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1 Introduction

Let X be a Banach space and Y ⊆ X nonempty closed and convex. Then Y is said to have the
fixed point property (FPP) for nonexpansive mappings if, for any nonempty closed and convex
Z ⊆ Y , any nonexpansive self-mapping (i.e., T : Z → Z such that ‖T (x)−T (y)‖ ≤ ‖x− y‖) has
a fixed point (i.e., an x ∈ Z such that T (x) = x). The problem of the fixed point property for
bounded subsets has been extensively studied for the last fifty years and the literature about
it is huge (see, for instance, [9, 18] and references therein). The same problem for unbounded
subsets Y is trivial as long as Y contains a half-line (that is, if Y is linearly unbounded), as you
can always apply a translation (shift-operator) in the half-ray, but far to be well understood if
Y is supposed to lack this property. Without any doubt, one of the most relevant results in this
direction was obtained by W.O. Ray in [26].

Theorem 1.1. (Ray’s theorem) Let K be a nonempty closed and convex subset of a (real)
Hilbert space. Then K has the fixed point property for nonexpansive mappings if and only if K
is bounded.

In fact, in [12] two antagonistic questions were raised. The first one asked if Ray’s theorem
characterized Hilbert spaces among the class of Banach spaces. The second one asked if Ray’s
theorem characterized any Banach space at all, that is, if it holds for any Banach space. Recently
the first question has been answered in the negative by T. Domı́nguez-Benavides [5] where it
is shown that the space of real sequences converging to 0, that is, the space c0, satisfies Ray’s
theorem. Regarding the second question it is still to be found a Banach space where Ray’s
theorem does not hold. More successful attempts to approach this problem in a more general
way have tried to establish the –trivial in the bounded case [9, pg. 28]– approximate fixed point
property (AFPP), that is, to establish whether

inf{d(x, T (x)) : x ∈ Y } = 0.

Some remarkable results pointing in this direction were obtained by I. Shafrir, E. Kopecká, T.
Kuczumov and S. Reich [21, 24, 27, 30], among others.

We study here the problem of the fixed point property for unbounded sets in CAT(0) spaces,
also known as geodesic metric spaces of global nonpositive curvature in the sense of M. Gromov
(see preliminaries for more details or [1, 2]). CAT(0) spaces have called the attention of many
authors working in metric fixed point theory in the last years (see [6, 7, 13, 14] and references
therein). It is very well-known that (real) Hilbert spaces are the only Banach spaces which
are CAT(0). Also, the fact that CAT(0) spaces satisfy the so-called C-N inequality (see [1, pg.
163]) makes them share very relevant properties with Hilbert spaces. Therefore, it is natural to
wonder whether Ray’s theorem still holds true for CAT(0) spaces. The answer to this question
is known to be negative since two examples of CAT(0) spaces failing Ray’s theorem are known:
the (complex) Hilbert ball with the hyperbolic metric (see Theorem 32.2 in [10]) and R-trees [7].
In fact, it is known that, in both cases, a nonempty closed and convex subset of these spaces has
the fixed point property if and only if it is geodesically bounded and so not necessarily bounded
(see [7] for the R-tree case and [10, Theorem 32.2] for the Hilbert ball case). A few years after
Ray’s result appeared, R. Sine [31] found a new and much shorter proof of the same result. This
proof basically relies on two facts: Banach-Steinhaus theorem and the extraordinarily good
properties of the metric projection onto closed and convex subsets of Hilbert spaces. As it will
be explained in Section 2, metric projections on CAT(0) spaces behave in a very similar way as
they do in Hilbert spaces. The goal of this paper is therefore to study farther to which extend
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Ray’s theorem remains true in CAT(0) spaces. For related works on fixed point on unbounded
sets the reader may check [17, 23] or, for recent developments, [5, 29].

This work is organized as follows. In Section 2 we introduce some preliminary notions and
notations jointly with auxiliary results which will be used by our main results. In Section 3 we
enlarge the known collection of CAT(0) spaces failing Ray’s theorem. In Section 4 we define and
study a geometrical condition inspired in the Banach-Steinhaus theorem, which we call property
U, about the structure of unbounded sets in geodesic spaces. Next we study this property on
different spaces. In Section 5 we obtain a counterpart of Ray’s theorem in CAT(0) spaces by
showing that any nonempty closed and convex subset of a complete CAT(0) space with property
U has the fixed point property if and only if it is bounded. Although based on the same two
facts as in Sine’s proof, our result will require a much more involved proof where the Busemann
convexity of CAT(0) spaces plays a very distinguished role. We close this work with an appendix
about the modulus of convexity at infinity of CAT(κ) spaces with κ < 0.

2 Preliminaries

Let (X, d) be a metric space and x, y ∈ X. A geodesic path from x to y is a mapping c : [0, l] ⊆
R → X with c(0) = x, c(l) = y and d (c(t), c(t′)) = |t− t′| for every t, t′ ∈ [0, l]. The image
c ([0, l]) of c forms a geodesic segment which joins x and y and is not necessarily unique unless
the space is uniquely geodesic. If no confusion arises, we will use [x, y] to denote a geodesic
segment joining x and y. (X, d) is a (uniquely) geodesic space if every two points x, y ∈ X can
be joined by a (unique) geodesic path. A point z ∈ X belongs to the geodesic segment [x, y] if
and only if there exists t ∈ [0, 1] such that d(z, x) = td(x, y) and d(z, y) = (1 − t)d(x, y), and,
abusing of notation, we will write z = (1 − t)x + ty if no confusion arises. A subset K of X is
convex if it contains any geodesic segment that joins every two points of it. A geodesic will be
an isometric set to the real line and a geodesic ray an isometric set to a half-line. A geodesic
metric space will be geodesically bounded if it does not contain any geodesic ray. More details
about geodesic metric spaces can be found in [1, 2].

Given a point x ∈ X and a positive number r, the notation B(x, r) will stand for the closed
ball of center x and radius r. If Y ⊆ X then

dist(x, Y ) = inf{d(x, y) : y ∈ Y }.

The same definition and notation will be used for distances between sets.
Let us assume that (X, d) is a geodesic space. A geodesic triangle ∆(A,B,C) consists of three

points A,B and C in X (the vertices of the triangle) and three geodesic segments joining each
pair of vertices (the edges of the triangle). For the geodesic triangle ∆=∆(A,B,C), a comparison
triangle is a triangle ∆̄ = ∆(Ā, B̄, C̄) in the Euclidean plane E2 such that d(A,B) = dE2(Ā, B̄),
d(A,C) = dE2(Ā, C̄) and d(B,C) = dE2(B̄, C̄). As an elementary fact of the Euclidean geometry
such a triangle always exists and is unique up to isometries. Corresponding angles at correspond-
ing vertices are called comparison angles (for more precise definitions, and in particular definition
of angle in (X, d), see [1, Pg. 8]).

A geodesic triangle ∆ satisfies the CAT(0) inequality if for a comparison triangle ∆̄ of ∆ and
for every x, y ∈ ∆ we have

d(x, y) ≤ dE2(x̄, ȳ),

where x̄, ȳ ∈ ∆̄ are the comparison points of x and y, i.e., for x, if x = (1 − t)A + tB then
x̄ = (1− t)Ā+ tB̄. From now on we will omit the notation dE2 to refer to the Euclidean metric
since the context will make it clear.
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Definition 2.1. A metric space (X, d) is said to be a CAT(0) (or global nonpositive curvature)
space if it is a geodesic space and all its triangles satisfy the CAT(0) inequality.

