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Abstract

Derived A∞-algebras are derived and homotopy invariant versions of differ-
ential graded algebras. They were introduced by Steffen Sagave in 2010 in
order to construct minimal models for differential graded algebras over arbi-
trary commutative rings. Muriel Livernet, Constanze Roitzheim, and Sarah
Whitehouse showed in 2013 how they can be viewed as algebras over the
minimal model of the operad encoding bicomplexes with a compatible as-
sociative multiplication. We extend their work for the associative operad
to a general quadratic Koszul operad O satisfying standard projectivity as-
sumptions. This leads to the new notion of derived homotopy O-algebra,
where minimal models for O-algebras are defined. We explicitly compute
generating operations and relations when O is the associative operad, the
commutative operad, and the operad encoding Lie algebras.
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Introduction

In the early sixties, J. Stasheff introduced the notion of an A∞-algebra, also
known as (strongly) homotopy assosciative algebra, in his paper entitled ‘Ho-
motopy associativity of H-spaces’ [23]. An A∞-algebra over a commutative
ring k is a (Z-)graded k-module A with structure maps mn : A⊗n → A, n ≥ 1,
of degree n−2 satisfying certain relations. These relations say, in particular,
that m1 is a differential for A, yielding a chain complex (A,m1), m2 is a
binary multiplication on A, m1 satisfies the Leibniz rule with respect to m2,
and despite m2 need not be strictly associative, it is so up to the explicit
chain homotopy m3. Therefore the homology H∗(A) is a graded associative
algebra. Differential graded algebras are special cases of A∞-algebras, those
for which mn = 0 for n ≥ 3.

One motivation for the introduction of A∞-algebras is the naive but natu-
ral question whether, up to quasi-isomorphism, we can reconstruct a differen-
tial graded algebra A from its homology H∗(A). Simple examples show that
this is clearly impossible, but they naturally lead to wonder which additional
structure is needed to reconstruct A from H∗(A). The answer was given by
Kadeishvili in 1980 in his article ‘On The Homology Theory of Fibre Spaces’
[14]. There he proved that, if k is a field, every differential graded algebra
A admits a quasi-isomorphism of A∞-algebras from a minimal A∞-algebra,
where minimality means that m1 = 0. The underlying graded module of such
a minimal model for A is its homology algebra H∗A. Therefore the minimal
A∞-structure on H∗(A) precisely specifies the additional structure needed to
reconstruct A from H∗(A), up to quasi-isomorphism.

Over a general commutative ring k, Kadeishvili’s theorem only works for
differential graded algebras A with projective homology H∗(A). This great
inconvenience motivated Sagave to address the reconstruction of a differential
graded algebra from its homology in a different way [21]. In this 2010 paper,
Sagave introduced the notion of a derived A∞-algebra, which simultaneously
generalizes projective resolutions and A∞-algebras. More precisely, a derived
A∞-algebra is a bigraded k-module with structure maps min : E⊗n → E,
i ≥ 0, n ≥ 1, of bidegree (−i, i + n − 2) satisfying appropriate relations.
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Ordinary A∞-algebras can be regarded as derived A∞-algebras concentrated
in horizontal degree 0 with mn = m0n. Sagave considered the notion of E2-
equivalences, which generalizes quasi-isomorphisms, and showed that any
differential graded algebra A over a general commutative ring k, even with
non-projective homology, has an E2-equivalent minimal (i.e.m01 = 0) derived
A∞-model E such that the graded chain complex with horizontal differentials
(E,m11) is a projective resolution of H∗(A).

With this, Sagave found the additional structure needed to reconstruct
the quasi-isomorphism type of any differential graded algebra A over an ar-
bitrary commutative ground ring k: a k-projective resolution of its homology
H∗(A) in the direction of the new horizontal grading equipped with a minimal
dA∞-algebra structure, minimal meaning that m01 = 0.

In [23], J. Stasheff furthermore laid the origin for the notion of operad,
which was later coined by J. P. May in ‘The Geometry of Iterated Loop
Spaces’ [18]. Operad are algebraic devices that serve to study almost all
kinds of algebras. Each operad O has an associated category of algebras,
called O-algebras, and there is an operad for any class of algebras whose
structure maps are multilinear operations (associative, commutative, Lie, A-
infinity, etc.). Operads are 40 years old in algebraic topology, with a trend of
appearance in several other areas, such as algebraic and differential geometry,
combinatorics, and mathematical physics.

Kadeishvili’s proved his aforementioned result by using ad-hoc techniques.
Nevertheless, we nowadays know a more conceptual proof using Koszul du-
ality theory which in addition yields explicit formulas for the A∞-algebra
structure on the minimal model.

Koszul duality theory is a modern approach in homological algebra to
provide small resolutions for certain operads (e.g. quadratic ones). The
method of construction splits into two steps. First, from the data defin-
ing the quadratic operad O, we construct a quadratic cooperad O¡, called
Koszul dual. Second, we apply to this cooperad the cobar construction Ω
in order to get a (differential graded) operad ΩO¡. When a certain acyclic-
ity condition is fullfilled (and we then say that O is Koszul), O∞ = ΩO¡ is
the desired small resolution (incidentally also called minimal model) for O.
As an example, the minimal model for the associative operad A, encoding
differential graded algebras, is the operad A∞ encoding A∞-algebras. The
operadic Koszul duality theory works perfectly over a field [11, 16] and also
over a commutative ring [8] under appropriate projectivity conditions on the
operad (not on its algebras).

Minimal models are also known to exist for algebras over quadratic Koszul
operads O over a field k. Also over a general commutative ground ring
k if the algebra has projective homology, as in the associative case. This
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leads to the following natural question: Can we define minimal models for
arbitrary O-algebras over a general commutative ground rings k as Sagave
did in the associative case (O = A)? In this thesis, we affirmatively answer
this question under quite general hypotheses on O by means of what we call
derived homotopy O-algebras.

In our quest for an algebraic framework where minimal models can be con-
structed, we noted that, in their 2013 paper entitled ‘Derived A∞-algebras in
an operadic context’ [15], Livernet, Roitzheim, and Whitehouse placed de-
rived A∞-algebras in the operadic framework of Koszul duality theory. More
precisely, they considered the operad dA parametrizing bicomplexes with a
compatible associative multiplication. They proved that dA is a Koszul op-
erad in the category of graded complexes and that its minimal model dA∞
is the operad determining derived A∞-algebras. The relevant operad dA can
also be constructed in terms of the associative operad A (concentrated in
horizontal degree 0), the ring of dual numbers D = k[∆]/(∆2) (concentrated
in vertical degree 0), and a distributive law. This somehow is why derived
A∞-algebras extend ordinary A∞-algebras and projective resolutions at the
same time. Moreover, all this allows to place Sagave’s result (which in princi-
ple used the same techniques as Kadeishvili) in the more conceptual context
of Koszul duality theory.

In this thesis, we follow the approach of Livernet, Roitzheim, and White-
house, replacing the associative operad A with a general quadratic Koszul
operad O satisfying mild projectivity hypotheses shared with A. More con-
cretely, we assume that bothO and its Koszul dual cooperadO¡ are projective
over the ground ring. We want to stress that we, like Sagave, do not require
any projectivity hypothesis on (the homology of) O-algebras. Hence, our
results apply not only to (differential graded) associative algebras, but also
to commutative and Lie algebras, as we illustrate in the final chapter. For
symmetric operads (i.e. such tha the laws of O-algebras involve permutations
of variables, e.g. commutative or Lie algebras), we must require in addition
that the ground ring contains the rationals k ⊃ Q. This condition is not sur-
prising, it is actually often necessary in homotopical contexts when dealing
with symmetric operads.

Under the conditions of the previous paragraph, we consider the operad
dO of graded chain complexes whose algebras are bicomplexes endowed with
a compatible O-algebra structure. As in the associative case, this operad
can be built from O (concentrated in horizontal degree 0) and from the
ring of dual numbers D (concentrated in vertical degree 0) by means of a
distributive law. We prove that dO is Koszul and compute its Koszul dual
cooperad dO¡ in terms of the Koszul dual O¡ of O (concentrated in horizontal
degree 0), the polynomial coalgebra D¡ = k[s∆], which is the Koszul dual of
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D (concentrated in vertical degree 0), and a certain codistributive law. This
directly leads to the minimal model dO∞ = ΩdO¡ of dO. Derived homotopy
O-algebras are precisely algebras over this operad dO∞. This is precisely
where minimal models for general O-algebras live, the existence of minimal
models being essentially a formal consequence of Koszul duality theory. As
in the associative case, derived O-algebras are special examples of derived
homotopy O-algebras.

We therefore generalize the table of Livernet, Roitzheim, and Whitehouse
in the introduction of [15], presenting old and new algebraic structures and
their homotopy invariant counterparts, in the following way:

Underlying category Operad Corresponding algebra
Complexes A differential graded algebra

A∞ A∞-algebra
O O-algebra
O∞ homotopy O-algebra

Graded complexes dA bidifferential graded algebra
dA∞ derived A∞-algebra
dO O-algebra in bicomplexes
dO∞ derived homotopy O-algebra

Organization

This thesis is organized in the following way.
In the first two chapters, which provide essential background for the rest

of the thesis, Koszul duality theory of operads is spelled out in the closed
symmetric monoidal category of graded complexes. To this end, monoidal
categories and functors are recalled and the relevant monoidal structures are
described in detail, such as those for graded complexes, sequences, and col-
lections. Koszul duality theory is developed seperately for both quadratic
nonsymmetric and (symmetric) operads in graded complexes. Furthermore,
algebras and (co)distributive laws are introduced, and we provide an impor-
tant tool for the main chapters, which is a universal property for the tensor
product of monoids twisted by a distributive law. In the section on cooper-
ads, the coradical filtration is presented in a novel way (equivalence with the
definition given in [16, section 5.8.5] is proven). In the section on the bar and
cobar constructions, the claim that the differential of the bar construction
squares to zero is is proved in more detail than usual, in particular paying
attention to the behaviour of signs.

In the third and fourth chapters we present the main theory of the thesis.
We first define derived operads dO and describe algebras over them. We
prove that dO is quadratic if O is, explicitly giving a quadratic presentation
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for dO. This puts us in the position to develop Koszul duality theory for
derived operads dO, in particular to find their minimal model dO∞, using
our knowledge of Koszul duality theory for ordinary quadratic operads O
and the ring of dual numbers. This is first done for nonsymmetric operads
and afterwards for (symmetric) operads, building on the former.

In [15], for the proof that dA is Koszul the authors refer to [16, Theorem
8.6.4], whose proof contains a gap (see Remark 4.3.3 below). We take a
completely different approach based on homological perturbation theory. We
regard this as one of our main contributions.

In the fifth chapter, we consider derived homotopy O-algebras and ex-
plicitly calculate their generating operations and relations in the associative,
commutative, and Lie cases. We also deduce the existence of minimal models
for O-algebras.

We conclude with some paragraphs considering some possible research
lines for the future, continuing with the work started here.
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Chapter 1

Operads

Operads are monoids in certain monoidal categories. In this chapter we
review some basic material on monoidal categories, we introduce the specific
monoidal categories we will work with, and we define operads and their
algebras, as well as the dual notion of cooperad. We made certain emphasis
on distributive laws, which are tools for building new monoids from old ones.
More precisely, we characterize the tensor product of two monoids with a
distributive law in terms of a universal property. This is relevant for this
thesis since derived operads arise in this way.

1.1 Monoidal categories

This background section is mostly based on [17, Chapter VII].

Definition 1.1.1. A monoidal category , denoted (C,⊗, 1), is a category C
equipped with:

• A functor ⊗ : C × C → C, called the tensor product,

• a unit object 1 ∈ C, called the tensor unit,

• a natural isomorphism

a = aA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C,

called the associator,

• and natural isomorphisms l = lA : 1⊗A→ A and r = rA : A⊗ 1→ A,

such that the associator, l, and r are subject to certain coherence conditions,
which are equivalent to the commutative diagrams given in [17, chapter VII,
section 1].
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A monoidal category is called strict if aA,B,C , lA, and rA are identity
morphisms.

The opposite Cop of a monoidal category is again monoidal. It has the
same tensor product and unit (Cop,⊗, 1) and the inverse structure isomor-
phisms.

As it is customary in category theory, several notion below will be called
co-whatever when applied to the opposite monoidal category (e.g. comonoids,
colax functors, etc.). These notions will be used later (e.g. cooperads). How-
ever, in order to keep these preliminaries short, we will neither explicitly spell
out the definitions of these co-notions nor the results about them.

Definition 1.1.2. A lax monoidal functor between two monoidal categories
(C,⊗C, 1C) and (D,⊗D, 1D) is a functor F : C → D endowed with:

• a natural transformation

φ = φA,B : F (A)⊗D F (B)→ F (A⊗C B),

• and a morphism Ψ: 1D → F (1C) in D,

such that the properties stated in [16, B.3.3] hold.
A lax monoidal functor is called strong if φ and Ψ are isomorphisms. It

is called a strict monoidal functor if they are identities.

Strong, and in particular strict, monoidal functors are also colax.

Definition 1.1.3. A symmetric monoidal category is a monoidal category
(C,⊗, 1) equipped with a natural isomorphism

s = sA,B : A⊗B → B ⊗ A, (1.1.4)

called the symmetry isomorphism, such that this symmetry isomorphism, the
associator, l, and r are subject to certain extra coherence conditions, which
are equivalent to the commutative diagrams given in [17, chapter VII, section
7].

The opposite of a symmetric monoidal category is also symmetric.

Definition 1.1.5. A closed symmetric monoidal category is a symmetric mo-
noidal category (C,⊗, 1) equipped with a functor

[−,−] : Cop × C → C, (1.1.6)
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called the inner Hom, such that −⊗B : C → C is left adjoint to

[B,−] : C → C,

i.e. there is a bijection

C(A⊗B,C) ∼= C(A, [B,C]),

natural in A, B, and C, objects in C. We refer to elements in [A,B] as
internal morphisms.

A category C equipped with such a closed symmetric monoidal structure
induces an enrichment of C over itself, see [17, chapter VII, section 7]. The
dual of a closed symmetric monoidal category is also closed.

In the rest of this section we discuss examples of closed symmetric mo-
noidal categories which are important for the purposes of this thesis.

Example 1.1.7 (Modules). Let k be a commutative ring. We will provide
the conventional data for the category Modk of modules over k as a closed
symmetric monoidal category (see also e.g. [1, Proposition 2.14]). They are
given by:

• the tensor product ⊗ = ⊗k of modules over k,

• the tensor unit k,

• the associator

a = aX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z
x⊗ (y ⊗ z) 7→ (x⊗ y)⊗ z,

• the isomorphisms

l = lX : k ⊗X → X, r = rX : X ⊗ k → X,

α⊗ x 7→ αx, x⊗ α 7→ αx,

• the symmetry isomorphism

s = sX,Y : X ⊗ Y → Y ⊗X
x⊗ y 7→ y ⊗ x,

• the inner Hom

[−,−] : Modop
k ×Modk → Modk, [X, Y ] = Homk(X, Y ),

which is given by the usual k-module structure on the set of morphisms
between two modules.
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Example 1.1.8 (Graded modules). A graded module X is a module which
decomposes as a direct sum of modules indexed by the integers,

X =
⊕
n∈Z

Xn.

Elements x in a direct factor Xn are called homogeneous elements of
degree n, denoted |x| = n.

A graded map f : X → Y is a a homomorphism of underlying modules
that respects the grading, i.e.

f(Xn) ⊂ Yn for all n ∈ Z.

Equivalently, such a map is a sequence of module homomorphisms,

f = {fn}n∈Z, fn : Xn → Yn.

Composition is defined by composition of homomomorphisms.
We denote the resulting category by GrModk. Modules will be considered

as graded modules concentrated in degree 0, i.e. a module X is a direct sum
consisting of summands

Xn =

{
X, n = 0;
0, n 6= 0;

for n ∈ Z.
The category GrModk can be equipped with a closed symmetric monoidal

structure, where

• the tensor product

⊗ : GrModk×GrModk → GrModk,

X ⊗ Y =
⊕
n∈Z

(X ⊗ Y )n

=
⊕
n∈Z

⊕
i+j=n

Xi ⊗ Yj,

• the tensor unit, the associator, l, and r are as in Modk,

• the symmetry isomorphism

s = sX,Y :
⊕
n∈Z

⊕
i+j=n

Xi ⊗ Yj →
⊕
n∈Z

⊕
i+j=n

Yj ⊗Xi

xi ⊗ yj 7→ (−1)ijyj ⊗ xi,
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using the Koszul sign convention when exchanging xi and yj. That
is, when we interchange two symbols of degree i and j we multiply by
(−1)ij.

• The inner Hom

[−,−] : GrModop
k ×GrModk → GrModk,

[X, Y ] =
⊕
n∈Z

[X, Y ]n

=
⊕
n∈Z

∏
j∈Z

Homk(Xj, Yj+n).

