Trabajo Fin de Grado Grado en Ingeniería Aeroespacial

Estudio del efecto de incertidumbres en la trayectoria de una aeronave

Autor: Rubén García Díaz Tutor: Rafael Vázquez Valenzuela

> Dep. Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2016

Trabajo Fin de Grado Grado en Ingeniería Aeroespacial

Estudio del efecto de incertidumbres en la trayectoria de una aeronave

Autor:

Rubén García Díaz

Tutor: Rafael Vázquez Valenzuela Profesor Titular

Dep. Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Sevilla, 2016

Trabajo Fin de Grado: Estudio del efecto de incertidumbres en la trayectoria de una aeronave

Autor:Rubén García DíazTutor:Rafael Vázquez Valenzuela

El tribunal nombrado para juzgar el trabajo arriba indicado, compuesto por los siguientes profesores:

Presidente:

Vocal/es:

Secretario:

acuerdan otorgarle la calificación de:

El Secretario del Tribunal

Fecha:

Índice

Ín	dice		I	
Ín Ín	dice d dice d	e Figuras e Tablas	III V	
1	Intro	ducción	1	
	1.1	Motivación	1	
	1.2	Objetivo y metodología	1	
	1.3	Estructura del documento	2	
2	Méto	do de GPC	5	
	2.1	Descripción	5	
		2.1.1 El caos polinómico de Wiener	5	
		2.1.2 El caos polinómico de Wiener-Askey	6	
		2.1.3 Correspondencia entre las variables aleatorias y el tipo de polinomio de Wiener-Askey	6	
		2.1.4 Propiedad de los polinomios ortogonales	7	
	2.2	Ejemplo: Aplicación del caos polinómico a la ecuación de crecimiento exponencial	8	
		2.2.1 Resultados numéricos	9	
3	Mode	elo de variación de masa en crucero	13	
4	Incer	tidumbre en m_0	15	
	4.1	Distribución uniforme	15	
		4.1.1 Función de densidad	15	
		4.1.2 Cálculo de los coeficientes del GPC	15	
		4.1.3 Esperanza	20	
		4.1.4 Desviación típica	21	
		4.1.5 Comparación con el método de Montecarlo	22	
	4.2	Distribución gamma	23	
		4.2.1 Función de densidad	23	
		4.2.2 Cálculo de los coeficientes del GPC	24	
		4.2.3 Esperanza	25	
		4.2.4 Desviación típica	26	
5	Incer	tidumbre en C_{D_0}	29	
	5.1	Cálculo de los coeficientes del método GPC	30	
	5.2	2 Esperanza		
	5.3	.3 Desviación típica		
	5.4	Comparación con el método de Montecarlo	33	
6	Incer	tidumbre en c	35	
	6.1	Cálculo de los coeficientes del GPC	36	
6.2 Esperanza			37	

6.3	Desviación típica	39	
7 Ince	ertidumbre en m_0 y C_{D_0}	43	
7.1	Cálculo de los coeficientes del GPC	43	
7.2	Esperanza	45	
7.3	Desviación típica	47	
7.4	Comparación con el Método de Montecarlo	48	
8 Ince	ertidumbre en m_0, C_{D_0} y c	51	
8.1	Cálculo de los coeficientes del GPC	51	
8.2	Esperanza	52	
8.3	Desviación típica	54	
9 Ince	ertidumbre en m_0, C_{D_0}, c y C_{D_2}	59	
9.1	Cálculo de los coeficientes del GPC	60	
9.2	Esperanza	62	
9.3	Desviación típica	63	
9.4	Comparación con el método de Montecarlo	64	
10Cor	nclusiones	67	
Bibliog	Bibliografía		

Índice de Figuras

2.1	Esquema de Askey de polinomios ortogonales	7
2.2	Valor de los coeficientes h para el caso ejemplo	10
2.3	Evolución de la media y la solución determinista a lo largo del tiempo para el caso ejemplo	10
2.4	Evolución de la desviación típica a lo largo del tiempo para el caso ejemplo	11
4.1	Función de densidad para distribución uniforme m_0	16
4.2	Coeficientes para distribución uniforme con incertidumbre en m_0 para $P=3$	17
4.3	Coeficientes para distribución uniforme con incertidumbre en m_0 para $P=5$	18
4.4	Tiempo necesario para resolver el sistema de ecuaciones diferenciales en función de P, para el caso de incertidumbre en ma distribución uniforme	19
4.5	Espacio que ocupa en memoria la variable que guarda los coeficientes h en función de P, para el	10
	caso de incertidumbre en m_0 , distribución uniforme	19
4.6	Valor esperado de la masa lo largo del tiempo. Distribución uniforme m_0	20
4.7	Desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0	22
4.8	Cociente entre la desviación típica y el combustible consumido. Distribución uniforme m_0	23
4.9	Función de densidad para distribución gamma m_0	24
4.10	Coeficientes para distribución gamma con incertidumbre en m_0 para $P = 3$	25
4.11	Valor esperado de la masa lo largo del tiempo. Distribución gamma m_0	26
4.12	Desviación típica de la masa lo largo del tiempo. Distribución gamma m_0	27
4.13	Cociente entre la desviación típica y el combustible consumido. Distribución gamma m_0	28
5.1	Función de densidad para distribución uniforme C_{D_0}	29
5.2	Coeficientes para distribución uniforme con incertidumbre en C_{D_0}	31
5.3	Valor esperado de la masa lo largo del tiempo. Distribución uniforme C_{D_0}	32
5.4	Desviación típica de la masa lo largo del tiempo. Distribución uniforme C_{D_0}	33
5.5	Cociente entre la desviación típica y el combustible consumido. Distribución uniforme C_{D_0}	34
6.1	Función de densidad para distribución uniforme c	35
6.2	Coeficientes para distribución uniforme con incertidumbre en c	37
6.3	Valor esperado de la masa lo largo del tiempo. Distribución uniforme c	38
6.4	Desviación tipica de la masa lo largo del tiempo. Distribución uniforme c	39
6.5	Comparación de la desviación típica para los casos de incertidumbre en m_0, C_{D_0} y c	40
6.6	Cociente entre la desviación típica y el combustible consumido. Distribución uniforme c	40
6.7	Comparación entre el cociente de la desviación típica y el combustible consumido. Para los casos	
	de incertidumbre en m_0, C_{D_0} y c	41
7.1	Coeficientes para distribución uniforme con incertidumbre en m_0 y C_{D_0}	45
7.2	Tiempo necesario para resolver el sistema de ecuaciones diferenciales en función de P, distribución	45
70	Uninonne m_0 y C _{D0} Valer esperado do la mago la largo del tiempo. Distribución unifermo m_0 y C	40
1.3 7 /	valui esperado de la masa lo largo del tiempo. Distribución uniforme m_0 y C $_{D_0}$	40 40
7.4 7.5	Desviación de la desviación típica de la massa lo large del tiempe. Distribución uniforme m_0 y C_{D_0}	40 40
C.1	Comparación de la desviación lípica de la masa lo largo del llempo. Distribución uniforme m_0 y C_{D_0}	49

7.6	Comparación del cociente entre la desviación típica de la masa y el consumo de combustible a lo largo del tiempo. Distribución uniforme m_0 y C_{D_0}	49
8.1	Coeficientes para distribución uniforme con incertidumbre en m_0, C_{D_0} y c	53
8.2	Tiempo necesario para resolver el sistema de ecuaciones diferenciales en función de P, distribución	50
	uniforme m_0, C_{D_0} y c	53
8.3	Valor esperado de la masa lo largo del tiempo. Distribución uniforme m_0 , C_{D_0} y c	54
8.4	Desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0, C_{D_0} y c	55
8.5	Comparación de la desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0, C_{D_0}	-0
• •		56
8.6	Cociente entre la desviación típica de la masa y el consumo de compustible a lo largo del tiempo.	
	Distribución uniforme m_0 , C_{D_0} y c	57
9.1	Función de densidad para $C_{\rm D}$, distribución uniforme	59
92	Coeficientes para distribución uniforme con incertidumbre en m_0 C_D $C \vee C_D$	61
9.3	Tiempo necesario para resolver el sistema de ecuaciones diferenciales en función de P. distribución	0.
	uniforme $m_0, C_{D_0}, c \neq C_{D_0}$	62
9.4	Valor esperado de la masa lo largo del tiempo. Distribución uniforme $m_0, C_{D_0} c \neq C_{D_0}$	63
9.5	Desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0, C_{D_0} c y C_{D_0}	64
9.6	Comparación de la desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0, C_{D_0} ,	
	$c \vee C_{D_2}$	65
9.7	Cociente entre la desviación típica de la masa y el consumo de combustible a lo largo del tiempo.	
	Distribución uniforme $m_{01} C_{D_{01}} c y C_{D_{2}}$	65
	$b_0 \cdot b_0 \cdot b_2$	

Índice de Tablas

2.1 Relación entre el caos polinomial de Wiener-Askey y el tipo de variable alea	toria 8
3.1 Valores numéricos del modelo	14
 4.1 Tiempo para resolver el sistema de ecuaciones y espacio que ocupa en m valores de P, para el caso de incertidumbre en m₀, distribución uniforme 4.2 Valores de la esperanza para distintos instantes de tiempos, Distribución GPC* los resultados obtenidos por Bafael Vázquez Valenzuela y Damian 	emoria para diferentes 18 uniforme m_0 . Siendo Biyas Biyas usando el
método de GPC 4.3 Valores de la esperanza para $P = 3$ y $P = 5$, Distribución uniforme m_0 4.4 Valores de la desviación típica para distintos instantes de tiempos, Distribución GPC*, los resultados obtenidos por Rafael Vázquez Valenzuela y Damian n fuelo de OPC	21 21 21 21 21 21 21 21 21 21 21 21 21 2
4.5 Valores de la esperanza para distintos instantes de tiempos, Distribución ga 4.6 Valores de la esperanza para $P = 3$ y $P = 5$, Distribución gamma m_0 4.7 Valores de la desviación típica para distintos instantes de tiempos, Distribuc	mma m_0 25 26 ión gamma m_0 28
 5.1 Valores de la esperanza para distintos instantes de tiempos, Distribución un 5.2 Valores de la desviación típica para distintos instantes de tiempos, Distribuc 	iforme C_{D_0} 31ión uniforme C_{D_0} 33
6.1Valores de la esperanza para distintos instantes de tiempos, Distribución un6.2Comparación de los diferentes valores esperados de la masa para diferente considerando los casos de incertidumbres en m_0, C_{D_0} y c6.3Valores de la desviación típica para distintos instantes de tiempos, Distribuc	iforme c 37es instantes de tiempo,38ión uniforme C_{D_0} 41
7.1Valores de la esperanza para distintos instantes de tiempos, Distribución un7.2Valores de la esperanza para $P = 3$ y $P = 5$, Distribución uniforme m_0 y C_1 7.3Valores de la desviación típica para distintos instantes de tiempos, Distribución	iforme m_0 y C_{D_0} 46 p_0 47ión uniforme m_0 y C_{D_0} 47
 8.1 Valores de la esperanza para distintos instantes de tiempos, Distribución un 8.2 Valores de la desviación típica para distintos instantes de tiempos, Distribuc 	iforme m_0, C_{D_0} y c54ión uniforme m_0 y C_{D_0} 55
 9.1 Valores de la esperanza para distintos instantes de tiempos, Distribución un 9.2 Valores de la desviación típica para distintos instantes de tiempos, Distribuc c y C_{Da} 	iforme $m_0, C_{D_0} c \ y \ C_{D_2}$ 62 ción uniforme $m_0, C_{D_0},$ 64

1 Introducción

1.1 Motivación

Uno de los principales objetivos en la actualidad del sistema ATM consiste en aumentar la capacidad del espacio aéreo y mantener a su vez unos estándares de seguridad aceptable. Como se puede leer en [1], para alcanzar estos objetivos es necesario que el ATM tenga la capacidad de entender, medir y contener las incertidumbres que le afectan. Para ello se están llevando a cabo proyectos como SESAR en Europa o NextGen en Estados Unidos. En este trabajo, se va a estudiar como afectan algunas de estas incertidumbre a la trayectoria de las aeronaves.

El término incertidumbre se define como la condición de tener un conocimiento parcial o limitado de un estado.En el caso del estudio de las trayectorias de aeronaves, la falta de datos puede presentarse de las siguientes maneras:

- Incertidumbres en los datos:

Se produce debido a la falta de precisión en las medidas, dado que siempre se comete un error al realizarla. Un ejemplo de este tipo de incertidumbre puede ser no conocer exactamente la masa inicial de la aeronave, la falta de precisión en la velocidad o errores en el cálculo de la posición (se conoce una pequeña región del espacio donde la aeronave se puede encontrar, pero no la posición exacta).

- Incertidumbre en las trayectorias:

Relacionada con las ligaduras de vuelo y las condiciones de paradas entre los diferentes segmentos de vuelo. Como ejemplos se pueden citar el desconocimiento exacto de la altitud a la que hay que cambiar del segmento de ascenso al de crucero, el punto exacto en el que hay que comenzar el descenso o el momento para empezar un viraje.

- Incertidumbres meteorológicas:

Están asociadas como su nombre indica a la meteorología. Actualmente, las condiciones meteorológicas se basan en pronósticos, es decir, son previsiones, por lo que ya llevan asociadas incertidumbres. Algunos ejemplos son la velocidad y dirección del viento, valores de presión exactos o temperatura. Además, dichas condiciones pueden dar lugar a retrasos y cancelaciones en los vuelos.

Siendo los casos estudiados en este trabajo una combinación de incertidumbres en los datos e incertidumbre en la trayectoria de aeronaves.

1.2 Objetivo y metodología

El objetivo de este trabajo es estudiar el efecto de incertidumbres sobre la trayectoria de una aeronave. En especial, el estudio de la evolución de la masa a lo largo del tiempo, ya que esta variable está muy relacionada

con el consumo de combustible y por tanto, con el coste total de un vuelo. Para ello, se empleará el método "Generalized Polynomial Chaos" (GPC), este método permite estudiar la esperanza y desviación típica de una variable evolucionando en el tiempo.

Como punto de partida, se tiene el artículo "Propagation of Initial Mass Uncertainly in Aircraft Cruise Flight" [2], realizado por Rafael Vázquez Valenzuela y Damián Rivas Rivas. Se reproducirán los resultados obtenidos en el artículo y a partir de este punto, se considerarán nuevas incertidumbres en otras variables.

Como apoyo para nuestros resultados contamos con el Trabajo Fin de Grado "Análisis de trayectorias de crucero de aviones comerciales sujetas a incertidumbres en los datos", realizado por Manuel Ángel Zapata Habas [3]. En dicho trabajo Fin de Grado, se realiza un estudio de como afectan las incertidumbre a la trayectoria de una aeronave usando el método de Montecarlo. Este método es computacionalmente intensivo, por lo que se requiere un gran número de muestras, mientras que el método GPC, solo necesita resolver unas cuantas ecuaciones diferenciales. Este trabajo Fin de Grado, servirá para comparar el método de Montecarlo con el de GPC y determinar si este último permite un ahorro de tiempo computacional.

Los pasos a seguir para obtener los resultados en cada uno de los casos, serán los siguientes:

- Determinar las expansiones en serie de las variables afectadas en el modelo y deducción de las ecuaciones que deben verificar los coeficientes de esas expansiones.
- Implementación de las ecuaciones en Matlab para obtener los coeficientes del desarrollo en serie de la masa, ajustando el número de coeficientes necesarios para obtener un resultado preciso.
- Cálculo de esperanza y desviación típica de la masa en función de los coeficientes.
- Representación gráfica de resultados.
- Comparación de los resultados con el Trabajo Fin de Grado "Análisis de trayectorias de crucero de aviones comerciales sujetas a incertidumbres en los datos" [3].
- Comparación del método de MonteCarlo con el método de GPC.

1.3 Estructura del documento

Este documento, consta de 10 capítulos. En el capítulo 2 se introduce el método GPC, explicando su origen y su alcance inicial y su posterior generalización a varias funciones de distribución. También se describe una propiedad fundamental de los polinomios ortogonales que permitirá simplificar en gran medida las ecuaciones en los siguientes capítulos. Por último, se muestra un sencillo ejemplo de como funciona el método.