A very thorough exposition of CAT(0) spaces can be found in Chapter II of [1] (the reader
can find different equivalent definitions of CAT(0) spaces in this monograph). We summarize
next some of the properties of CAT(0) spaces that will be needed in our work and which can be
found in [1, Chapter II]. CAT(κ) spaces for κ ∈ R are defined by comparing in an analogous way
with model spaces of constant curvature κ (see [1, Chapter II] for more details). We omit details
for these spaces, however model spaces with constant negative curvature will be described in the
next section.

Proposition 2.2. Let (X, d) be a CAT(0) space, then the following properties hold:

1. (X, d) is uniquely geodesic.

2. If ∆=∆(A,B,C) is a triangle in (X, d) and ∆̄ = ∆(Ā, B̄, C̄) is its Euclidean comparison
triangle, then for any vertex of ∆, let us say A,

γ = ∠A(B,C) ≤ ∠Ā(B̄, C̄).

3. (Law of cosines.) If γ is as above and a = d(B,C), b = d(A,C) and c = d(A,B) then

a2 ≥ b2 + c2 − 2bc cos γ.

In particular, if γ ≥ π/2 then the largest side of ∆ is the opposite to γ.

A geodesic space (X, d) is Busemann convex (firstly introduced in [3] but also known by other
authors as hyperbolic metric spaces [28]) if given any pair of geodesic paths c1 : [0, l1]→ X and
c2 : [0, l2]→ X with c1(0) = c2(0) one has

d(c1(tl1), c2(tl2)) ≤ td(c1(l1), c2(l2)) for all t ∈ [0, 1].

Applying a simple reasoning in the definition of Busemann convexity it is possible to renounce
to the condition c1(0) = c2(0) as it is shown next

d(c1(tl1), c2(tl2)) ≤ (1− t)d(c1(0), c2(0)) + td(c1(l1), c2(l2)) for all t ∈ [0, 1].

It is a very well-known fact that CAT(0) spaces are Busemann convex. The next proposition,
intrinsic to the definition of Busemann convexity, will be repeatedly applied in Section 5.

Proposition 2.3. Let X be a geodesic Busemann convex space. Consider x and y distinct
points in X. If z ∈ X then, for any t ∈ (0, 1),

d(z, tx+ (1− t)y) < max{d(x, z), d(y, z)}.

Another important feature of CAT(0) spaces is the behavior of the metric projection.

Definition 2.4. Given a metric space X and a nonempty subset K of X, the metric projection
(or nearest point map) from X onto K is denoted as PK and defined by

PK(x) = {y ∈ K : d(x, y) = dist(x,K)}.
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The next proposition [1, Proposition 2.4, Chapter II] summarizes the properties of the metric
projection onto closed and convex subsets of CAT(0) spaces.

Proposition 2.5. Let X be a complete CAT(0) space and K ⊆ X nonempty, closed and convex.
Then the metric projection onto K is well-defined (single-valued) and nonexpansive. Moreover,
if x /∈ K and y ∈ K with y 6= PK(x) then

∠PK(x)(x, y) ≥ π

2
.

An R-tree is a uniquely geodesic metric space X such that if [y, x] ∩ [x, z] = {x} then
[y, x] ∪ [x, z] = [y, z] for each x, y, z ∈ X. A very well-known example of an R-tree is given by
R2 with the river metric as follows:

d(v1, v2) =

{
| y1 − y2 |, if x1 = x2,

| y1 | + | y2 | + | x1 − x2 |, if x1 6= x2,

where v1 = (x1, y1), v2 = (x2, y2) ∈ R2.
From the definition of R-tree, it immediately follows that if x, y, z ∈ X, then [x, y] ∩ [x, z] =

[x,w] for some w ∈ X. Likewise, if K is a closed and convex subset of an R-tree X, then for
every x ∈ X, PK(x) is a singleton and for any y ∈ K, d(x, y) = d(x, PK(x)) + d(PK(x), y).
This property is also known as the gate property. In general, given M and N two subsets of a
geodesic metric space, we say that K is a gate between M and N if for any x ∈ M and y ∈ N
there exists z ∈ K such that d(x, y) = d(x, z) + d(z, y). If the space is uniquely geodesic then
such a z is unique.

It is known that R-trees are CAT(0) spaces. In [7] it was shown that any geodesically
bounded complete R-tree has the fixed point property for nonexpansive mapping and so Ray’s
theorem does not hold on R-trees in general. For extensions of this result the interested reader
may also check [16, 25].

In [30], I. Shafrir considered the fixed point problem for unbounded sets in Banach spaces
and Busemann convex geodesic spaces. More precisely, the approximate fixed point property
for unbounded sets was studied in [30]. A set K of a metric space is said to have the AFPP
(approximate fixed point property) for nonexpansive mappings if

inf{d(x, Tx) : x ∈ K} = 0

for every nonexpansive mapping T : K → K. The following definition was also introduced in
[30].

Definition 2.6. Let X be a geodesic space. A curve γ : [0,∞)→ X is said to be directional if
there exists b ≥ 0 such that

t− s− b ≤ d(γ(s), γ(t)) ≤ t− s

for all t ≥ s ≥ 0. A convex subset K of X is called directionally bounded if it contains no
directional curves.

Then the following result, which will be used in this work, was shown.

Theorem 2.7. A convex subset of a Busemann convex space has the AFPP if and only if it is
directionally bounded.
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3 Spaces failing Ray’s theorem

We start this section by describing an abstract CAT(0) space for which Ray’s theorem fails.
Then we will show that this kind of spaces can be found as subsets of concrete spaces.

Proposition 3.1. Let C be a complete CAT(0) space which can be written as

C = C0 ∪

( ∞⋃
n=1

Cn

)
,

where:

i) C0 is bounded closed and convex,

ii) Cn is closed and bounded with C0 ∪ Cn convex for any n,

iii) {Cn} is a family of pairwise disjoint sets such that diam(Cn) tends to infinity as n→∞,

iv) Wn = C0∩Cn is nonempty, diam(Wn) ≤ α for each n and dist(Wn,Wm) ≥ α for a certain
α ≥ 0 and any n 6= m.

Then, C is geodesically bounded and unbounded, and has the fixed point property.

Proof. Notice first that the sets Wn are gates to get from Cn to anywhere out of Cn.
Therefore, since C0 is bounded, it follows that C is geodesically bounded. Moreover, C is
unbounded because diam(Cn) tends to infinity as n→∞.

Now, let us take a nonexpansive mapping T : C → C. Since each unbounded curve must cut
the set C0 infinitely many times, on account of Theorem 2.7.,

inf{d(x, T (x)) : x ∈ C} = 0.

Therefore, any approximate fixed point sequence (xn) must be unbounded since, otherwise, a
standard reasoning (see, for instance, [6]) would lead that the asymptotic center of (xn) is a
fixed point of T . In particular,

inf{d(x, T (x)) : x ∈ C0} = p > 0,

Let (xn) be an approximate fixed point sequence, without loss of generality we assume that
xn ∈ Cn for each n.

Let us choose n so large that d(xn, T (xn)) =: ε < p and denote l = dist(xn,Wn)+diam(Wn).
Then make

D = Cn ∪B(xn, l).

From ii), iii) and iv) we trivially have that D ⊆ Cn∪C0 and is closed. By construction D is also
bounded. Let us see that, in addition, it is convex too. Indeed, let us fix x, y ∈ Cn such that
the metric segment [x, y] 6⊂ Cn. Since Wn is the gate of Cn, there are two points u, v ∈ [x, y]
such that u, v ∈Wn. So u, v ∈ B(xn, l) and so [u, v] ⊂ D. A similar proof works for x ∈ Cn and
y ∈ B(xn, l) \ Cn.