In other words, [X, Y ]n consists of module homomorphisms f : X → Y
satisfying

f(Xj) ⊂ Yj+n for all j ∈ Z.
Equivalently, f is a sequence of module homomorphisms

f = {fj}j∈Z, fj : Xj → Yj+n.

Notice that graded maps belong to [X, Y ]0. The composition of inner
morphisms is defined as follows. For f : X → Y with |f | = n and
g : Y → Z, the composite gf : X → Z is given by (gf)j = gj+nfj.

Example 1.1.9 (Complexes). A complex (X, dX) of k-modules is a graded
module X equipped with a degree −1 map of graded modules

dX = d ∈ [X,X]−1,

called the differential, such that d2 = 0. We can depict a complex as

· · · d // Xn+1
d // Xn

d // Xn−1
d // · · ·

.

A map of complexes f : (X, dX) → (Y, dY ) is a graded map f : X → Y
commuting with d in the sense that fdX = dY f . That is, such that the
following diagram commutes,

· · · d // Xn+1

f

��

d // Xn

f

��

d // Xn−1

f

��

d // · · ·

· · ·
d
// Yn+1 d

// Yn d
// Yn−1 d

// · · ·
.

Composition is defined as for graded modules. We denote the resulting cat-
egory by Chk. See also [27, 1.1]. The differential will often be dropped from
notation, writing just X instead of (X, dX).
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Graded modules will be considered as complexes with trivial differential.
Similarly, a graded map f : X → Y is a map of complexes f : (X, 0)→ (Y, 0).

The category Chk can be equipped with a closed symmetric monoidal
structure, where:

• the tensor product ⊗ : Chk×Chk → Chk,

(X, dX)⊗ (Y, dY ) = (X ⊗ Y, dX⊗Y )

is as in GrModk in the first variable, equipped with the differential

dX⊗Y = dX ⊗ 1Y + 1X ⊗ dY ,

where 1 is the symbol we use for identity maps,

• the tensor unit and the structure isomorphisms are as in GrModk,

• the inner Hom, [(X, dX), (Y, dY )] = ([X, Y ], d[X,Y ]), is again as in the
categort GrModk in the first variable, equipped with the differential

d[X,Y ](f) = dY ◦ f − (−1)nf ◦ dX ,

when evaluated in f : X → Y with |f | = n. Note that maps of com-
plexes are 0-cycles in this inner Hom.

We finally consider two not-so-used examples of closed symmetric monoi-
dal categories, bigraded modules and graded complexes, which will be very
relevant in this thesis. See e.g. also [15, section 2.1].

Example 1.1.10 (Bigraded modules). An bigraded module X is a module
which decomposes as a direct sum of modules indexed by Z× Z,

X =
⊕
i,j∈Z

Xij.

Elements x in any factor Xij of the decomposition are called homogeneous
elements of bidegree (i, j), denoted |x| = (i, j).

An bigraded map f : X → Y is a homomorphism of underlying modules
that respects the bigrading, i.e.

f(Xij) ⊂ Yij for all i, j.

Equivalently, such a map is a sequence of module homomorphisms,

f = {fij}i,j∈Z, fij : Xij → Yij.
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Composition is defined by composition of homomorphisms. We denote
the resulting category by BiGrModk.

For Xij a direct summand of X, the i-grading will be referred to as the
horizontal degree and the j-grading as the vertical degree. The sum of the
horizontal and vertical degrees will be referred to as the total degree. For an
x ∈ Xij we use the notation ‖x‖ = i+ j. Graded modules will be considered
as bigraded modules concentrated in horizontal degree 0, i.e. a graded module
X is a direct sum consisting of summands

Xij =

{
Xj, i = 0;

0, i 6= 0;

for (i, j) ∈ Z × Z. In particular, modules can be considered as bigraded
modules concentrated in bidegree (0, 0).

We can equip the category BiGrModk with a closed symmetric monoidal
structure where,

• the tensor product

⊗ : BiGrModk×BiGrModk → BiGrModk,

X ⊗ Y =
⊕
i,j∈Z

(X ⊗ Y )ij

=
⊕
i,j∈Z

⊕
u+k=i
v+l=j

Xuv ⊗ Ykl,

• the tensor unit, the associator, l and r as in Modk,

• the symmetry isomorphism

s = sX,Y :
⊕
i,j∈Z

⊕
u+k=i
v+l=j

Xuv ⊗ Ykl →
⊕
i,j∈Z

⊕
u+k=i
v+l=j

Ykl ⊗Xuv

xuv ⊗ ykl 7→ (−1)(u+v)(k+l)ykl ⊗ xuv,

using the Koszul sign convention with respect to the total degree,

• the inner Hom

[−,−] : BiGrModop
k ×BiGrModk → BiGrModk,

[X, Y ] =
⊕
i,j∈Z

[X, Y ]ij

=
⊕
i,j∈Z

∏
u,v∈Z

Homk(Xuv, Yu+i,v+j).
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In other words, [X, Y ]ij consists of module homomorphisms f : X → Y
satisfying

f(Xuv) ⊂ Yu+i,v+j for all u, v ∈ Z.

Equivalently, such a map is a sequence of module homomorphisms,

f = {fuv}u,v∈Z, fuv : Xu,v → Yu+i,v+j.

Notice that bigraded maps belong to [X, Y ]00. For f : X → Y with
|f | = (i, j) and g : Y → Z, composition gf : X → Z is given by
(gf)uv = gu+i,v+jfuv.

Example 1.1.11 (Graded complexes). A graded complex (X, dX) is an bi-
graded module X together with a map of bidegree (0,−1)

dX = d ∈ [X,X]0,−1,

called the vertical differential, such that d2 = 0, i.e. di,j−1di,j = 0 for all i, j.
Note that the vertical differential keeps the horizontal degree constant and
lowers the vertical degree by 1, hence its name. Actually, a graded complex
can be depicted as

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...

...
...

...

X0,1 Xi−1,1 Xi,1

X0,0 Xi−1,0 Xi,0

X0,−1 Xi−1,−1 Xi,−1

d

d

d

d

d

d

d

d

d

d

d

d

A map of graded complexes f :
(
X, dX

)
→
(
Y, dY

)
is an bigraded map

f : X → Y commuting with the vertical differential fdX = dY f . Composition
is defined as for bigraded modules. We denote the resulting category by
GrChk. Quite often, we drop the differential from notation and simply write
X for (X, dX).
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Complexes will be considered as graded complexes concentrated in hor-
izontal degree 0, i.e. in the vertical axis. Also, bigraded modules will be
considered as graded complexes with trivial differential, and an bigraded
map f : X → Y is a map of graded complexes f : (X, 0)→ (Y, 0).

The category GrChk can be equipped with a closed symmetric monoidal
structure, where:

• The tensor product ⊗ : GrChk×GrChk → GrChk is as in BiGrModk
in the first coordinate, (X, dX) ⊗ (Y, dY ) = (X ⊗ Y, dX⊗Y ), equipped
with the differential

dX⊗Y = dX ⊗ 1Y + 1X ⊗ dY .

• The tensor unit and the structure isomorphisms are as in BiGrModk.

• The inner Hom is once again as in BiGrModk in the first coordinate,
[(X, dX), (Y, dY )] = ([X, Y ], d[X,Y ]), equipped with the differential de-
fined as follows on f : X → Y ,

d[X,Y ](f) = dY ◦ f − (−1)‖f‖f ◦ dX .

Maps of graded complexes are cycles of bidegree (0, 0) here.

Example 1.1.12 (Totalization of graded complexes). The total complex of a
graded complex (X, dX) is the plain complex (Tot(X), dTot(X)) with

Tot(X)n =
⊕
i+j=n

Xi,j

and
dTot(X) =

⊕
i+j=n

dXi,j :
⊕
i+j=n

Xi,j →
⊕
i+j=n

Xi,j−1.

Up to a naive degree shift, this is the plain direct sum of the vertical com-
plexes in the picture of Example 1.1.11. It is also a particular case of the
well-known totalization of bicomplexes. This construction clearly defines a
strong monoidal functor

Tot : GrChk → Chk

between these two closed symmetric monoidal categories introduced above.
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1.2 Monoids and distributive laws

Distributive laws, usually considered for monads, serve to define a monad
structure on the composition of two monads [25]. They have also been stud-
ied in the operadic context, see [16, 8.6]. We here consider distributive laws
for monoids in a possibly nonsymmetric monoidal category (C,⊗, 1). They
are used to endow the tensor product of two monoids with a monoid struc-
ture. We characterize such a tensor product monoid in terms of a universal
property for which we have not found a reference in the literature, although
it may be known to experts.

Definition 1.2.1. A monoid (A, µA, ηA) is an object A ∈ C together with
maps:

• µA : A⊗ A→ A, called the multiplication, and

• ηA : 1→ A, called the unit,

which satisfy the associativity and unitary conditions corresponding with
the commutative diagrams given in [17, chapter VII, section 3]. We often
drop the structure maps from notation and simply write A for the monoid
(A, µA, ηA).

A morphism of monoids f : (A, µA, ηA)→ (B, µB, ηB) is a map f : A→ B
that is compatible with the multiplication and unit. We denote the resulting
category by Mon(C).

The following proposition is completely obvious.

Proposition 1.2.2. The image F (A) of a monoid (A, µA, ηA) in C under a
lax monoidal functor F : C → D is a monoid in D with multiplication

F (A)⊗D F (A)
φA,A−−−→ F (A⊗C A)

F (µA)−−−→ F (A)

and unit

1D
Ψ−→ F (1C)

F (ηA)−−−→ F (A).

The tensor unit 1, equipped with the identity map η1 : 1 = 1 and with the
natural isomorphism µ1 : 1⊗ 1 ∼= 1 which is part of the monoidal structure,
is the initial monoid. For any monoid (A, µA, ηA), the unit ηA defines the
unique monoid morphism (1, µ1, η1)→ (A, µA, ηA).

Definition 1.2.3. A monoid (A, µA, ηA) is augmented if it is equipped with a
monoid morphism εA : (A, µA, ηA)→ (1, µ1, η1), called augmentation. A mor-
phism of augmented monoids (A, µA, ηA, εA)→ (B, µB, ηB, εB) is a morphism
between the underlying monoids which is compatible with the augmentations
εBf = εA. The category of augmented monoids will be denoted by AugMon(C).
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The augmentation is necessarily a retraction of the unit εAηA = 1A.
Proposition 1.2.2 has an obvious extension to the augmented setting.

Definition 1.2.4. A distributive law consists of two monoids, (A, µA, ηA)
and (B, µB, ηB) ∈ Mon(C), and a map

ϕ : B ⊗ A→ A⊗B

in C such that the following diagrams commute:

1. B ⊗ A⊗ A
1B⊗µA

��

ϕ⊗1A // A⊗B ⊗ A 1A⊗ϕ // A⊗ A⊗B
µA⊗1B
��

B ⊗ A ϕ
// A⊗B,

2. B ⊗B ⊗ A
µB⊗1A

��

1B⊗ϕ // B ⊗ A⊗B ϕ⊗1B // A⊗B ⊗B
1A⊗µB
��

B ⊗ A ϕ
// A⊗B,

3. B ⊗ 1

1B⊗ηA
��

rB // B
l−1
B // 1⊗B
ηA⊗1B

��

B ⊗ A ϕ
// A⊗B,

4. 1⊗ A
ηB⊗1A

��

lA // A
r−1
A // A⊗ 1

1A⊗ηB
��

B ⊗ A ϕ
// A⊗B.

If A and B are augmented, then ϕ is augmented provided the following extra
diagram commutes:

5. B ⊗ A

εB⊗εA %%

ϕ
// A⊗B

εA⊗εByy

1⊗ 1.

Proposition 1.2.5. If ϕ : B⊗A→ A⊗B is a distributive law, then A⊗B
is a monoid for the multiplication

µϕ = (µA ⊗ µB)(1A ⊗ ϕ⊗ 1B) : (A⊗B)⊗ (A⊗B)→ A⊗B
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and for the unit

ηϕ = ηA ⊗ ηB : I ∼= I ⊗ I → A⊗B.

Moreover, if A, B, and ϕ are augmented, then so is this monoid structure
on A⊗B with augmentation

εϕ : A⊗B εA⊗εB−→ 1⊗ 1 ∼= 1.

The proof is given in [16, Proposition 8.6.1] in the operadic context, except
for the augmentation part. The argument for the general case is the same,
and the augmentation part is almost obvious. We will denote the, possibly
augmented, monoid (A⊗B, µϕ, ηϕ) by

A⊗ϕ B.

This monoid (without the augmentation) is characterized by the universal
property in Theorem 1.2.6 below.

We define f : A→ A⊗ϕ B as the composition

A ∼= A⊗ I 1A⊗ηB−−−−→ A⊗ϕ B.

The map f is a morphism of monoids. Indeed, the following commutative
diagram proves that f is compatible with the multiplications:

A⊗ I ⊗ A⊗ I 1A⊗ηB⊗1A⊗ηB //

1A⊗lA⊗1I
��

commutes since ϕ is a dis-
tributive law

A⊗B ⊗ A⊗B

1A⊗ϕ⊗1B

��

A⊗ A⊗ I
1A⊗r−1

A ⊗1I
��

A⊗ A⊗ I ⊗ I 1A⊗1A⊗ηB⊗ηB //

µA⊗µI

��

A⊗ A⊗B ⊗B

µA⊗µB

��

A⊗ I
1A⊗ηB

// A⊗B.

Moreover, f preserves units since the following triangle commutes,

I ⊗ I
ηA⊗ηB

%%

ηA⊗1I

zz

A⊗ I
1A⊗ηB

// A⊗ϕ B.
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We define g : B → A⊗ϕ B as the composition

B ∼= I ⊗B ηA⊗1B−−−−→ A⊗ϕ B.

By similar arguments, it follows that g is a morphism of monoids.

Theorem 1.2.6. Given two morphisms of monoids ξ : A→ C and ψ : B →
C such that the following pentagon commutes,

A⊗B ξ⊗ψ
// C ⊗ C

µC
��

B ⊗ A

ϕ

OO

ψ⊗ξ %%

C

C ⊗ C
µC

99

there exists a unique morphism of monoids ζ : A ⊗ϕ B → C fitting into the
following two commutative triangles,

CA⊗ϕ B
ζ

//

A
f

%%

ξ

$$

B

g

99

ψ

::

Conversely, given a morphism of monoids ζ : A ⊗ϕ B → C, the morphisms
ξ := ζf and ψ := ζg fit into the previous commutative pentangon.

Proof. Given morphisms of monoids ξ : A→ C and ψ : B → C, we define

ζ := µC(ξ ⊗ ψ).

The second diagram in the statement commutes, since

ζf = µC(ξ ⊗ ψ)(1A ⊗ ηB)

= µC(ξ ⊗ ψηB)

= µC(ξ ⊗ ηC)

= µC(1C ⊗ ηC)ξ

= ξ,
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and

ζg = µC(ξ ⊗ ψ)(ηA ⊗ 1B)

= µC(ξηA ⊗ ψ)

= µC(ηC ⊗ ψ)

= µC(ηC ⊗ 1C)ψ

= ψ.

Moreover, ζ preserves units since

ζηA⊗ϕB = ζ(ηA ⊗ ηB)

= µC(ξ ⊗ ψ)(ηA ⊗ ηB)

= µC(ξηA ⊗ ψηB)

= µC(ηC ⊗ ηC)

= ηC .

Furthermore, ζ is compatible with the multiplications since the following
diagram commutes,

A⊗B ⊗ A⊗B A⊗ C ⊗ C ⊗B C ⊗ C ⊗ C ⊗ C C ⊗ C

A⊗ C ⊗B C ⊗ C ⊗ C

A⊗ A⊗B ⊗B A⊗ C ⊗ C ⊗B C ⊗ C ⊗ C ⊗ C

A⊗B C ⊗ C C

1A⊗ψ⊗ξ⊗1B ξ⊗1C⊗1C⊗ψ µC⊗µC

µC

1A⊗ϕ⊗1B

µA⊗µB µC⊗µC

ξ⊗ψ µC

1A⊗ξ⊗ψ⊗1B

1A⊗µC⊗1B 1C⊗µC⊗1C

1A⊗µC⊗1B 1C⊗µC⊗1C

ξ⊗1C⊗1C⊗ψ

ξ⊗1C⊗ψ

µC(1C⊗µC)

pentagon and
functoriality of ⊗

functoriality
of ⊗

functoriality
of ⊗

associativity
of µC

associativity
of µC

functoriality of ⊗
and operad mor-
phisms ξ and ψ

Uniqueness is a consequence of the following diagram, where ζ is an op-
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erad morphism fitting into the second commutative diagram of the statement,

A⊗B ⊗ A⊗B C ⊗ C

A⊗ I ⊗ I ⊗B A⊗ A⊗B ⊗B

A⊗B C

ζ⊗ζ

µC

1A⊗ϕ⊗1B

µA⊗µB

ζ

1A⊗ηB⊗ηA⊗1B

1A⊗ηA⊗ηB⊗1B

ϕ distributive law

∼=

unitality

ξ⊗ψ

ζ operad map

Moreover, the converse is a consequence of the commutativity of the following
diagram

B ⊗ A C ⊗ C

A⊗B ⊗ A⊗B

A⊗ A⊗B ⊗B

A⊗B C

ψ⊗ξ

ϕ µC1A⊗ϕ⊗1B

η
A⊗1

B⊗1
A⊗η

B

ζ⊗ζ

ηA
⊗1A
⊗1B
⊗ηB

µA
⊗µB

ζ

	 is the identity
in
A⊗

B

definition of ψ and ξ

functoriality of ⊗

ζ is an operad map

This diagram yields the commutative pentagon since, as we have just checked,
ζ is necessarily µC(ξ ⊗ ψ).