En el capítulo 3, se plantea el modelo de avión y los valores numéricos usado en este trabajo, llegando a la ecuación diferencial que permite obtener la evolución de la masa a lo largo del tiempo.

En el capítulo 4, se reproducen los resultados obtenidos en [2], para las dos distribuciones aleatorias que se consideran en dicho artículo. Por otro lado, en este capítulo se selecciona el valor del parámetro que da la precisión del método, comparándolo con otros valores distintos y viendo el número de cifras significativas correcta entre ellos. Por último, se compara los resultados obtenidos con los obtenidos por Manuel Ángel Zapata Habas [3] en su trabajo Fin de Grado aplicando el método de Montecarlo.

En el capítulo 5, se estudia como afecta la incertidumbre en C_{D_0} a la evolución de la masa a lo largo del crucero. Para ello, se obtienen los coeficiente aleatorios del GPC y se calcula esperanza y la desviación típica. Por último, se vuelve a comparar los resultados obtenido con los obtenidos con el método de Montecarlo. En el capítulo 6, se realizan los mismos estudios que en el capítulo 5, para analizar el efecto que la incertidumbre en el consumo especifico tiene en la evolución de la masa.

En el capítulo 7, se introduce incertidumbres tanto en m_0 como en C_{D_0} y se estudia el impacto que tiene sobre la evolución de la masa. Para ello, primero, se obtiene la esperanza y la desviación típica de la masa. Posteriormente se compara con los resultados obtenidos con el método de Montecarlo. En tercer lugar, se compara los resultados obtenidos con los dos casos monovariables estudiados en los capítulos 5 y 6. Por último, se compara la eficiencia del método GPC con la del método de Montecarlo para este caso multivariable.

En el capítulo 8, se estudia el caso en que hay incertidumbre en m_0 , C_{D_0} y c. Se analiza el efecto que tienen sobre la masa estudiando su esperanza y su desviación típica. Por último, se compara con los resultados obtenidos en capítulos anteriores.

En el capítulo 9, se extiende el método a 4 variables, considerandose así incertidumbres en m_0 , C_{D_0} , c y C_{D_2} . En primer lugar se obtendrá los coeficientes del método GPC, posteriormente se calcula la evolución de la esperanza y la desviación típica de la masa, comparando estos resultados con el método de Montecarlo. También se compara con los resultados obtenidos en capítulos anteriores. Finalmente se analiza la eficencia de este método con el método de Montecarlo.

En el capítulo 10, se presentan las conclusiones del trabajo y se proponen posibles trabajos futuros y ampliaciones de este trabajo.

2 Método de GPC

Un proceso estocástico es una variable aleatoria que varía en el tiempo. Tal y como puede ser la solución de una ecuación diferencial cuya condición inicial es aleatoria o que contiene alguna variable aleatoria, son ejemplos de procesos estocásticos.Este será el tipo de procesos considerado en este trabajo. El uso de procesos estocásticos permite modelar la existencia de incertidumbres en diferentes aplicaciones, pero al mismo tiempo complica la obtención de soluciones, ya que en principio habría una solución diferente para cada posible valor de condiciones iniciales y/o variables. Por tanto, hay que realizar un tratamiento estadístico de los procesos y hablar de valores tales como distribución, media o covarianza del proceso.

El método "Generalized Polynomial Chaos", también llamado GPC en la literatura, es un procedimiento que permite analizar la evolución en el tiempo de este tipo de funciones. En concreto, es posible mediante GPC obtener estimaciones de media y varianza del proceso a lo largo de su evolución. El método se basa en un desarrollo en serie (multidimensional, si hubiera más de un parámetro aleatorio afectando la ecuación) del proceso, descomponiéndolo en una suma de funciones aleatorias. Estas funciones son polinomios ortogonales, elegidos en función de las distribuciones implicadas, dando parte del nombre al método. Se denomina generalizado porque pueden considerarse diferentes distribuciones (originalmente, sólo podía tratar variables gaussianas). Finalmente, el término caos hace referencia a la aleatoriedad de las variables y no tiene relación alguna con la posible dinámica caótica de un sistema.

2.1 Descripción

2.1.1 El caos polinómico de Wiener

y

Con el título de "The Wiener polynomial chaos" fue conocido originalmente el método de GPC [4], como se ha dicho anteriormente, solo era aplicable a variables gaussiana. Según este método, un proceso estocástico $X(\theta)$ en función de una variable aleatoria θ puede ser escrito como el desarrollo en serie de un coeficiente a_i por el polinomio ortogonal de Hermite $H_n(\xi_{i1},...,\xi_{in})$:

$$\begin{split} \mathcal{K}(\theta) &= a_0 H_0 \\ &+ \sum_{i_1=1}^{\infty} a_{i_1} H_1(\xi_{i_1})(\theta)) \\ &+ \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} a_{i_1 i_2} H_2(\xi_{i_1}(\theta), \xi_{i_2}(\theta))) \\ &+ \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} \sum_{i_3=1}^{i_2} a_{i_1 i_2 i_3} H_3(\xi_{i_1}(\theta), \xi_{i_2}(\theta), \xi_{i_3}(\theta)) + \dots \end{split}$$

$$(2.1)$$

Donde $H_n(\xi_{i1},...,\xi_{in})$ denota el polinomio ortogonal de Hermite de orden n en las variables $(\xi_{i1},...,\xi_{in})$ y donde el término H_n hace referencia al polinomio de Hermite en términos de la variable Gaussiana ξ con media cero y varianza unidad. La fórmula anterior es para el caso discreto; en caso de tener variables continuas, sólo hay que sustituir los sumatorios por integrales. Por comodidad, la ecuación (2.1) puede ser reescrita como:

$$X(\theta) = \sum_{j=0}^{\infty} a_j \Psi_j(\xi)$$
(2.2)

Donde las funciones $H_n(\xi_{i1},...,\xi_{in})$ y $\Psi_i(\xi)$ están relacionadas uno a uno.

Este desarrollo en serie es posible, debido a la semejanza que existe entre la función de distribución Gaussiana y la función de peso de los polinomios de Hermite. En caso de que la variable no fuese Gaussiana, no se tendría una convergencia óptima.

2.1.2 El caos polinómico de Wiener-Askey

Posteriormente, este método que solo era válido para variables gaussianas, se extendió a otros tipos de distribuciones estadísticas, dando lugar a la generalización del método, también conocido como " the Wiener-Askey polynomial chaos".

Esta extensión a otro tipo de variables estadísticas y por tanto, a otros tipos de polinomios ortogonales, dan lugar a lo que se conoce como el esquema de Askey. Como se observa en la figura 2.1 este esquema no es mas que una agrupación de los tipos de polinomios ortogonales, en los laterales de la figura, se muestra la nomenglatura de las funciones hipergeométricas.

Como en la sección anterior, un proceso $X(\theta)$ en función de una variable aleatoria θ puede escribirse como un desarrollo en serie de un coeficiente c_i por una función que es un polinomio ortogonal $I_n(\zeta_{i_1},...,\zeta_{i_n})$:

$$X(\theta) = a_0 I_0 + \sum_{i_1=1}^{\infty} c_{i_1} I_1(\zeta_{i_1}(\theta)) + \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} c_{i_1 i_2} I_2(\zeta_{i_1}(\theta), \zeta_{i_2}(\theta)) + \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} \sum_{i_3=1}^{i_2} c_{i_1 i_2 i_3} I_3(\theta), \zeta_{i_2}(\theta), \zeta_{i_3}(\theta)) + \dots$$
(2.3)

Donde $I_n(\zeta_{i_1},...,\zeta_{i_n})$ denota el caos polinomial de orden n en términos del vector aleatorio $\zeta = (\zeta_{i_1},...,\zeta_{i_n})$.La diferencia con el caso anterior, es que I_n no está limitado a los polinomios de Hermite, sino que puede ser cualquier tipo de polinomio del esquema de Askey (Figura 2.1). Por comodidad, la expresión (2.3) puede ser reescrita como:

$$X(\theta) = \sum_{j=0}^{\infty} c_j \Phi_j(\zeta)$$
(2.4)

Sin embargo, en la práctica no se emplea este desarrollo, pues a la hora de introducirlo en un programa de cálculo numérico como puede ser Matlab, no se puede hacer un cálculo con infinitos términos, de manera que se realiza una aproximación, quedando la ecuación (2.4) de la siguiente forma:

$$X(\theta) \approx \sum_{j=0}^{P} c_j \Phi_j(\zeta)$$
(2.5)

Donde P, debe ser un número de tal forma que en la aproximación, el error que se cometa al aproximar la variable, se encuentre por debajo de una cierta tolerancia.

2.1.3 Correspondencia entre las variables aleatorias y el tipo de polinomio de Wiener-Askey

En el apartado "El caos polinomial de Wiener-Askey", se vio la relación existente entre el tipo de variables aleatorias y el tipo de polinomio ortogonal. Ésto se debe a que algunos tipos de polinomios ortogonales procedentes del esquema de Askey tienen funciones pesos con la misma forma que la función de densidad de ciertos tipos de distribuciones aleatorias.

La relación entre estas variables aleatorias y el tipo de polinomio ortogonal que mejor aproxima su función

Figura 2.1 Esquema de Askey de polinomios ortogonales.

de densidad, se muestra en la tabla 2.1. Donde la primera columna indica si la variable aleatoria es discreta o continua. La segunda columna indica el tipo de distribución aleatoria. La tercera columna muestra el tipo de polinomio ortogonal que mejor aproxima a esa variable aleatoria. La cuarta columna indica el intervalo en los que puede tomar valores esos polinomios.

Es importante destacar que, en el caso de los polinomios de Legendre, que es un caso particular de los polinomios de Jacobi (con $\alpha = \beta = 0$) se corresponden con una variable aleatoria muy importante, la uniforme y por este motivo, se considera aparte en la tabla 2.1. Además, será la variable aleatoria mas usada en este trabajo

Por lo tanto, en la práctica, se selecciona el tipo del polinomio, en función de la variable aleatoria que se desea estudiar, de acuerdo con lo mostrado en la tabla 2.1.

2.1.4 Propiedad de los polinomios ortogonales

Cualquier sistema de polinomios ortogonales $\{Q_n(x), n \in N\}$, donde $Q_n(x)$ es un polinomio de orden *n* y con N = 0, 1, 2, ..., N cumple la siguiente propiedad:

$$\int_{D} Q_n(x)Q_m(x)w(x)dx = h_n^2 \delta_{nm}, \quad n,m \in N$$
(2.6)

Siendo el dominio D, el soporte que figura en la tabla 2.1. La expresión (2.6) es válida para los casos en que

	Variable aleatoria	Caos Wiener-Askey	Soporte
Continua	Gaussiana	Caos Hermite	$(-\infty,\infty)$
	Gamma	Caos Laguerre	[0,∞)
	Beta	Caos Jacobi	[a,b]
	Uniforme	Caos Legendre	[a,b]
Discreta	Poisson	Caos Charlier	0,1,2,
	Binomial	Caos Krawtchouck	0,1,2,,N
	Binomial Negativa	Caos Meixner	0,1,2,
	Hipergeométrica	Caos Hahn	$0, 1, 2, \dots, N$

Tabla 2.1	Relación entre el caos polinomial de Wiener-Askey y el tipo de
	variable aleatoria.

las funciones sean continuas, para el caso en que las funciones sean discretas, se aplica la expresión (2.7), donde es posible que $M = \infty$.

$$\sum_{i=0}^{M} Q_n(x_i) Q_m(x_i) w(x_i) = h_n^2 \delta_{nm}, \quad n, m \in \mathbb{N}$$
(2.7)

La importancia de esta propiedad, radica en que la integral de la multiplicación de dos polinomios ortogonales entre sí, vale 0, excepto en el caso de que esos dos polinomios sean del mismo grado. Esta propiedad, se podrá utilizar en las ecuaciones que tienen que cumplir los coeficientes para simplificarlas y poder calcularlos de forma menos costosa.

2.2 Ejemplo: Aplicación del caos polinómico a la ecuación de crecimiento exponencial

Con este sencillo ejemplo, extraido de [5] se pretende ilustrar el procedimiento a seguir para obtener la media y la desviación típica de una ecuación diferencial cuando sus coeficientes son aleatorios.

En este caso, resolveremos la ecuación diferencial de crecimiento exponencial, en la cual y(t) representa la población de una especie determinada a lo largo del tiempo y r es la tasa de crecimiento:

$$\frac{dy}{dt} = ry(t) \tag{2.8}$$

La solución determinista a esta ecuación, para una condición inicial $y(0) = y_0$ es:

$$\mathbf{y}(t) = \mathbf{y}_0 e^{rt} \tag{2.9}$$

En este ejemplo se quiere modelar la tasa de crecimiento *r* como una variable aleatoria uniforme de media r_0 y semiancho δ_r . Haciendo uso del caos polinomial, los pasos a seguir para resolver (2.8) son los siguientes:

Se expresa la variable y(t) en función de unos coeficientes a calcular y del caos polinomial correspondiente. En este caso, en función de los polinomios de Legendre:

$$y(t;r) \approx \sum_{i=0}^{P} h_i L_i(\Delta)$$
(2.10)

Donde h_i tiene que ser calculado mediante la ecuación (2.8) y L_i representa el polinomio *i* de Legendre.La variable uniforme *r* puede ser reescrita en función de los polinomios ortogonales de Legendre:

$$r = r_0 L_0(\Delta) + \delta_r L_1(\Delta) \tag{2.11}$$

Sustituyendo las ecuaciones (2.10) y (2.11) en (2.8) se obtiene:

$$\sum_{i=0}^{P} \dot{h}_i(t) L_i(\Delta) \approx \sum_{i=0}^{P} (r_0 L_0(\Delta) + \delta_r L_1(\Delta)) h_i(t) L_i(\Delta)$$
(2.12)

El siguiente paso consiste en multiplicar la ecuación (2.12) por $L_l(\Delta)$ para l = 0,...,P, tomar esperanza respecto a Δ y aplicar la propiedad de los polinomios ortogonales anteriormente descrita, obteniendo P + 1 ecuaciones:

$$\dot{h}_{i}(t)E[L_{l}^{2}(\Delta)] = \sum_{i=0}^{P} (r_{0}E[L_{0}(\Delta)L_{i}(\Delta)L_{l}(\Delta)] + \delta_{r}E[L_{1}(\Delta)L_{i}(\Delta)L_{l}(\Delta)])h_{i}(t)$$
(2.13)

Reordenando y llamando $C_{i,l}^0 = \frac{E[L_iL_lL_0]}{E[L_l^2]}$ y $C_{i,l}^1 = \frac{E[L_iL_lL_1]}{E[L_l^2]}$ queda el siguiente sistema de ecuaciones con P + 1 ecuaciones diferenciales, que permite calcular los coeficientes h_i . Como se observa en (2.14), los coeficientes verifican ecuaciones lineales, pues el problema inicial también es lineal.

$$\dot{h}_{l} = \sum_{i=0}^{P} h_{i} (r_{0} C_{i,l}^{0} + \delta_{r} C_{i,l}^{1})$$
(2.14)

siendo las condiciones iniciales:

$$h_0(0) = y_0, \quad h_l(0) = 0, \quad l = 1, \dots, P$$
 (2.15)

Una vez obtenidos los coeficientes, la media y la desviación típica se calculan como sigue:

$$E[y(t;r)] = \sum_{i=0}^{P} h_i(t) E[L_i(\Delta)] = \sum_{i=0}^{P} h_i(t) E[L_i(\Delta)L_0(\Delta)] = h_0(t) E[L_0^2(\Delta)] = h_0(t)$$
(2.16)

Donde se ha usado la propiedad de los polinomios ortogonales. Para el caso de la varianza, quedaría de la siguiente forma:

$$Var[y(t;r)] = E[y^{2}(t;r)] - E[y(t;r)]^{2} = \sum_{i=0}^{P} \sum_{j=0}^{P} h_{i}(t)h_{j}(t)E[L_{i}(\Delta)L_{j}(\Delta)] - h_{0}^{2} = \sum_{i=1}^{P} h_{i}^{2}(t)E[L_{i}^{2}(\Delta)] \quad (2.17)$$

2.2.1 Resultados numéricos

Una vez descrito el procedimiento para obtener la media y la varianza, se completará el ejemplo con resultados numéricos. Para ello, se van emplear los siguientes valores:

Como condición inicial, $y_0 = 1$. La tasa de crecimiento, como se dijo en el apartado anterior, va a seguir una distribución uniforme de media $r_0 = 2$ y semiancho $\delta_r = 0.2$. Además, P = 3, para garantizar una precisión adecuada. Esta precisión es adecuada, debido a que los coeficientes h_i , disminuyen su orden de magnitud en dos unidades respecto al anterior, por lo que con P=3, se tiene una diferencia de 6 ordenes de magnitud entre h_0 y h_3

Teniendo ya los datos iniciales y empleando la ecuación diferencial (2.14) junto a las condiciones iniciales de (2.15), se obtienen fácilmente los coeficientes que permiten modelar la variable y, como se muestra en la figura 2.2.