Consider PD ◦ T : D → D which is a nonexpansive mapping. Therefore, it has a fixed
point x̄ = PD(T (x̄)). If T (x̄) ∈ D then there is nothing to prove. Otherwise x̄ must be in
the topological boundary of D and so, by construction, in C0. In particular, d(x̄, T (x̄)) ≥
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p. Moreover, since the topological boundary of D is contained in the boundary of B(xn, l),
d(x̄, xn) = l and so

d(T (x̄), xn) ≤ d(T (x̄), T (xn)) + d(T (xn), xn) ≤ l + ε.

Therefore, dist(T (x̄),Wn) ≤ ε and so

d(x̄, T (x̄)) = d(PD(T (x̄)), T (x̄)) ≤ ε,

which is a contraction since ε < p. Therefore, x̄ is a fixed point of T .
To complete the proof we need to show that the same happens for any nonempty closed and

convex subset C ′ of C. However, this follows directly from the facts that C ′ is a nonexpansive
retract of C and that any nonexpansive mapping from C into C has a fixed point.

One may wonder if this kind of CAT(0) spaces actually happens. The easiest example of
this kind may be the following R-tree.

Example 3.2. Consider R2 with the radial metric, that is, d(x, y) = ‖x‖+ ‖y‖ if x, y ∈ R2 are
not collinear with the origin and d(x, y) = ‖x−y‖ otherwise, where ‖ ·‖ stands for the Euclidean
norm. Let C ⊂ R2 be made of segments of finite length starting at the origin in such a way that
C is unbounded. Let C0 = B(0, 1), then

C = C0 ∪

 ⋃
y/∈C0

Cy

 ,

where Cy is the largest geodesic segment starting in PC0(y) and passing through y. Notice that
for this particular example α = 0.

More sophisticated and interesting examples can be built considering the Reshetnyak gluing
technique (see Theorem 11.1 in Chapter II of [1]).

Example 3.3. Let C be the closed unit ball in `2 and {en} the elements of its standard basis.
For each n ∈ N let us consider

Cn = conv

(
B

(
(1− 1

n
)en,

1

n

)
∪ {nen}

)
,

where the conv stands for the closed and convex hull. Now take N ∈ N so that

dist(Cn, Cm) = inf{d(x, y) : x ∈ Cn, y ∈ Cm} > 1

for any n,m ≥ N . Consider now the gluings of C with Cn for n ≥ N . By the basic gluing
theorem, these gluings are all CAT(0) spaces and, gluing again all them,

X = C ∪

 ⋃
n≥N

Cn


is a complete CAT(0) space as those given by Proposition 3.1..

Proposition 3.1. can also be used to deduce the main result from [7].
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Corollary 3.4. Let X be an unbounded but geodesically bounded complete R-tree, then it has
the fixed point property for nonexpansive mappings.

Proof. First, it is easy to see that if an R-tree is geodesically bounded then is directionally
bounded too. Therefore, if T : X → X is a nonexpansive mapping then we may assume that
there exists an unbounded approximate fixed point sequence since otherwise T has a fixed point.
Let (xn) be one of those sequences. Fix x0 ∈ X and denote as BR the closed ball of center x0

and radius R. Then there must exist R > 0 such that the cardinality of {PBR
(xn) : n ∈ N}

is not finite. If this is not the case then there would exist a sequence of points (pn) such that
d(pn, x0) = n and a subsequence of (xn), which we denote equally as (xn), such that

PBR
(xn) = pN

for each n ≥ N . Now consider the segment I1 = [x0, x1] and then

x2 = PI1(x2) ∈ [p1, x1].

Now consider the segment [x0, x
2] ⊆ [x0, x2]. Repeating the same process with I2, x3 and p2

we obtain x3 such that d(x0, x
3) ≥ 3 and [x0, x

2] ⊆ [x0, x
3]. Continuing in this way we can

geodesically extend [x0, x
2] as a geodesic ray which is a contradiction.

So we can take x0, for simplicity R = 1 and (xn) an approximate fixed point sequence such
that PB1(xn) 6= PB1(xm) for n 6= m. Consider

Y = B1 ∪

(⋃
n∈N

Cxn

)

where Cxn = [PB1(xn), xn]. Let T̃ = PY ◦T : Y → Y . From Proposition 3.1., there exists x ∈ Y
such that T̃ x = x. If Tx ∈ Y then x = Tx. Otherwise x is the gate of Tx to Y and so, from the
nonexpansivity of T , d(z, Tz) ≥ d(x, Tx) for z ∈ Y . In particular, this implies that (xn) cannot
be an approximate fixed point sequence.

The two very well-known cases for which Ray’s theorem does not hold are R-trees [7] and
the complex Hilbert ball with the hyperbolic metric [10, Theorem 32.2]. In both cases more
than the negation of Ray’s theorem is known, more precisely, a nonempty closed and convex
subset has the fixed point property if and only if is geodesically bounded. We show next that
any complete locally compact CAT(0) space also falls into this class although they also satisfy
Ray’s theorem.

Proposition 3.5. Let X be a complete and unbounded locally compact CAT(0) space. Then X
contains a geodesic ray.

Proof. Let x ∈ X and consider {xn} an unbounded sequence of points in X. For k ∈ N
consider nk large enough so that d(x, xn) ≥ k for n ≥ nk. For n ≥ nk, take

ykn ∈ [x, xn]

such that d(x, ykn) = k. According to the Hopf-Rinow theorem, closed and bounded subsets of
complete and locally compact length spaces are compact. Hence, by a diagonalization process if
needed, we can assume that all sequences {ykn}n≥nk

are convergent to respective points yk. Now,
the CAT(0) condition (applied to angles) implies that all the points yk lie in a same geodesic
ray emanating from x. Finally, since d(x, yk) = k for each k, the segments joining the points of
the sequence {yk} define a geodesic ray.

As a consequence of this proposition we obtain the following theorem.
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Theorem 3.6. Let X be a complete locally compact CAT(0) space. Then the following state-
ments are equivalent:

i) A nonempty closed and convex subset Y of X has the fixed point property for nonexpansive
mappings.

ii) Y is geodesically bounded.

iii) Y is bounded.

Proof. It was already pointed in the introduction that if Y has the fixed point property
then it must be geodesically bounded. On the other hand, if it is geodesically bounded, from
Proposition 3.5., it must be bounded and so, it is a very well-known fact [12, 14], it has the fixed
point property for nonexpansive mappings.

We will make use next of the Hilbert ball model to show that a nonempty closed and convex
subset of a space of negative constant curvature has the fixed point property if and only it it is
geodesically bounded. Spaces of negative constant curvature can be obtained one from another
by introducing a factor in the distance (see [1, pg. 23]). We describe next the model space of
the infinite dimensional space with −1 constant curvature. Notice that the finite dimensional
ones would fall into the scope of the Theorem 3.6..

First, let us recall the finite dimensional space Hn. Let En,1 denote the vector space Rn+1

endowed with the symmetric bilinear form which associates to vectors u = (u1, · · · , un+1) and
v = (v1, · · · , vn+1) the real number 〈u|v〉 defined by

〈u|v〉 = −un+1vn+1 +

n∑
i=1

uivi.

Then the real hyperbolic n-space Hn is

{u ∈ En,1 : 〈u|u〉 = −1, un+1 ≥ 1}.

Proposition 3.7. Let d : Hn × Hn → R be the function that assigns to each pair (A,B) ∈
Hn ×Hn the unique non-negative number d(A,B) such that

cosh d(A,B) = −〈A,B〉.