1.3 Sequences and collections

We here review some nonsymmetric monoidal categories which are relevant
for operads. For the sake of simplicity, we work over the base of the closed
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symmetric monoidal category of graded complexes introduced in Example
1.1.11 above. Nevertheless, almost everything generalizes to a (co)complete
closed symmetric monoidal base category.

Definition 1.3.1. A sequence in GrChk is a family

X = (X(0), X(1), . . . , X(n), . . . )

of graded complexes X(n), n ≥ 0.
A morphism of sequences f : X → Y is a family of maps

f(n) : X(n)→ Y (n)

of graded complexes, n ≥ 0.
We denote the resulting category by Seqk. For x ∈ X(n) we say that x is

an operation of arity n. When X(0) = 0 we say that the sequence is reduced.
The category Seqk is equipped with a monoidal structure, where:

• The tensor product is the circle product,

◦ : Seqk× Seqk → Seqk,

(X ◦ Y )(n) =
⊕
k≥0,

i1+···+ik=n

X(k)⊗ Y (i1)⊗ · · · ⊗ Y (ik) .

• The tensor unit is I = (0, k, 0, . . . ), and the associated structure iso-
morphisms r and l are

(X ◦ I)(n) = X(n)⊗ I(1)⊗ · · · ⊗ I(1)

= X(n)⊗ k ⊗ · · · ⊗ k
∼= X(n),

and

(I ◦X)(n) = I(1)⊗X(n)

= k ⊗X(n)
∼= X(n).

• The associator for ◦ uses the symmetry isomorphism for the tensor
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product of graded complexes ⊗ (in addition to the associator) since

((X ◦ Y ) ◦ Z)(n)

=
⊕
k≥0

i1,...,ik≥0∑
l jl=n

(X(k)⊗ Y (i1)⊗ · · · ⊗ Y (ik))⊗ Z(j1)⊗ · · · ⊗ Z(ji1+···+ik),

(X ◦ (Y ◦ Z))(n)

=
⊕
k≥0

i1,...,ik≥0∑
l jl=n

X(k)⊗ (Y (i1)⊗ Z(j1)⊗ · · · ⊗ Z(ji1))⊗ . . .
· · · ⊗

(
Y (ik)⊗ Z(ji1+···+ik−1+1)⊗ · · · ⊗ Z(ji1+···+ik)

)
.

It is simply given by rearranging tensor factors, but note that this
involves signs since we are using the Koszul sign rule with respect to
the total degree,

(x⊗ y1 ⊗ · · · ⊗ yk)⊗ z1 ⊗ · · · ⊗ zi1+···+ik

7→ (−1)εx⊗ (y1 ⊗ z1 ⊗ · · · ⊗ zi1)⊗ · · ·
· · · ⊗ (yk ⊗ zi1+···+ik−1+1 ⊗ · · · ⊗ zi1+···+ik),

where

ε =
k−1∑
j=1

(
‖yj+1‖

i1+···+ij∑
l=1

‖zl‖

)
.

This monoidal category admits an extension where the elements of the
sequence carry symmetric group actions, see also [16, 5.1].

Definition 1.3.2. A collection X is a sequence such that each X(n), n ≥ 0,
is equipped with a right action of the symmetric group Σn, i.e. the group of
automorphisms of the set {1, 2, ..., n}.

A morphism of collections f : X → Y is an arity-wise equivariant mor-
phism of sequences. We denote the resulting category by Collk.

The category Collk can be equipped with the following monoidal struc-
ture.

• The tensor product is the symmetric circle product

◦Σ : Collk×Collk → Collk,

where (X ◦Σ Y )(n) is defined by

⊕
k≥0

X(k)⊗Σk

( ⊕
i1+···+ik=n

(Y (i1)⊗ · · · ⊗ Y (ik))⊗Σi1×···×Σik
k[Σn]

)
.
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Here, given a group G, we use the tensor product ⊗G of a left G-
module and a right G-module, extended to graded complexes, and k[G]
denotes the group ring. The right Σk-module structure on X(k) is the
given action. The right (Σi1 × · · · × Σik)-module structure on Y (i1)⊗
· · · ⊗ Y (ik) is the tensor product of the right actions of Σij on Y (ij),
1 ≤ j ≤ k. The left (Σi1×· · ·×Σik)-module structure on k[Σn] is given
by the inclusion of the Young subgroup Σi1×· · ·×Σik ⊂ Σn associated
to the following partition of {1, . . . , n},

{1, . . . , n} =
k∐
j=1

{i1 + · · ·+ ij−1 + 1, . . . , i1 + · · ·+ ij}.

The left action of Σk on the big tensor factor on the right is given by

τ · (y1 ⊗ · · · ⊗ yk ⊗ σ) = yτ−1(1) ⊗ · · · ⊗ yτ−1(k) ⊗ τi1,...,ikσ.

Here τ ∈ Σk, and τi1,...,ik ∈ Σn is the block permutation which permutes
the k blocks of the previous partition of {1, . . . , n} according to τ .
It is straightforward to check that this action is well defined, using
the associativity and the symmetry of the tensor product of graded
complexes. Finally, the right action of Σn on (X ◦Σ Y )(n) is simply
given by

(x⊗ y1 ⊗ · · · ⊗ yk ⊗ σ) · ν = x⊗ y1 ⊗ · · · ⊗ yk ⊗ σν,

for ν ∈ Σn.

• The tensor unit is I = (0, k, 0, . . . ) and the associated structure iso-
morphisms r and l are

(X ◦Σ I)(n) = X(n)⊗Σn ((k ⊗ · · · ⊗ k)⊗Σ1×···×Σ1 k[Σn])
∼= X(n)⊗Σn k[Σn]
∼= X(n),

and

(I ◦Σ X)(n) = k ⊗Σ1 (X(n)⊗Σn k[Σn])
∼= k ⊗X(n)
∼= X(n).

Moreover, the associator is defined essentially as in the nonsymmetric
case, see Definition 1.3.1.
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Remark 1.3.3. Let G be a group, X a right G-module, and Y a left G-module.
We can endow Y with the right G-module action given by y ·g = g−1 ·y. The
tensor product X ⊗G Y obviously coincides with the module of coinvariants
(X⊗Y )G of the diagonal right action on the tensor product over the ground
commutative ring k.

Using this elementary fact, we can express (X ◦Σ Y )(n) as the direct sum
of coinvariants⊕

k≥0

(
X(k)⊗

( ⊕
i1+···+ik=n

(Y (i1)⊗ · · · ⊗ Y (ik))⊗Σi1×···×Σik
k[Σn]

))
Σk

of the following action τ ∈ Σk,

(x⊗ y1 ⊗ · · · ⊗ yk ⊗ σ) · τ = x · τ ⊗ yτ(1) ⊗ · · · ⊗ yτ(k) ⊗ τ−1
i1,...,ik

σ.

We will use this in order to compare the previous monoidal structure on
collections to the second one below.

Remark 1.3.4. Given two collections X and Y , there is a natural transfor-
mation

X ◦ Y → X ◦Σ Y

induced by the unit of the group rings k[Σn] and the projection onto the
coinvariants. This, together with the identity map in I, endows the forgetful
functor from collections to sequences

(Collk, ◦Σ, I)→ (Seqk, ◦, I)

with a lax monoidal structure.
The forgetful functor has a left adjoint, called symmetrization:

−⊗ k[Σ] : Seqk → Collk

X 7→ X ⊗ k[Σ],

where
(X ⊗ k[Σ])(n) := X(n)⊗ k[Σn]

has the obvious action of Σn. Symmetrization becomes a strong monoidal
functor

(Seqk, ◦, I)→ (Collk, ◦Σ, I)

when endowed with the identity map Ψ: I = I ⊗ k[Σ] and with the natural
isomorphism

φ = φX,Y : (X ⊗ k[Σ]) ◦Σ (Y ⊗ k[Σ])→ (X ◦ Y )⊗ k[Σ],
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which in arity n is defined in the obvious way, using the symmetry isomor-
phism in the category of graded complexes, the isomorphism

k[Σi1 ]⊗ · · · ⊗ k[Σik ]⊗Σi1×···×Σik
k[Σn] ∼= k[Σn],

and k[Σk]⊗Σk M
∼= M , where M is an arbitrary left Σk-module.

Remark 1.3.5. Given a group G and a right G-module M , the invariants
are contained in the module MG ⊂ M and the module projects onto the
coinvariants M � MG, so we obtain a natural map MG → MG. If G is
finite, we have the norm map in the opposite direction,

MG →MG,

[x] 7→
∑
g∈G

x · g, (1.3.6)

going from coinvariants to invariants. The two composites

MG →MG →MG, MG →MG →MG,

are given by multiplication by |G|, the number of elements of the group. In
particular the two maps are isomorphisms if |G| is invertible in k. The norm
map is also an isomorphism in other cases, e.g. if M = N ⊗ k[G] where N is
a G-module and M carries the diagonal action.

Unlike in the non-symmetric case, we need a different monoidal structure
on collections in order to deal with symmetric cooperads. See also [16, 5.1.15].

Definition 1.3.7. We define a second monoidal structure on Collk as follows:

• The tensor product is ◦̄Σ : Collk×Collk → Collk, where (X ◦̄ΣY )(n) is
defined as

⊕
k≥0

(
X(k)⊗

( ⊕
i1+···+ik=n

(Y (i1)⊗ · · · ⊗ Y (ik))⊗Σi1×···×Σik
k[Σn]

))Σk

,

the module of invariants with respect to the right action of Σk defined
in Remark 1.3.3. The right action of Σn on (X ◦̄ΣY )(n) is given by

(x⊗ y1 ⊗ · · · ⊗ yk ⊗ σ) · τ = x⊗ y1 ⊗ · · · ⊗ yk ⊗ στ,

for τ ∈ Σn. It is well-defined since the right actions of Σk and Σn

commute.

34



• The tensor unit is I = (0, k, 0, . . . ), as above, and the structure isomor-
phisms l are r are given by I ◦̄ΣX = I ◦Σ X = I ◦X ∼= X and

(X ◦̄ΣI)(n) = (X(n)⊗ ((k ⊗ · · · ⊗ k)⊗Σ1×···×Σ1 k[Σn]))Σn

∼= (X(n)⊗ k[Σn])Σn

∼= (X(n)⊗ k[Σn])Σn

= X(n)⊗Σn k[Σn]
∼= X(n).

Here, in the third line, we use the inverse of the norm map in Remark
1.3.5, which is an isomorphism in this case. Moreover, the associator
is again essentially as in the nonsymmetric case, compare Definition
1.3.1.

Remark 1.3.8. The two monoidal structures on the category of collections,
(Collk, ◦Σ, I) and (Collk, ◦̄Σ, I), can be compared in the following ways. Given
two collections X and Y , there are two natural transformations,

X ◦̄ΣY → X ◦Σ Y, X ◦Σ Y → X ◦̄ΣY,

given by the maps between invariants and coinvariants in Remark 1.3.5.
The second one together with the identity in I enhances the identity

functor in Collk to two monoidal functors,

(Collk, ◦Σ, I)→ (Collk, ◦̄Σ, I), (Collk, ◦̄Σ, I)→ (Collk, ◦Σ, I),

which are colax and lax, respectively. Moreover, they are both strong if
|G| ∈ k is invertible. Actually, IdCollk : (Collk, ◦Σ, I) → (Collk, ◦̄Σ, I) is close
to being strong even if |G| ∈ k is not invertible. More precisely, if Y is
reduced then X ◦Σ Y → X ◦̄ΣY is an isomorphism (compare e.g. [24, 9.1, 9.6,
9.7, and 9.10]).

1.4 Operads and cooperads

We now introduce (non)symmetric (co)operads as monoids in the nonsym-
metric monoidal categories introduced in the previous section.

Definition 1.4.1. A nonsymmetric operad O = (O, µO, ηO), abbreviated
ns-operad, is a monoid in the monoidal category (Seqk, ◦, I) of Definition
1.3.1. A morphism of ns-operads f : O → P is a morphism of monoids. We
denote by idO the image of 1 ∈ k in arity 1 by ηO and call it the identity
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operation. An augmented ns-operad O = (O, µO, ηO, εO) is an augmented
monoid in the sense of Definition 1.2.3. Morphisms between them are aug-
mented monoid morphisms. We denote the resulting categories by ns-Op and
ns-AugOp respectively.

If O is augmented, denote Ō = Ker(εO), where Ker is the kernel in the
category of sequences (of graded complexes). Since εOηO = 1I , it follows
that when an ns-operad O is augmented it has a canonical decomposition as
a direct sum

O(n) = (I ⊕ Ō)(n) =

{
k ⊕ Ō(1), n = 1;
Ō(n), n 6= 1.

(1.4.2)

Remark 1.4.3. The multiplication µO : O ◦ O → O consists of a series of
multiplication morphisms, 1 ≤ j ≤ k, ij ≥ 0,

µk;i1,...,ik : O(k)⊗O(i1)⊗ · · · ⊗ O(ik) −→ O(i1 + · · ·+ ik)

satisfying associativity and unitality rules. We can equivalently define oper-
ads in terms of infinitesimal composition laws, 1 ≤ i ≤ p, q ≥ 0,

◦i : O(p)⊗O(q) −→ O(p+ q − 1) : x⊗ y 7→ x ◦i y,

defined as

x ◦i y = µp;1,i−1... ,1,q,1,p−i... ,1(x⊗ idO⊗
i−1· · · ⊗ idO⊗y ⊗ idO⊗

p−i
· · · ⊗ idO).

Such composition operations together with an identity cycle in arity 1 and
bidegree (0, 0) form an operad if and only if the following equations hold:

1. x ◦i (y ◦j z) = (x ◦i y) ◦i+j−1 z.

2. (x ◦i y) ◦j z = (x ◦j z) ◦j−1+arity of z y, j < i.

3. x ◦i idO = x.

4. idO ◦1x = x.

The circle product must satisfy the operadic Leibniz rule in all cases,

d(x ◦i y) = d(x) ◦i y + (−1)||x||x ◦i d(y).

Definition 1.4.4. An operad (in graded complexes) O = (O, µO, ηO), is a
monoid in the monoidal category (Collk, ◦Σ, I) of Definition 1.3.2. A mor-
phism of operads f : O → P is a morphism of monoids. An augmented operad
O = (O, µO, ηO, εO) is an augmented monoid and maps between them are
augmented monoid morphisms. We denote the resulting categories by Op and
AugOp respectively.
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Since εOηO = 1I , it follows that augmented operads have the same direct
sum decomposition as augmented ns-operads.

It follows from Proposition 1.2.2 and Remark 1.3.4 that the sequence
underlying an operad is a nonsymmetric operad, and the symmetrization of
a nonsymmetric operad is an operad. Similarly in the augmented case.

Operads can also be defined both in terms of multiplication morphisms
and composition laws, as in Remark 1.4.3, satisfying obvious equivariance
conditions with respect to the symmetric group actions.

Definition 1.4.5. A nonsymmetric cooperad C = (C,∆C, εC), abbreviated
ns-cooperad, is a comonoid in (Seqk, ◦, I). A morphism of ns-cooperads
f : C → D is a morphism of comonoids A coaugmented ns-cooperad C =
(C,∆C, εC, ηC) is a coaugmented comonoid in (Seqk, ◦, I) and maps between
them are coaugmented comonoid morphisms. We denote by idC the image
of 1 ∈ k by ηC and call it the identity cooperation. We denote the resulting
categories by ns-Coop and ns-CoaugCoop respectively.

If C is coaugmented, denote C̄ = Coker(ηC), where Coker is the cokernel
in the category of sequences. Since εCηC = 1I , it follows that when a ns-
cooperad C is coaugmented it has a decomposition as a direct sum

C(n) = (I ⊕ C̄)(n) =

{
k ⊕ C̄(1), n = 1;
C̄(n), n 6= 1.

