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EXPONENTIAL LAW FOR UNIFORMLY
CONTINUOUS PROPER MAPS

R. AYALA, E. DOMINGUEZ, A. QUINTERO

Abstract

The purpose of this note iz to prove the exponential law for unifermly
continuous proper maps.

Let X be a regular space and ¥ a locally compact regular space. It is well
known that the spaces of continuous maps C{X x ¥,Z) and C(X,C(Y, 2))
are homeomorphic considering the compact-open tepology. This property has
important consequences in the study of the path-components of the function
spaces and in Homotopy Theory. The exponential law for the uniformly con-
tinuous proper maps has similar consequences in some particular cases.

All the spaces we consider, unless otherwise mentioned, are metric spaces. A
proper map will be a continuous map f: X — ¥ such that for every compact
subspace K of ¥, f~!(K) is 2 compact in X. To abbreviate, we will say that
fis 2 p-map. A u-map is a uniformly continuous map, and a up-map will be
2 uniformly continuous p-map. A up-isomorphism f it a homeomorphism such
that f and f~! are u-maps. By C(X,Y), C,(X,Y) and C,,(X,Y) we will
denote the sets of continuous maps, p-maps and up-maps between X and Y,
respectively. With Cffp(X ,Y) we will represent the space of up-maps with the
topology of uniform convergence. '

In this note we prove that the up-maps follow the exponential law if X is
compact; that is, the functors X x (-} and C¥ (X, ) are adjoint. We also
prove that if X is not compact these functors are not generally adjoint.

A up-homotopy {p-homotopy} between up-meps {p-maps} is a homotopy
which is 2 up-map {p-map). With {—,~],[-,~],, and [~,-},, we will rep-
resent the sets of homotopy, p-homotopy and up-homotopy respectively. Also,
the corresponding homotopy classes will be denoted by [f],[f], and [fu,. R™
will stand for the n-dimensional Euclidean space, and I for the unit interval
{0,1] with that distance. The Euclidean norm will be represented by | — [, and
the distance of a metric space by d{—, —}.
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Thecrem. Let X,Y,Z metric spaces. We can define an injective map
$:Cup (X x Y, 2} — Cop(X,CL (Y, 2))
as ®(FH=z)(y) = Flz,y). If X is compact, then @ is onto.

Proof: 1t is easy to see that:

{a) For each x € X the map ®(f}{z} is 2 up-map, because it is the composi-
tion of two up-maps.

(b} ®(f) is 2 u-map, because f is a u-map.

{c) Let us see that &(f) is a p-map. Given a compact subspace K C
CU (Y, Z), we only have to prove that any sequence {z,} in ®(f)~!(X) hes
a cluster point. Let {z,} be a subsequence of {z,} such that {®{f}{z.)} is
convergent; let # € K be the limit point. Then, for each y € ¥ the sequence
{f(2a, Yo )} converges to #(yo ). Consequenily, H = {f{zs,%0); n € NJU{6{vo)}
is a compact subspace of Z. This implies that the sequence {xz,} has a cluster
point.

Hence & is well defined and it is an injective map. Since X is compact,
each continuous map defined on X is also uniformly continuous. Then, given a
continuous map

aX — CL(Y,Z)

it is enough to show that f: X x ¥ — Z defined as f(z,y} = ¢{z)(y) is a
up-map.

To prove that f is & u-map, let f.:Y — Z and f,: X — Z the maps
defined by f.(y) = f(z,y) = f,{z)} for each couple {x,y). According to [1,
X.2.1.2] it suffices to show that the sets

H={f,;2€ X} and C={f,;ycY}

are uniformly equicontinuous. But H = g(X) is a compact subset of C¥ (¥, Z),
hence it is uniformly equicontinuous by the theorem of Ascoli (see [1, X.2.5.2]).
Since ¢ is & up-map, it can be easily shown that C is uniformly equicontinuous
set.

It remains to show that f is a p-map. Let K be a compactsubsetof Z. If M =
U{glz) 1 (K);z € X}, it is easy to check that f~!(K) C X x M. If suffices to
prove that M is a compact subset of Y. Given a sequence {y,} in M, thereisa
sequence {z,} C X such that g{z,}{(yn} € K, for each n € N. Because X and
K are compact, we can assume that {z.} and {g{z,){y.}} converge to zo € X
and zg € K respectively. Then, {g{z.)} converges to g{zo}, and it is obvious

that for each € > O there exists ny such that d{z,g{ze}(3n})} < € f n > no.
Therefore,

& = {g(zo){ya): n € N} U {20}
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is compact. Since g{z;) is proper, g{z0)~H{K) is also compact and {y.} C
g{zo)" ' (K) implies that {y,} has a cluster point. We conclude that M is
compact. H

The following statement is easily proved:

Corollary. Let X|Y,Z be metric spaces. Moreover, suppose that X 1is ¢com-
pact. Then,
1) 8:CY (Xx,Y,Z) — Cup(X,CE (Y, Z)} is up-isomorphism.
2} The set of path-components of CEP(Y, Z} is in bijective correspondence
with [Y, Zup-
3} & induces a bijective correspondence

®:(X x ¥, Z)s, — [X,CY (Y, 2)].