Then (Hn, d) is a uniquely geodesic metric space of constant curvature −1.

The analogous infinite dimensional space, which we will denote as H∞, is defined in the same
way but for elements of `2 with the condition

〈u|u〉 = −u2
1 +

∞∑
i=2

u2
i = −1,

meaning in this occasion

〈u|v〉 = −u1v1 +

∞∑
i=2

uivi

which is well defined for elements in `2 thanks to the Cauchy-Schwarz inequality.
There are several models for the above hyperbolic space. We will need the Klein model in

our next result. Let B be the open unit ball of `2. The following proposition can be found in
[1, Pg. 83] for the finite dimensional case, we reproduce it here for the infinite dimensional case
for completeness.
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Proposition 3.8. Let hK be the homeomorphism from B to H∞ such that

hK(x) = hK((x1, x2, · · · )) =
1√

1− ‖x‖
(1, x1, x2, · · · ) ∈ H∞.

The ball B, equipped with the pull-back by hK of the hyperbolic metric of H∞ is the Klein model.
The distance between two points x, y in this model is given by the formula:

cosh d(x, y) =
1− (x|y)√

1− ‖x‖2
√

1− ‖y‖2
,

where (x|y) is the scalar product and ‖ · ‖ is the Hilbert norm.
Given two distinct points x, y ∈ B, the unique hyperbolic geodesic line containing x and y

is the intersection of B with the affine line in `2 through x and y. Let x∞ and y∞ be the two
intersection points of this line with the boundary of B, arranged so that x∞, x, y, y∞ occur in
order on the line through x and y. The hyperbolic distance d(x, y) is then given by

d(x, y) =
1

2
log

(
‖x− y∞‖ · ‖y − x∞‖
‖x− x∞‖ · ‖y − y∞‖

)
.

Our next goal is to show that H∞ can be isometrically embedded into the Hilbert ball with
the hyperbolic metric (notice also the discussion in [10, Pg. 148]). For that we recall some basic
details about this space taken from [10, pg. 97-102]. Let C be the open unit ball of a complex
Hilbert space H of dimension larger than 1. Given a ∈ C with a 6= 0, let Pa be the orthogonal
projection of H onto the one-dimensional subspace spanned by a. Pa is then given by

Pa(z) =
(z, a)a

|a|2
,

where (z, a) denotes the inner product of z and a, and let Qa = I − Pa, where I stands for the
identity map. Motivated by the Möbius transformation in one dimensional spaces, let

ma(z) =
z + a

1 + (z, a)
.

The proof of the next theorem can be found in [10, pg. 97-99] and [11].

Theorem 3.9. Consider the mapping Ma : C→ C given by

Ma(z) = (
√

1− |a|2Qa + Pa)ma(z).

Then Ma is a holomorphic mapping and

ρ(x, y) = arctanh|M−x(y)|

defines a metric on C. The metric space (C, ρ) is the Hilbert ball with the hyperbolic metric.
Furthermore, (C, ρ) is a CAT(−1) space.

Remark 3.10. The fact that (C, ρ) is a CAT(−1) space is not stated in any of the previous
references. This can be shown, however, following a similar argument to the one on [10, pg.
106] leading to the computation of the modulus of convexity of (C, ρ). Now the idea would be
to sharpen this argument to show the counterpart to the CN inequality for CAT(−1) spaces in
(C, ρ). We omit details since the fact that (C, ρ) is a CAT(−1) space is a well-known one. More
on the modulus of convexity of a CAT(κ) space will be shown in the appendix at the end of this
work.
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Next we show the immersion result.

Theorem 3.11. For n ∈ {2, 3, . . . ,∞}, there is an isometric embedding ϕ : Hn → Bn, where
Bn denotes the unit ball of Cn with the hyperbolic metric.

Proof. Let B ⊂ Cn such that

x ∈ B ⇔ ‖x‖ < 1 ∧ each coordinate of x is a real number.

Consider any n-dimensional unit ball of `2 (denoted again by B), then the Klein model is
obtained when we provide this ball with the metric

d(x, y) =
1

2
ln
‖x− y0‖‖y − x0‖
‖x− x0‖‖y − y0‖

,

as given by Proposition 3.8..
Let us consider the identity map of B and take two point x, x̄ ∈ B. It is enough if we show

that
d(x, x̄) = ρ(x, x̄),

where ρ denotes the hyperbolic metric on B.
Take now the geodesic line in B passing through x and x̄ and denote by u the point of this

geodesic with minimal distance to the origin. Points x, x̄ and the origin span a 2-dimensional
subspace of B. Clearly, the geodesic must belong to this space.

From Euclidean geometry, we may find two orthonormal vectors k and l such that

u = a · k + 0 · l.

Then it must be the case that
x = a · k + b · l

and
x̄ = a · k + c · l.

Moreover, M−u maps the geodesic segment onto the diameter parallel to l.
First let us suppose that c = 0 (what means that u = x̄) and a 6= 0. Then

(x, u) = (a · k + b · l, a · k + 0 · l) = a2 + 0b > 0

and moreover
‖u‖ = a.

Hence

M−u(x) = y =
a− a
1− a2

k +
√

1− a2
b− 0

1− a2
l =

b√
1− a2

l

and

‖M−u(x)‖ =
|b|√

1− a2
,

what leads to

ρ(x, x̄) = ρ(x, u) = arctanh‖y‖ = arctanh
|b|√

1− a2
.
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At the same time

d(x, x̄) = d(x, u) =
1

2
ln

(‖x− u‖+
√

1− a2)(
√

1− a2)√
1− a2(

√
1− a2 − ‖x− u‖)

=
1

2
ln

1 +
|b|√

1− a2

1− |b|√
1− a2

= arctanh
|b|√

1− a2
.

So
d(x, x̄) = ρ(x, x̄).

In each other case u ∈ [x, x̄] or x̄ ∈ [x, u] or x ∈ [u, x̄] and we may repeat our considerations
to obtain that

d(x, x̄) = d(x, u) + d(u, x̄) and ρ(x, x̄) = ρ(x, u) + ρ(u, x̄)

or
d(x, x̄) = |d(x, u)− d(u, x̄)| and ρ(x, x̄) = |ρ(x, u)− ρ(u, x̄)|.

As an immediate consequence of this immersion result we obtain the following corollary.

Corollary 3.12. A nonempty closed and convex subset of H∞ has the fixed point property if
and only if it is geodesically bounded.

Remark 3.13. Proposition 3.5. shows that there is no unbounded and geodesically bounded
closed and convex subset of Hn for any positive entire n. To find such sets in H∞ the reader
may check, after the previous theorem, Example 32.1 in [10].

4 Property U

Next we introduce a geometrical condition. This condition refers to the structure of unbounded
sets in geodesic spaces.

Definition 4.1. Let X an unbounded geodesic space. Then we say that X has the property of the
far unbounded convex set (property U, for short) if for any convex closed and unbounded subset
Y of X either Y is geodesically unbounded or for each closed convex and unbounded K ⊆ Y and
x ∈ K there exists a closed convex and unbounded subset K1 of K such that dist(x,K1) ≥ 1.

Property U holds in reflexive Banach spaces from the Banach-Steinhaus theorem as the
following proposition shows.

Proposition 4.2. Let X be a reflexive Banach space. Then X has property U.