Remark 1.4.6. In case C(0) = 0, we adopt the following abuse of notation for
the comultiplication ∆C acting on a element x ∈ C.

∆C(x) =
∑
k≥0,

i1+···+ik=arity of x

xk ⊗ xi1 ⊗ · · · ⊗ xik , (1.4.7)

where xk ∈ C(k), k ≥ 0, and xij ∈ C(ij),
∑
ij = arity of x. Notice that the

sum in this notation makes sense, because we assumed C(0) = 0.

We will mostly work with coaugmented ns-cooperads satisfying a conilpo-
tency condition, whose definition needs some preliminaries.

The compatibility of ηC with the comultiplication amounts to

∆CηC = ηC ◦ ηC : I ∼= I ◦ I → C ◦ C.

Here, and below, we abuse a little of notation, dropping the natural isomor-
phism l or r from notation.

We decompose the coproduct ∆C as

∆C = ηC ◦ 1C + 1C ◦ ηC + ∆̄C, (1.4.8)
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where

ηC ◦ 1C : C ∼= I ◦ C → C ◦ C, 1C ◦ ηC : C ∼= C ◦ I → C ◦ C.

In particular,
∆̄CηC = −ηC ◦ ηC.

Define

∆̂0
C = 1C,

∆̂1
C = ∆̂C = ∆̄C + ∆CηCεC,

∆̂n
C = (1

◦(n−1)
C ◦ ∆̂C)∆̂

n−1
C , n ≥ 2. (1.4.9)

Then define

F0C := I,

FnC := ker ∆̂n
C , n ≥ 1.

Clearly, FnC ⊂ Fn+1C for all n.

Definition 1.4.10. The filtration

F0C ⊂ F1C ⊂ F2C ⊂ · · · ⊂ FnC ⊂ Fn+1C ⊂ . . .

is called the coradical filtration of a coaugmented ns-cooperad C. A coaug-
mented ns-cooperad is called conilpotent if its coradical filtration is exhaus-
tive, i.e. colimn FnC = ∪nFnC = C. We denote the resulting full subcategory
of ns-CoaugCoop by ns-ConilCoop.

Apparently, our definition of the maps ∆̂n
C , and hence of the coradical

filtration, does not coincide with the definition in [16, 5.8.5]. In fact, with
the definition for ∆̂n

C in [16, 5.8.5] it is not clear that the kernels FnC define
an increasing filtration. Both definitions are nevertheless equivalent, as we
will now prove.

In [16, 5.8.5], the following maps are defined,

∆̂0
C = 1C,

∆̂n
C = ∆̃n

C − (1◦nC ◦ ηC)∆̃n−1
C , n ≥ 1, (1.4.11)

where

∆̃0
C = 1C,

∆̃1
C = ∆̃C = ∆̄C + 1C ◦ ηC + ∆CηCεC,

∆̃n
C = (1

◦(n−1)
C ◦ ∆̃C)∆̃

n−1
C , n ≥ 2.

Assume now that ∆̂n
C is defined as in (1.4.11).
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Lemma 1.4.12. We have ∆̃n
C =

n∑
k=0

∆̂k
C ◦ η

◦(n−k)
C .

Proof. For n = 0 it is obvious. Now assume that

∆̃n−1
C =

n−1∑
k=0

∆̂k
C ◦ η

◦(n−k−1)
C

for some n ≥ 1. Then

∆̂n
C = ∆̃n

C − (1◦nC ◦ ηC)∆̃n−1
C

= ∆̃n
C − ∆̃n−1

C ◦ ηC

= ∆̃n
C −

(
n−1∑
k=0

∆̂k
C ◦ η

◦(n−k−1)
C

)
◦ ηC

= ∆̃n
C −

n−1∑
k=0

∆̂k
C ◦ η

◦(n−k)
C .

Hence,

∆̃n
C = ∆̂n

C +
n−1∑
k=0

∆̂k
C ◦ η

◦(n−k)
C

=
n∑
k=0

∆̂k
C ◦ η

◦(n−k)
C .

We now check that both definitions (1.4.11) and (1.4.9) for ∆̂n
C coincide.

This is established in the following lemma, where we assume again that ∆̂n
C

is in principle defined as in (1.4.11).

Lemma 1.4.13. We have

∆̂0
C = 1C,

∆̂1
C = ∆̂C = ∆̄C + ∆CηCεC,

∆̂n
C = (1

◦(n−1)
C ◦ ∆̂C)∆̂

n−1
C , n ≥ 2.

Proof. There is nothing to check for n = 0. For n = 1, we have

∆̂1
C = ∆̃C − (1C ◦ ηC)1C

= ∆̄C + 1C ◦ ηC + ∆CηCεC − (1C ◦ ηC)1C
= ∆̄C + ∆CηCεC = ∆̂C.
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For n ≥ 2,

∆̂n
C = ∆̃n

C − (1◦nC ◦ ηC)∆̃n−1
C

= (1
◦(n−1)
C ◦ ∆̃C − 1◦nC ◦ ηC)∆̃n−1

C

=
n−1∑
k=0

(1
◦(n−1)
C ◦ (∆̃C − 1C ◦ ηC))

(
∆̂k
C ◦ η

◦(n−k−1)
C

)
=

n−1∑
k=0

(1
◦(n−1)
C ◦ ∆̂C)

(
∆̂k
C ◦ η

◦(n−k−1)
C

)
= (1

◦(n−1)
C ◦ ∆̂C)∆̂

n−1
C +

n−2∑
k=0

(1
◦(n−1)
C ◦ ∆̂C)

(
∆̂k
C ◦ η

◦(n−2−k)
C ◦ ηC

)
= (1

◦(n−1)
C ◦ ∆̂C)∆̂

n−1
C +

n−2∑
k=0

∆̂k
C ◦ η

◦(n−2−k)
C ◦ (∆̂CηC)

= (1
◦(n−1)
C ◦ ∆̂C)∆̂

n−1
C ,

where in the last identification it is used that

∆̂CηC = ∆̄CηC + ∆CηCεCηC

= ∆̄CηC + ∆CηC

= −ηC ◦ ηC + ηC ◦ ηC
= 0.

We now define a cooperadic analogue of the infinitesimal composition
laws in Remark 1.4.3.

Definition 1.4.14. Given two sequences X and Y , we denote by X ◦(1) Y
the sequence defined as

(X ◦(1) Y )(n) =
⊕

1≤j≤p
p+q=n+1

X(p)⊗ Y (q).

The infinitesimal decomposition ∆(1) of an ns-cooperad C is given by the
following composite

∆(1) : C ∆C−→ C ◦ C Pr−→ C ◦(1) C (1.4.15)
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where Pr is given in arity n by the maps⊕
k≥0

i1+···+ik=n

C(k)⊗ C (i1)⊗ · · · ⊗ C (ik) −→
⊕

1≤j≤p
p+q=n+1

C(p)⊗ C(q).

whose component, for fixed values of the indices, is

1C(k) ⊗ εC(i1)⊗ · · · ⊗ εC(ij−1)⊗ 1C(ij) ⊗ εC(ij+1)⊗ · · · ⊗ εC(ik)

if p = k, q = ij, and il = 1 for all l 6= j, and zero otherwise.

Remark 1.4.16. We remark here, for later use, that given two sequences X
and Y , there is a natural (split) inclusion

X ◦(1) Y → X ◦ (I ⊕ Y )

which, in arity n, and on the direct summand indexed by certain 1 ≤ j ≤ p
and q with n+ 1 = p+ q, is defined as

x⊗ y 7→ x⊗ id⊗
j−1
· · · ⊗ id⊗y id⊗

p−j
· · · ⊗ id .

Here id is the generator of I(1) = k, which is also the identity operation of
I regarded as the initial ns-operad.

Definition 1.4.17. A cooperad C = (C,∆C, εC) is a comonoid in the monoidal
category (Collk, ◦̄Σ, I) of Definition 1.3.7. A morphism of cooperads f : C →
D is a morphism of comonoids in the monoidal category (Collk, ◦̄Σ, I). A
coaugmented cooperad C = (C,∆C, εC, ηC) is a coaugmented comonoid and
maps between them are coaugmented comonoid maps. We denote by idC the
image of 1 ∈ k by ηC and call it the identity cooperation. We denote the
resulting categories by Coop and CoaugCoop respectively.

Remark 1.4.18. It follows from the dual of Proposition 1.2.2 and Remarks
1.3.4 and 1.3.8 that the symmetrization of a nonsymmetric cooperad is a
cooperad. Similarly in the coaugmented case.

Since ηC is a morphism of cooperads, we have εCηC = 1I . It follows
that coaugmented cooperads have the same direct sum decomposition as
coaugmented ns-cooperads.

The previous discussion on the coradical filtration extends to the sym-
metric case, replacing ◦ with ◦̄Σ. The full subcategory of CoaugCoop spanned
by conilpotent coaugmented cooperads is denoted by ConilCoop.
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We warn the reader familiar with [16] that the reduced decomposition
map of [16, 5.8.1] only coincides with our ∆̄C in the nonsymmetric case. In
the symmetric case, our decomposition (1.4.8) is element-wise of the form

∆C(x) = idC ⊗x+
∑
σ∈Σn

(x · σ)⊗ id⊗nC ⊗σ−1 + ∆̄C(x).

Here x ∈ C(n).

We finally define the symmetric infinitesimal decomposition.

Definition 1.4.19. Given two collection X and Y , we denote by X ◦Σ,(1) Y
the collection defined as

(X ◦Σ,(1) Y )(n) =
⊕

p+q=n+1

X(p)⊗Σp

(⊕
1≤j≤p

Y (q)⊗Σq k[Σn]

)
.

Here, the left Σq-module structure on k[Σn] is given by the inclusion of the
Young subgroup

Σ1×
j−1
· · · ×Σ1 × Σq × Σ1×

p−j
· · · ×Σ1 ⊂ Σn.

Moreover, the left action of τ ∈ Σp on the module between brackets sends
y ⊗ σ in the direct summand indexed by j to

y ⊗ τ1,j−1... ,1,q,1,p−j... ,1σ

in the direct summand indexed by τ(j). See Definition 1.3.2 for the definition
of τ1,j−1... ,1,q,1,p−j... ,1 ∈ Σn.

The infinitesimal decomposition ∆(1) of a reduced cooperad C is given by
the following composite

∆(1) : C ∆C−→ C ◦Σ C −→ C ◦Σ,(1) C

where the second arrow is the map of collections defined as in Definition
1.4.14 above.

Remark 1.4.20. As in Remark 1.4.16, given two collections X and Y there is
a natural (split) inclusion

X ◦Σ,(1) Y → X ◦Σ (I ⊕ Y )

defined essentially by the same formula as therein.
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1.5 Algebras over operads

In this section algebras over (ns-)operads are defined. To this end, we need
to introduce the operad of endomorphisms.

Definition 1.5.1. The operad of endomorphisms E(X) of a graded complex
X is defined in arity n by the following inner Hom,

E(X)(n) = [X⊗n, X].

The action of Σn is given by the permutation action on X⊗n in the closed
symmetric monoidal category of graded complexes. More precisely, if we
regard f ∈ [X⊗n, X] as a homogeneous multilinear map f : X⊗n → X, then
for σ ∈ Σn, 1 ≤ i ≤ n,

(f · σ)(x1 ⊗ · · · ⊗ xn) = (−1)εf(xσ−1(1) ⊗ · · · ⊗ xσ−1(n)),

where
ε =

∑
i<j

σ(i)>σ(j)

‖xi‖‖xj‖.

The multiplication morphisms

µn;p1,...,pn : [X⊗n, X]⊗ [X⊗p1 , X]⊗ · · · ⊗ [X⊗pn , X] −→ [X⊗(p1+···+pn), X]

are given by composition of homogeneous multilinear maps,

µn;p1,...,pn(f0 ⊗ · · · ⊗ fn) = f0(f1 ⊗ · · · ⊗ fn).

The identity operation is the identity map 1X ∈ [X,X].

Definition 1.5.2. An algebra over an (ns-)operad O, or O-algebra for short,
is a graded complex X equipped with a morphism of (ns-)operads

O → E(X).

Remark 1.5.3. Using the characterization of internal Homs as right adjoints
to the tensor product, we see that an O-algebra X can be alternatively
defined in terms of structure morphisms of graded complexes, n ≥ 0,

O(n)⊗X⊗ n· · · ⊗X −→ X,

satisfying certain conditions. Therefore, we can heuristically regard O(n) as
the ‘space’ of arity n operations in O-algebras. Morphisms in the category of
O-algebras are obviously the maps between the underlying graded complexes
which are compatible with the structure morphisms.
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Remark 1.5.4. The forgetful functor from O-algebras to graded complexes
has a well-known left adjoint given by

X 7→
⊕
n≥0

O(n)⊗X⊗n

in the nonsymmetric setting and

X 7→
⊕
n≥0

O(n)⊗Σn X
⊗n

in the symmetric setting, compare [16, Proposition 5.2.1]. Here, the right
action of Σn on O(n) is part of the structure of a collection and the left action
on X⊗n is given by permutation of variables, as above. We can alternatively
use coinvariants in the symmetric case,⊕

n≥0

O(n)⊗Σn X
⊗n =

⊕
n≥0

(O(n)⊗X⊗n)Σn ,

see Remark 1.3.3. TheseO-algebras are called free and will be denotedO(X).
In both cases, the structure O-algebra maps, in the sense of Remark 1.5.3,
are induced in the obvious way by the operadic multiplication morphisms in
Remark 1.4.3.

Remark 1.5.5. By turning to the opposite monoidal category, we can consider
not only cooperads, but also coalgebras over them, cofree coalgebras, etc.

Coproducts in the opposite category are products in the original category,
and coinvariants become invariants. Hence, if C is an (ns-)cooperad, the
cofree C-coalgebra on a graded complex X is∏

n≥0

C(n)⊗X⊗n

in the nonsymmetric setting and∏
n≥0

(C(n)⊗X⊗n)Σn

in the symmetric setting.
If C is coaugmented and conilpotent, it is easy to notice that the direct

sum ⊕
n≥0

C(n)⊗X⊗n ⊂
∏
n≥0

C(n)⊗X⊗n,⊕
n≥0

(C(n)⊗X⊗n)Σn ⊂
∏
n≥0

(C(n)⊗X⊗n)Σn ,

forms a sub-C-coalgebra in each case, that we denote C(X) by analogy with
the previous remark.
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Chapter 2

Koszul duality for operads

Koszul duality theory is a fabulous tool to construct small resolutions in ho-
mological algebra. It was initiated by Priddy [20] in the associative algebra
setting and extended by Ginzburg and Kapranov to the realm of operads
[11]. The authoritative monograph [16] by Loday and Vallette is an excel-
lent introduction to the topic, that we mostly follow. We also crucially use
Fresse’s [8], which extends parts of the classical theory to operads over a
commutative ground ring which is not necessarily a field, under suitable pro-
jectivity assumptions. Actually, we will be mainly interested in this more
general case.

2.1 Free operads

Koszul duality theory relies heavily on the notion of free operad. Free operads
are somewhat involved gadgets whose underlying combinatorics is that of
trees. We thoroughly describe them in this section, both in the symmetric
and in the nonsymmetric settings.

Let (C,⊗, 1) be a monoidal category.

Definition 2.1.1. A monoid (F(X), µF(X), ηF(X)) is a free monoid generated
by an object X in C if it is equipped with a map X → F(X) in C such that,
if (A, µA, ηA) is another monoid and X → A is another map in C, then there
exists a unique monoid morphism (F(X), µF(X), ηF(X)) → (A, µA, ηA) such
that the underlying map in C fits in the following commutative triangle

X //

��

F(X)

||

A

45



See [17, page 51].

The free monoid generated by an object, if it exists, is unique up to a
canonical isomorphism defined by the previous universal property. If the
free monoid happens to exist for any object X, then they assemble to a
free monoid functor F : C → Mon(C), which is left adjoint to the forgetful
functor U : Mon(C)→ C,

U((A, µA, ηA)) = A.

Moreover, the map X → F(X) is the unit of the adjunction.
The free ns-operad on a sequence and the free operad on a collection

are defined according to Definition 2.1.1, since (ns-)operads are monoids in
certain monoidal categories, see Definitions 1.4.1 and 1.4.4. They happen
to exist always, so we have left adjoints F to the forgetful functors. We
now explicitly describe what free operads look like. We will start with the
nonsymmetric version, following [19].

The combinatorics of operads is that of trees with additional structure.
We now recall some necessary facts about trees from [19, section 3].

Definition 2.1.2. A planted tree with leaves is a contractible finite 1-dimen-
sional (abstract) simplicial complex T with a set of vertices V (T ), a non-
empty set of edges E(T ), a distinguished vertex r(T ) ∈ V (T ) called root,
and a set of distinguished vertices L(T ) ⊂ V (T ) \ {r(T )} called leaves. The
root and the leaves must have degree 1. Recall that the degree of v ∈ V (T ) is
the number of edges containing v. The arity of v, denoted by ṽ, is the degree
minus one,

ṽ = degree(v)− 1.

