
dy ≤ 1,

or equivalently ∥∥∥∥∥
(

wp(Q)

|Q|

)1/p

v−1

∥∥∥∥∥
B,Q

≤ 1.
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From this and by homogeneity we get (15). Then Theorem 1.5 applies.

2

6 Lorentz spaces and two-weight inequalities

In this section we study two weighted norm inequalities for the Hardy–Littlewood
maximal operator whenever the weights satisfy (8) with X being a Lorentz space.
We begin by recalling that the maximal operator associated to the Lorentz space
Ls,q is given by

Ms,qf(x) = sup
x∈Q

1

|Q|1/s

∥∥f χ
Q

∥∥
s,q

.

We now state a result similar to Theorem 1.7.

Theorem 6.1 Let 1 < p, s < ∞, and 1 ≤ q < ∞. Then the following are equiva-
lent.
i)

s < p ; (66)

ii) there is a constant c such that∫
Rn

Ms,qf(y)p dy ≤ c

∫
Rn

f(y)p dy (67)

for all nonnegative functions f ;
iii) there is a constant c such that∫

Rn

Ms,qf(y)p w(y)dy ≤ c

∫
Rn

f(y)p Mw(y)dy (68)

for all nonnegative functions f , and w ;
iv) there is a constant c such that∫

Rn

Mf(y)p w(y)

[Ms′,q′(u1/p)(y)]p
dy ≤ c

∫
Rn

f(y)p Mw(y)

u(y)
dy, (69)

for all nonnegative functions f , w and u.
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Proof: Let us assume i). Since Ls,1 ⊂ Ls,q the proof of ii) can be reduced to
showing that ∫

Rn

Ms,1f(y)p dy ≤ c

∫
Rn

f(y)p dy.

We use the following weak-type inequality for the operator Ms,1 established in [14]

|x ∈ Rn : Ms,1f(x) > t| ≤ C

ts
‖f‖s

s,1 t > 0,

namely,
Ms,1 : Ls,1(Rn) → Ls,∞(Rn).

On the other hand we always have

Ms,1 : L∞(Rn) → L∞(Rn).

Hence by the Calderón version for Lorentz spaces of the Marcinkiewicz interpolation
theorem (cf. [2] p. 225), we have

Ms,1 : Lp(Rn) → Lp(Rn),

since p > s. This gives ii).
Assume now ii). The proof of iii) follows the same line as that of Theorem 1.7,

and we shall outline it. Again it is enough to prove∫
Rn

Ms,1f(y)p w(y)dy ≤ c

∫
Rn

f(y)p Mw(y)dy,

for each nonnegative bounded function f with compact support. We discretize the
left hand part of the inequality as in Theorem 1.7. We fix a constant a > 2n, and
for each integer k we let Ωk and Dk be the sets

Ωk = {x ∈ Rn : Ms,1f(x) > ak},

Dk = {x ∈ Rn : Md
s,1f(x) >

ak

4n
},

where Md
s,1 is as above the dyadic version of Ms,1. Hence, arguing as in Lemma 4.1

we can find for each k a family of maximal nonoverlapping dyadic cubes {Qk,j}j∈Z
for which Ωk ⊂ ∪j3Qk,j, Dk = ∪jQk,j, and

ak

4n
<

1

|Qk,j|1/s

∥∥∥f χ
Qk,j

∥∥∥
s,1
≤ ak

2n
. (70)
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We let {Ek,j} be the disjoint family Ek,j = Qk,j −Qk,j ∩Dk+1. We claim that

|Qk,j| <
1

1− 2ns

as

|Ek,j|. (71)

The proof requires a simple modification of the argument given in the proof of
Lemma 4.2. Indeed, (70) and Minkowski’s inequality yield

|Qk,j ∩Dk+1|
|Qk,j|

=
∑

i

|Qk,j ∩Qk+1,i|
|Qk,j|

=
∑

i:Qk+1,i⊂Qk,j

|Qk+1,i|
|Qk,j|

<

<
1

|Qk,j|

(
4n

ak+1

)s ∑
i:Qk+1,i⊂Qk,j

∥∥∥f χ
Qk+1,i

∥∥∥s

s,1
=

=
1

|Qk,j|

(
4n

ak+1

)s
 ∑

i:Qk+1,i⊂Qk,j

(∫ ∞

0

|{x ∈ Qk+1,i : f(x) > t}|1/s dt

)s
 1

s
s

≤

≤ 1

|Qk,j|

(
4n

ak+1

)s

∫ ∞

0

 ∑
i:Qk+1,i⊂Qk,j

|{x ∈ Qk+1,i : f(x) > t}|

1/s

dt


s

=

=
1

|Qk,j|

(
4n

ak+1

)s [∫ ∞

0

|{x ∈ Qk,j ∩ ∪iQk+1,i : f(x) > t}|1/s dt

]s

≤

≤ 1

|Qk,j|

(
4n

ak+1

)s ∥∥∥f χ
Qk,j

∥∥∥s

s,1
≤
(

2n

a

)s

< 1,

from which the claim readily follows.
Now, as in the proof of Theorem 1.7 part iii) we have the following chain of

inequalities∫
Rn

Ms,1f(y)p w(y)dy =
∑

k

∫
Ωk−Ωk+1

Ms,1f(y)p w(y)dy ≤ ap
∑

k

akpw(Ωk) ≤

≤ C
∑
k,j

akpw(3Qk,j) ≤ C
∑
k,j

(
1

|Qk,j|1/s

∥∥∥f χ
Qk,j

∥∥∥
s,1

)p

w(3Qk,j) =

= C
∑
k,j

 1

|Qk,j|1/s

∥∥∥∥∥f χ
Qk,j

(
w(3Qk,j)

|3Qk,j|

)1/p
∥∥∥∥∥

s,1

p

|Qk,j| ≤
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≤ C
∑
k,j

(
1

|Qk,j|1/s

∥∥∥f χ
Qk,j

(Mw)1/p
∥∥∥

s,1

)p

|Ek,j| ≤

≤ C
∑
k,j

∫
Ek,j

Ms,1(f(Mw)1/p)(y)p dy ≤ C

∫
Rn

Ms,1(f(Mw)1/p)(y)p dy ≤

≤ C

∫
Rn

f(y)p Mw(y)dy,

since we are assuming that Ms,1 : Lp(Rn) → Lp(Rn). This proves iii).
That iv) follows from iii) is as in Theorem 1.7 a simple consequence of

M(fg)(y) ≤ Ms,qf(y)Ms′,q′g(y), y ∈ Rn.

To prove that iv) implies i) we set w = 1 in (69), obtaining the same inequality as
in (36) with X = Ls′,q′ . Now, recalling that ϕ(t) = t1/s is the fundamental function
of Ls,q we can apply Theorem 3.1 to deduce that ϕ must satisfy∫ c

0

ϕ(t)p

t

dt

t
< ∞,

for some c > 0. This is equivalent with p > s, concluding the proof of the theorem.

2

We finish with the proof of Corollary 1.4:
Proof: The associated space of Lrp′,∞ is L(rp′)′,1. Hence by Theorem 6.1 with

s = (rp′)′ < p, and q = 1

M(rp′)′,1 : Lp(Rn) → Lp(Rn).

Thus the corary follows from Theorem 1.2.
2
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