Proof. Let Y ⊂ X unbounded closed and convex. Let x ∈ Y be a given point. By the
Banach-Steinhaus theorem weakly bounded sets are also norm bounded. Hence there exists a
continuous functional f such that

Yn = {y ∈ Y : f(y) ≥ n}
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is a nonempty subset of Y for any n ∈ N. Of course, Yn is closed convex and unbounded for any
n ∈ N. Consider the sets

Kn = B(x, 1) ∩ Yn
for n ∈ N. If there exists n ∈ N such that Kn = ∅ then the proposition follows. Otherwise
we have that {Kn} is a decreasing sequence of weakly compact subsets of X. Therefore their
intersection is nonempty which would contradict the finiteness of the functional f .

A natural question in our context, since Hilbert spaces (as well as any of its unbounded closed
and convex subsets) enjoy property U, is whether CAT(0) spaces do it too. R-trees provide an
easy answer in the negative.

Proposition 4.3. If an unbounded R-tree is geodesically bounded then it does not have property
U.

Proof. Let X be a geodesically bounded but unbounded R-tree and take x1 ∈ X. Suppose
X has property U. Then, by property U, there exists K1 an unbounded convex subset of X such
that dist(x1,K1) ≥ 1. Take x2 as the metric projection of x1 onto K1. Repeat this argument
with x2 and K1, then we find x3 such that d(x2, x3) ≥ 1 and, since R-trees are gated spaces
as explained in Section 2, x2 ∈ (x1, x3). Proceeding in this way we obtain {xn} an unbounded
sequence of points of X within the same ray, which contradicts our hypothesis.

Corollary 4.4. Since it is easy to construct unbounded but geodesically bounded R-trees, CAT(0)
spaces do not have property U in general.

On the other hand, Proposition 3.5. can be understood in the following way.

Proposition 4.5. Any unbounded locally compact complete CAT(0) space has property U.

Next we show an example of a non Hilbertian neither locally compact CAT(0) space with
property U.

Example 4.6. Let us consider the space of real sequences `2 and {e1, e2, · · · } the elements of
its canonical basis. Then consider the following two convex sets:

X1 = conv{0, 2e1, 2e2, 3e3, 4e4, 5e5, · · · }

and
X2 = conv{0, e1, 3e2, 3e3, 4e4, 5e5, · · · }.

Clearly, each of them is unbounded and geodesically bounded. Since X1 ∩X2 6= ∅, we can glue
X1 and X2 through their intersection, as shown by the basic gluing theorem in [1, Pg. 347], to
obtain a new non-Hilbertian CAT(0) space

X = X1 tX1∩X2 X2.

To see that X enjoys property U it suffices to notice that for each closed convex and unbounded
subset K of X at least one of the sets K ∩X1 or K ∩X2 must be unbounded. Let it be K ∩X1.
Hence, taking x ∈ K we may consider the subset K ∩X1 in the Hilbert space. From Proposition
4.2., it follows the existence of an unbounded subset K ′ of K ∩X1 such that

dist(x,K ′) ≥ 1.
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There are some other ways to use the basic gluing theorem to obtain new examples of CAT(0)
spaces with property U. In fact the above reasoning works for any finite family of convex and
unbounded sets {Xn} keeping similar relations among them as in the previous example. More
complicated is the case in which an infinite family of such sets is considered, as the next example
shows. For this example we first recall the definition of convex hull in a geodesic space.

Definition 4.7. Let C be a subset of a geodesic space X. Then the convex hull of C is the
smallest convex set containing C, that is, the intersection of all the convex sets containing the
set C.

The convex hull of a set can also be built in the following inductive way (see [1, pg. 112]
or [20, 22]): Let G1(C) denote the union of all geodesics segments with endpoints in A. Notice
that C is convex if and only if G1(C) = C. Recursively, for n ≥ 2 we set Gn(C) = G1(Gn−1(C)).
Then the convex hull of C will be

conv(C) =
⋃
n∈N

Gn(C).

By conv(C) we shall denote the closure of the convex hull. It is easy to see that in a CAT(0)
space, the closure of the convex hull will be convex and hence it is the smallest closed convex
set containing C.

Example 4.8. As in Example 4.6., let us consider the space of real sequences `2 and {e1, e2, · · · }
the elements of its canonical basis. Then consider the following sequence of unbounded but
geodesically bounded closed and convex sets:

X1 = conv{0, 2e1, 2e2, 3e3, 4e4, 5e5, · · · }
X2 = conv{0, e1, 3e2, 3e3, 4e4, 5e5, · · · }

...
...

Xn = conv{0, e1, 2e2, 3e3, · · · , (n− 2)en−2, (n− 1)en−1, (n+ 1)en, (n+ 1)en+1, · · · }
...

...

It is immediate that
X0 := conv{0, e1, 2e2, 3e3, 4e4, 5e5, · · · }

is contained in Xn for any n. Consider X the gluing of all the elements of {Xn} through X0

([1, Pg. 347]). Then X is a CAT(0) space. Notice also that

dist(u,X0) ≤ 1

for any u ∈ X. We want to show that X has property U . Let K ⊆ X be closed convex and
unbounded although geodesically bounded and take x ∈ K. It is enough to show that there exists
K ′ ⊆ K unbounded closed and convex such that distX(x,K ′) ≥ 1. If there exists n such that
K ∩ Xn is unbounded then there is nothing to prove. Suppose this is not the case. Then, by
Banach-Steinhaus theorem, we can fix a functional f with ‖f‖ = 1 and a value M such that
f(x) ≤M and the set

FM+3 = {y ∈ `2 : f(y) ≥M + 3} ∩K

is unbounded. It will be enough if we show that

convX(FM+3) ⊆ {y ∈ `2 : f(y) ≥M + 1},
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where the convex hull is considered with respect to X.
Since convX(FM+3) =

⋃
n∈N

Gn(FM+3), where G1(FM+3) denotes the union of all metric

segments with endpoints in FM+3 and inductively Gn+1(FM+3) = G1(Gn(FM+3)), we can assume
without loss generality that y ∈ G2(FM+3). Then y ∈ [p, q], where p ∈ [v1, v2], q ∈ [v3, v4] and
vi ∈ FM+3, i ∈ {1, 2, 3, 4}. Then there is a point p′ of metric segment [PX0(v1), PX0(v2)] such
that

d(p, v2)

d(v1, v2)
=

d(p′, PX0(v2))

d(PX0(v1), PX0(v2))

with p′ = PX0(v1) if PX0(v1) = PX0(v2). In a similar way we can define q′ ∈ [PX0(v3), PX0(v4)]
and y′ ∈ [p′, q′]. Since dist(vi, X0) ≤ 1, i ∈ {1, 2, 3, 4}, and y′ ∈ convX{PX0(vi) : i = 1, 2, 3, 4} =
conv`

2{PX0(vi) : i = 1, 2, 3, 4}, we get that f(y′) ≥M + 2. But from the Busemann convexity it
follows that d(y, y′) ≤ 1 and hence f(y) ≥M + 1, what completes the proof.

Another interesting class of CAT(0) spaces is provided by the so-called 0-cones of CAT(1)
spaces. We show in Example 4.10. below that these spaces enjoy property U. Before introducing
0-cones let us take a look at the cones on the plane with the Euclidean metric. In particular,
consider e a point in the unit sphere of the plane and Se the intersection of B(e, 1) with the unit
sphere. Define next Ce as the cone generated by Se and the origin. Consider F the orthogonal
line to the line passing through the origin and e and which distance to the origin is 1/2. Then
it only requires basic trigonometry to state that

conv(Ce ∩ {x : ‖x‖ ≥ 1}) ⊆ F+,

where F+ is the half-space determined by F not containing the origin. As a consequence, also
by elementary geometry, we can deduce that

(4.1) dist(0, conv(Ce ∩ {x : ‖x‖ ≥ n}))→∞

as n→∞ by just repeating the same argument under the condition ‖x‖ ≥ 1.
Next we give the definition of 0-cone.