The level of a vertex v ∈ V (T ) is the number of edges in the shortest path
to the root. The height of T is the maximum level of its vertices.

Definition 2.1.3. A planted planar tree with leaves is a planted tree with
leaves T together with a total order � in V (T ), called planar order, such
that:

• If level(v) ≺ level(w) then v ≺ w.

• If {v1, v2}, {w1, w2} ∈ E(T ) are edges with

level(v1) = level(w1) = level(v2)− 1 = level(w2)− 1,

and v1 ≺ w1, then v2 ≺ w2.
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There is another total order ≤ on V (T ), called path order, satisfying the
following conditions. Given two vertices v, w ∈ V (T ):

• If v lies on the (shortest) path from r(T ) to w then v < w.

• Otherwise, assume that the path from r(T ) to v coincides with the
path from r(T ) to w up to level n, and let v′ and w′ be the level n+ 1
vertices on these paths. If v′ ≺ w′ then v < w.

We will order vertices according to the path order, unless specified otherwise.
The set E(T ) is ordered according first to the bottom vertex of each edge,
and second to the top vertex (in case they share the bottom vertex). In the
set formed by the union of all vertices and edges, we identify an edge {u, v}
with the word uv and follow the lexicographic order (vertices are obviously
words with a single letter).

Given e = {v, w} ∈ E(T ) with v < w we say that e is an incoming edge
of v and the outgoing edge of w. Note that the arity of a vertex equals the
number of its incoming edges.

An inner vertex is a vertex which is neither a leaf nor the root. The set
of inner vertices will be denoted by I(T ),

V (T ) = {r(T )} t I(T ) t L(T ).

Abusing terminology, we say that an edge is the root or a leaf if it contains
the root or a leaf vertex, respectively. The rest of edges are called inner edges.

The geometric realization of a planted planar tree with leaves ‖T‖ is
obtained from a standard geometric realization in the plain by removing the
root and the leaves, e.g.

v3

v5

v4

v2 v6

v1

The root is depicted at the bottom, and the rest of edges are drawn so that
the planar order can be read from bottom to top and from left to right. The
path order on vertices is here indicated by the subscript.
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For n ≥ 0, the corolla with n leaves is the planted planar tree Cn with
one inner vertex and n leaves,

‖Cn‖ = •

n· · · · · ·

.

An isomorphism of planted planar trees with leaves is a simplicial iso-
morphism preserving the root and the leaves. A planar isomorphism is an
isomorphism which in addition preserves the planar order (and hence the
path order).

In the following picture we see two isomorphic planted planar trees with
leaves which are not planarly isomorphic,

(2.1.4)

Planted planar trees with leaves have no non-trivial planar automorphism.
We choose a representative of each planar isomorphism class and denote the
resulting set of planted planar trees with leaves by PPTL.

Definition 2.1.5. Given a sequence of graded complexes X, we define the
tree module of a planted planar tree with leaves T to be the following graded
complex,

X(T ) =
⊗
v∈I(T )

X(ṽ).

In particular, X(|) = k. Since the symmetry isomorphism in the closed
symmetric monoidal category of graded complexes involves signs (we are
using the Koszul sign rule), it is important to fix an order for the factors of
this tensor product. We use the path order.

The underlying sequence of the free ns-operad on the sequence X is

F(X)(n) =
⊕

T∈PPTL
with n leaves

X(T ). (2.1.6)

In this context, we call operations x ∈ X(n) generating operations of F(X).
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Definition 2.1.7. A ns-labeled planted planar tree with leaves mT is a planted
planar tree with leaves T where each inner vertex v ∈ I(T ) is labeled by an
element in the sequence of the corresponding arity x ∈ X(ṽ).

The tree module X(T ) is obtained from T by placing X(ṽ) on any inner
vertex v and ⊗ on any inner edge, recalling always that we are fixing the path
order. Hence, a ns-labeled planted planar tree with leaves can be regarded
as an element in the corresponding tree module,

T

 

X(3)

⊗

X(0)

⊗

X(3)

⊗

X(2)

3

x3

⊗

x4

⊗

x2

⊗

x1

X(T ) = X(2)⊗X(3)⊗X(3)⊗X(0) 3 x1 ⊗ x2 ⊗ x3 ⊗ x4.

Here, we have depicted tensor symbols on the ns-labeled planted planar tree
with leaves in order to emphasize it is an element of the tree module, however
we will not do this any more.

The effect of the differential dF(X) on an ns-labeled planted planar tree
with leaves can be easily computed. It consists of the pondered sum of the ns-
labeled planted planar trees with leaves obtained by applying the differential
dX of X to one label at a time. Each addend is pondered by a sign, which
is −1 up to the sum of the degrees of the labels which precede, in the path
order, the label where we are applying dX .

dF(X)


x3

x4

x2

x1


=

x3

x4

x2

dX(x1)

+ (−1)||x1||

x3

x4

dX(x2)

x1

+(−1)||x1||+||x2||

dX(x3)

x4

x2

x1

+ (−1)||x1||+||x2||+||x3||

x3

dX(x4)

x2

x1
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Below, we intensively use the following notation for these pondering signs.
Given an ns-labeled planted planar tree with leaves mT ,

(−1)‖mT ‖<v

is the sum of the total degrees of the labels in mT of the inner vertices of
T that come (strictly) before v, with respect to the path order (always).
Hence, dF(X)(mT ) is a pondered sum indexed by the inner vertices of T
of ns-labeled planted planar trees with leaves with underlying tree T . The
summand corresponding to a certain v ∈ I(T ) has the same labels as mT

except at v, where it has dX(xv) if mT had xv. The pondering sign of this
summand is precisely (−1)‖mT ‖<v .

The multiplication maps µF(X) of the free operad is essentially given, on
ns-labeled planted planar trees with leaves, by grafting. More precisely, given
ns-labeled planted planar trees with leaves mT0 ,mT1 , . . . ,mTn , where T0 has
n leaves,

µF(X)(mT0 ⊗mT1 ⊗ · · · ⊗mTn) = ±mT0(T1,...,Tn),

where mT0(T1,...,Tn) is the ns-labeled planted planar tree with leaves obtained
by grafting each mTi , 1 ≤ i ≤ n, on the ith leaf of mT0 , counting from left
to right, i.e. according to the path order. The sign is that of the symme-
try isomorphism needed to obtain mT (T1,...,Tn) from mT0 ⊗ mT1 ⊗ · · · ⊗ mTn

permuting the tensor factors,

x2

x1 x3

x5 x6

x4

7→ (−1)‖x2‖‖x3‖

x3

x5 x6

x4

x2

x1

The identity operation idF(X) is | regarded as a labeled tree (with no labels,
as this tree has no inner vertices). Finally, the map X → F(X) is given by
the inclusion of the direct summands indexed by corollas.

The free ns-operad is augmented. The augmentation εF(X) : F(X)→ I is
determined by the fact that it vanishes on all tree modules except for X(|).

We introduce a weight grading on the free ns-operad, see e.g. also [16,
section 5.5.3].
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Definition 2.1.8. The weight of a ns-labeled planted planar tree with leaves
is the number of inner vertices of the underlying tree. We denote by F(X)(r),
r ≥ 0, the sequence of homogeneous operations of weight r, i.e. the subse-
quence obtained by restricting the direct sum (2.1.6) to planted planar trees
with leaves with precisely r inner vertices. In particular, F(X)(0) = k concen-
trated in arity 1 generated by idF(X), F(X)(1) = X, and F(X)(2) = X ◦(1) X
in the sense of Definition 1.4.14.

The ns-operadic multiplication is homogeneous with respect to the weight
grading.

We now turn to the symmetric case. We describe the free operad on a
collection by simplifying [4, 5.8], which works with general closed symmetric
monoidal categories, while we restrict to the more familiar setting of graded
complexes.

Let X be a collection. We will denote the free operad generated by X
by FΣ(X), in order to distinguish it from the free ns-operad F(X) on the
underlying sequence of X. For its description, we need the following new
kind of labeled trees.

Definition 2.1.9. A labeled planted planar tree with leaves mT is a planted
planar tree with leaves T where each inner vertex v ∈ I(T ) is labeled by an
element of the corresponding arity x ∈ X(ṽ), as in Definition 2.1.7 and each
leaf is labeled with a different number in {1, . . . , n}, where n is the number
of leaves.

Remark 2.1.10. A labeled planted planar tree with leaves mT can be regarded
as an element of the symmetrized tree module X(T )⊗ k[Σn], where n is the
number of leaves of T . The tensor factors in X are as in the nonsymmetric
case, and the permutation σ ∈ Σn is defined by the fact that the ith leaf,
with respect to the path order, is labeled by σ−1(i), 1 ≤ i ≤ n,

2

x1

3 1

x2 x0

x3

, x3⊗x1⊗x2⊗x0⊗( 1 2 3
3 1 2 ) ∈ X(T )⊗k[Σ3].
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The free operad FΣ(X)(n) generated by the collection X is, in arity n, a
quotient of the graded complex⊕

T∈PPTL
with n leaves

X(T )⊗ k[Σn] = F(X)(n)⊗ k[Σn]

by the following relations between labeled planted planar trees with leaves,

1 k

x·τk
= ±

τ−1
k (1) τ−1

k (k)

x

Here, the numbering of the incoming edges of the vertices is not to be re-
garded as part of the labeling. It just indicates how they are permuted in
order to obtain the labeled planted planar tree with leaves on the right from
the one on the left. The rest of labels do not change. The sign ± comes from
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the application of the Koszul sign rule. See the following explicit examples,

3 1 4

n3 n0

2

n1

m3·( 1 2 3
2 3 1 )

= (−1)(‖n3‖+‖n0‖)‖n1‖

2

n1

3 1 4

n3 n0

m3

(m3 · ( 1 2 3
2 3 1 ))⊗ n3 ⊗ n0 ⊗ n1 ⊗ ( 1 2 3 4

2 4 1 3 )
= (−1)(‖n3‖+‖n0‖)‖n1‖m3 ⊗ n1 ⊗ n3 ⊗ n0 ⊗ ( 1 2 3 4

3 1 2 4 )

3 1 4

n3·( 1 2 3
3 1 2 ) n0

2

n1

m3

=

1 4 3

n3 n0

2

n1

m3

m3 ⊗ (n3 · ( 1 2 3
3 1 2 ))⊗ n0 ⊗ n1 ⊗ ( 1 2 3 4

2 4 1 3 )
= m3 ⊗ n3 ⊗ n0 ⊗ n1 ⊗ ( 1 2 3 4

1 4 3 2 )

The right action of τ ∈ Σn on FΣ(X)(n) is given by applying the permutation
τ−1 to the labels of the leaves,

2

x1

3 1

x2 x0

x3

· ( 1 2 3
3 1 2 ) =

3

x1

1 2

x2 x0

x3

There are no signs involved in this action.
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We have defined the collection FΣ(X) as a quotient of the symmetriza-
tion F(X)⊗ k[Σ] of the free nonsymmetric operad F(X) on the underlying
sequence of X. The operad structure on FΣ(X) is the unique one such that
the natural projection F(X) ⊗ k[Σ] � FΣ(X) is a map of operads. This
means that the multiplication of labeled planted planar trees with leaves is
given by grafting, this time according to the order indicated by the labels,
up to a sign determined by the Koszul rule, and shifting the numbering of
the leaves of the trees grafted on top of the first one in the obvious way in
order to avoid repetitions, e.g.

2

1

x2

x1

2 1

x3

3 1

x5

2 4

x6

x4

7→ (−1)‖x3‖(‖x4‖+‖x5‖+‖x6‖)

5 3

x5

4 6

x6

x4

x2

2 1

x3

x1

The identity operation is represented by | regarded as a tree with no labels, as
in the nonsymmetric case. The map X → FΣ(X) is again given by inclusion
of corollas.

It is worth to notice that the relation defining the free operad only identi-
fies labeled planted planar trees with leaves with (non-planarly) isomorphic
underlying planted planar trees with leaves. Based on this observation, we
now give a more sophisticated and useful description of FΣ(X), which is ac-
tually closer to that in [4]. For this, we need to extend some facts on modules
over groups to the wider context of groupoids.

Definition 2.1.11. A groupoid G is a category where all morphisms are
isomorphisms. A left G-module is a functor M : G→ Modk.

The module of invariants of a left G-module M is simply the limit of the
functor M , MG = limM . It is the submodule of

∏
x∈ObGM(x) consisting of

the elements (mx)x∈ObG such that for any g : x→ y in MorG, M(g)(mx) =
my.

Similarly, the module of coinvariants is the colimit of the functor M ,
MG = colimM . It is the quotient of

⊕
x∈ObGM(x) by all the elements of

the form mx−M(g)(mx), where mx ∈M(x) for some x ∈ ObG and g : x→ y
is a map in G.
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Definition 2.1.12. Given a planted planar tree with leaves T , denote by
[T ] ⊂ PPTL the subset formed by those planted planar trees with leaves
which are (non-planarly) isomorphic to T , e.g. (2.1.4) is one of these sub-
sets. This is obviously an equivalence class under the relation ∼ of being
(non-planarly) isomorphic in the set PPTL. We consider the tree groupoid
G[T ] whose object set is [T ] and whose morphisms are (non-planar) isomor-
phisms in the sense of Definition 2.1.2, e.g. in case [T ] is the set in (2.1.4),
the groupoid G[T ] consists of two isomorphic objects each of which has two
automorphisms, the identity and the automorphism which flips the two top
leaves.

We consider the left G[T ]-module X[T ], called symmetric tree module,
which sends a tree T ′ ∈ [T ] to the symmetrized tree module X(T ′)⊗ k[Σn],

X[T ](T
′) = X(T ′)⊗ k[Σn]. (2.1.13)

Here n is the number of leaves of T (and of any other tree in [T ]). If f : T ′ →
T ′′ is a map in G[T ], the induced isomorphism X[T ](f) : X(T ′)→ X(T ′′) sends
a labeling of T ′ to the unique labeling of T ′′ such that labels of vertices and
leaves match under f , up to a sign determined by the Koszul rule, e.g.

f

2 1

x2

3

x3

x1

G[T ](f)
7→ (−1)‖x2‖‖x3‖

3

x3

1 2

x2

x1

The previous definition of FΣ(X) coincides with the following direct sum
of coinvariants

FΣ(X)(n) =
⊕

[T ]∈PPTL/∼
n leaves

(X[T ])G[T ]
. (2.1.14)

The action of Σn on FΣ(X) is well defined on each of these direct factors,
since the action of G[T ] on X[T ] commutes with the action of Σn. One of the
advantages of this definition over the previous elementary one is that, here,
we decompose FΣ(X)(n) as a big direct sum of small factors, each of which
can be dealt with independently, as in the nonsymmetric case.
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The free operad is augmented. The augmentation is characterized by the
fact that it vanishes on all direct factors different from [|].

The weight grading of [16, section 5.5.3] in the symmetric setting is de-
fined as follows.

Definition 2.1.15. The weight of a labeled planted planar tree with leaves is
the number of inner vertices of the underlying tree. We denote by FΣ(X)(r),
r ≥ 0, the collection of homogeneous operations of weight r, i.e. the subcol-
lection obtained by restricting the direct sum (2.1.14) to the classes [T ] where
T (and any other tree in the class) has precisely r inner vertices. In particu-
lar, F(X)(0) = k concentrated in arity 1 generated by idF(X), F(X)(1) = X,
and F(X)(2) = X ◦Σ,(1) X in the sense of Definition 1.4.19.

The operadic multiplication is homogeneous with respect to the weight
grading.

2.2 Cofree cooperads

Cofree (ns-)cooperads could be defined by using Definition 2.1.1. However,
even if they existed, they would not be very interesting for us. For Koszul du-
ality theory, we rather need something fitting in the following more restrictive
situation.

Definition 2.2.1. Let (C,⊗, I) be a closed symmetric monoidal category.
Let D ⊂ CoaugComon(C) be a full subcategory of the category of coaugmented
comonoids. A coaugmented comonoid 〈F c(X),∆Fc(X), εFc(X), ηFc(X)〉 in D
is a cofree coaugmented comonoid generated by X in D if it is equipped
with a map F c(X) → X such that for any object 〈C,∆C , εC , ηC〉 in D and
any map C → X in C there exists a unique coaugmented comonoid map
〈C,∆C , εC , ηC〉 → 〈F c(X),∆Fc(X), εFc(X), ηFc(X)〉 such that the underlying
map in C fits in the following commutative triangle

X oo__ F c(X)
;;

C

Cofree coaugmented comonoids are unique up to canonical isomorphism,
provided they exist.