Para obtener el valor de la media en todo instante de tiempo, se aplica (2.16). Además, se representa sobre la misma gráfica el valor de la solución determinista (sin considerar r aleatoria) para cada instante de tiempo, con objeto de comparar ambas soluciones. Los resultados se pueden ver en la figura 2.3. Por ultimo, con (2.17) se obtiene la evolución de la varianza a lo largo del tiempo: basta con hacerle la raíz cuadrada a la varianza para tener la evolución de la desviación típica, como se muestra en la figura 2.4.

Figura 2.2 Valor de los coeficientes h para el caso ejemplo.

Figura 2.3 Evolución de la media y la solución determinista a lo largo del tiempo para el caso ejemplo.

Figura 2.4 Evolución de la desviación típica a lo largo del tiempo para el caso ejemplo.

3 Modelo de variación de masa en crucero

En este capítulo, se muestra el modelo que permite calcular la variación de la masa de un vuelo en crucero a lo largo del tiempo. Dicho modelo será el que se emplee en los siguientes capítulos. Se usará el modelo empleado en [2] y [3] con el objeto de poder reproducir los mismos resultados que se obtienen en dichos documentos.

Las ecuaciones empleadas son las del vuelo simétrico en el plano vertical (con rumbo constante), con las simplificaciones de tierra plana para altitud y velocidad constante:

$$\frac{dx}{dt} = V \tag{3.1}$$

$$\frac{dm}{dt} = -cT \tag{3.2}$$

$$T = D \tag{3.3}$$

$$L = mg \tag{3.4}$$

Siendo x la distancia recorrida, t el tiempo, V es la velocidad de la aeronave, T es el empuje, D es la resistencia aerodinámica, L es la sustentación, m es la masa de la aeronave, g es la aceleración de la gravedad y c es el consumo específico, el cual puede ser una función de la altitud y la velocidad; al ser éstas dos constantes en nuestro modelo, c también lo es.

La resistencia aerodinámica puede escribirse como:

$$D = \frac{1}{2}\rho V^2 S C_D \tag{3.5}$$

Siendo ρ la densidad, *S* es la superficie alar y C_D es el coeficiente de resistencia aerodinámica. Para modelarlo se usará el modelo de polar parabólica de coeficientes constantes $C_D = C_{D_0} + C_{D_2}C_L^2$, siendo C_{D_0} y C_{D_2} constante y C_L es el coeficiente de sustentación, cuya expresión es:

$$C_L = \frac{2L}{\rho V^2 S} \tag{3.6}$$

Combinando las ecuaciones anteriores, se obtiene la siguiente expresión que permite calcular la evolución de la masa en función del tiempo:

$$\frac{dm}{dt} = -c(\frac{1}{2}\rho V^2 S C_{D_0} + m^2 \frac{2C_{D_2} g^2}{\rho V^2 S})$$
(3.7)

Que puede ser reescrita como:

$$\frac{dm}{dt} = -(A + Bm^2) \tag{3.8}$$

Siendo las constantes A y B:

$$A = \frac{1}{2}c\rho V^2 S C_{D_0}$$
(3.9)

$$B = \frac{2cC_{D_2}g^2}{\rho V^2 S}$$
(3.10)

La ecuación (2.14), que describe la variación de la masa a lo largo del tiempo, es una ecuación no lineal que puede resolverse una vez conocida la masa inicial:

$$m(0) = m_0 \tag{3.11}$$

Resolviendo la ecuación (2.14) junto a la condición inicial (2.18), se obtiene:

$$m(t) = \sqrt{\frac{A}{B}} \frac{m_0 - \sqrt{\frac{A}{B}} \tan(\sqrt{AB}t)}{\sqrt{\frac{A}{B}} + m_0 \tan(\sqrt{AB}t)}$$
(3.12)

Por último, los valores numéricos que se emplearán en los siguientes capítulos son:

uei	del modelo.		
Variable	Valor		
C_{D_0}	0.015		
$C_{D_2}^{-0}$	0.042		
ρ^2	$0.5 ho_0$		
$ ho_0$	$1.225 \ kg/m^3$		
V	200 m/s		
c	$5 * 10^{-5} s/m$		
S $150 m^2$			
g $9.8 m/s^2$			

Tabla 3.1	Valores	numéricos
	del mod	elo.

4 Incertidumbre en m_0

En este capítulo, se pretende reproducir los resultados obtenidos en el artículo "Propagation of Initial Mass Uncertainty in Aircraft Flight" [2], empleando el método GPC, anteriormente explicado. En dicho artículo, emplean este mismo método para obtener la evolución de la media y la desviación típica del consumo de combustible a lo largo del tiempo. Además, en este artículo también se aproxima la función de distribución de la masa de la aeronave,este último resultado, queda fuera de este trabajo.

El artículo, se centra en el estudio de la incertidumbre en la masa inicial en crucero. En general, el vuelo en crucero representa la mayor parte del vuelo, por lo que es el segmento de vuelo que tendrá mas impacto en el consumo de combustible. Por otro lado,la masa inicial, determina el consumo de combustible y por tanto el coste del vuelo.

En este capítulo, se estudiaran los mismos casos que en el artículo, es decir, un primer caso con la masa inicial siendo una distribución uniforme y una distribución gamma para el segundo caso.

En las siguientes secciones, se pretenden reproducir los mismos resultados (para la media y la desviación típica) que en el artículo, que servirá para comprobar que se ha entendido bien el método de los GPC y a partir de este estudio, extenderlo a incertidumbre en otras variables.

4.1 Distribución uniforme

4.1.1 Función de densidad

En este caso, la masa inicial es una distribución uniforme de media \bar{m}_0 y semiancho δ_m , siendo su función de densidad:

$$f_{m_0}(m_0) = \frac{1}{2\delta_m}$$
(4.1)

En el intervalo $[\bar{m}_0 - \delta_m, \bar{m}_0 + \delta_m]$ y cero en cualquier otro punto fuera de este intervalo. La expresión de la media para esta distribución es $E[m_0] = \bar{m}_0$, mientras que la expresión de la desviación típica es $\sigma[m_0] = \frac{\delta_m}{\sqrt{3}}$. Para reproducir los mismos resultados que en el artículo, se elige $\bar{m}_0 = 81663Kg$ y $\delta_m = 5000Kg$. La función de distribución de m_0 se muestra en la figura 4.1.

4.1.2 Cálculo de los coeficientes del GPC

A continuación, se aplica el método de GPC para obtener la evolución de la masa a lo largo del tiempo, para ello, se expresa la masa como:

Figura 4.1 Función de densidad para distribución uniforme m_0 .

$$m(t;m_0) = \sum_{i=0}^{P} h_i(t) L_i(\Delta)$$
(4.2)

Donde L_i es el polinomio de Legendre de grado i, P es el orden de la aproximación y h_i son los coeficientes de nuestra aproximación, que tienen que ser calculados, empleando la ecuación (3.8). Por tanto, sustituyendo la ecuación (4.2) en (3.8), se obtiene la expresión que permite calcular dichos coeficientes.

$$\sum_{i=0}^{P} \dot{h}_{i}(t) L_{i}(\Delta) = -A - B \sum_{i=0}^{P} \sum_{j=0}^{P} h_{i}(t) h_{j}(t) L_{i}(\Delta) L_{j}(\Delta)$$
(4.3)

A continuación, se multiplica la ecuación (4.3) por L_l con l = 0,...,P, se toma esperanza con respecto a Δ y se hace uso de la propiedad de los polinomios ortogonales, descrita en el capítulo 2. Tras aplicar todo lo anterior, el resultado es un sistema de P + 1 ecuaciones.

$$\dot{h}_{l}(t)E[L_{l}^{2}(\Delta)] = -A\delta_{0l} - B\sum_{i=0}^{P}\sum_{j=0}^{P}h_{i}(t)h_{j}(t)E[L_{i}(\Delta)L_{j}(\Delta)L_{l}(\Delta)], \quad l = 0,...,P$$
(4.4)

La expresión (4.4), se puede simplificar agrupando términos que son constantes, como es el caso del cálculo de las esperanzas, que es solamente integración de polinomios. Por tanto, se puede definir $C_{ijl} = \frac{E[L_i L_j L_l]}{E[L_l^2]}$, del tal forma que la expresión anterior queda de la siguiente forma:

$$\dot{h}_{l}(t) = -A\delta_{0l} - B\sum_{i=0}^{P}\sum_{j=0}^{P}h_{i}(t)h_{j}(t)C_{ijl}, \quad l = 0,...,P$$
(4.5)

Para poder resolver este sistemas de ecuaciones diferenciales, es necesario establecer una condición inicial, para ello, en el caso de la distribución uniforme, la masa inicial, puede ser reescrita como $m_0 = \bar{m}_0 L_0(\Delta) + \delta_m L_1(\Delta)$, dando lugar a las siguiente condición inicial para el sistema de ecuaciones (4.5).

$$h_0(0) = \bar{m}_0, \quad h_1(0) = \delta_m \quad h_l(0) = 0, \quad para \quad l = 2,...,P$$
(4.6)

Resolviendo el sistema de ecuaciones (4.5), obteniendose P + 1 coeficientes. Para resolver este sistema, se usaran los mismos valores numéricos que se usan en el artículo "Propagation of Initial Mass Uncertainty in Aircraft Cruise Flight" [2], con el fin de reproducir los mismos resultados, estos valores numéricos son los utilizados en el Capítulo 2, Sección 2.

En cuanto al valor de P, se tomará el valor de 3 para el cálculo de la esperanza y de la desviación típica de la evolución de la masa. Dando lugar a los coeficientes que se muestran en la figura 4.2.

Figura 4.2 Coeficientes para distribución uniforme con incertidumbre en m_0 para P = 3.

Como se puede ver en la figura 4.3. cada coeficiente va disminuyendo dos ordenes de magnitud con respecto al coeficiente anterior. Utilizando P = 3, el último de estos coeficientes, tiene un orden de magnitud de $1x10^{-2}$, por lo que ya es una precisión bastante alta. En la figura 4.3. se muestra los coeficientes en el caso de tener P = 5, que como se puede observar, los dos coeficientes que se añaden, vuelven a estar dos ordenes de magnitud por debajo del coeficiente anterior. En los siguientes apartados, se utilizará un valor de P = 3, ya que es suficiente para tener una precisión adecuada. De todos modos, esta decisión se justificará en los siguientes apartados.

Figura 4.3 Coeficientes para distribución uniforme con incertidumbre en m_0 para P = 5.

Otro aspecto a tener muy en cuenta es el tiempo que tarda el programa Matlab en resolver el sistema de ecuaciones diferenciales y la memoria que ocupa en el sistema la variable que almacena dichos coeficientes. En la tabla 4.1. se muestra el tiempo que se tarda en resolver el sistema y el valor que ocupa en memoria, para diferentes valores de P. Siendo la primera columna el valor de P, la segunda el tiempo que emplea en calcular los coeficientes aleatorios en función de P y la tercera el espacio que ocupa en memoria dichos coeficientes.

cione para so de unifo Valor de P		es y espacio que ocupa en memoria diferentes valores de P, para el ca- e incertidumbre en m_0 , distribución orme.		
		tiempo (s)	Memoria (bytes)	
1		0.2737	24016	
2		0.2807	36024	
3		0.2832	48032	
4		0.2858	60040	

Tabla 4.1	Tiempo para resolver el sistema de ecua- ciones y espacio que ocupa en memoria para diferentes valores de P, para el ca-
	so de incertidumbre en m_0 , distribución uniforme.

En la figura 4.4 se muestra el tiempo necesario para resolver el sistema de ecuaciones diferenciales para diferentes valores de P, como se puede observar, a partir de un cierto valor de P, sigue una relación lineal. Para este primer caso, el tiempo en resolver el sistema de ecuaciones en cualquier caso es menos que un segundo, siendo un método bastante rápido.

72048

0.2882

5

En el caso de la memoria que se ocupa en el sistema, el cual se muestra en la figura 4.5, se puede observar como sigue claramente una relación lineal, como era de esperar, pues aumentar en uno el valor de P, significa en este caso, añadir una columna extra a una matriz. Para este primer caso, también se observa, que el espacio que ocupa en memoria, para el caso de P = 5, es bastante pequeño.

Figura 4.4 Tiempo necesario para resolver el sistema de ecuaciones diferenciales en función de P, para el caso de incertidumbre en m_0 , distribución uniforme.

Figura 4.5 Espacio que ocupa en memoria la variable que guarda los coeficientes h en función de P, para el caso de incertidumbre en m_0 , distribución uniforme.

4.1.3 Esperanza

Una vez conocido los coeficientes del desarrollo en serie, se expresa la evolución de la esperanza a lo largo del tiempo en función de dichos coeficientes. Para ello, se hace uso de la definición de esperanza, aplicada a la ecuación (4.2). Como resultado, se obtiene la siguiente expresión:

$$E[m(t;m0)] = \sum_{i=0}^{P} h_i(t) E[L_i(\Delta)] = \sum_{i=0}^{P} h_i(t) E[L_i(\Delta)L_0(\Delta)] = h_0(t) E[L_0^2(\Delta)] = h_0(t)$$
(4.7)

Para llegar a este resultado, se ha multiplicado por $L_0(\Delta)$ y se ha usado la propiedad de los polinomios ortogonales, dando lugar a la simplificación de la expresión. Por último, se ha usado que $L_0(\Delta) = 1$, llegando así a la expresión final.

En la tabla 4.2. se muestran la evolución de la esperanza para diferentes valores de tiempo, siendo la primera columna los instantes de tiempo en los que se muestra la esperanza. La segunda columna representa los valores de la esperanza en dicho instantes de tiempo mediante el método de GPC, en la tercera columna se tiene los valores obtenidos en el artículo de Rafael Vázquez y Damian Rivas [2] en el que se emplea este mismo método. Por último, en la cuarta columna se muestran los resultados obtenidos en el Trabajo Fin de Grado de Manuel Ángel Zapata Habas [3] usando el método de Montecarlo. En la figura 4.6 se representa la evolución de la esperanza de la masa a lo largo del tiempo. Como es de esperar, disminuye, debido al consumo de combustible a lo largo del vuelo en crucero.

Figura 4.6 Valor esperado de la masa lo largo del tiempo. Distribución uniforme m_0 .

Como se puede observar, los valores obtenidos para la media, son muy similares a los obtenidos en el artículo y en el Trabajo Fin de Grado, por lo que se puede concluir que P = 3 proporciona un excelente grado

Tabla 4.2Valores de la esperanza para distintos instantes de tiempos, Distribución uniforme m_0 .Siendo GPC*, los resultados obtenidos por Rafael Vázquez Valenzuela y Damian Rivas
Rivas usando el método de GPC.

tiempo (s)	E[m(t;m0)] (Kg).GPC	E[m(t;m0)] (Kg).GPC*	E[m(t;m0)], (Kg) MC
2000	77485.6	77485	77485.1
4000	73477.1	73477	73477.2
6000	69595.9	69596	69595.1
8000	65831.7	65831	65831.9
10000	62174.8	62175	62174.8
12000	58616.5	58616	58616.6

de precisión. No obstante, para justificar su elección, en la tabla 4.3. se compara los resultados obtenidos para diferente P en los mismos instantes de tiempo. Siendo la primera columna los instantes de tiempo, la segunda la esperanza para P = 3 y la tercera la esperanza para P = 5. La variación de P = 3 a P = 5 se produce en el último decimal, esto significa que con P = 3 se tiene una precisión de 15 cifras significativas.