Definition 4.9. Given a metric space Y , consider X the quotient of [0,∞) × Y given by the
equivalence relation: (t, y) ∼ (t′, y′) if t = t′ = 0 or t = t′ > 0 and y = y′ otherwise. For x = ty
and x′ = t′y′ in X, define

d2(x, x′) = t2 + t′
2 − 2tt′ cos(dπ(y, y′))

where dπ(y, y′) := min{π, d(y, y′)}.
Then (X, d) is the 0-cone of Y . The 0-cone of Y will be denoted as C0Y .

A very good feature of 0-cones is that they have many 2-dimensional flat subspaces. In
particular, given any geodesic segment [y1, y2] ⊆ Y joining y1 and y2, the subcone C0[y1, y2] is
isometric to the 2-dimensional Euclidean cone defined by the origin and a segment in the unit
sphere of length d(y1, y2).

Example 4.10. Consider Y any CAT(1) space of diameter 1. Then the 0-cone of Y is a
CAT(0) space with property U. Indeed, take K ⊆ C0Y geodesically bounded. Then, given any
two points ty and t′y′ in K, the segment [ty, t′y′] would be in an isometric set to C0[y, y′] and
so, by (4.1), separated from the origin in function of min{t, t′}.

Remark 4.11. The condition that diameter of Y is 1 is mainly for simplicity. Larger diameters
would be allowed in the previous reasoning although not larger diameters than π.
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5 Fixed point results

In this section we show that a complete CAT(0) space furnished with property U satisfies Ray’s
theorem.

Theorem 5.1. Let X be a complete CAT(0) space. Suppose also that X satisfies property U.
Then a nonempty closed convex subset Y ⊂ X has the fixed point property for nonexpansive
mappings if and only if Y is bounded.

Proof. If Y is bounded then it is a very well-known fact (see [13, 14], for instance) that
Y has the fixed point property for nonexpansive mappings. Therefore, let us assume that Y is
not bounded and let us see that then we can find a nonempty convex and closed subset Y ′ of Y
with a fixed point free nonexpansive mapping T : Y ′ → Y ′.

First, if Y is geodesically unbounded then there exists a ray γ ⊂ Y . Make Y ′ = γ. Let
γ be parametrized by arc-length in the usual way as γ(t) for t ≥ 0. Define T : γ → γ as
T (γ(t)) = γ(t+ 1), then T is a fixed point free injective isometry from Y ′ into Y ′.

Suppose now that Y is geodesically bounded. We will construct a fixed point free nonexpan-
sive mapping T : Y → Y .

We first show that given A ∈ Y we can find a decreasing sequence of unbounded closed and
convex subsets {Kn} of Y such that

(5.2) dist2(A,Kn) = inf{d2(A, x) : x ∈ Kn} ≥ n

for any n ∈ N. Indeed, fixed A ∈ Y . Then, since Y is geodesically bounded and X has property
U, we can find an unbounded closed and convex subset K1 of Y such that dist(A,K1) ≥ 1.
Take P1 = PK1(A). Notice that from the uniqueness of the metric projection onto K1 and its
definition, we have that d(x,A) > d(A,P1) for x ∈ K1 with x 6= P1. Now, apply again property
U to P1 to find another set K2 ⊆ K1, closed convex and unbounded, such that dist(P1,K2) ≥ 1.

Now let us estimate the distance between any point x ∈ K2 and A. Since, by Proposition
2.5., the Alexandrov angle ∠P1(A, x) is not smaller then π/2, then, for the angle ∠P̄1

(Ā, x̄) in
the comparison triangle ∆(Ā, P̄1, x̄) in E2, Proposition 2.2. implies that

π

2
≤ ∠P1(A, x) ≤ ∠P̄1

(Ā, x̄)

holds. Therefore, again by Proposition 2.2.,

d2(A, x) ≥ d2(A,P1) + d2(P1, x) ≥ d2(A,P1) + 1 ≥ 2.

Proceeding in this way, by picking at each step the sets Kn and Pn = PKn(A) as above, we can
define a decreasing sequence of sets {Kn} each of them closed convex and unbounded such that
(5.2) holds, as we wished.

We claim next that

(5.3) d(Pk, Pn) < d(A,Pn)

for each k ∈ {1, . . . , n − 1}. Let n > 2 and k ∈ {1, . . . , n − 1}. Notice that Pn 6= Pk for n 6= k.
To prove our claim it is enough to recall that Pn ∈ Kk and Pk = PKk

(A). So ∠Pk
(A,Pn) ≥ π/2

and so, attending to the comparison triangle of 4(A,Pk, Pn) in the Euclidean plane and the
CAT(0) condition, the claim follows (see Proposition 2.2.).
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Now we start the construction of our fixed point free mapping. Choose a sequence of positive
numbers {cn} such that

∞∑
n=1

cnd(A,Pn) <∞

and
∞∑
n=1

cn = 1.

First let us suppose that T1 is the identity map on K0 = Y . A sequence of mappings {Tn} can
be defined in an inductive way as shown next:

Tn+1(x) = (1− cn)Tn(x) + cnPKn(x).

Notice that the fact that the mappings {Tn} defined in this way are nonexpansive follows from
the facts that they are convex combination of two nonexpansive mappings (by induction) and
the Busemann convexity of CAT(0) spaces applied at each inductive step. Notice also that if
x ∈ Kn then Ti(x) = x for i ≤ n+ 1. We want to show that {Tn} is pointwise convergent on Y .
Indeed, let x ∈ Y then it is sufficient to show that

m−1∑
k=n

d(Tk(x), Tk+1(x))→ 0

as m,n→∞. Let us show first that this is the case for x = A. By construction,

Tn(A) ∈ conv{A,P1, . . . , Pn−1}.

We claim now that

(5.4) d(Tn(A), Pn) < d(A,Pn)

for n ≥ 2.
For n = 2 we need to show that d(T2(A), P2) < d(A,P2). But

T2(A) = (1− c1)A+ c1P1

with c1 > 0 and, of course, A 6= P1. By (5.3), d(P1, P2) < d(A,P2) and so a direct application
of Proposition 2.3. implies that d(T2(A), P2) < d(A,P2).

Let us consider a general n now. Then, again by (5.3), d(P1, Pn) < d(A,Pn). Furthermore,
T2(A) ∈ [P1, A], therefore, again by Proposition 2.3.,

d(T2(A), Pn) < d(A,Pn).

Recalling (5.3), we can continue in this way to deduce that d(T3(A), Pn) < d(A,Pn). Continuing
in this way till we reach Tn(A) completes the proof of the claim.

The next follows from our claim,

m−1∑
k=n

d(Tk(A), Tk+1(A)) =

m−1∑
k=n

ckd(Tk(A), Pk)(5.5)

<

m−1∑
k=n

ckd(A,Pk)→ 0 if n,m→∞,(5.6)
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which, in particular, shows that {Tn(A)} is a Cauchy sequence and so convergent.
Take x ∈ Y , from the nonexpansiveness of the metric projection, we have that

d(Pk, PKk
(x)) ≤ d(A, x)

and, as a direct application of Busemann convexity, by induction we can assure that

d(Tk(A), Tk(x)) ≤ d(A, x)

holds for any k. Combining this with (5.4) and (5.6), we obtain

m−1∑
k=n

d(Tk(x), Tk+1(x)) =
m−1∑
k=n

ckd(Tk(x), PKk
(x))

≤
m−1∑
k=n

ckd(Tk(x), Tk(A)) +

m−1∑
k=n

ckd(Tk(A), Pk) +

m−1∑
k=n

ckd(Pk, PKk
(x))

≤
m−1∑
k=n

ckd(A,Pk) + 2

m−1∑
k=n

ckd(A, x)→ 0 if n,m→∞.