Definition 2.2.1 is suitable to define conilpotent coaugmented (ns-)co-
operads, taking D to be the full subcategory spanned by those coaugmented
(ns-)cooperads which are conilpotent. They exist for any reduced sequence
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or collection. We will now describe them explicitly following [16, Theorem
5.8.3], starting with the non-symmetric case.

Given a reduced sequence X, the underlying sequence of F c(X) is the
same as that of F(X), the free operad on the same sequence described in the
previous section in terms of planted planar trees with leaves. The counit of
F c(X) is the augmentation of F(X) and, similarly, the unit cooperation co-
incides with the unit operation (this defines the coaugmentation). Moreover,
the map F c(X) → X is the projection onto the direct summands of (2.1.6)
indexed by corollas.

It is only left to define the diagonal (comultiplication) of F c(X). For this,
we need the following tree notion.

Definition 2.2.2. Given planted planar trees with leaves T, S0, S1, . . . , Sn,
we say that {S0, S1, . . . , Sn} is a cutting of T if S0 has n leaves and grafting
each Si, 1 ≤ i ≤ n onto the ith leaf of S0 (counting from left to right, i.e. with
respect to the path order) we obtain T . We define the degrafting of T to be
the set of all cuttings of T .

The following picture illustrates the degrafting of a planted planar tree
with leaves. We see here that each cutting can be simply indicated by mark-
ing the edges where we have to cut. The key rule is that, in each path from
the root to a leaf, there must be one and only one mark, and in each path
from the root to an inner vertex of arity zero there may be one mark or no
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mark at all.
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Let {S0, S1, . . . , Sk} be a cutting of a planted planar tree with leaves T .
Let mT be an ns-labeled planted planar tree with leaves with underlying tree
T . For each 0 ≤ i ≤ n, we define mSi as the ns-labeled planted planar tree
with leaves with underlying tree Si where the labels of its inner vertices are
the same labels as these inner vertices have in T (recall that Si is a subtree
of T ). The diagonal of F c(X),

∆Fc(X) : F c(X)→ F c(X) ◦ F c(X),

is defined as

∆Fc(X)(mT ) =
∑

cuttings of T

±mS0 ⊗mS1 ⊗ · · · ⊗mSn .

Here, each pondering sign is that of the symmetry isomorphism needed to
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obtain mS0 ⊗mS1 ⊗ · · · ⊗mSn from mT permuting the tensor factors, e.g.

∆Fc(X)


x2

x3

x1

x0


=

x2

x3

x1

x0

⊗ id⊗5
Fc(X) +

x2

x1

x0

⊗ id⊗3
Fc(X)⊗

x3

⊗ idFc(X)

+ (−1)||x2||·||x3||

x3

x1

x0

⊗ idFc(X)⊗ x2 ⊗ idFc(X)

+
x1

x0

⊗ idFc(X)⊗ x2 ⊗
x3

⊗ idFc(X)

+ + x0 ⊗ idFc(X)⊗
x2

x3

x1

+ idFc(X)⊗

x2

x3

x1

x0

.

Observe that the diagonal ∆Fc(X) is homogeneous with respect to the
weight grading in Definition 2.1.8.

We now turn to the symmetric case. Let X be a reduced collection. The
cofree conilpotent coaugmented cooperad on X will be denoted by F cΣ(X), in
order to distinguish it from the cofree conilpotent coaugmented ns-cooperad
F c(X) generated by the underlying sequence of X.

The underlying collection of F cΣ(X) is FΣ(X). This collection is reduced,
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since X is. Hence, we can define the diagonal using the symmetric circle
product, see Remark 1.3.8.

In the previous section, we have constructed the free operad FΣ(X) by
means of a natural projection F(X)⊗ k[Σ]� FΣ(X) from the symmetriza-
tion of the free ns-operad on the underlying sequence. Hence, we have a
natural projection

F c(X)⊗ k[Σ]� F cΣ(X). (2.2.3)

Here F c(X)⊗ k[Σ] is a coaugmented cooperad and F cΣ(X) is endowed with
the unique cooperad structure which makes this natural projection a coaug-
mented cooperad morphism. The map F cΣ(X) → X is the projection onto
the direct factors of (2.1.14) indexed by corollas. The diagonal ∆FcΣ(X) is
homogeneous with respect to the weight grading in Definition 2.1.15.

2.3 The bar and cobar constructions

In this section we describe in detail the bar and cobar constructions for (ns-
)operads in graded complexes. We put some emphasis in checking that the
differential squares to zero, as we feel that this fact, despite being elementary,
is not adequately treated in the literature. We follow [16, Section 6.5].

Denote by ns-AugOpr, ns-ConilCoopr, and ns-CoaugCoopr the full sub-
categories of ns-AugOp, ns-ConilCoop, and ns-CoaugCoop, respectively, con-
sisting of reduced objects. We are going to define a functor

B : ns-AugOpr → ns-ConilCoopr ⊂ ns-CoaugCoopr,

called the nonsymmetric bar construction.
For X a graded complex, its suspension sX is a graded complex equipped

with a natural isomorphism s : X ∼= sX of bidegree (0, 1). In particular, we
can identify

(sX)i,j = Xi,j−1,

dsX(sx) = −s(dXx).

This construction extends arity-wise to sequences and collections.
Let O be a reduced augmented ns-operad. The underlying sequence of

bigraded k-modules of B(O) is that of F c(sŌ). Also, the coproduct ∆B(O) =
∆Fc(sŌ), the counit εB(O) = εFc(sŌ), and the coaugmentation ηB(O) = ηFc(sŌ)

are those of F c(sŌ).
The ns-bar construction B(O) differs from F c(sŌ) only in its differential

dB(O), which is a perturbation of dFc(sŌ),

dB(O) := dFc(sŌ) + d2.
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Let us define the second piece.
Define the following morphisms, 1 ≤ i ≤ p, q ≥ 0,

d̂2,i : sŌ(p)⊗ sŌ(q) −→ sŌ(p+ q − 1),

d̂2,i(sx⊗ sy) = (−1)‖x‖s(x ◦i y), (2.3.1)

which are well-defined, since µO restricted to Ō ◦ Ō corestricts to Ō.
Define d2 : F c(sŌ)→ F c(sŌ) as follows. Let mT be an ns-labeled planted

planar tree with leaves. Then d2(mT ) is a sum of ns-labeled planted planar
tree with leaves indexed by the inner edges of T , {v, w}, v < w, pondered by
certain signs. The underlying planted planar tree with leaves of the summand
indexed by {v, w} is obtained by contracting this edge of T . All inner vertices,
except for v and w, keep their old labels from mT . If v and w are labeled in
mT with sxv and sxw, respectively, and w is in the ith incoming edge of v,
then the inner vertex obtained by contraction is labeled with d̂2,i(sxv⊗sxw).
The pondering sign is

(−1)‖mT ‖<v(−1)‖sxw‖‖mT ‖
>v
<w . (2.3.2)

Here ‖mT‖<v is the sum of the total degrees of the labels in mT of the inner
vertices of T that come (strictly) before v, always with respect to the path
order. If we write ‖mT‖<v, we add the total degree of v. Similarly, ‖mT‖>v<w
denotes the sum of the total degrees of the labels in mT of the inner vertices
of T that come before w and after v. An intuitive picture of this summation
is

· · ·

· · ·

· · ·

←
→

i
d̂2,i∑

inner
edges

±
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We also provide an explicit example,

d2

 sx1

sx2

sx3

sx4


=

(−1)||x1||

s(x1 ◦2 x2)

sx3

sx4

+ (−1)||sx1||+||x2||

sx1

s(x2 ◦1 x3)

sx4

+(−1)||sx1||+||sx3||·||sx4||+||x2||

sx1

s(x2 ◦2 x4)

sx3

Here, some signs come from the pondering and some other signs come from
the definition of d̂2,i.

Let us check that d2 is a differential.

Lemma 2.3.3. (d2)2 = 0.

Proof. Notice that, when d2 is applied twice to a ns-labeled planted planar
tree with leaves mT , we end up with a summation containing two summands
for each pair of different inner edges of T . Each of the two summands corre-
sponds to one of the two different orders of contracting the two edges. The
underlying tree is the same in both cases, as well as the labels up to sign.
We now study the signs and check that the two summands cancel each other
out in all cases.

The four possible configurations of two different inner edges in T are
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depicted below (subscripts indicate the path order),

v2

v1

v4

v3

1

v4

v2 = v3

v1

3

I

v3

v2

v4

v1

2

II

v2 v4

v1 = v3

4 III

We give three different arguments for the cancellation of the two summands,
I, II and III, adapted to the cases indicated in that figure. We will denote
the label of the vertex vi by sxi.

Situation I. If we first contract {v1, v2}, we get an extra minus sign com-
pared to first contracting {v3, v4}. This is caused by encountering the label
s(x1 ◦i x2), of total degree ‖x1‖+ ‖x2‖+ 1, compared to the separate labels
sx1 and sx2, of total degree ‖x1‖+ 1 and ‖x2‖+ 1, respectively.

Situation II. First contracting {v1, v4} and then {v2, v3} results in a sign

(−1)‖mT ‖<v1 (−1)‖sx4‖(‖mT ‖
>v1
<v2

+‖sx2‖+‖mT ‖
>v2
<v3

+‖sx3‖+‖mT ‖
>v3
<v4

)(−1)‖x1‖

(−1)‖mT ‖<v1+‖x1‖+‖x4‖+1+‖mT ‖
>v1
<v2 (−1)‖sx3‖‖mT ‖

>v2
<v3 (−1)‖x2‖.

Here, and below, we consider jointly the pondering sign and the sign in the
definition of d̂2,i. If we first contract {v2, v3} and then {v1, v4}, the sign is

(−1)‖mT ‖<v1+‖sx1‖+‖mT ‖
>v1
<v2 (−1)‖sx3‖‖mT ‖

>v2
<v3 (−1)‖x2‖

(−1)‖mT ‖<v1 (−1)‖sx4‖(‖mT ‖
>v1
<v2

+‖mT ‖
>v2
<v3

+‖mT ‖
>v3
<v4

+‖x2‖+‖x3‖+1)(−1)‖x1‖.

Checking the exponents it is straightforward to see that the two previous
signs are opposite.
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Situation III. On the one hand, first contracting {v1, v2} and then {v1, v4}
results in a sign

(−1)‖mT ‖<v1 (−1)‖sx2‖‖mT ‖
>v1
<v2 (−1)‖x1‖

(−1)‖mT ‖<v1 (−1)‖sx4‖(‖mT ‖
>v1
<v2

+‖mT ‖
>v2
<v4

)(−1)‖x1‖+‖x2‖.

On the other hand, first contracting {v1, v4}, then {v1, v2}, results in a sign

(−1)‖mT ‖<v1 (−1)‖sx4‖(‖mT ‖
>v1
<v2

+‖sx2‖+‖mT ‖
>v2
<v4

)(−1)‖x1‖

(−1)‖mT ‖<v1 (−1)‖sx2‖‖mT ‖
>v1
<v2 (−1)‖x1‖+‖x4‖(−1)‖x2‖‖x4‖.

Here, the last (−1)‖x2‖‖x4‖ comes from the fact that, if v2 and v4 are in the
ith and jth incoming edges of v1 = v3, i < j, respectively, then

(x1 ◦i x2) ◦j+ṽ2−1 x4 = (−1)‖x2‖‖x4‖(x1 ◦j x4) ◦i x2.

This equation relates the labels of the vertex obtained by contraction in each
of the two previous orders. Again, the two global signs are opposite.

Now we check that the differential of the whole bar construction squares
to zero.

Proposition 2.3.4. (dB(O))
2 = 0.

Proof. Since both dFc(sŌ) and d2 are differentials, this boils down to

dFc(sŌ)d2 + d2dFc(sŌ) = 0.

On the one hand, dFc(sŌ)d2 applied to a ns-labeled planted planar tree
with leaves mT is a double summation of such labeled trees indexed by first
the inner edges {v, w} of T , v < w, and then the inner vertices of T with
{v, w} contracted. On the other hand, d2dFc(sŌ)(mT ) is a double summation
indexed by first the inner vertices of T and then the inner edges of T . The
inner vertices of T with {v, w} contracted, away from the vertex created by
contraction, are in bijection with the inner vertices of T different from v and
w. We will see that the two corresponding factors cancel each other out. The
underlying tree is the same in both cases, as well as the labels up to sign.
Moreover, we will see that the three factors corresponding on the one hand
to {v, w} and to the inner vertex obtained by contraction, and on the other
hand to the vertices v and w and to the edge {v, w}, also cancel. In this
case the underlying tree is the same for the three summands, and labels out
of the vertex obtained by contraction are the same, so we just have to check
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that the three labels of the troublesome vertex with the right signs add up
to zero.

We first consider the cancellation of the two factors associated to an inner
edge and an external inner vertex. Below we depict the possible relative
positions (subscripts reflect the path order). We give a different argument in
each case. We denote the label of the vertex vi by sxi.

v1

v2 v3 I

v2

v3

v1

II

v1

v2 v3 III

Situation I. When first contracting {v1, v2} and then applying dsŌ to the
label of v3, we get an extra minus than if we proceed in the opposite order.
This is caused by encountering before v3 the label s(x1 ◦i x2), of total degree
‖x1‖ + ‖x2‖ + 1, compared to the separate labels sx1 and sx2 of degrees
‖x1‖+ 1 and ‖x2‖+ 1, respectively. Here v2 is in the ith incoming edge of v1.

Situation II. When first contracting {v2, v3} and then applying dsŌ to the
label v1, we also get an extra minus sign than if we proceed in the other way.
This comes from the pondering sign in the definition of d2, which includes −1
up to the sum of the total degrees of the labels before v2. The only different
label is that of v1, which is s(dsŌ(sx1)) in the first case, of total degree ‖x1‖,
and sx1 in the second case, of total degree ‖x1‖+ 1.

Situation III. First contracting {v1, v3} and then applying dFc(sŌ) to v2

results in a sign

(−1)‖mT ‖<v1 (−1)‖sx3‖‖mT ‖
>v1
<v3 (−1)‖x1‖(−1)‖mT ‖<v1 (−1)‖x1‖+‖x3‖+1(−1)‖mT ‖

>v1
<v2 .

Here and below, we jointly consider the pondering signs of dFc(sŌ) and d2

and the sign in the definition of d̂2,i.
On the other hand, first applying dsŌ to v2 and then contracting {v1, v3}

results in a sign

(−1)‖mT ‖<v1 (−1)‖sx1‖(−1)‖mT ‖
>v1
<v2 (−1)‖mT ‖<v1 (−1)‖sx3‖(‖mT ‖

>v1
<v3
−1)(−1)‖x1‖,

which is opposite to the previous one.
We finally tackle the troublesome situation, which involves an inner edge

{v1, v2}, v1 < v2; three related vertices, v1, v2, and the vertex created by
contraction; and the corresponding three summands. We have remarked
above that these summands have the same underlying tree and only differ
in the labels of the vertex created by contraction. In the analysis below, we
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incorporate signs to this label. Assume that v2 is in the ith incoming edge of
v1.

If we first contract {v1, v2} and the apply dsŌ to the vertex obtained by
contraction, the label of that vertex will be

−(−1)‖mT ‖<v1 (−1)‖sx2‖‖mT ‖
>v1
<v2 (−1)‖x1‖(−1)‖mT ‖<v1sdŌ(x1 ◦i x2).

If we first apply dsŌ to the label of v1 and then contract {v1, v2}, the label
of the vertex created by contraction is

−(−1)‖mT ‖<v1 (−1)‖mT ‖<v1 (−1)‖sx2‖‖mT ‖
>v1
<v2 (−1)‖x1‖−1s(dŌ(x1) ◦i x2).

If we first apply dsŌ to the label of v2 and then contract {v1, v2}, the label is

−(−1)‖mT ‖<v1+‖sx1‖+‖mT ‖
>v1
<v2

(−1)‖mT ‖<v1 (−1)(‖sx2‖−1)‖mT ‖
>v1
<v2 (−1)‖x1‖s(x1 ◦i dŌ(x2)).

The sum of the three previous labels vanishes by the operadic Leibniz rule,
which says that

dŌ(x1 ◦i x2) = dŌ(x1) ◦i x2 + (−1)‖x1‖x1 ◦i dŌ(x2).