Tabla 4.3 Valores de la esperanza para P = 3 y P = 5, Distribución uniforme m_0 .

tiempo (s)	E[m(t;m0)](Kg) P = 3	E[m(t;m0)] (Kg)P = 5
2000	77485.59911614375	77485.59911614374
4000	73477.07185930982	73477.07185930982
6000	69595.9313042597 <mark>4</mark>	69595.93130425975
8000	65831.70960908367	65831.70960908369
10000	62174.8363654595 <mark>8</mark>	62174.83636545959
12000	58616.53319849474	58616.53319849474

4.1.4 Desviación típica

En primer lugar, se obtiene la expresión de la varianza en función de los coeficientes h_i tal y como se muestra en la ecuación (4.8). En esta ecuación, se vuelve a hacer uso de la propiedad de los polinomios ortogonales y de la relación entre la masa y los coeficientes h_i de la ecuación (4.2).

$$Var[m(t;m_0)] = E[m^2(t;m_0)] - E[m(t;m_0)]^2 = \sum_{i=0}^{P} \sum_{j=0}^{P} h_i(t)h_j(t)E[L_i(\Delta)L_j(\Delta)] - h_o^2 = \sum_{i=0}^{P} h_i^2(t)E[L_i^2(\Delta)]$$
(4.8)

Para obtener la evolución de la desviación típica a lo largo del tiempo, basta con hacer la raiz cuadrada a la ecuación (4.8). En la figura 4.7. se puede observar dicha evolución, que tal y como se puede observar, tiende a disminuirse con el tiempo.

En la tabla 4.4. se muestran los valores de la desviación típica para diferentes valores de tiempo, siendo la primera columna dichos instantes de tiempo. La segunda columna representa los valores de la desviación típica obtenidos mediante GPC. La tercera columna son los valores obtenidos en el artículo de Rafael Vázquez Valenzuela y Damian Rivas Rivas. La cuarta columna son los valores obtenidos por Manuel Ángel Zapata Habas empleando el método de Montecarlo. Como se pueden ver, los valores obtenidos por GPC son bastante precisos, existiendo un error menor que 0.1 Kg con respecto al método de Montecarlo.

Por último, se representa el coeficiente de variación que no es más que el cociente entre la desviación típica y el consumo de combustible. Como se puede observar en la figura 4.8. este coeficiente tiende a disminuir con

Figura 4.7 Desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0 .

Tabla 4.4 Valores de la desviación típica para distintos instantes de tiempos, Distribución uniforme m_0 . Siendo GPC*, los resultados obtenidos por Rafael Vázquez Valenzuela y Damian Rivas Rivas usando el método de GPC.

tiempo (s)	$\sigma(t;m0)]$ (Kg).GPC	σ[m(t;m0)] (Kg).GPC*	σ [m(t;m0), (Kg) MC
2000	2787.7	2787	2787.6
4000	2696.8	2696	2696.6
6000	2613.5	2613	2613.3
8000	2536.9	2536	2536.8
10000	2466.6	2467	2466.5
12000	2402.1	2402	2402.2

el tiempo, lo cual significa que la incertidumbre en la masa inicial tiende a reducirse con el tiempo.

4.1.5 Comparación con el método de Montecarlo

En este apartado, se compara el coste de implementar computacionalmente el método de Montecarlo y el método de GPC. Para realizar esta comparación, se tendrá en cuenta el tiempo que emplea cada método en obtener la desviación típica y el coste que tiene en memoria.

Para el método de Montecarlo [3], tiene un tiempo de ejecución de 3.5 segundos. En cuanto al coste en memoria, este método necesita generar 33554432 muestras para calcular la esperanza lo que tiene un coste de almacenamiento de 134217728 bytes. Para el cálculo de la desviación típica se usan el mismo número de muestras, sin embargo, en cada iteración tiene que guardar las muestras de las iteraciones anteriores, siendo el coste total de almacenamiento de 268435440 bytes. El coste total de almacenar estas dos variables es de 402653168 bytes.

Figura 4.8 Cociente entre la desviación típica y el combustible consumido. Distribución uniforme m_0 .

Para el método de GPC, se ha calculado la esperanza y desviación típica cada 10 segundos en un intervalo temporal de 15000 segundos. El tiempo de ejecución para estas condiciones es de 0.35 segundos. La variable que almacena los coeficientes h_i tiene 1501xP valores, en este caso P = 3 por lo que se tiene un total de 4503 valores, ocupando un espacio en memoria de 48032 bytes. Como se ha visto anteriormente la esperanza es igual al coeficientes h_0 por lo que el coste de esta variable ya está incluido en la variable que almacena los coeficientes. Para el caso de la desviación típica, esta variable tiene 1501 valores y ocupa un espacio en memoria de 12008 bytes. Por tanto, el coste total es de 60040 bytes.

Para este caso, se ha demostrado que el método de GPC es más eficiente que el de Montecarlo ya que el tiempo de ejecución es 10 veces mas rápido mientras que el espacio en memoria es unas 2500 veces menor. Además otro aspecto a tener en cuenta es que usando el método de Montecarlo, se tiene una expresión analítica de la evolución de la masa a lo largo del tiempo. Si no se tuviese esta expresión, tendría que resolver un número de ecuaciones diferenciales igual al número de muestras. Mientras que en este trabajo no se ha hecho uso de esa expresión analítica para encontrar la solución.

4.2 Distribución gamma

4.2.1 Función de densidad

Para este apartado, se ha tomado una distribución gamma para la masa inicial. Esta función $G(k,\theta)$ viene definida por dos parámetros. El parámetro k es el parámetro de forma y θ es el parámetro de escala. La función de densidad viene dada por la siguiente expresión:

$$f(x;k,\theta) = x^{k-1} \frac{e^{-x/\theta}}{\theta^k \Gamma(k)}$$
(4.9)

donde Γ es la función gamma de Euler. Para este trabajo, se va a emplear los valores de k = 8.5 y $\theta = 1$, con el objetivo de reproducir los mismos resultados que en el artículo [2]. La función de densidad de la masa inicial se representa en la figura 4.9.

Figura 4.9 Función de densidad para distribución gamma m_0 .

4.2.2 Cálculo de los coeficientes del GPC

En este apartado, se calcularan los coeficientes del método GPC para el caso de la distribución gamma. La principal diferencia es que en este caso, se usarán los polinomios de Laguerre en vez de los polinomios de Legendre. Siguiendo el mismo procedimiento que para el caso uniforme, se llega al mismo sistema de P+1 ecuaciones diferenciales que se obtuvo para el caso uniforme tal y como se muestra en la expresión (4.10.).

$$\dot{h}_{l}(t) = -A\delta_{0l} - B\sum_{i=0}^{P}\sum_{j=0}^{P}h_{i}(t)h_{j}(t)C_{ijl}, \quad l = 0,...,P$$
(4.10)

Sin embargo, el coeficiente C_{ijl} es diferente al del caso uniforme. La expresión para este caso, se muestra en la ecuación (4.11.).

$$C_{ijl} = \frac{E[\phi_i^{k-1}\phi_j^{k-1}\phi_l^{k-1}]}{E[(\phi_l^{k-1})^2]}$$
(4.11)

Donde ϕ_i^{k-1} denota el polinomio asociado de Laguerre de grado *i*. Para la distribución gamma, la masa inicial puede ser reescrita en función de los polinomios de Laguerre como: $m_0 = \bar{m}_0 \phi_0^{k-1}(G) - \frac{\delta_m}{\sqrt{3k}} \phi_1^{k-1}(G)$. Por lo que se puede extraer que las condiciones iniciales para resolver el sistema de ecuaciones diferenciales son las mostradas en la expresión (4.12.).

$$h_0(0) = \bar{m}_0, \ h_1(0) = -\frac{\delta_m}{\sqrt{3k}} \ h_l(0) = 0, \ para \ l = 2,...,P$$
 (4.12)

Resolviendo para P=3 y usando los datos definidos en el capítulo 3, se obtienen los valores de los coeficientes mostrados en la figura 4.10. Como se puede observar, se sigue cumpliendo que cada coeficiente se encuentra dos ordenes de magnitud por debajo del anterior.

Figura 4.10 Coeficientes para distribución gamma con incertidumbre en m_0 para P = 3.

4.2.3 Esperanza

Una vez obtenido los coeficientes h_i , el cálculo de la esperanza es inmediato, pues es la misma expresión que (4.7) y por tanto, la evolución de la esperanza con el tiempo es el coeficiente h_0 . En la figura 4.11 se muestra la evolución de la esperanza a lo largo del tiempo, como se observa, mantiene la tendencia descendiente debido al consumo de combustible durante el vuelo.

En la tabla 4.5. se muestra los valores de la esperanza para diferentes instantes de tiempos, además se compara estos resultados con los obtenidos en el artículo de Rafael Vázquez Valenzela y Damian Rivas Rivas [2] usando este mismo método y los resultados obtenidos en el Trabajo Fin de Grado de Manuel Ángel Zapata Habas [3]. Por tanto, la primera columna representa los instante de tiempo en los que se muestra la esperanza. La segunda columna son los resultados obtenidos en este trabajo usando GPC. La tercera, los valores obtenidos en el artículo usando también el método de GPC y la cuarta columna representa los valores obtenidos empleando el método de Montecarlo.

tiempo (s)	E[m(t;m0)] (Kg).GPC	E[m(t;m0)] (Kg).GPC*	E[m(t;m0), (Kg) MC
2000	77485.5	77485	77485.8
4000	73477.1	73477	73477.8
6000	69595.9	69596	69596.1
8000	65831.7	65831	65831.6
10000	62174.8	62175	62174.3
12000	58616.5	58616	58616.2

Tabla 4.5 Valores de la esperanza para distintos instantes de tiempos, Distribución gamma m_0 .

Como se puede observar se obtienen los mismos resultados que en el trabajo Fin de Grado y en el artículo, con errores inferiores a un kilogramo. A continuación, se va a comprobar para este tipo de distribución aleatoria, el efecto que tiene pasar de P=3 a P=5. Estos resultados, se muestran en la tabla 4.6. Siendo la primera columna los instantes de tiempo en los que se toman valores, la segunda el valor de la esperanza para P=3 y la tercera columna, los valores de la esperanza para P=5. Se han marcado en rojo los valores que

Figura 4.11 Valor esperado de la masa lo largo del tiempo. Distribución gamma m_0 .

son diferentes para que sea mas fácil localizar la diferencia.

tiempo (s)	E[m(t;m0)](Kg) P = 3	E[m(t;m0)] (Kg)P = 5
2000	77485.59985630068	77485.59985630068
4000	73477.0746238157 <mark>6</mark>	73477.07462381573
6000	69595.9313047811	69595.9313047811
8000	65831.7193400454 <mark>3</mark>	65831.71934004541
10000	62174.850691529 <mark>20</mark>	62174.85069152919
12000	58616.5269064537	58616.5269064536

Tabla 4.6 Valores de la esperanza para P = 3 y P = 5, Distribución gamma m_0 .

Como se puede observar, los cambios vuelven a tener una precisión de 15 cifras significativas, por lo que se puede intuir que con P=3 es una buena aproximación para los casos en los que se tiene una sola variable aleatoria.

4.2.4 Desviación típica

La expresión que determina la variación de la varianza a lo largo del tiempo en este caso, es análoga a la expresión (4.8), basta con cambiar los polinomios de Legendre por los polinomios generalizados de Laguerre, tal y como se muestra en la expresión (4.13).

$$Var[m(t;m_0)] = E[m^2(t;m_0)] - E[m(t;m_0)]^2$$

= $\sum_{i=0}^{P} \sum_{j=0}^{P} h_i(t)h_j(t)E[\phi_i^{k-1}(G)\phi_j^{k-1}(G)] - h_o^2$
= $\sum_{i=0}^{P} h_i^2(t)E[\phi_i^{k-1}(G)^2]$ (4.13)

Para obtener la desviación típica, basta hacer la raíz cuadrada a la expresión anterior. En la figura 4.12. se puede ver la evolución de la desviación típica a lo largo del tiempo.

Figura 4.12 Desviación típica de la masa lo largo del tiempo. Distribución gamma m_0 .

En la tabla 4.7. se muestran los valores de la desviación típica para diferentes valores de tiempo, siendo la primera columna dichos instantes de tiempo. La segunda columna representa los valores de la desviación típica obtenidos mediante GPC. La tercera columna son los valores obtenidos en el artículo de Rafael Vázquez Valenzuela y Damian Rivas Rivas. La cuarta columna son los valores obtenidos por Manuel Ángel Zapata Habas empleando el método de Montecarlo. Como se pueden ver, los valores obtenidos por GPC son bastante precisos, existiendo un error menor que un Kilogramo con respecto al método de Montecarlo.

Finalmente, en la figura 4.13. se representa el cociente entre la desviación típica y la esperanza del combustible consumido a lo largo del tiempo. La tendencia es decreciente y muy similar al caso uniforme.

tiempo (s)	$\sigma(t;m0)]$ (Kg).GPC	σ [m(t;m0)] (Kg).GPC*	σ [m(t;m0)], (Kg) MC
2000	2786.5	2786	2786.2
4000	2694.6	2695	2694.8
6000	2610.2	2610	2610.2
8000	2532.8	2533	2532.5
10000	2461.8	2462	2461.9
12000	2396.5	2397	2396.5

Tabla 4.7	Valores de	la	desviación	típica	para	distintos	instantes	de	tiempos,	Distrib	ución
	gamma m_0 .										

Figura 4.13 Cociente entre la desviación típica y el combustible consumido. Distribución gamma m_0 .

5 Incertidumbre en C_{D_0}

E n este capítulo, se estudia el caso de tener incertidumbre en el parámetro C_{D_0} . Esta incertidumbre puede venir por un fallo en la medición de este coeficiente o por el deterioro de las superficies de la aeronave. Esta incertidumbre se modelará como una distribución uniforme centrada en el valor nominal y un semiancho del 10% sobre el valor inicial. Esta función de distribución es la mostrada en la figura 5.1.

Figura 5.1 Función de densidad para distribución uniforme C_{D_0} .

A diferencia del caso anterior en el que m_0 solo aparecía en la condición inicial y por tanto se iba propagando la incertidumbre a lo largo del tiempo, en este caso, la incertidumbre afecta en todo instante de tiempo, por lo que se espera un efecto totalmente diferentes en los resultados comparándolos con el capítulo anterior.

Por otro lado, la masa inicial m_0 en este caso es fija e igual al valor nominal, es decir $m_0 = 81633Kg$. En los siguientes apartados se verá como afecta el caso de tener incertidumbre en C_{D_0} al sistema de ecuaciones que hay que resolver para obtener los coeficientes, se calcularán dichos coeficientes y por último, se obtendrá la evolución de la esperanza y la desviación típica de la masa a lo largo del tiempo.