Remarks and Examples. If we consider only proper maps, the natural
map &:C,(X,Y,Z) — C,{X,C,(Y, Z)) where C,(Y, Z)} is endowed with the
compact-open topology, is easily checked to be well defined and injective. How-
ever, several troubles appear:

(1) The compactness of X is necessary in order to prove that ® is onto, even
if Cp{Y, Z} is endowed with the uniform convergence topology. The following
example shows this fact:

Let ¢: R — C,{I,R) = C{I,R} be the map given by ¢{z}(¢) = zt—{1—¢)z°.
It is easy to check the continuity of g. In order to prove that ¢ is proper, we take
a compact K € C{I,R} and a sequence {z,} C g~ {K). Then there exists a
subsequence {z,} of {z,}, such that {g{z,)} converges to # € K. In particular,
limg{z,)(1} = lim2, = {1} and we conclude that ¢ € C,{R,C(I,R}). But the
continuous map f{z,t} = g(z){t} is not proper because ((T{T)%’t) € f1{o0)
for each ¢ € [0,1).

(2) Although X is compact, we cannot ensure that @ is onto if we consider
the compact-open topology on C,{Y, Z): :

Let g: I — C,{R,R) given by g(0){z} = go(z) = z and

z ifo < =< 1/2

0<t<).
—z+1/t fij2t <z ( <)

00 = 0) = {
It is clear that g, € C,{R,R) for each t € I. The continuity of t —— g, follows
from the fact that lim¢, = £y in I implies that {g, } converges aniformly on the
compact subsets of Z to g,,. But f{t,z) = ¢:{z} is not a proper map because
(¢t,1/t) € f~1(0} for each ¢ € (0, 1].
{3} The proof of the Theorem assures that ¢ is onto if we consider the uniform
convergence topology, ¥, on C,{Y, Z} and we assume the compactness of X.
But in such situation,

®:C,{X x Y, 2} — C(X,CY (Y, 2Z))
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is not well defined as shows the next example:

Let f:I x R — R?® be the map f(¢,z) = (¢,z,tx). This map is a p-map,
and if ®(f) was continuous and tn — fo, given € > 0 there would exist ng € N
such that if n > ng

|z [ ta — to | <] (ta, 20 taz) ~ {to, =, t2) |< €

for each z € R. Taking | z | large enough would yield the contradiction e <
|z || ts — %o |< €.

The next proposition shows that there is not any possible duality up- iso-
morphism when X is not compact.

Proposition. Let Z be the open interval {-1,1). There exzists no up-homo-
topy equivalence between CY (R?,Z) and CY,(R,CY (R, Z)).

We will need the following lemma:

Lemma. The map A:[R",Z)., — [R",Z]), given by A({flup} = [f)p o5
bijective. '

" Proof: ¥ f,¢:R™ — Z are p-homotopic up-maps, the homotopy H:R™ x
I — Z given by H{z,t} = tf(z)+{1—1t)g{z) is 2 u-map. Now, we are going to
show that H is proper: Let K C Z be a compact subset and {v, = {z,,{,)} a
sequence in H~1{K}. We may assume that {¢,} converges to t5. If we suppose
that {v,} has no cluster points we have limz, = co. Because f and g are
p-homotopic we get lim f{z,} = limg(z,) € {—1,1}. If this common limits is
1 and U is an euclidean neighbourhoed of 1 missing K, there exists ng such
that f{z.),9{z.) € U for each n > ny. In particular, H{z,,t,} €U (n > ne)
contradicts the assumption {{z.,%.}} C H {K). So, A is an injective map.

In order to prove that X is onto we recall that [R*, Z], = [$"~!, 89), and its
elements are the p-classes of the maps g_1, ¢1: R — Z given by ¢;{v} =
vl 3/(+ | v} (= -L1) in>2or h(y), | A(b) |, (), ~ | Afs) |
if n = 1, where h(v} = (2/7}arctan{v}. This follows, for instance, from the
embedding theorems of Edwards-Hastings, see [2, 6.2.7]. Now, A is onto because
all the representatives are up-maps, M

Proof of Proposition 4: It suffices to prove that those spaces have not the
same number of path-components. As a consequence of Corollary 2.2) the path-
components of C¥ (R?, Z) are in bijective correspondence with [R?, Z],,. But
(R?, Z]., ~ [R?, Z],, by lemma 5, and the latter set has two elements.

Now, we are going to show that C¥ (R,C¥ {R,Z)}) has at least four path-
components. As above, C’fp(R, Z) has four path -commponents, and they are
the components of go(z) = (2/7) arctan{z}, ¢ = —go, 92 =| g0 | and gz =
= ~ | go | Since CY (R, Z)} is metrizable and go is a u-map, fo:R —
CY (R, Z) defined by fo(t)(z) = golt + z) is a u-map. Also, by using the
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thecrem of Ascoll it is easy to check that f; is a p-map. So, we have got a
up-map fo such that fo{R} lies in the path-component of go. In a similar way,
we get up-maps f; with f;(R) lying in the path-component of g; {i =1,2,3).
In particular, f; and f; are not up-homotopic {0 < i # j < 3}). We conclude,
applying corollary 2.2} again, that the up-maps {f;}o<i<s define four distinct
path-components. B

Remark. If the metric on Z is not bounded, lemma 5 is false. Indeed,
for each pair of real numbers a;,a, > 0, the up-maps f;, f: R — R given by
Ji{t) = et (i = 1,2), are p-homotopic, but not up-homotopic: If H: R x I ——
R is a up-homotopy between fi and f,, by (3, II11.10] there would exist ¢ > 0
such that

| H(z,t) — H{y,t'"} |< maz{e | (2,t) — {3,¥') |,¢}
for each couple (z,t), (y,t') € R x I. Therefore,

las — a2 | 2= fi(x) ~ fale) |=| H(2,0) — H(z,1) |< e

and taking z large enough the above inequality would yield the contradiction
e<z|a —a |<e
In fact, we have proved that card [R,R]u, > card R.
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