Denote by AugOpr, ConilCoopr, and CoaugCoopr the full subcategories
of AugOp, ConilCoop, and CoaugCoop, respectively, consisting of reduced
objects. In full analogy with the ns-bar construction, we define a functor

BΣ : AugOpr → ConilCoopr ⊂ CoaugCoopr,

called the bar construction. The underlying collection of bigraded k-modules
of BΣ(O) is that of F cΣ(sŌ). Also, the coproduct ∆BΣ(O) = ∆FcΣ(sŌ), the
counit εBΣ(O) = εFcΣ(sŌ), and the coaugmentation ηBΣ(O) = ηFcΣ(sŌ). The
differential, however, is perturbed

dBΣ(O) := dFc(sŌ) + d2

by d2, which is defined as above in terms of the morphisms d̂2,i. It is just a
matter of checking that the definition of d2 does not depend on the equiva-
lence relation defining F cΣ(sŌ) as a quotientt. The previous proofs that d2

and dBΣ(O) square to zero also work in the symmetric case. Moreover, we
can also regard O as an ns-operad, forgetting the symmetric group actions.
Then, the natural projection (2.2.3) induces a coaugmented cooperad map

B(O)⊗ k[Σ]� BΣ(O), (2.3.5)
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which is also surjective.
The nonsymmetric bar construction has a left adjoint

Ω : ns-CoaugCoopr → ns-AugOpr,

called the nonsymmetric cobar construction.
The desuspension s−1 in the category of graded complexes is the inverse of

the suspension functor above. More precisely, given a graded complex X, its
desuspension s−1X is a graded complex equipped with a natural isomorphism
s−1 : X ∼= s−1X of bidegree (0,−1). In particular,

(s−1X)i,j = Xi,j+1,

ds
−1X(s−1x) = −s−1(dXx).

Given a reduced nonsymmetric coaugmented cooperad C, the underlying
sequence of bigraded k-modules of Ω(C) is that of F(s−1C̄). Also, the product
µΩ(C) = µF(s−1C̄), the unit ηΩ(C) = ηF(s−1C̄), and the augmentation εΩ(C) =
εF(s−1C̄). The ns-cobar construction Ω(C) differs from F(s−1C̄) only in its
differential dΩ(C), which is

dΩ(C) := dF(s−1C̄) + d2.

Let us define the second summand.
Since Ω(C) is free as an operad of bigraded modules, Ω(C) = F(s−1C̄),

there exists a unique degree −1 map d2 : Ω(C) → Ω(C) of sequences of bi-
graded modules satisfying the operadic Leibniz rule with a fixed restriction
to the generating sequence s−1C̄. The restriction of d2 to the generating
sequence will be a certain map

d̂2 : s−1C̄ −→ (s−1C̄) ◦(1) (s−1C̄) = F(s−1C̄)(2) ⊂ Ω(C)

landing in the weight 2 part of the free operad F(s−1C̄), see Definition 2.1.8.
In order to define d̂2, we consider the infinitesimal decomposition ∆(1) : C →
C ◦(1) C in Definition 1.4.14. Given x ∈ C̄(n), if

∆(1)(x)− idO⊗x− x⊗ id⊗nO =
∑
l

x1,l ⊗ x2,l (2.3.6)

then we set

d̂2(s−1x) = −
∑
l

(−1)||x1,l||s−1x1,l ⊗ s−1x2,l. (2.3.7)
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In [16, 6.5.2], the authors seem to have forgotten the substraction of idO⊗x
and x ⊗ id⊗nO from ∆(1)(x). This is necessary since otherwise ∆(1)(x) lands
in C ◦(1) C, not in the smaller direct summand C̄ ◦(1) C̄.

Graphically, when we apply d2 to an ns-labeled tree mT with leaves we
obtain a summation of such labeled trees whose underlying shapes are ob-
tained from T by blowing up inner vertices, creating new inner edges. The
number of summands is impossible to quantify in general, since it depends on
the decomposition of ∆(1)(x) as a sum of tensors. Nevertheless, the following
picture is illustrative of how d2 works.

· · ·

· · ·

· · ·

←
→ d̂2∑

±

Proving that both d2 and dΩ(C) square to zero is much easier than for
the bar construction, since it is enough to check it on free operad generators.
This follows almost immediately from the coassociativity of ∆, hence we omit
the details.

The same procedure defines the cobar construction in the symmetric con-
text,

ΩΣ : CoaugCoopr → AugOpr,

which is left adjoint to the bar construction, i.e. ΩΣ(C) is FΣ(s−1C̄) with
differential perturbed by a certain d2 defined in terms of the infinitesimal
decomposition in Definition 1.4.19 and the weight filtration in Definition
2.1.15.

2.4 Quadratic operads and cooperads

Quadratic operads appear in nature quite frequently as models for algebras of
different kind. Quadratic cooperads arise in Koszul duality theory as Koszul
duals of quadratic operads.
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Definition 2.4.1. An ns-operadic quadratic data (E,R) is a reduced se-
quence E with trivial differential dE = 0, together with a subsequence
R ⊂ E ◦(1) E. The elements of E are called generating operations and the
elements of R are called relators.

An ns-operadic ideal of an ns-operad O is a subsequence J ⊂ O such
that x ◦i y ∈ J if either x ∈ J or y ∈ J .

Equivalently, an ns-operadic ideal is a subsequence J ⊂ O such that the
ns-operad structure of O passes to the (arity-wise) quotient O/J . We refer
to O/J as the quotient ns-operad.

Given ns-operadic quadratic data (E,R), we define the associated quadra-
tic ns-operad (E|R) = F(E)/(R) as the quotient of the free ns-operad on
the generating operations by the ns-operaic ideal (R) ⊂ F(E) generated by
R ⊂ E ◦(1) E = F(E)(2) ⊂ F(E) in weight 2, see Definition 2.1.8. We say
that (E,R) is a presentation of (E|R). Notice that (E|R) is reduced since E
is reduced.

The ns-operad (E|R) is universal (initial) among operads O fitting into
a commutative diagram

R �
�

//

0

::F(E) // O.

Since (R) is a weight-homogeneous ideal (generated in weight 2), the weight
grading passes to (E|R). Moreover, (E|R) coincides in weights 0 and 1
with F(E). In particular, (E|R) is augmented. The augmentation is the
projection onto the weight 0 part. The weight ≤ 2 part is

(E|R)(0) = I,

(E|R)(1) = E,

(E|R)(2) = (E ◦(1) E)/R.

The formulas in higher weights are slightly more complicated, but still friendly
quotients.

The previous definitions carry over to the symmetric setting with minor
modifications.

Definition 2.4.2. An operadic quadratic data (E,R) is a reduced collection
E with trivial differential dE = 0, together with a subcollection R ⊂ E ◦Σ,(1)

E. The elements of E are called generating operations and the elements of
R are called relators.

An operadic ideal of an operad O is an ns-operadic ideal such that J ⊂ O
is a subcollection, i.e. closed under the action of the permutation groups.
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Equivalently, a subcollection J ⊂ O is an operadic ideal if the operad
structure of O passes to the quotient operad O/J , see e.g. [16, 5.2.14].

Given operadic quadratic data (E,R), we define the quadratic operad
(E|R) = FΣ(E)/(R) as the quotient of the free operad on the generating
operations by the operaic ideal (R) ⊂ FΣ(E) generated in weight 2 by R ⊂
E ◦Σ,(1) E = FΣ(E)(2) ⊂ FΣ(E), see Definition 2.1.15. We say that (E,R) is
a presentation of (E|R). We see that (E|R) is reduced since E is reduced.

The quadratic operad (E|R) is universal in the same way as its nonsym-
metric counterpart. Moreover, it is weight graded since R is weight homoge-
neous, it is augmented by the projection onto the weight 0 part, and admits
the same description in weights ≤ 2.

We now go for the cooperadic analogues.

Definition 2.4.3. A sub-ns-cooperad C of an ns-cooperad D is a cooperad
which is also a subsequence C ⊂ D in such a way that this inclusion is a
morphism of ns-cooperads.

Given ns-operadic quadratic data (E,R), the associated quadratic ns-
cooperad (E|R)c is the sub-ns-cooperad of the cofree conilpotent coaugmented
ns-cooperad F c(E) which is universal (final) among the ns-cooperads C fitting
into a commutative diagram

C //

0

66
F c(E) // // (E ◦1 E)/R.

Here the first horizontal map must be a cooperad map, and � is the com-
position of the projection onto the weight 2 part F c(E)(2) = E ◦(1) E with
the natural projection onto the quotient (E ◦(1) E)/R. We say that (E,R)
is a copresentation of (E|R)c. In this framework, we refer to the elements of
E as the generating cooperations and to the elements of R as the corelators.
Notice that (E|R)c is reduced since it is a sub-ns-cooperad of F c(E), the
latter being reduced since E is.

The quadratic ns-cooperad (E|R)c is a sub-ns-cooperad of F c(E) and
inherits its weight grading. In lower weights it looks like

(E|R)(0)
c = I,

(E|R)(1)
c = E,

(E|R)(2)
c = R.

It is coaugmented by the inclusion of the weight 0 piece.
Let us go symmetric.
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Definition 2.4.4. Given a cooperad D a subcooperad C ⊂ D is a subcollec-
tion and a cooperad such that the inclusion is a morphism of cooperads.

Given operadic quadratic data (E,R), the associated quadratic cooperad
(E|R)c is the sub-cooperad of the cofree conilpotent coaugmented coop-
erad F cΣ(E) with the same universal property as its nonsymmetric analogue.
Again, we say that (E,R) is a copresentation of (E|R)c. Notice that (E|R)c
is reduced since it is a sub-cooperad of F cΣ(E), the latter being reduced since
E is.

The quadratic cooperad (E|R)c inherits the weight grading from the
cofree conilpotent coaugmented cooperad, see [16, 7.1.4], it is given by the
same formulas as in the nonsymmetric case in weights 0, 1 and 2, and it is
coaugmented by the inclusion of the weight 0 part.

2.5 The Koszul dual cooperad

The Koszul duality theory of quadratic operads (in the category of plain chain
complexes) allows to construct quasi-isomorphic operads with underlying free
graded operads which are minimal in a precise sense. Algebras over these new
operads are called homotopy algebras. We here review the relevant notions
and methods of computation, in the category of graded complexes, where
quasi-isomorphisms are defined in the obvious way. Everything extends nat-
urally from complexes to graded complexes since, except for the bigrading,
all constructions depend only on the underlying total complex in the sense
of Example 1.1.12, and the total complex functor is strong monoidal.

Definition 2.5.1. The Koszul dual ns-cooperad of the quadratic ns-operad
(E|R) is the quadratic ns-cooperad

O¡ := (sE|s2R)c.

This makes sense, i.e. (sE, s2R) are ns-operadic quadratic data since R ⊂
E ◦(1) E and

(sE) ◦(1) (sE) ∼= s2(E ◦(1) E) : sx⊗ sy 7→ (−1)||x||s2(x⊗ y).

We now explain how to compute this quadratic ns-cooperad from the
nonsymmetric bar construction of O = (E|R).

Remember that both quadratic ns-operads and cofree ns-cooperads are
weight graded, see Definition 2.1.8. There is an induced weight degree on
B(E|R) = F c(sŌ). The weight of an ns-labeled planted planar tree with
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leaves with labels sx1, . . . , sxk is the sum of the weights of the labels after
removing s,

w(x1) + · · ·+ w(xk).

Notice that Ō is concentrated in weight degrees ≥ 1, hence the weight 0
part of B(E|R) is just I. In order to remedy this situation, we consider the
following related grading. The syzygy degree of an ns-labeled planted planar
tree with leaves mT in B(E|R) is its weight degree minus the number of inner
vertices of T , i.e. if the labels of mT are sx1, . . . , sxk, its syzygy degree is

w(x1) + · · ·+ w(xk)− k.

The component of B(E|R) of syzygy degree d is denoted by Bd(E|R), whereas
the component of homological bidegree (r, s) is denoted by (B(E|R))r,s. Note
that

B0(E|R) = F c(E)

since (E|R)(1) = E.
Since E carries a trivial differential, then so does (E|R), and the differen-

tial on B(E|R) reduces to d2. Clearly, the differential d2, defined in Section
2.3, preserves the weight and raises the syzygy degree by +1. It follows that
B(E|R) is a cochain complex with respect to the syzygy degree, which splits
with respect to the weight grading. Hence the associated cohomology groups
will be bigraded by the syzygy degree and by the weight degree.

By definition

O¡ ⊂ F c(sE) = B0(E|R) ⊂ B(E|R).

Proposition 2.5.2. Assume that O = (E|R) is aritywise projective. Then
the previous ns-cooperad inclusion i : O¡ � B(E|R) induces an isomorphism
of ns-cooperads with trivial differential:

i : O¡ ∼=−→ H0(B•O).

The proof is similar in nature to the proof of [16, Proposition 7.3.1].
However, in [16, Proposition 7.3.1] the authors are working over a ground
field, whereas we work over an arbitrary commutative ring. In [8, 5.2.5] it is
proved that, over a commutative ring, it is enough to assume that O = (E|R)
is aritywise projective (which is a standing a assumption in that paper [8,
0.1]) in order to assure that the previous proposition still holds. Moreover,
O = (E|R) is connected in the sense of [8, 5.1.3] since E, and hence O, is
reduced and we have seen in the previous section that O reduces to I in
weight 0.
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As we have remarked in the first paragraph of this section, working in
the slightly more general setting of graded complexes does not compromise
the validity of the quoted results, which are in principle for chain complexes,
since the previous constructions are defined in terms of tensor products, and
the totalization functor in Example 1.1.12 is strong monoidal.

Definition 2.5.3. A quadratic ns-operad O = (E|R) is Koszul if the inclu-
sion i : O¡ � B(E|R) is a quasi-isomorphism of ns-cooperads, i.e. if Hn(B•O)
is trivial in syzygy degree n ≥ 1.

Since (Ō¡)(1) = sE, this gives a natural projection s−1Ō¡ � E, the pro-
jection onto the weight 1 part. This induces a surjective ns-operad map
p : ΩO¡ � O given by

F(s−1Ō¡)
F(s−1Ō¡�E)

// F(E) // // (E|R).

Theorem 2.5.4. Assume that O = (E|R) and O¡ are aritywise projective.
Then the quadratic ns-operad (E|R) being Koszul is equivalent to p : ΩO¡ �
O being a quasi-isomorphism of ns-operads.

The proof is given in [8, Proposition 5.2.12] when working over complexes
of modules over a commutative ring. The conditions for this Proposition are
satisfied in our case, because of remarks [8, 5.1.2 and 5.1.3]. As before,
this theorem stays valid for graded complexes. Note that the projectivity
hypothesis for O¡ holds automatically if the ground ring is a principal ideal
domain, or more generally a Dedekind ring. Indeed, by Proposition 2.5.2, ifO
is projective then O¡ is a submodule of a projective module. The projectivity
hypothesis on O¡ also holds if the inclusion i : O¡ � B(E|R) is not only a
quasi-isomorphism, but the inclusion of a strong deformation retract, as it
often is. In this last case, k can be any commutative ground ring.

Definition 2.5.5. If O is an aritywise projective Koszul quadratic ns-operad
with O¡ also aritywise projective, we call O∞ = ΩO¡ the minimal model of
O.

The word minimal indicates that ΩO¡ is as small as possible within a
class of operad determined by O satisfying particularly good properties. We
prefer not to dive into the subtleties of minimality, for they are not relevant
in what follows, and refer the reader to [16, 6.3.4].

Everything above makes sense in the symmetric settings. Moreover, the
references provided above actually work in this more general setting. Hence,
below, we simply provide succinct symmetric statements without further
comments.
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Definition 2.5.6. The Koszul dual cooperad of a quadratic operad (E|R) is
the quadratic cooperad

O¡ := (sE|s2R)c.

Proposition 2.5.7. Assume that O = (E|R) is aritywise projective. Then
natural cooperad inclusion i : O¡ � BΣ(E|R) induces an isomorphism of
cooperads with trivial differential:

i : O¡ ∼=−→ H0(B•ΣO).

Definition 2.5.8. A quadratic operad O = (E|R) is Koszul if the inclusion
i : O¡ � BΣ(E|R) is a quasi-isomorphism of cooperads, i.e. if Hn(B•ΣO) is
trivial in syzygy degree n ≥ 1.

Theorem 2.5.9. Assume that O = (E|R) and O¡ are aritywise projective
over the ground ring. Then the quadratic operad (E|R) being Koszul is equiv-
alent to p : ΩΣO¡ � O being a quasi-isomorphism of operads.

As above, the projectivity hypothesis for O¡ holds automatically if the
ground ring is a principal ideal domain or a Dedekind ring, or if i : O¡ �
BΣ(E|R) is the inclusion of a strong deformation retract.

Definition 2.5.10. If O is an aritywise projective Koszul quadratic operad
with O¡ also aritywise projective over the ground ring, we call O∞ = ΩΣO¡

the minimal model of O.
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Chapter 3

Derived operads and their
algebras

- In the process of its internal development and prompted by its inner logic,
mathematics, too, creates virtual worlds of great complexity and internal
beauty which defy any attempt to describe them in natural language but chal-
lenge the imagination of a handful of professionals in many successive gen-
erations. -
Yuri I. Manin in “Mathematics as metaphor”

In our way of approaching the construction of minimal models for operadic
algebras over a general commutative ground ring, we need to appropriately
extend classical algebra notions to bicomplexes. This is done in this chapter
in a way that will permit the later use of powerful tools from Koszul duality
theory for operads.