5.1 Cálculo de los coeficientes del método GPC

En primer lugar, se calcula la expresión que permite obtener los coeficientes. Para ello, se escribe la masa en función de estos coeficientes, tal y como se muestra en la ecuación (5.1).

$$m(t; C_{D_0}) = \sum_{i=0}^{P} h_i(t) L_i(\Delta)$$
(5.1)

Esta expresión será sustituida en la ecuación (3.8). Sin embargo, antes hay que redefinir el coeficiente A definido en la expresión (3.9) pues C_{D_0} que antes era constante ya no lo es. Esta nueva expresión de la constante A se muestra en la ecuación (5.2).

$$A = \frac{1}{2}c\rho V^2 S \tag{5.2}$$

Donde el unico cambio que se ha realizado respecto a la ecuación (3.9) ha sido extraer C_{D_0} . Esta variable podemos definirla en función de los polinomios de Legendre como:

$$C_{D_0} = \bar{C}_{D_0} L_0(\Delta) + \delta_{C_{D_0}} L_1(\Delta)$$
(5.3)

Sustituyendo la ecuación (5.3) y (5.1) en la expresión que nos da la evolución de la masa a lo largo del tiempo, expresión (3.8). Se obtiene la siguiente expresión:

$$\sum_{i=0}^{P} \dot{h}_{i}(t)L_{i}(\Delta) = -A(\bar{C}_{D0}L_{0}(\Delta) + \delta_{C_{D0}}L_{1}(\Delta)) - B\sum_{i=0}^{P}\sum_{j=0}^{P} h_{i}(t)h_{j}(t)L_{i}(\Delta)L_{j}(\Delta)$$
(5.4)

Operando de la misma forma que en el capítulo anterior, es decir, multiplicando por $L_l(\Delta)$, tomando esperanza respecto a $L_l(\Delta)$ y aplicando las propiedades de los polinomios ortogonales se llega al siguiente sistema de P+1 ecuaciones diferenciales que permite calcular los coeficientes del método:

$$\dot{h}_{l}(t) = -A(C_{D_{0}}\delta_{0l} + \delta_{C_{D_{0}}}\delta_{1l}) - B\sum_{i=0}^{P}\sum_{j=0}^{P}h_{i}(t)h_{j}(t)C_{ijl}, \quad l = 0,...,P$$
(5.5)

Donde el coeficiente C_{iil} toma los mismos valores que en el apartado anterior:

$$C_{ijl} = \frac{E[L_i L_j L_l]}{E[L_i^2]}$$
(5.6)

Por último, queda ajustar las condiciones iniciales para poder resolver el sistema (5.5) son las siguientes:

$$h_0(0) = m_0, \quad h_l(0) = 0, \quad l = 1, \dots, P$$
 (5.7)

Los coeficientes que se obtienen para P=3, son los mostrados en la figura 5.2. Como se puede ver, estos coeficiente siguen siendo dos ordenes de magnitud inferiores al orden de magnitud del coeficiente anterior. Como se ha visto anteriormente, el paso de P=3 a P=5 solo aumenta la precisión en la decimosexta cifra significativa por lo que se considera que P=3 aproximará correctamente.

Figura 5.2 Coeficientes para distribución uniforme con incertidumbre en C_{D_0} .

5.2 Esperanza

La expresión que permite calcular la evolución de la esperanza con el tiempo es la mostrada en (5.7), como se puede observar, es la misma expresión que la obtenida en el capítulo anterior.

$$E[m(t;C_{D_0})] = \sum_{i=0}^{P} h_i(t) E[L_i(\Delta)] = \sum_{i=0}^{P} h_i(t) E[L_i(\Delta)L_0(\Delta)] = h_0(t) E[L_0^2(\Delta)] = h_0(t)$$
(5.8)

En la figura 5.3 se representa gráficamente la evolución de la esperanza con respecto al tiempo, como se puede observar sigue una tendencia descendente debido al consumo de combustible durante el vuelo.

En la tabla 5.1. se muestran la evolución de la esperanza para diferentes valores de tiempo, siendo la primera columna los instantes de tiempo en los que se muestra la esperanza. La segunda columna representa los valores de la esperanza en dicho instantes de tiempo mediante el método de GPC. En la tercera columna se muestran los resultados obtenidos en el Trabajo Fin de Grado de Manuel Ángel Zapata Habas [3] usando el método de Montecarlo.

Tabla 5.1 Valores de la esperanza para distintos instantes de tiempos,
Distribución uniforme C_{D_0} .

tiempo (s)	E[m(t;m0)] (Kg).GPC	E[m(t;m0)], (Kg) MC
2000	77487.3	77487.8
4000	73480.3	73480.9
6000	69600.6	69600.0
8000	65837.6	65837.5
10000	62181.8	62180.8
12000	58624.4	58624.8

Como se puede observar, se tiene errores por debajo de un kilogramo. Si se comparan estos resultados con los

Figura 5.3 Valor esperado de la masa lo largo del tiempo. Distribución uniforme C_{D_0} .

obtenidos en la tabla 4.2 se puede ver que los valores esperados de la masa en el caso de tener incertidumbres en m_0 y en C_{D_0} parecen bastante similares. Sin embargo, se producen diferencias de hasta 3 Kg, esta diferencia es muy importante ya que afecta al coste del vuelo de la aeronave, por lo que es interesante tener en cuenta este tipo de incertidumbres.

5.3 Desviación típica

La expresión que permite calcular la varianza en función de los coeficientes del método GPC es la misma que la ecuación (4.8), pero aplicado a C_{D_0} , tal y como se muestra en la expresión (5.8).

$$Var[m(t;C_{D_0})] = E[m^2(t;C_{D_0}] - E[m(t;C_{D_0})]^2 = \sum_{i=0}^{P} \sum_{j=0}^{P} h_i(t)h_j(t)E[L_i(\Delta)L_j(\Delta)] - h_o^2 = \sum_{i=0}^{P} h_i^2(t)E[L_i^2(\Delta)]$$
(5.9)

Para obtener la desviación típica basta con hacer la raíz cuadrada. En la figura 5.4 se muestra la evolución de la desviación típica con el tiempo. En este caso, se puede observar que la desviación típica aumenta con el tiempo y por tanto, la incertidumbre también crece con el tiempo. Esto es debido a que en cada instante de tiempo, la evolución de la masa depende de C_{D_0} y la incertidumbre en este parámetro, hace que la desviación típica aumente.

En la tabla 5.2 se muestra los valores de la desviación típica para ciertos instantes de tiempo, siendo la primera columna dichos instantes de tiempo. La segunda columna, los valores obtenidos mediante el método de GPC y la tercera, los valores obtenidos usando el método de Montecarlo, extraidos de [3].

Por último, en la figura 5.5 se representa la evolución del cociente entre la desviación típica y el consumo de combustible. Como se observa es creciente, por lo que la incertidumbre tiende a crecer a medida que se consume más combustible.

Figura 5.4 Desviación típica de la masa lo largo del tiempo. Distribución uniforme C_{D_0} .

tiempo (s)	$\sigma[\mathbf{m}(\mathbf{t};C_{D_0})]$ (Kg).GPC	$\sigma[\mathbf{m}(\mathbf{t};C_{D_0}), (\mathbf{Kg}) \mathbf{MC}]$
2000	156.4	156.8
4000	307.9	307.7
6000	455.0	455.0
8000	598.5	597.2
10000	738.9	739.4
12000	876.6	876.2

Tabla 5.2 Valores de la desviación típica para distintos instantes de tiempos, Distribución uniforme C_{D_0} .

5.4 Comparación con el método de Montecarlo

En el método de Montecarlo, se necesita un numero de iteraciones para calcular la solución en un punto, haciendo que se genere 2^i muestras, siendo *i* el número de iteraciones. Además a medida que el tiempo crece, se necesitan mas iteraciones para que converja el método. Por otro lado, necesita iterar dos veces, una para el cálculo de la esperanza y otro, para el cálculo de la desviación típica, aumentando el costo en memoria. Por otro lado, si no se tuviese la ecuación analítica, se tendría que resolver un número de ecuaciones diferenciales igual al número de muestras que se tengan, haciendo el proceso muy costoso.

Sin embargo, con el método de GPC, solo es necesario resolver P+1 ecuaciones diferenciales y una sola vez, por lo que es un proceso muy rápido y se obtienen resultados bastante fiables, tal y como se ha podido comprobar en las diferentes comparaciones con el método de Montecarlo.

Figura 5.5 Cociente entre la desviación típica y el combustible consumido. Distribución uniforme C_{D_0} .

6 Incertidumbre en c

E n este capítulo, se estudia el efecto de tener incertidumbre en el parámetro c, se va a estudiar este caso debido a que este parámetro aparece tanto dentro del coeficiente A y el coeficiente B. Por lo que resulta interesante estudiarlo antes de dar el salto a considerar incertidumbre en varias variables a la vez.

Se va a considerar que esta variable sigue una distribución uniforme centrada en el valor nominal y semiancho del 10% del valor nominal. En la figura 6.1 se representa su función de distribución. Por otro lado, los valores de C_{D_0} y m_0 vuelven a tomar sus valores nominales.

Figura 6.1 Función de densidad para distribución uniforme c.

En los siguientes apartados, se calcula los coeficientes del método GPC, previamente, se obtendrá la expresión del sistema de ecuaciones diferenciales que permitirá calcularlos. Se calcula la evolución de la esperanza y la desviación típica a lo largo del tiempo.

6.1 Cálculo de los coeficientes del GPC

Como ya se ha mencionado, en este caso, c se encuentra tanto en el coeficiente A y en el B, por lo que las expresiones de estas constantes que se va a emplear en este capítulo son las mostradas en la ecuación (6.1) y (6.2).

$$A = \frac{1}{2}\rho V^2 S C_{D_0}$$
(6.1)

$$B = \frac{2C_{D_2}g^2}{\rho V^2 S}$$
(6.2)

Por otro lado, se escribe c en función de los polinomios de Legendre:

$$c = \bar{c}L_0(\Delta) + \delta_c L_1(\Delta) \tag{6.3}$$

La masa, en función del desarrollo en serie del GPC queda:

$$m(t;C_{D_0}) = \sum_{i=0}^{P} h_i(t) L_i(\Delta)$$
(6.4)

Sustituyendo (6.1-6.4) en la ecuación diferencial de la masa (3.8), se obtiene la siguiente expresión:

$$\sum_{i=0}^{P} \dot{h}_{i}(t) L_{i}(\Delta) = -A(\bar{c}L_{0}(\Delta) + \delta_{c}L_{1}(\Delta)) - B\sum_{i=0}^{P} \sum_{j=0}^{P} h_{i}(t)h_{j}(t)L_{i}(\Delta)L_{j}(\Delta)(\bar{c}L_{0}(\Delta) + \delta_{c}L_{1}(\Delta))$$
(6.5)

Ahora, se opera de forma similar a como se operó en los capítulos anteriores, es decir, se multiplica por $L_l(\Delta)$, se toma esperanza con respecto a $L_l(\Delta)$, se aplica lo propiedad de los polinomios ortogonales y por último, se reordena la expresión. Quedando un sistema de P+1 ecuaciones diferenciales.

$$\dot{h}_{l}(t) = -A(c\delta_{0l} + \delta_{c}\delta_{1l}) - B\sum_{i=0}^{P}\sum_{j=0}^{P}h_{i}(t)h_{j}(t)(\bar{c}X_{ijl}^{0} + \delta_{c}X_{ijl}^{1}), \quad l = 0,...,P$$
(6.6)

Siendo los coeficientes X_{ijl}^k constante y su expresión se muestra en la ecuación (6.7)

$$X_{ijl}^{k} = \frac{E[L_i L_j L_l L_k]}{E[L_i^2]} \quad k = 0,1$$
(6.7)

Las condiciones iniciales para este caso, sigue siendo las mismas que en el apartado anterior, se muestran en la ecuación (6.8)

$$h_0(0) = m_0, \quad h_l(0) = 0, \quad l = 1, \dots, P$$
 (6.8)

Por lo que ya se puede resolver el sistema de ecuaciones diferenciales. Se ha vuelto a seleccionar el valor de P=3 para este caso. La evolución de estos coeficientes se muestran en la figura 6.2. Como se observa, los coeficientes siguen la tendencia de disminuir 2 ordenes de magnitud con respecto al orden de magnitud anterior.

Figura 6.2 Coeficientes para distribución uniforme con incertidumbre en c.

6.2 Esperanza

Para el cálculo de la esperanza, se hace uso de la ecuación 6.9, que como se puede ver, es la misma expresión que la empleada para los capítulos anteriores.

$$E[m(t;c)] = \sum_{i=0}^{P} h_i(t) E[L_i(\Delta)] = \sum_{i=0}^{P} h_i(t) E[L_i(\Delta)L_0(\Delta)] = h_0(t) E[L_0^2(\Delta)] = h_0(t)$$
(6.9)

En la figura 6.3 se representa gráficamente la evolución de la esperanza con respecto al tiempo, como se puede observar sigue una tendencia descendente debido al consumo de combustible durante el vuelo y muy similar a los casos anteriores.

En la tabla 6.1 se recogen el valor de la esperanza para diferentes valores de tiempo. La primera columna, representa los instantes de tiempo en los que se calcula la esperanza y la segunda columna, representa el valor que toma la esperanza en dicho instantes de tiempo.

Tabla 6.1	Valores de la esperanza
	para distintos instantes
	de tiempos, Distribución
	uniforme c.

tiempo (s)	E[m(t;c)](Kg)
2000	77487.5
4000	73481.2
6000	69602.4
8000	65840.5
10000	62186.1
12000	58630.3

Figura 6.3 Valor esperado de la masa lo largo del tiempo. Distribución uniforme c.

En la tabla 6.2 se compara los valores obtenido de la esperanza en diferentes instantes de tiempo para los tres casos estudiados en este trabajo, considerando incertidumbres en m_0 , C_{D_0} y c. Por tanto, la primera columna representa los instantes de tiempo. La segunda columna muestra el valor esperado de la masa considerando incertidumbres en m_0 . La tercera considerando incertidumbre en C_{D_0} y la cuarta, en c.

diferentes instantes de tiempo, considerando los casos de incerti-
dumbres en m_0, C_{D_0} y c.

 Tabla 6.2
 Comparación de los diferentes valores esperados de la masa para

tiempo (s)	$\mathbf{E}[\mathbf{m}(\mathbf{t};m_0)](\mathbf{Kg})$	$\mathbf{E}[\mathbf{m}(\mathbf{t};C_{D_0})](\mathbf{Kg})$	E[m(t;c) (Kg)
2000	77485.6	77487.3	77487.5
4000	73477.1	73480.3	73481.2
6000	69595.9	69600.6	69602.4
8000	65831.7	65837.6	65840.5
10000	62174.8	62181.8	62186.1
12000	58616.5	58624.4	58630.3

Como se puede apreciar, considerando incertidumbre únicamente en m_0 da lugar a valores esperados mas bajos que considerando las otras dos incertidumbres (por separado). Por otro lado, la incertidumbre en c es la que da lugar a valores esperados de la masa mas altos.

6.3 Desviación típica

La evolución de la desviación típica viene dada por la raiz cuadrada de la siguiente expresión:

$$Var[m(t;c] = E[m^{2}(t;c)] - E[m(t;c)]^{2} = \sum_{i=0}^{P} \sum_{j=0}^{P} h_{i}(t)h_{j}(t)E[L_{i}(\Delta)L_{j}(\Delta)] - h_{o}^{2} = \sum_{i=0}^{P} h_{i}^{2}(t)E[L_{i}^{2}(\Delta)] \quad (6.10)$$

Como se puede observar, es la misma expresión que en los casos anteriores. En la figura 6.4, se muestra la evolución de la desviación típica a lo largo del tiempo. Como se puede observar, tiende a aumentar con el tiempo.

Figura 6.4 Desviación típica de la masa lo largo del tiempo. Distribución uniforme c.

En la tabla 6.3 se muestra los valores de la desviación típica para ciertos instantes de tiempo, siendo la primera columna dichos instantes de tiempo y la segunda columna, los valores obtenidos mediante el método de GPC.

En la figura 6.5 se compara las desviaciones típicas para los diferentes caso estudiados hasta ahora. Como se observa, el caso con una mayor desviación típica es el caso en el que se tiene incertidumbre en m_0 , mientras que en el que se tiene menor desviación típica es en el caso de C_{D_0} .

En la figura 6.6 se representa el cociente entre la desviación típica y la masa consumida, como se puede observar, sigue una tendencia decreciente, por lo que la incertidumbre tiende a disminuir a medida que se consume combustible.

Finalmente, en la figura 6.7 se compara con el cociente obtenido en los otros apartados. Como se puede observar, m_0 es el caso en el que la incertidumbre es mayor, tomando un valor alto al principio y posteriormente siguiendo una tendencia decreciente a lo largo del tiempo. Esto es debido a que la incertidumbre se tiene en

Figura 6.5 Comparación de la desviación típica para los casos de incertidumbre en m_0, C_{D_0} y c.