Since Y is a closed subset of a complete metric space, Tn(x)→ T (x) for each x ∈ Y . Furthermore,
since each Tn is a nonexpansive mapping, so is T .

Now we will show that T is fixed point free. Let us take any x ∈ Y . Since, by (5.2),
d(A,Pn) → ∞ as n → ∞, x must belong to a finite number of subsets Kn. Let N ∈ N be the
smallest natural number such that x 6∈ KN and let us denote PKN

(x) = PN (x). Then TN+2(x)
is in [TN+1(x), PN+1(x)]. Remember that TN+1(x) ∈ [x, PN (x)] \ {x, PN (x)} and let us consider
4(T̄N+1(x), P̄N+1(x), P̄N (x)) the comparison triangle of 4(TN+1(x), PN+1(x), PN (x)). Then it
is clear that

∠P̄N (x)(T̄N+1(x), P̄N+1(x)) ≥ π/2.
So, for y ∈ [TN+1(x), PN+1(x)], we have that

dist(y,KN ) ≤ dist(y, [PN (x), PN+1(x)]) ≤ dist(ȳ, [P̄N (x), P̄N+1(x)])

< dist(x̄, [P̄N (x), P̄N+1(x)]) = d(x̄, P̄N (x))

= d(x, PN (x)) = dist(x,KN ),

therefore
dist(TN+2(x),KN ) < dist(x,KN ).

Now, if we repeat the same argument in an inductive way for n ≥ N + 2, we obtain that

dist(T (x),KN ) ≤ dist(Tn+1(x),KN )

< dist(Tn(x),KN ) < dist(x,KN )

at least at a certain moment Tn(x) ∈ KN . Either case, by taking limit, we obtain that

dist(T (x),KN ) < dist(x,KN )

and so T (x) 6= x.

Since each space with all unbounded subsets being geodesically unbounded obviously satisfies
property U, we will focus on spaces with geodesically bounded subsets. More precisely, in the
sequel we suppose that for each space X there is at least one Y ⊂ X which is unbounded but
geodesically bounded.

As a corollary of the proof of Theorem 5.1. we obtain the following.
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Corollary 5.2. Let X be an unbounded and complete CAT(0) space with property U. Let x ∈ X
and C ⊆ X unbounded closed and convex. Then, if X is geodesically bounded, for R > 0 there
exist D ⊆ C unbounded closed and convex such that dist(x,D) ≥ R.

The next corollary also follows as an immediate consequence of Theorem 5.1. and results in
Section 3.

Corollary 5.3. The Hilbert ball with the hyperbolic metric and infinite dimensional negative
constant curvature spaces fail property U.

Our next goal is to show that this latter corollary actually holds in CAT(κ) spaces with
κ < 0. We first need a technical result which will follow as a corollary of the next fact on H2.
The Poincaré model of the 2-dimensional hyperbolic model space of constant curvature −1 [1,
pg. 18], which we describe next, will be required. Let B be the open unit ball of R2, then the
Poincaré ball model is B endowed with the hyperbolic distance given by

d(x, y) = log

(
‖x− y∞‖ · ‖y − x∞‖
‖x− x∞‖ · ‖y − y∞‖

)
,

where ‖ · ‖ is the usual Euclidean norm in R2 and the points x∞ and y∞ are chosen so that both
have norm 1 and the circle joining all four points is orthogonal to the unit circle of R2. Points
are also considered to be arranged in the order x∞, x, y and y∞ in this circle. One of the main
features of this model is that angles between geodesics (circles and lines orthogonal to the unit
circle) are the same as angles in H2 (for more details on this model see [1, p. 86-88]).

Lemma 5.4. In the Poincaré ball model consider 0 as the origin. Then, for γ > 0 given, there
exists R > 0 such that

B(0, R) ∩ [u1, u2] 6= ∅

for any u1 and u2 such that ∠0(u1, u2) ≥ γ.

Proof. Let v1 and v2 be norm one points such that ui ∈ [0, vi] for each i. Since ∠0(u1, u2) ≥
γ, the uniform convexity of the Hilbert spaces implies that there exists ε > 0 such that if
w = (v1 + v2)/2 then

‖w‖ ≤ 1− ε := M.

From where it follows that

dist(0, [u1, u2]) ≤ dist(0, [v1, v2]) ≤ d(0, w)

≤ log
1 +M

1−M
.

Corollary 5.5. Let X be a CAT(κ) space with κ < 0 and let x0, x and y ∈ X such that there
exists r, ε > 0 with d(u, v) ≥ ε, where u and v are, respectively, the metric projection of x and
y onto B(x0, r), then there exists R > 0, depending only on r and ε, such that

B(x0, R) ∩ [x, y] 6= ∅.

Proof. We can assume that X is a CAT(−1) space. Let x0, y, x, u and v be as in the
statement. Consider the triangle ∆ = ∆(x0, x, y) and its comparison one ∆̄ = ∆(x̄0, x̄, ȳ) in H2.
Hence, from CAT(−1) inequality, d(ū, v̄) ≥ d(u, v) ≥ ε where, as customary, ū and v̄ are the
corresponding point of u and v, respectively, in ∆̄. Therefore,

γ = ∠x̄0(x̄, ȳ) = ∠x̄0(ū, v̄) > 0.
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Now, on account of Lemma 5.4., we have that there exists R > 0, depending only on r and ε,
such that

[x̄, ȳ] ∩B(x̄0, R) 6= ∅.

So there exists p̄ ∈ [x̄, ȳ] ∩B(x̄0, R) and, by taking p ∈ [x, y] as the corresponding point to p̄ in
∆, we finally have that B(x0, R) ∩ [x, y] 6= ∅ with R depending only on r and ε.

Next we reach to the announced result.

Theorem 5.6. Let X be an unbounded and complete CAT(κ) space, κ < 0, containing un-
bounded but geodesically bounded subsets, then X fails property U.

Proof. From the definition of property U we reduce ourselves to the case in which X is
geodesically bounded. Fix x0 ∈ X and assume that X has property U, then, from Corollary 5.2.,
we can consider (An) as a decreasing sequence of unbounded closed and convex subsets of X such
that limn→∞ dist(x0, An) =∞. Without loss of generality, we can assume that dist(x0, An) > n.

For each N ∈ N consider the sequence of sets, for n ≥ N ,

ENn = PB(x0,N)(An),

that is, the closed closure of PB(x0,N)(An) where PB(x0,N) stands for the metric projection onto
B(x0, N), and the limits

dN = lim
n→∞

diam(ENn ).

Notice that, since the sequence (An) is decreasing, limits dN are well-defined.
Assume first that dN = 0 for each N . Then, from completeness, there exists a point xN such

that
{xN} =

⋂
n≥N

ENn

for each N ∈ N. Let N > 1 arbitrary, then, for n ≥ N , there exists yn ∈ An such that
un = PB(x0,N)(yn) is such that the sequence (un) converges to xN as n goes to infinity. Now,
if we consider the triangles ∆(x0, xN , un) and their comparison ones in H2 we obtain that if
umn ∈ [x0, un], for 1 ≤ m ≤ N , is such that d(x0, u

m
n ) = m then the sequence (umn ) converges to

xm. Therefore, all the points x0, x1, · · · , xN stand on a same geodesic segment. Since N was
arbitrary we obtain the X contains a geodesic ray which is a contradiction with our assumptions.