Figura 6.6 Cociente entre la desviación típica y el combustible consumido. Distribución uniforme c.

tiempos, Distribución unifo me C_{D_0} .		
tiempo (s)	σ[m(t;c)] (Kg).GPC	
2000	235.2	
4000	455.1	
6000	661.6	
8000	856.3	
10000	1040.8	
12000	1216.3	

Tabla 6.3 Valores de la desviación típi-
ca para distintos instantes de
tiempos, Distribución unifor-
me $C_{D_{12}}$.

la condición inicial. En los otros dos casos, la incertidumbre en c es mayor que en C_{D_0} . Por lo que se puede concluir que el caso en el que menos incertidumbre se tiene es en C_{D_0} ya que tanto la desviación típica como el cociente entre la desviación típica y la masa consumida es menor al resto.

Figura 6.7 Comparación entre el cociente de la desviación típica y el combustible consumido. Para los casos de incertidumbre en m_0, C_{D_0} y c.

7 Incertidumbre en m_0 y C_{D_0}

 \mathbf{E} n este capítulo, se pretende estudiar el caso en el que existan incertidumbres tanto en la masa inicial como en C_{D_0} . Ambas variables se van a modelar como una distribución uniforme centradas en el valor nominal y semiancho del 10% del valor nominal. La función de densidad de estas funciones se pueden observar en las figuras 4.1 y 5.1.

En los siguientes capítulos, se calcularán los coeficientes necesarios para aplicar el método. Posteriormente, se obtendrá la evolución de la esperanza y la desviación típica de la masa a lo largo del tiempo. Por último, se comparará la eficiencia de este método con el de Montecarlo.

7.1 Cálculo de los coeficientes del GPC

En este capítulo se aborda el paso de tener una sola variable aleatoria, a tener dos. En primer lugar, el desarrollo en serie de la masa, ya no depende de una sola variable h_i , sino que depende también de una variable h_j . Por tanto, el desarrollo en serie queda de la siguiente forma:

$$m(t;m_0,C_{D_0}) = \sum_{i=0}^{P} \sum_{j=0}^{P} h_{ij}(t) L_i(\Delta_1) L_j(\Delta_2)$$
(7.1)

Donde Δ_1 hace referencia a la incertidumbre en m_0 y Δ_2 hace referencia a la incertidumbre en C_{D_0} . Además, la masa inicial y el coeficiente de resistencia sin sustentación C_{D_0} pueden ser reescritas como:

$$m_0 = \bar{m}_0 L_0(\Delta_1) + \delta_m L_1(\Delta_1) \tag{7.2}$$

$$C_{D_0} = \bar{C}_{D_0} L_0(\Delta_2) + \delta_{C_{D_0}} L_1(\Delta_2)$$
(7.3)

Sustituyendo (7.1), (7.2) y (7.3) en (3.8) y usando la expresión de A descrita en (5.2), se obtiene el sistema de $(P+1)^2$ ecuaciones diferenciales, tal y como se muestra en (7.4).

$$\sum_{i=0}^{P} \sum_{j=0}^{P} \dot{h}_{ij}(t) L_i(\Delta_1) L_j(\Delta_2) = -A(\bar{C}_{D0} L_0(\Delta_2) + \delta_{C_{D0}} L_1(\Delta_2)) -B \sum_{i_1=0}^{P} \sum_{i_2=0}^{P} \sum_{j_1=0}^{P} \sum_{j_2=0}^{P} h_{i_1j_1}(t) h_{i_2j_2}(t) L_{i_1}(\Delta_1) L_{j_2}(\Delta_1) L_{j_1}(\Delta_2) L_{j_2}(\Delta_2)$$
(7.4)

Donde los subindices i, $i_1 e i_2$ hacen referencia a la variable m_0 y los subindices j, j_1 y j_2 hacen referencia a la variable C_{D_0} . La forma de proceder para simplificar el sistema de ecuaciones es tratar cada variable por separado. En primer lugar, se multiplica por $L_{l_1}(\Delta_1)$, se toma esperanzas con respecto a Δ_1 y se aplica la propiedad de los polinomios ortogonales. Los polinomios ortogonales de Legendre referidos a la variable C_{D_0} , son independientes a los polinomios asociados a la variable m_0 , por lo que pueden salir fuera de la esperanza.

$$\sum_{j=0}^{P} \dot{h}_{l_{1}j}(t) E[L_{l_{1}}(\Delta_{1})^{2}] L_{j}(\Delta_{2}) = -A \delta_{0l_{1}}(\bar{C}_{D0}L_{0}(\Delta_{2}) + \delta_{C_{D_{0}}}L_{1}(\Delta_{2}))$$

$$-B \sum_{i_{1}=0}^{P} \sum_{i_{2}=0}^{P} \sum_{j_{1}=0}^{P} \sum_{j_{2}=0}^{P} h_{i_{1}j_{1}}(t) h_{i_{2}j_{2}}(t)$$

$$x E[L_{i_{1}}(\Delta_{1})L_{i_{2}}(\Delta_{1})L_{l_{1}}(\Delta_{1})] L_{j_{1}}(\Delta_{2})L_{j_{2}}(\Delta_{2})$$
(7.5)

Reordenando la ecuación anterior queda:

$$\sum_{j=0}^{P} \dot{h}_{l_{1}j}(t)L_{j}(\Delta_{2}) = -A\delta_{0l}(\bar{C}_{D0}L_{0}(\Delta_{2}) + \delta_{C_{D0}}L_{1}(\Delta_{2})) -B\sum_{i_{1}=0}^{P}\sum_{i_{2}=0}^{P}\sum_{j_{1}=0}^{P}\sum_{j_{2}=0}^{P}h_{i_{1}j_{1}}(t)h_{i_{2}j_{2}}(t)C_{i_{1}i_{2}l_{1}}L_{j_{1}}(\Delta_{2})L_{j_{2}}(\Delta_{2})$$
(7.6)

Finalmente, se realiza los mismos pasos para la variable C_{D_0} , multiplicando en este caso por $L_m(\Delta_2)$, dando lugar a un sistema de $(P+1)^2$ ecuaciones diferenciales:

$$\dot{h}_{lm}(t)L_j(\Delta_2) = -A\delta_{0l}(\bar{C}_{D0}\delta_{0m} + \delta_{C_{D0}}\delta_{1m}) - B\sum_{i_1=0}^P \sum_{i_2=0}^P \sum_{j_1=0}^P \sum_{j_2=0}^P h_{i_1j_1}(t)h_{i_2j_2}(t)C_{i_1i_2l_1}C_{j_1j_2m}$$
(7.7)

Para poder obtener los coeficientes h_{lm} queda establecer las condiciones iniciales, estas son las siguientes:

$$h_{0m}(0) = \bar{m}_0, \ h_{1m}(0) = \delta_m \ h_{lm}(0) = 0, \ para \ l = 2,...,P; \ m = 0,...,P$$
 (7.8)

Para este caso, se vuelve a usar el valor de P=3, dando lugar a 16 coeficientes aleatorios. Estos coeficientes, se muestran en la siguiente expresión:

$$\begin{bmatrix} h_{00} & h_{10} & h_{20} & h_{30} \\ h_{01} & h_{11} & h_{21} & h_{31} \\ h_{02} & h_{12} & h_{22} & h_{32} \\ h_{03} & h_{13} & h_{23} & h_{33} \end{bmatrix}$$
(7.9)

En esta matriz, los coeficientes diagonales tienen el mismo orden de magnitud y van disminuyendo diagonalmente el orden de magnitud en dos unidades. Es decir, los coeficientes h_{01} y h_{01} tienen dos ordenes de magnitud menos que el coeficiente h_{00} . Los coeficientes h_{02} , h_{11} y h_{20} sus ordenes de magnitud son dos unidades menor que h_{01} y h_{01} . En la figura 7.1 se representa estos coeficientes agrupados por sus ordenes de magnitud.

En la figura 7.2 se muestra el tiempo necesario para resolver el sistema de ecuaciones en función de P, como se observa, sigue una evolución cuadrática. Por lo cual con P=3 se tiene una muy buena aproximación y el tiempo que tarda en resolver el sistema de ecuaciones diferenciales, unos 0.6091 segundos, no es excesivo.

En cuanto al espacio que ocupa en memoria, con P=3, la variable que almacena los coeficientes aleatorios ocupa un espacio de 1920128 bytes. El espacio que ocupa esta variable en memoria también sigue una ley cuadrática, por lo que al aumentar P, aumenta cuadráticamente el espacio que ocupa dicha variable en memoria.

Figura 7.1 Coeficientes para distribución uniforme con incertidumbre en m_0 y C_{D_0} .

Figura 7.2 Tiempo necesario para resolver el sistema de ecuaciones diferenciales en función de P, distribución uniforme m_0 y C_{D_0} .

7.2 Esperanza

Como en capítulos anteriores, la esperanza a lo largo del tiempo se expresa como:

$$E[m(t;m0,C_{D_0})] = \sum_{i=0}^{P} \sum_{j=0}^{P} h_{ij}(t) E[L_i(\Delta_1)L_j(\Delta_2)]$$

=
$$\sum_{i=0}^{P} \sum_{j=0}^{P} h_{li}(t) E[L_i(\Delta_1)L_0(\Delta_1)] E[L_j(\Delta_2)L_0(\Delta_2)] = (7.10)$$

=
$$h_{00}(t) E[L_0^2(\Delta_1)] E[L_0^2(\Delta_2)]$$

=
$$h_{00}(t)$$

En la figura 7.3 se muestra la evolución de la esperanza a lo largo del tiempo. Como se observa, esta gráfica es muy similar a los casos en los que solo se tenía una variable aleatoria. Por lo que el efecto de las incertidumbres en m_0 y C_{D_0} es muy poco significativo sobre la esperanza.

Figura 7.3 Valor esperado de la masa lo largo del tiempo. Distribución uniforme m_0 y C_{D_0} .

En la tabla 7.1 se muestra el valor de la esperanza en diferentes instantes de tiempo, además, se compara con los resultados obtenidos por Manuel Ángel Zapata Habas [3] usando el método de Montecarlo. Por tanto, la primera columna representa los instantes de tiempo. La segunda columna el valor de la esperanza para dichos instantes de tiempo usando el método de GPC y la tercera, la esperanza para esos instantes de tiempo usando el método de Montecarlo.

tiempo (s)	E[m(t;m0)] (Kg).GPC	E[m(t;m0)], (Kg) MC
2000	77485.5	77486.0
4000	73477.1	73476.6
6000	69595.9	69595.4
8000	65831.6	65831.6
10000	62174.6	62174.2
12000	58616.2	58616.6

Tabla 7.1 Valores de la esperanza para distintos instantes de tiempos,
Distribución uniforme m_0 y C_{D_0} .

En este caso resulta interesante ver cuantas cifras significativas correctas se tiene con P=3, ya que se ha dado un salto de una a dos variables aleatorias. Resulta lógico pensar que la precisión puede haber disminuido. En la tabla 7.2 se muestra para diferentes instantes de tiempo el valor que se obtiene de la esperanza para P=3 y P=5, siendo la primera columna dichos instantes de tiempo. La segunda columna representa los valores de la esperanza obtenidos con P=3 y la tercera, con P=5. Se muestran en rojo los dígitos que son diferentes.

tiempo (s)	E [m(t;m0)](K g) $P = 3$	E[m(t;m0)] (Kg)P = 5
2000	77485.59732633073	77485.59732633073
4000	73477.0579975724 <mark>7</mark>	73477.05799757246
6000	69595.8859148625 <mark>2</mark>	69595.88591486257
8000	65831.60500668634	65831.60500668636
10000	62174.6373353735 <mark>3</mark>	62174.63733537356
12000	58616.1974947642 <mark>3</mark>	58616.19749476426

Tabla 7.2 Valores de la esperanza para P = 3 y P = 5, Distribución uniforme m_0 y C_{D_0} .

7.3 Desviación típica

Usando la definición de varianza y expresando la masa en función de los coeficientes h_{ii} se tiene:

$$Var[m(t;m_0,C_{D_0})] = E[m^2(t;m_0,C_{D_0})] - E[m(t;m_0,C_{D_0})]$$

= $\sum_{i=0}^{P} \sum_{j=0}^{P} \sum_{j=0}^{P} \sum_{j_0=0}^{P} h_{ij}(t)h_{i_0j_0}(t)L_i(\Delta_1)L_{j_0}(\Delta_1)L_j(\Delta_2)L_{j_0}(\Delta_2)] - h_{00}^2(t)$ (7.11)

Aplicando la propiedad de los polinomios ortogonales se pueden simplificar los sumatorios, quedando la expresión final de la varianza como se muestra en la ecuación (7.12).

$$Var[m(t;m_0,C_{D_0})] = \sum_{i=0}^{P} \sum_{j=0}^{P} h_{ij}^2(t) E[L_i(\Delta_1)^2] E[L_j(\Delta_2)^2] - h_{00}^2(t)$$
(7.12)

Para obtener la desviación típica basta con hacer la raíz cuadrada de le expresión (7.12). En la figura 7.4 se muestra la evolución de la desviación típica a lo largo del tiempo. Como se observa, sigue una tendencia decreciente, reduciéndose así la desviación típica a lo largo del tiempo.

En la tabla 7.3 se muestra los valores de la desviación típica para ciertos instantes de tiempo, siendo la primera columna dichos instantes de tiempo. La segunda columna, los valores obtenidos mediante el método de GPC y la tercera, los valores obtenidos usando el método de Montecarlo, extraidos del Trabajo Fin de Grado de Manuel Ángel Zapata Habas [3]. Como se puede observar, la diferencia entre los dos métodos es de 0.2 Kg, por lo que se puede concluir que la adaptación del método GPC a casos multivariables se ha llevado a cabo de forma correcta.

Tabla 7.3 Valores de la desviación típica para distintos instantes de tiempos,
Distribución uniforme m_0 y C_{D_0} .

tiempo (s)	$\sigma[\mathbf{m}(\mathbf{t};m_0,C_{D_0})]$ (Kg).GPC	$\sigma[\mathbf{m}(\mathbf{t};m_0,C_{D_0})], (\mathbf{Kg}) \mathbf{MC}$
2000	2792.1	2792.3
4000	2714.3	2714.1
6000	2652.8	2652.9
8000	2606.6	2606.6
10000	2574.9	2574.8
12000	2557.1	2556.8

Figura 7.4 Desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0 y C_{D_0} .

En la figura 7.5 se compara la desviación típica en este caso, con la desviación típica obtenida en el caso de tener incertidumbre en m_0 y con la desviación típica de tener incertidumbre en C_{D_0} . Como se observa, para instantes de tiempos bajos, es muy similar a la desviación típica que se obtuvo para el caso monovariable de m_0 . Sin embargo, cuando aumenta el tiempo, el efecto de C_{D_0} va aumentando y por tanto se va notando su efecto en el caso multivariable. Esto produce que la pendiente del caso multivariable, vaya disminuyendo con el tiempo.

Por otro lado, en la figura 7.6 se representa una comparación del cociente entre la desviación típica y la masa de combustible consumido. Como se observa, la incertidumbre se va reduciendo con el tiempo, aunque acaba ligeramente superior por encima del caso m_0 debido al efecto creciente de la incertidumbre en C_{D_0} .

7.4 Comparación con el Método de Montecarlo

La principal ventaja en este cápitulo respecto al método de Montecarlo radica en que solo hay que resolver $(P+1)^2$ ecuaciones diferenciales, mientras que en el método de Montecarlo, es necesario resolver un número de ecuaciones diferenciales igual al número de muestras. En el caso del Trabajo Fin de Grado [3], necesita 25 iteraciones para obtener una solución con un error entre iteraciones menor a un kilogramo. En cada iteración se dobla la muestra, por lo que se tiene que resolver 33554432 ecuaciones diferenciales. Mientras que en este caso, usando GPC se han resuelto 16 ecuaciones diferenciales. Por lo que el ahorro de tiempo es bastante significativo usando el método GPC.

Figura 7.5 Comparación de la desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0 y C_{D_0} .

Figura 7.6 Comparación del cociente entre la desviación típica de la masa y el consumo de combustible a lo largo del tiempo. Distribución uniforme m_0 y C_{D_0} .

8 Incertidumbre en m_0 , C_{D_0} y c

 \mathbf{E} n este capítulo, se pretende estudiar el caso en el que existan incertidumbres tanto en la masa inicial m_0 , en el consumo específico c y en el coeficiente de resistencia C_{D_0} . Ambas variables se van a modelar como una distribución uniforme centradas en el valor nominal y semiancho del 10% del valor nominal. La función de densidad de estas funciones se pueden observar en las figuras 4.1, 5.1 y 6.1 respectivamente.

En los siguientes apartados, se calcularán los coeficientes necesarios para aplicar el método. Posteriormente, se obtendrá la evolución de la esperanza y la desviación típica de la masa a lo largo del tiempo.

8.1 Cálculo de los coeficientes del GPC

En este apartado se deducirá la expresión que permite calcular los coeficientes del método. En primer lugar, el desarrollo en serie de la masa queda como se expresa en la expresión (8.1). Como se aprecia, en este caso, depende de tres variables

$$m(t;m_0,C_{D_0},c) = \sum_{i=0}^{P} \sum_{j=0}^{P} \sum_{k=0}^{P} h_{ijk}(t) L_i(\Delta_1) L_j(\Delta_2) L_j(\Delta_3)$$
(8.1)

Donde Δ_1 hace referencia a la incertidumbre en m_0 , Δ_2 hace referencia a la incertidumbre en C_{D_0} y Δ_3 hace referencia a la incetidumbre en c. Además, la masa inicial, el coeficiente de resistencia aerodinámico C_{D_0} y el consumo específico c se expresan como:

$$m_0 = \bar{m}_0 L_0(\Delta_1) + \delta_m L_1(\Delta_1) \tag{8.2}$$

$$C_{D_0} = \bar{C}_{D_0} L_0(\Delta_2) + \delta_{C_{D_0}} L_1(\Delta_2)$$
(8.3)

$$c = \bar{c}L_0(\Delta_3) + \delta_c L_1(\Delta_3) \tag{8.4}$$

En este caso, al ser *c* y C_{D_0} variables, es necesario modificar las constantes A y B para que vuelvan a ser constantes, esta nueva expresión de A y B se muestran en (8.5) y (8.6).

$$A = \frac{1}{2}\rho V^2 S \tag{8.5}$$

$$B = \frac{2C_{D_2}g^2}{\rho V^2 S}$$
(8.6)

Sustituyendo (8.1), (8.2), (8.3) y (8.4) en (3.8) y usando las expresiones de A y B descritas en (8.5) y (8.6),

se obtiene el sistema de $(P+1)^3$ ecuaciones diferenciales, tal y como se muestra en (8.7).

$$\sum_{i=0}^{P} \sum_{j=0}^{P} \sum_{k=0}^{P} \dot{h}_{ijk}(t) L_i(\Delta_1) L_j(\Delta_2) L_k(\Delta_3) = -A(\bar{C}_{D0}L_0(\Delta_2) + \delta_{C_{D_0}}L_1(\Delta_2))(\bar{c}L_0(\Delta_3) + \delta_c L_1(\Delta_3)) \\ -B\sum_{i_1,i_2=0}^{P} \sum_{j_1,j_2=0}^{P} \sum_{k_1,k_2=0}^{P} (\bar{c}L_0(\Delta_3) + \delta_c L_1(\Delta_3))h_{i_1j_1k_1}(t)h_{i_2j_2k_2}(t) \\ xL_{i_1}(\Delta_1)L_{i_2}(\Delta_1)L_{j_1}(\Delta_2)L_{j_2}(\Delta_2)L_{k_1}(\Delta_3)L_{k_2}(\Delta_3)$$

$$(8.7)$$

Donde los subindices i, $i_1 \in i_2$ hacen referencia a la variable m_0 , los subindices j, $j_1 \neq j_2$ hacen referencia a la variable $C_{D_0} \neq 0$ subindices k, $k_1 \neq k_2$ hacen referencia a la variable c. La forma de proceder para simplificar el sistema de ecuaciones es tratar cada variable por separado. A continuación se realizan los mismos pasos que en el capítulo anterior, se multiplica por $L_l(\Delta_1) \neq 0$ se toma esperanza respecto a Δ_1 , se reordena términos y se repite la misma operación con $L_m(\Delta_2) \neq L_n(\Delta_3)$. Dando lugar a un sistema de $(P+1)^3$ ecuaciones diferenciales.

$$h_{lmn}(t) = -A\delta_{0l}(C_{D0}\delta_{0m} + \delta_{C_{D_0}}\delta_{1m})(\bar{c}\delta_{0n} + \delta_c\delta_{1n}) -B\sum_{i_1=0}^{P}\sum_{i_2=0}^{P}\sum_{j_1=0}^{P}\sum_{j_2=0}^{P}\sum_{k_1=0}^{P}\sum_{k_2=0}^{P}h_{i_1j_1k_1}(t)h_{i_2j_2k_2}(t)C_{i_1i_2l_1}C_{j_1j_2m}(\bar{c}X^0_{k_1k_2n} + \delta_cX^1_{k_1k_2n})$$

$$(8.8)$$

Para poder obtener los coeficientes h_{lmn} queda establecer las condiciones iniciales, estas son las siguientes:

$$h_{0mn}(0) = \bar{m}_0, \quad h_{1mn}(0) = \delta_m \quad h_{lmn}(0) = 0, \quad para \ l = 2, \dots, P; \ m = 0, \dots, P; \ n = 0, \dots, P$$
(8.9)

Para este caso, se vuelve a usar el valor de P=3, dando lugar a 64 coeficientes aleatorios. Estos coeficientes siguen la misma tendencia de ir disminuyendo de magnitud. En concreto, a medida que aumenta la suma de los subindices de los coeficientes en una unidad con respecto al anterior, el orden de magnitud cae en dos unidades. En la figura 8.1 se representa los cuatro grupos de coeficientes con mayor orden de magnitud, que son los mas representativos. Es decir, la primera gráfica representan aquellos coeficientes que sus subindices suman 0, en la segunda aquellos cuyos subindices suman 1, en la tercera los que suman 2 y en la cuarta, los que suman 3.

En la figura 8.2 se muestra el tiempo necesario para resolver el sistema de ecuaciones en función de P, como se observa, sigue una evolución cúbica. Por lo cual con P=3 se tiene una muy buena aproximación y el tiempo que tarda en resolver el sistema de ecuaciones diferenciales, unos 53.38 segundos, que ya empieza a ser un tiempo considerable.

En cuanto al espacio que ocupa en memoria, con P=3, la variable que almacena los coeficientes aleatorios ocupa un espacio de 768512 bytes. Como era de esperar, a mayor número de coeficientes, mas espacio en memoria se necesita.

8.2 Esperanza

Como en capítulos anteriores, la esperanza a lo largo del tiempo vuelve a ser el coeficiente h_{000} , para llegar a este resultado, basta con extender la ecuación (7.11) a tres variables.

En la figura 8.3 se muestra la evolución de la esperanza a lo largo del tiempo. Como se observa, esta gráfica es muy similar a los casos en los que solo se tenía una variable aleatoria. Por lo que el efecto de las incertidumbres en m_0 , C_{D_0} y c es muy poco significativo sobre la esperanza.

En la tabla 8.1 se muestra el valor de la esperanza en diferentes instantes de tiempo. Por tanto, la primera columna representa los instantes de tiempo. La segunda columna el valor de la esperanza para dichos instantes de tiempo usando el método de GPC.

Comparando estos resultados con los obtenidos en los capítulos anteriores, se puede observar como el efecto

Figura 8.1 Coeficientes para distribución uniforme con incertidumbre en m_0 , C_{D_0} y c.

Figura 8.2 Tiempo necesario para resolver el sistema de ecuaciones diferenciales en función de P, distribución uniforme m_0 , C_{D_0} y c.

Figura 8.3 Valor esperado de la masa lo largo del tiempo. Distribución uniforme m_0, C_{D_0} y c.

tintos instantes de tiempos, Di tribución uniforme m_0 , C_{D_0} y c				
tiempo (s)	E[m(t;m0)] (Kg).GPC			
2000	77485.8			
4000	73477.9			
6000	69597.6			
8000	65834.4			
10000	62178.7			
12000	58621.6			

Tabla 8.1 Valores de la esperanza para diss-

de considerar estas incertidumbres no tiene demasiado impacto sobre la evolución del valor esperado de la masa, pues apenas hay 10kg de diferencia entre los diferentes casos.

Desviación típica 8.3

Usando la definición de varianza y expresando la masa en función de los coeficientes h_{ijk} se tiene:

$$Var[m(t;m_{0},C_{D_{0}},c)] = E[m^{2}(t;m_{0},C_{D_{0}},c)] - E[m(t;m_{0},C_{D_{0}},c)]$$

$$= \sum_{i=0}^{P} \sum_{i_{0}=0}^{P} \sum_{j=0}^{P} \sum_{j_{0}=0}^{P} \sum_{k=0}^{P} \sum_{k_{0}=0}^{P} h_{ijk}(t)h_{i_{0}j_{0}k_{0}}(t)$$

$$xE[L_{i}(\Delta_{1})L_{i_{0}}(\Delta_{1})L_{j}(\Delta_{2})L_{j_{0}}(\Delta_{2})L_{k}(\Delta_{3})L_{k_{0}}(\Delta_{3})] - h_{00}^{2}(t)$$
(8.10)

Aplicando la propiedad de los polinomios ortogonales se pueden simplificar los sumatorios, quedando la

expresión final de la varianza como se muestra en la ecuación (7.10).

$$Var[m(t;m_0,C_{D_0},c)] = \sum_{i=0}^{P} \sum_{j=0}^{P} \sum_{k=0}^{P} h_{ijk}^2(t) E[L_i(\Delta_1)^2] E[L_j(\Delta_2)^2] E[L_k(\Delta_3)^2] - h_{00}^2(t)$$
(8.11)

Para obtener la desviación típica basta con hacer la raíz cuadrada de le expresión (8.11). En la figura 8.4 se muestra la evolución de la desviación típica a lo largo del tiempo.Como se observa, sigue una tendencia decreciente, hasta un cierto instante de tiempo en el cual empieza a crecer debido a que las incertidumbres en C_{D_0} y c tiende a crecer con el tiempo.

Figura 8.4 Desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0, C_{D_0} y c.

En la tabla 8.2 se muestra los valores de la desviación típica para ciertos instantes de tiempo, siendo la primera columna dichos instantes de tiempo. La segunda columna, los valores obtenidos mediante el método de GPC. Dado que se tiene la evolución de la masa a lo largo del tiempo, es posible calcular de forma teórica la desviación típica, esta solución teórica se muestra en la tercera columna.

Tabla 8.2 Valores de la desviación típica para distintos instantes de tiempos,
Distribución uniforme m_0 y C_{D_0} .

tiempo (s)	$\sigma[\mathbf{m}(\mathbf{t};m_0,C_{D_0},c)]$ (Kg).GPC	$\sigma[\mathbf{m}(\mathbf{t};m_0,C_{D_0},c),(\mathbf{Kg})]$
2000	2802.0	2802.0
4000	2752.4	2752.4
6000	2734.3	2734.3
8000	2744.1	2744.1
10000	2778.0	2778.0
12000	2832.5	2832.5

Un aspecto a tener en cuenta es que con P=3, se tiene un error absoluto en la esperanza de $1x10^{-8}$, este mismo resultado se repite para P=4. Por lo que P=3 garantiza que el método converge rápido y garantiza la misma precisión que P=4 para este caso.

En la figura 8.5 se compara la desviación típica en este caso, con la desviación típica obtenida en el caso de tener incertidumbre en m_0 y con la desviación típica de tener incertidumbre en m_0 y C_{D_0} . Como se observa, el efecto de la incertidumbre en c da lugar a que en este caso, la desviación típica sea siempre superior al resto de casos. Además, el efecto en la desviación típica de c es mayor que el de C_{D_0} , ya que modifica mas la gráfica.

Figura 8.5 Comparación de la desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0 , C_{D_0} y c.

Por otro lado, en la figura 8.6 se representa el cociente entre la desviación típica y el consumo de combustible, como se puede observar decrece con el tiempo, por lo que la incertidumbre tiende a reducirse con el tiempo.

Figura 8.6 Cociente entre la desviación típica de la masa y el consumo de combustible a lo largo del tiempo. Distribución uniforme m_0 , C_{D_0} y c.

9 Incertidumbre en m_0 , C_{D_0} , c y C_{D_2}

E n este último capítulo, se pretende estudiar el caso en el que existan incertidumbres tanto en la masa inicial m_0 , en el consumo específico c, en el coeficiente de resistencia parásita C_{D_0} y en el coeficiente de resistencia inducida C_{D_2} . Ambas variables se van a modelar como una distribución uniforme centradas en el valor nominal y semiancho del 10% del valor nominal. La función de densidad de estas funciones se pueden observar en las figuras 4.1, 5.1 y 6.1 para el caso de m_0 , C_{D_0} y c. Mientras que para el caso de C_{D_2} , al ser la primera vez que se considera esta variable, su función de densidad se muestra en la figura 9.1.

Figura 9.1 Función de densidad para C_{D_2} , distribución uniforme.

En los siguientes apartados, se calcularán los coeficientes necesarios para aplicar el método. Posteriormente, se obtendrá la evolución de la esperanza y la desviación típica de la masa a lo largo del tiempo. Por último, se comparará la eficiencia del método GPC frente al de Montecarlo.