Therefore there must be N ≥ 1 such that dN > 0. Now, it is enough to recall Corollary
5.5. to reach to a contradiction to the fact that the sets An are as far from x0 as one may wish,
which completes the proof of the theorem.

After this theorem we raise the following conjecture.

Conjecture. Let κ < 0, then it is always possible to find an unbounded but geodesically
bounded closed and convex subset in any non locally compact and complete CAT(κ) spaces
with the fixed point property of nonexpansive mappings. That is, Ray’s theorem does not hold
in unbounded non locally compact and complete CAT(κ) spaces with κ < 0.

The following questions are also natural after the results presented in this work.

Remark 5.7. i) Example 3.3. shows that it is not necessary for a CAT(0) space to be a
CAT(κ) space for some κ < 0 in order to fail Ray’s theorem. Still the space provided by
Example 3.3. is δ-hyperconvex (see [4, Chapter 1] for definition and properties). Therefore
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one step farther in the above problem is to consider whether Ray’s theorem fails on any
non locally compact and complete CAT(0) space which is δ-hyperbolic for some δ ≥ 0. Or,
even more, on any Busemann convex and δ-hyperbolic non locally compact and complete
geodesic space.

ii) Any nonexpansive self-mapping defined on an unbounded closed and convex subset of an
R-tree, the Hilbert ball or a space of constant negative curvature has a fixed point if and
only if it is geodesically bounded. May this same result be obtained for CAT(κ) spaces with
κ < 0?

iii) Is property U a necessary condition for a CAT(0) space to satisfy Ray’s theorem?

Appendix: Modulus of convexity in CAT(κ) spaces with κ < 0.

Lemma 5.4. and Corollary 5.5. basically tell that very large triangles look like triangles of
R-trees in a certain uniform way in CAT(κ) spaces with κ < 0 (for simplicity, from now on, we
will refer to these spaces as negative CAT(κ) spaces). Motivated by this fact we propose the
following study the modulus of convexity at infinity of negative CAT(κ) spaces. We want to
show that, in fact, the modulus of convexity of any unbounded negative CAT(κ) space tends at
infinity to the modulus of convexity of R-trees. For that we first need to properly introduce the
notion of modulus of convexity in geodesic spaces. This kind of modulus (see [9, Chapter 6]) has
been a very useful tool in geometry of Banach spaces and it basically gives information about
how square or rotund balls are. In particular, it measures the uniform convexity of a Banach
space. Next we give its definition in geodesic spaces (see also [10, 27]).

Definition 5.8. A geodesic metric space (X, d) is said to be uniformly convex if for any r > 0
and any ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all a, x, y ∈ X with d(x, a) ≤ r, d(y, a) ≤ r
and d(x, y) ≥ εr it is the case that

d(m, a) ≤ (1− δ)r

where m stands for any midpoint of any geodesic segment [x, y]. A mapping δ : (0,+∞)×(0, 2]→
(0, 1] providing such a δ = δ(r, ε) for a given r > 0 and ε ∈ (0, 2] is called a modulus of uniform
convexity.

While in Banach spaces there exists a natural modulus of convexity for each space which
only depends on ε, the situation is much more complicated in general geodesic spaces where in
general we need to assume that the modulus depends on three variables: the center of the ball,
the radius of the ball and the separation condition given by ε. The best modulus of convexity of
a geodesic space is the one that gives the largest δ for each a, r and ε. From the CN-inequality
for CAT(0) spaces (see [1, pg. 163]) it is immediate that the modulus of convexity of a Hilbert
space is a modulus of convexity for any CAT(0) space and so, in particular, any CAT(0) space
is uniformly convex (see [6, 7, 8, 11, 15, 19] for more on this fact). That is, if δ(a, r, ε) is the
best modulus of convexity of a CAT(0) space then it must be the case that

(5.7) δ(a, r, ε) ≥ δH(ε) = 1−
√

1− ε2

4

where δH is the modulus of convexity of a (real) Hilbert space (see also [27, pg. 541]).
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The best modulus of convexity can be easily calculated for R-trees and spaces of constant
curvature. We only consider the case of spaces of nonpositive constant curvature because it is
the one we are interested in, notice however that things are dramatically different if the space
were of positive constant curvature (see for instance [6]).

Theorem 5.9. The following holds:

i) The best modulus of convexity of an R-tree coincides with the modulus of the real line, that
is, it can be written as

δR(ε) =
ε

2
.

ii) If X is a space of constant curvature κ < 0 then its best modulus of convexity is given by

δκ(r, ε) = 1− 1

r
arccosh

cosh
√
−κr

cosh ε
√
−κr
2

.

Therefore the best universal modulus of convexity for a CAT(κ) space is the above.

Proof. The case of R-trees is immediate. The case of spaces of constant curvature κ < 0
follows in an straightforward way from the cosine law [1, pg. 24] for these spaces. We omit
details.

The best modulus of convexity was also estimated for the Hilbert ball with the hyperbolic
metric in [10, pg. 107] (see also [10, pg. 72] for the Poincaré disk model). It takes only some
rudimentary trigonometric manipulations to show that the modulus of the Hilbert ball found in
[10] actually coincides with δ−1 in the above theorem. Some misleading remarks were given in
[10, pg. 72,107] about the shape of balls in the Hilbert ball model which were already noticed
in [28]. It is also claimed in [10] that

lim
r→∞

δ−1(r, ε) = 0

for each fixed ε. From (5.7) it is obvious that this estimation is not correct. The final result of
this work shows that this limit can actually be calculated for any unbounded negative CAT(κ)
space as we show next.

Theorem 5.10. Let X be an unbounded negative CAT(κ) space. Let δ(a, r, ε) be the best mod-
ulus of convexity for X. Then, for any a and ε fixed,

lim
r→∞

δ(a, r, ε) =
ε

2
.

Proof. It is clear that δ(a, r, ε) ≤ ε
2 and so it is enough to show that

lim inf
r→∞

δ(a, r, ε) ≥ ε

2
.

For simplicity we may assume that X is a CAT(−1) space, for other cases we just obtain a factor
which cancels after following the same reasoning. Since X is CAT(−1) a simple comparison
procedure shows that δ−1 is a modulus of convexity for X, therefore

δ(a, r, ε) ≥ δ−1(r, ε)
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and so it suffices to show that limr→∞ δ−1(r, ε) = ε
2 . Let

h(r) = arccosh
cosh r

cosh εr
2

.

Then,

cosh h(r) =
cosh r

cosh εr
2

.

Since cosh x ∼ ex

2 when x goes to infinity, we have

eh(r)

2
∼ er

e
εr
2

and so
h(r) ∼ r(1− ε

2
) + ln 2

what finally leads to the conclusion.

Acknowledgements

The research of the first author was partially supported by DGES, Grant MTM2012-34847C02-
01 and Junta de Andalućıa, Grant FQM-127.
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[11] K. Goebel, T. Sȩkowski, A. Stachura, Uniform convexity of the hyperbolic metric and fixed
points of holomorphic mappings in the Hilbert ball, Nonlinear Anal. 4, 1011-1021 (1980).

[12] W.A. Kirk, Some questions in metric fixed point theory, in Recent Advances on Metric
Fixed Point Theory (Editor Tomás Domı́nguez Benavides), Universidad de Sevilla, 73-98,
1996.

[13] W.A. Kirk, Geodesic geometry and fixed point theory, (Proceedings, Universities of Malaga
and Seville, Sept. 2002-Feb. 2003) (Eds. D. Girela, G. López and R. Villa), Universidad de
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