9.1 Cálculo de los coeficientes del GPC

En este capítulo se deducirá la expresión que permite calcular los coeficientes del método. En primer lugar, el desarrollo en serie de la masa queda como se expresa en la expresión (9.1).

$$m(t; m_0, C_{D_0}, c, C_{D_2}) = \sum_{i=0}^{P} \sum_{j=0}^{P} \sum_{k=0}^{P} \sum_{q=0}^{P} h_{ijkq}(t) L_i(\Delta_1) L_j(\Delta_2) L_k(\Delta_3) L_q(\Delta_4)$$
(9.1)

Donde Δ_1 hace referencia a la incertidumbre en m_0 , Δ_2 hace referencia a la incertidumbre en C_{D_0} , Δ_3 hace referencia a la incertidumbre en c_{D_2} . Además, la masa inicial, el coeficiente de resistencia aerodinámico C_{D_0} parásito, el consumo específico c y el coeficiente de resistencia inducido C_{D_2} se expresan como:

$$m_0 = \bar{m}_0 L_0(\Delta_1) + \delta_m L_1(\Delta_1) \tag{9.2}$$

$$C_{D_0} = \bar{C}_{D_0} L_0(\Delta_2) + \delta_{C_{D_0}} L_1(\Delta_2)$$
(9.3)

$$c = \bar{c}L_0(\Delta_3) + \delta_c L_1(\Delta_3) \tag{9.4}$$

$$C_{D_0} = \bar{C}_{D_2} L_0(\Delta_4) + \delta_{C_{D_2}} L_1(\Delta_4)$$
(9.5)

En ese caso, al ser c y C_{D_0} y C_{D_2} variables aleatorias, es necesario volver a definir las constantes A y B para que vuelvan a ser constantes, esta nueva expresión de A y B se muestran en (9.6) y (9.7).

$$A = \frac{1}{2}\rho V^2 S \tag{9.6}$$

$$B = \frac{2g^2}{\rho V^2 S} \tag{9.7}$$

Sustituyendo (9.1), (9.2), (9.3) y (9.4) en (3.8) y usando las expresiones de A y B descritas en (9.7) y (9.8), se obtiene el sistema de $(P+1)^4$ ecuaciones diferenciales, tal y como se muestra en (9.8).

$$\sum_{i=0}^{P} \sum_{j=0}^{P} \sum_{k=0}^{P} \sum_{q=0}^{P} \dot{h}_{ijkq}(t) L_{i}(\Delta_{1}) L_{j}(\Delta_{2}) L_{k}(\Delta_{3}) L_{q}(\Delta_{4}) = -A(\bar{C}_{D0}L_{0}(\Delta_{2}) + \delta_{CD_{0}}L_{1}(\Delta_{2}))(\bar{c}L_{0}(\Delta_{3}) + \delta_{c}L_{1}(\Delta_{3})) \\ -B\sum_{i_{1},i_{2}=0}^{P} \sum_{j_{1},j_{2}=0}^{P} \sum_{k_{1},k_{2}=0}^{P} \sum_{q_{1},q_{2}=0}^{P} (\bar{c}L_{0}(\Delta_{3}) + \delta_{c}L_{1}(\Delta_{3})) \\ \times (\bar{C}_{D2}L_{0}(\Delta_{4}) + \delta_{CD_{2}}L_{1}(\Delta_{4}))h_{i_{1}j_{1}k_{1}q_{1}}(t)h_{i_{2}j_{2}k_{2}q_{2}}(t) \\ \times L_{i_{1}}(\Delta_{1})L_{i_{2}}(\Delta_{1})L_{j_{1}}(\Delta_{2})L_{j_{2}}(\Delta_{2})L_{k_{1}}(\Delta_{3})L_{k_{2}}(\Delta_{3})L_{q_{1}}(\Delta_{4})L_{q_{2}}(\Delta_{4})$$

$$(9.8)$$

Donde los subindices i, $i_1 e i_2$ hacen referencia a la variable m_0 , los subindices j, $j_1 y j_2$ hacen referencia a la variable C_{D_0} , los subindices k, $k_1 y k_2$ hacen referencia a la variable c y los subindices q, $q_1 y q_2$ hacen referencia a C_{D_2} . La forma de proceder para simplificar el sistema de ecuaciones es tratar cada variable por separado, como en los capítulos anteriores, multiplica por $L_l(\Delta_1)$ y se toma esperanza respecto a Δ_1 , se reordena términos y se repite la misma operación con $L_m(\Delta_2)$, $L_n(\Delta_3) y L_o(\Delta_4)$. Dando lugar a un sistema de $(P+1)^4$ ecuaciones diferenciales.
$$\begin{split} \dot{h}_{lmno}(t) &= -A\delta_{0l}\delta_{0o}(\bar{C}_{D0}\delta_{0m} + \delta_{C_{D0}}\delta_{1m})(\bar{c}\delta_{0n} + \delta_{c}\delta_{1n}) \\ &- B\sum_{i_{1}=0}^{P}\sum_{i_{2}=0}^{P}\sum_{j_{1}=0}^{P}\sum_{j_{2}=0}^{P}\sum_{k_{1}=0}^{P}\sum_{k_{2}=0}^{P}\sum_{q_{1}=0}^{P}\sum_{q_{2}=0}^{P}h_{i_{1}j_{1}k_{1}}(t)h_{i_{2}j_{2}k_{2}}(t)C_{i_{1}i_{2}l_{1}}C_{j_{1}j_{2}m}(\bar{c}X_{k_{1}k_{2}n}^{0} + \delta_{c}X_{k_{1}k_{2}n}^{1}) \quad (9.9) \\ &\times (\bar{C}_{D2}X_{q_{1}q_{2}o}^{0} + \delta_{C_{D2}}X_{q_{1}q_{2}o}^{1}) \end{split}$$

Para poder obtener los coeficientes h_{lmn0} queda establecer las condiciones iniciales, estas son las siguientes:

$$h_{0mno}(0) = \bar{m}_0, \ h_{1mno}(0) = \delta_m \ h_{lmno}(0) = 0, \ para \ l = 2,...,P; \ m = 0,...,P; \ n = 0,...,P; \ o = 0,...,P$$
(9.10)

Para este caso, se vuelve a usar el valor de P=3, dando lugar a 254 coeficientes aleatorios. Estos coeficientes siguen la misma tendencia de ir disminuyendo de magnitud. En concreto, a medida que aumenta la suma de los subindices de los coeficientes en una unidad con respecto al anterior, el orden de magnitud cae en dos unidades. En la figura 9.2 se representa los cuatro grupos de coeficientes con mayor orden de magnitud, que son los mas representativos. Es decir, la primera gráfica representan aquellos coeficientes que sus subindices suman 0, en la segunda aquellos cuyos subindices suman 1, en la tercera los que suman 2 y en la cuarta, los que suman 3.

Figura 9.2 Coeficientes para distribución uniforme con incertidumbre en m_0 , $C_{D_0} c$ y C_{D_2} .

En la figura 9.3 se muestra el tiempo necesario para resolver el sistema de ecuaciones en función de P, para el caso en que P vale 3, se necesita alrededor de unos 100 minutos. Este tiempo ya es considerablemente alto, sin embargo, proporciona una precisión bastante adecuada.

En cuanto al espacio que ocupa en memoria, con P=3, la variable que almacena los coeficientes aleatorios

Figura 9.3 Tiempo necesario para resolver el sistema de ecuaciones diferenciales en función de P, distribución uniforme m_0 , C_{D_0} , c y C_{D_2} .

ocupa un espacio de 3074048 bytes. Una vez mas, se puede ver que mientras mayor número de coeficientes aleatorios tiene el modelo, mayor espacio en memoria se necesita.

9.2 Esperanza

Como ya se ha visto anteriormente, el valor de la esperanza es el coeficiente h_{0000} En la figura 9.4 se muestra la evolución de la esperanza a lo largo del tiempo. Como se observa, esta gráfica es muy similar a los casos en los que solo se tenía una variable aleatoria. Por lo que el efecto de las incertidumbres en m_0 , C_{D_0} , $c \ge C_{D_2}$ es muy poco significativo sobre la esperanza.

En la tabla 9.1 se muestra el valor de la esperanza en diferentes instantes de tiempo y además se compara con los resultados obtenidos con el método de Montecarlo. Por tanto, la primera columna representa los instantes de tiempo. La segunda columna el valor de la esperanza para dichos instantes de tiempo usando el método de GPC y la tercera los resultados obtenidos con el método de Montecarlo. Como se observa, los resultados obtenidos son bastante similares, siendo la diferencia entre los dos métodos menor que un kilogramo.

Tabla 9.1 Valores de la esperanza para distintos instantes de tiempos, Distribución uniforme m_0 , C_{D_0} c y C_{D_2} .

tiempo (s)	$E[m(t;m_0,C_{D_0},c,C_{D_2})]$ (Kg).GPC	$E[m(t;m_0,C_{D_0},c,C_{D_2})]$ (Kg).MC
2000	77485.9	77486.2
4000	73478.2	73478.0
6000	69598.2	69598.8
8000	65835.4	65835.5
10000	62180.1	62180.8
12000	58623.4	58622.7

Al igual que en el capitulo anterior, los resultados obtenidos indican que el considerar estas incertidumbres

Figura 9.4 Valor esperado de la masa lo largo del tiempo. Distribución uniforme m_0 , C_{D_0} c y C_{D_2} .

no afecta significativamente a la esperanza, pues se obtienen valores muy parecidos.

9.3 Desviación típica

Usando la definición de varianza y expresando la masa en función de los coeficientes h_{ijkq} y aplicando la propiedad de los polinomios ortogonales se obtiene:

$$Var[m(t;m_0,C_{D_0},c,C_{D_2})] = \sum_{i=0}^{P} \sum_{j=0}^{P} \sum_{k=0}^{P} \sum_{q=0}^{P} h_{ijkq}^2(t) E[L_i(\Delta_1)^2] E[L_j(\Delta_2)^2] E[L_k(\Delta_3)^2] E[L_q(\Delta_4)^2] - h_{0000}^2(t)$$
(9.11)

Para obtener la desviación típica basta con hacer la raíz cuadrada de le expresión (9.11). En la figura 9.5 se muestra la evolución de la desviación típica a lo largo del tiempo.Como se observa, sigue una tendencia decreciente, hasta un cierto instante de tiempo en el cual empieza a crecer debido a que las incertidumbres en C_{D_0} , c y C_{D_2} tiende a aumentar con el tiempo.

En la tabla 9.2 se muestra los valores de la desviación típica para ciertos instantes de tiempo, siendo la primera columna dichos instantes de tiempo. La segunda columna, los valores obtenidos mediante el método de GPC. Dado que se tiene la evolución de la masa a lo largo del tiempo y la tercera, los valores obtenidos aplicando el método de Montecarlo [3].

Como se puede observar, se tiene diferencias menores a un kilogramo, por lo que los resultados obtenidos y la aplicación del método a cuatro variables aleatorias se ha realizado de forma correcta.

En la figura 9.6 se compara la desviación típica en este caso, con la desviación típica obtenida en el caso de tener incertidumbre en m_0 , con la desviación típica de tener incertidumbre en m_0 y C_{D_0} y con el caso de tener incertidumbres en m_0 , C_{D_0} y c. Como se observa, el efecto de la incertidumbre en C_{D_2} da lugar a que en este caso, la desviación típica sea siempre superior al resto de casos. Además, el mínimo de la desviación

Figura 9.5 Desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0 , C_{D_0} c y C_{D_2} .

Tabla 9.2 Valores de la desviación típica para distintos instantes de tiempos, Distribución uniforme m_0 , C_{D_0} , c y C_{D_2} .

tiempo (s)	σ [m(t;m_0,C_{D_2},c,C_{D_2})] (Kg).GPC	σ [m(t;m ₀ ,C _{D₀} ,c,C _{D₂})], (Kg).(MC)
2000	2803.1	2803.1
4000	2756.4	2756.4
6000	2742.2	2741.9
8000	2756.3	2756.1
10000	2794.5	2794.2
12000	2853.0	2853.1

típica se produce antes.

Por otro lado, en la figura 9.7 se representa el cociente entre la desviación típica y el consumo de combustible, como se puede observar sigue una tendencia decreciente y toma valores muy parecidos a los obtenidos en apartados anteriores.

9.4 Comparación con el método de Montecarlo

Con los dos métodos se han obtenidos resultados muy parecidos. Sin embargo, la principal limitación del método de Montecarlo es el espacio que ocupan las variables en memoria, mientras que el método GPC la principal limitación es el tiempo. Siendo bastante mayor al empleado por el método de Montecarlo.

Para este caso, lo más eficiente sería usar el método de Montecarlo, sin embargo, para casos en la que no se tiene una solución de la ecuación diferencial, sería bastante más eficiente el método de GPC, ya que con este método se resolverían $(P+1)^4$ ecuaciones diferenciales mientras que para el método de Montecarlo

Figura 9.6 Comparación de la desviación típica de la masa lo largo del tiempo. Distribución uniforme m_0 , C_{D_0} , c y C_{D_2} .

Figura 9.7 Cociente entre la desviación típica de la masa y el consumo de combustible a lo largo del tiempo. Distribución uniforme m_0 , C_{D_0} , c y C_{D_2} .

es necesario resolver 2^i ecuaciones diferenciales. Si le ponemos valores numéricos, en este trabajo se ha usado P=3, por lo que sería 256 ecuaciones diferenciales, mientras que Manuel Ángel Zapata Habas necesita iterar 25 veces, dando lugar a más de 33 millones de ecuaciones diferenciales.

10 Conclusiones

En este trabajo se ha estudiado el efecto de incertidumbres sobre la trayectoria de una aeronave. Para ello se ha usado el método "Generalized Polynomial Chaos", también conocido como GPC. Dicho método se ha utilizado tanto para casos monovariables como para casos multivariables. Los resultados obtenidos han sido comparado con el Trabajo Fin de Grado de Manuel Ángel Zapata Habas [3], donde se consiguen los mismos resultados para los mismos casos usando el método de Montecarlo.

Enlazando con lo expuesto en el párrafo anterior, se ha realizado una comparación del coste de implementar ambos métodos, llegando a la conclusión de que el método de Montecarlo necesita un espacio en memoria mayor para almacenar las variables del problema, siendo necesarios 250 Megabytes para el caso más desfavorable. En cuanto al método GPC, la situación más desfavorable necesita un espacio en memoria de 3 Megabytes.

En lo que respecta al tiempo de simulación, el método de Montecarlo ha sido más rápido para los casos multivariables que el GPC, debido a que se ha usado la expresión que se obtiene al resolver la ecuación diferencial de la masa, mientras que en este trabajo no se ha usado dicha expresión. Si no se tiene una solución analítica de la ecuación diferencial, el método GPC obtendría la solución mucho más rápido que el método de Montecarlo.

La primera parte de este trabajo se basa en reproducir los resultados del artículo "Propagation of Initial Mass Uncentainly in Aircraft Cruise Flight" de Rafael Vázquez Vázquez y Damián Rivas Rivas, lo que ha servido para comprender correctamente el método GPC y lograr la precisión adecuada.

En cuanto a los resultados obtenidos, se ha visto que la esperanza disminuye con el tiempo, esto es debido al consumo de combustible durante el vuelo. Para todos los casos estudiados, se ha visto que la evolución de la esperanza de la masa a lo largo del tiempo toma valores muy parecidos, por lo que las incertidumbres consideradas tienen poco efecto sobre la esperanza.

La desviación típica, por su parte, ha sido creciente en los casos monovariables excepto cuando se ha considerado incertidumbre en la masa inicial, caso en el que la desviación típica disminuye con el tiempo. El caso en el que se elige la masa inicial m_0 como variable aleatoria es el que más incertidumbre genera. Al tomar C_{D_0} y c como variables aleatorias se ve como c produce más incertidumbre.

Los casos multivariables, es decir, los casos en los que se consideraba incertidumbre en varias variables, se ha visto como en un principio todos los casos considerados seguían la tendencia de m_0 . A medida que transcurre el tiempo, el efecto del resto de variables se hace notar y da lugar a que el caso en que se consideraba incertidumbre en m_0 y C_{D_0} , la pendiente es menor que la de m_0 aunque mantiene su carácter decreciente. En los otros dos casos, el resto de variables se convierten en dominantes frente a m_0 a partir de un cierto instante de tiempo. Esto origina que la desviación típica alcance un mínimo a partir del cual empieza a crecer con el tiempo. Al considerar incertidumbre en m_0 , C_{D_0} , c y C_{D_2} el mínimo tiene lugar antes que cuando la incertidumbre se tiene en m_0 , C_{D_0} y c, debido al efecto de C_{D_2} .

En cuanto a posibles trabajos o ampliaciones varias lineas de trabajo pueden ser:

- En primer lugar, se puede estudiar el efecto de otras variables sobre la masa. Es decir, extender el métodos a otras variables que no se han tenido en cuenta en este trabajo, como puede ser la velocidad o la densidad del aire.
- En segundo lugar, se puede aplicar este mismo método a otros segmentos de vuelo, como puede ser descenso, ascenso o viraje. Estudiando el efecto sobre la masa de las mismas variables consideradas en este trabajo o otras que resulten de interés.
- En tercer lugar, estudiar el efecto del viento, ya que el viento este afecta durante toda la fase de crucero. Al ser esta la fase de vuelo mas larga, puede dar lugar a diferencias importantes en el consumo de combustible.

Bibliografía

- [1] Rafael Vazquez. http://www.complexworld.eu/the-ubiquity-of-uncertainty-in-atm/, the ubiquity of uncertainty in atm.
- [2] R. Vazquez and D. Rivas, "Propagation of initial mass uncertainty in aircraft cruise flight," *Journal of Guidance, Control, and Dynamics*, vol. 36, no. 2, pp. 415–429, 2013.
- [3] M. Á. Zapata Habas, "Análisis de trayectorias de crucero de aviones comerciales sujetas a incertidumbre en los datos," 2015.
- [4] D. Xiu and G. E. Karniadakis, "The wiener–askey polynomial chaos for stochastic differential equations," SIAM journal on scientific computing, vol. 24, no. 2, pp. 619–644, 2002.
- [5] J. E. C. Mendoza and G. C. G. Parra, "Comparación de caos polinomial y monte carlo para ecuaciones diferenciales ordinarias aleatorias," *Ciencia e Ingeniería*, vol. 33, no. 1, pp. 9–20, 2012.