3.1 Derived operads

Recall that the ring of dual numbers is the quotient of a polynomial ring on
one variable ∆ by its square,

k[∆]

(∆2)
∼= k · 1⊕ k ·∆.

As a module, it is free of rank two, with basis formed by the unit and the
variable.

Definition 3.1.1. The (ns-)operad of dual numbers D is given in arity 1 by
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the ring of dual numbers

D(1) =
k[∆]

(∆2)
,

with ∆ of bidegree (−1, 0), and zero elsewhere D(n) = 0, n 6= 1. The identity
operation is clearly idD = 1.

Note that both operads and ns-operads concentrated in arity 1 are the
same as unital algebras.

Lemma 3.1.2. The (ns-)operad of dual numbers is quadratic associated to
the (ns-)operadic quadratic data (k · ∆, k · (∆ ⊗ ∆)), where k · ∆ and k ·
(∆⊗∆) are free modules of rank 1 regarded as collections (resp. sequences)
concentrated in arity 1,

D = (k ·∆|k · (∆⊗∆)).

This lemma is a mere observation. Note that the second variable of the
previous quadratic data is as big as possible, since ∆ is in arity 1,

(k ·∆) ◦(1) (k ·∆) = k · (∆⊗∆).

As any quadratic operad, the operad of dual numbers is augmented. Its
augmentation εD : D → I is defined by εD(∆) = 0.

Corollary 3.1.3. A D-algebra is the same as a graded complex (X, dX)
equipped with an extra (horizontal) differential of bidigree (−1, 0), dh : X →
X, such that, if dv = dX , dhdv + dvdh = 0, i.e. a bicomplex (X, dh, dv).

Proof. A map ψ : D → E(X) providing a D-algebra structure is determined
by the choice of ψ(∆) = dh satisfying d2

h = 0. Moreover, since the dual
numbers have trivial differential, the compatibility of ψ with differentials is
equivalent to 0 = d[X,X](dh) = dXdh + dhd

X .

Definition 3.1.4. Let O be an ns-operad. We define the morphism of se-
quences ϕ : D ◦ O → O ◦ D by

ϕ(1⊗ x) = x⊗ 1⊗ · · · ⊗ 1,

ϕ(∆⊗ x) = (−1)‖x‖
arity of x∑
i=1

x⊗ 1⊗ · · · ⊗ 1⊗ ∆︸︷︷︸
i-th place

⊗1⊗ · · · ⊗ 1.

Indeed, ϕ is a well-defined map of sequences since D◦O = (k[∆]/(∆2))⊗
O.
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Lemma 3.1.5. The map of sequences ϕ in Definition 3.1.4 is a distributive
law.

Proof. We must check that the diagrams in Definition 1.2.4 commute. The
commutativity of 3 and 4 is equivalent to the following two formulas,

ϕ(∆⊗ idO) = idO⊗∆,

ϕ(1⊗ x) = x⊗ 1⊗ · · · ⊗ 1,

for x ∈ O. In order to check the commutativity of 1, we must consider four
kinds of elements in D ◦ (D ◦ O):

1. 1⊗ (1⊗ x).

2. 1⊗ (∆⊗ x).

3. ∆⊗ (1⊗ x).

4. ∆⊗ (∆⊗ x).

Again x ∈ O. We will deal with these four cases separately. In each of the
cases, we must check that the result of two series of equations coincide.

Case 1. On the one hand,

(1O ◦ µD)(ϕ ◦ 1D)(1D ◦ ϕ)(1⊗ (1⊗ x))

= (1O ◦ µD)(ϕ ◦ 1D)(1⊗ (x⊗ 1⊗ · · · ⊗ 1))

= (1O ◦ µD)(ϕ ◦ 1D)((1⊗ x)⊗ 1⊗ · · · ⊗ 1)

= (1O ◦ µD)((x⊗ 1⊗ · · · ⊗ 1)⊗ 1⊗ · · · ⊗ 1)

= (1O ◦ µD)(x⊗ (1⊗ 1)⊗ · · · ⊗ (1⊗ 1))

= x⊗ 1⊗ · · · ⊗ 1.

Here, and below, we use the associators of ◦. On the other hand,

ϕ(µD ◦ 1O)(1⊗ (1⊗ x)) = ϕ(µD ◦ 1O)((1⊗ 1)⊗ x)

= ϕ(1⊗ x)

= x⊗ 1⊗ · · · ⊗ 1.
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Case 2. On the one hand,

(1O ◦ µD)(ϕ ◦ 1D)(1D ◦ ϕ)(1⊗ (∆⊗ x))

= (−1)‖x‖
arity of x∑
i=1

(1O ◦ µD)(ϕ ◦ 1D)(1⊗ (x⊗ 1⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · ⊗ 1))

= (−1)‖x‖
arity of x∑
i=1

(1O ◦ µD)(x⊗ (1⊗ 1)⊗ · · · ⊗ (1⊗∆)︸ ︷︷ ︸
i-th place

⊗ · · · ⊗ (1⊗ 1))

= (−1)‖x‖
arity of x∑
i=1

x⊗ 1⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · ⊗ 1.

On the other hand,

ϕ(µD ◦ 1O)((1⊗∆)⊗ x) = ϕ(∆⊗ x)

= (−1)‖x‖
arity of x∑
i=1

x⊗ 1⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · ⊗ 1.

Case 3. On the one hand,

(1O ◦ µD)(ϕ ◦ 1D)(1D ◦ ϕ)(∆⊗ (1⊗ x))

= (1O ◦ µD)(ϕ ◦ 1D)(∆⊗ (x⊗ 1⊗ · · · ⊗ 1))

= (−1)‖x‖
arity of x∑
i=1

(1O ◦ µD)(x⊗ (1⊗ 1)⊗ · · · ⊗(∆⊗ 1)︸ ︷︷ ︸
i-th place

⊗ · · · ⊗ (1⊗ 1))

= (−1)‖x‖
arity of x∑
i=1

x⊗ 1⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · ⊗ 1.

And on the other hand,

ϕ(µD ◦ 1O)((∆⊗ 1)⊗ x) = ϕ(∆⊗ x)

= (−1)‖x‖
∑

x⊗ 1⊗ · · · ⊗∆⊗ · · · ⊗ 1,
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Case 4. In this case,

(1O ◦ µD)(ϕ ◦ 1D)(1D ◦ ϕ)(∆⊗ (∆⊗ x))

= (−1)‖x‖
arity of x∑
i=1

(1O ◦ µD)(ϕ ◦ 1D)(∆⊗ (x⊗ 1⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · ⊗ 1))

= (−1)‖x‖
arity of x∑
i,j=1

(1O ◦ µD)((x⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · )⊗ · · · ⊗ ∆︸︷︷︸
j-th place

⊗ · · · )

= (−1)‖x‖
arity of x∑
i=1

arity of x∑
j=i+1

(1O ◦ µD)(x⊗ · · · ⊗ (∆⊗ 1)︸ ︷︷ ︸
i-th place

⊗ · · ·

· · · ⊗ (1⊗∆)︸ ︷︷ ︸
j-th place

⊗ · · · )

+ (−1)‖x‖
arity of x∑
i=1

(1O ◦ µD)(x⊗ · · · ⊗ (∆⊗∆)︸ ︷︷ ︸
i-th place

⊗ · · · )

− (−1)‖x‖
arity of x∑
j=1

arity of x∑
i=j+1

(1O ◦ µD)(x⊗ · · · ⊗ (1⊗∆)︸ ︷︷ ︸
j-th place

⊗ · · ·

· · · ⊗ (∆⊗ 1)︸ ︷︷ ︸
i-th place

⊗ · · · )

= (−1)‖x‖
arity of x∑
i=1

arity of x∑
j=i+1

(x⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · ⊗ ∆︸︷︷︸
j-th place

⊗ · · · )

− (−1)‖x‖
arity of x∑
j=1

arity of x∑
i=j+1

(x⊗ · · · ⊗ ∆︸︷︷︸
j-th place

⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · )

= 0.

Here we use that µD(∆⊗∆) = 0 and the fact that ∆ has odd total degree.
For this very same reason,

ϕ(µD ◦ 1O)((∆⊗∆)⊗ x) = 0

In order to check the commutativity of 2, it is enough to consider two
kinds of elements in (D ◦ O) ◦ O:

1. (1⊗ x0)⊗ x1 ⊗ · · · ⊗ xn.

2. (∆⊗ x0)⊗ x1 ⊗ · · · ⊗ xn.
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Here xi ∈ O and x0 has arity n. Again, we consider each case separately.
Case 1. On the one hand,

(µO ◦ 1D)(1O ◦ ϕ)(ϕ ◦ 1O)((1⊗ x0)⊗ x1 ⊗ · · · ⊗ xn)

= (µO ◦ 1D)(1O ◦ ϕ)((x0 ⊗ 1⊗ · · · ⊗ 1)⊗ x1 ⊗ · · · ⊗ xn)

= (µO ◦ 1D)(1O ◦ ϕ)(x0 ⊗ (1⊗ x1)⊗ · · · ⊗ (1⊗ xn))

= (µO ◦ 1D)(x0 ⊗ (x1 ⊗ 1⊗ · · · ⊗ 1)⊗ · · · ⊗ (xn ⊗ 1⊗ · · · ⊗ 1))

= (µO ◦ 1D)((x0 ⊗ x1 ⊗ · · · ⊗ xn)⊗ 1⊗ · · · ⊗ 1)

= µO(x0 ⊗ x1 ⊗ · · · ⊗ xn)⊗ 1⊗ · · · ⊗ 1.

Here, and below, we use the associators of ◦. On the other hand,

ϕ(1D ◦ µO)(1⊗ (x0 ⊗ x1 ⊗ · · · ⊗ xn))

= ϕ(1⊗ µO(x0 ⊗ x1 ⊗ · · · ⊗ xn))

= µO(x0 ⊗ x1 ⊗ · · · ⊗ xn)⊗ 1⊗ · · · ⊗ 1.

Case 2. On the one hand,

(µO ◦ 1D)(1O ◦ ϕ)(ϕ ◦ 1O)((∆⊗ x0)⊗ x1 ⊗ · · · ⊗ xn)

= (−1)‖x0‖
arity of x0∑

i=1

(µO ◦ 1D)(1O ◦ ϕ)((x0 ⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · )⊗ x1 ⊗ · · · ⊗ xn)

= (−1)
∑i−1
j=0‖xj‖

arity of x0∑
i=1

(µO ◦ 1D)(1O ◦ ϕ)(x0 ⊗ (1⊗ x1)⊗ · · ·

· · · ⊗ (∆⊗ xi)⊗ · · · ⊗ (1⊗ xn))

= (−1)
∑i
j=0‖xj‖

arity of x0∑
i=1

arity of xi∑
l=1

(µO ◦ 1D)(x0 ⊗ (x1 ⊗ 1⊗ · · · ⊗ 1)⊗ · · ·

· · · ⊗ (xi ⊗ · · · ⊗ ∆︸︷︷︸
l-th place

⊗ · · · )⊗ · · · ⊗ (xn ⊗ 1⊗ · · · ⊗ 1))

= (−1)
∑n
j=0‖xn‖

∑n
l=1 arity of xl∑

i=1

(µO ◦ 1D)((x0 ⊗ x1 ⊗ · · · ⊗ xn)⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · )

= (−1)‖x0⊗x1⊗···⊗xn‖
arity of x0⊗x1⊗···⊗xn∑

i=1

(µO(x0 ⊗ x1 ⊗ · · · ⊗ xn)⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · ).
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On the other hand,

ϕ(1D ◦ µO)(∆⊗ (x0 ⊗ x1 ⊗ · · · ⊗ xn))

= ϕ(∆⊗ µO(x0 ⊗ x1 ⊗ · · · ⊗ xn))

= (−1)‖µO(x0⊗x1⊗···⊗xn)‖
arity of µO(x0⊗x1⊗···⊗xn)∑

i=1

µO(x0 ⊗ x1 ⊗ · · · ⊗ xn)⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · .

This computation concludes the proof.

Definition 3.1.6. The derived ns-operad of an ns-operad O is

dO := O ◦ϕ D.

The operad structure is given by Proposition 1.2.5.

We now consider the symmetric version.

Definition 3.1.7. Let O be an operad. We define the morphism of collec-
tions ϕ : D ◦Σ O → O ◦Σ D by

ϕ(1⊗ x) = x⊗ 1⊗ · · · ⊗ 1⊗ id,

ϕ(∆⊗ x) = (−1)‖x‖
arity of x∑
i=1

x⊗ 1⊗ · · · ⊗ 1⊗ ∆︸︷︷︸
i-th place

⊗1⊗ · · · ⊗ 1⊗ id .

Here id is the identity permutation.

Lemma 3.1.8. The map ϕ in Definition 3.1.7 is a distributive law.

Proof. It is a map of sequences by the same reason as in the non-symmetric
case. Indeed, D ◦Σ O = D ◦ O since D is concentrated in arity 1.

Moreover, ϕ is compatible with the symmetric group actions since, given
x ∈ O(n) and τ ∈ Σn, on the one hand,

ϕ((1⊗ x) · τ) = ϕ(1⊗ (x · τ))

= (x · τ)⊗ 1⊗ · · · ⊗ 1⊗ id

= x⊗ 1⊗ · · · ⊗ 1⊗ τ
= ϕ(1⊗ x) · τ,
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and on the other hand,

ϕ((∆⊗ x) · τ)

= ϕ(∆⊗ (x · τ))

= (−1)‖x‖
arity of x∑
i=1

(x · τ)⊗ (1⊗ · · · ⊗ 1⊗∆⊗ 1⊗ · · · ⊗ 1⊗ idn)

= (−1)‖x‖
arity of x∑
i=1

x⊗ (1⊗ · · · ⊗ 1⊗∆⊗ 1⊗ · · · ⊗ 1⊗ τ)

= ϕ(∆⊗ x) · τ.

Hence, ϕ is indeed a morphism of collections. Here we use the relations
imposed by the tensor product over Σn in

(O ◦Σ D)(n) = O(n)⊗Σn (D(1)⊗ · · · ⊗ D(1)⊗ k[Σn]).

Recall that Σn acts on the left Σn-module by permuting the first n copies of
D(1) and in the standard way on k[Σn].

The fact that ϕ satisfies the properties required to a distributive law
follows as in Lemma 3.1.5.

Definition 3.1.9. The derived operad of an operad O is

dO := O ◦Σ,ϕ D.

The operad structure is given by Proposition 1.2.5.

3.2 Derived algebras

In this section we characterize algebras over derived operads.

Definition 3.2.1. Given an (ns-)operad O, a derived O-algebra is a dO-
algebra.

Proposition 3.2.2. A derived O-algebra is an O-algebra with underlying
graded complex (X, dX) equipped with a bidegree (−1, 0) differential dh such
that dhdv + dvdh = 0, dv = dX , so X becomes a bicomplex (X, dh, dv), and
such that the O-algebra structure morphisms ρn : O(n)⊗X ⊗ · · · ⊗X → X,
n ≥ 0, in the sense of Remark 1.5.3, are compatible with the horizontal
differential on both sides, taking the trivial horizontal differential on O, i.e.

dhρ(y ⊗ x1 ⊗ · · · ⊗ xn) =
n∑
i=1

(−1)‖y‖+
∑i−1
j=1‖xj‖ρ(y ⊗ · · · ⊗ dh(xi) · · · ⊗ · · · ).

83



Proof. Let us consider the nonsymmetric case. Since dO = D ◦ϕ O, we use
the universal property of the circle product of two operads in Theorem 1.2.6.
As per that theorem, a derived O-algebra X consits of a D-algebra structure
and an O-algebra structure on the graded complex X, given by maps

ξ : O → E(X), ψ : D → E(X),

for which the following pentagonal diagram commutes

O ◦ D ξ◦ψ
// E(X) ◦ E(X)

µE(X)

��

D ◦ O

ϕ

OO

ψ◦ξ
&&

E(X)

E(X) ◦ E(X)

µE(X)

66

By Corollary 3.1.3, the D-algebra structure is equivalent to giving a horizon-
tal differential ψ(∆) = dh on X which, together with the intrinsic (vertical)
differential of the graded complex X, forms a bicomplex. Let us check that
the pentagon condition is equivalent to the compatibility of dh with the action
of O.

The pentagon condition is equivalent to, for any x ∈ O,

µE(X)(ψ ◦ ξ)(1⊗ x) = µE(X)(ξ ◦ ψ)ϕ(1⊗ x),

µE(X)(ψ ◦ ξ)(∆⊗ x) = µE(X)(ξ ◦ ψ)ϕ(∆⊗ x).

The first equation is satisfied since,

µE(X)(ψ ◦ ξ)(1⊗ x) = µE(X)(1X ⊗ ξ(x))

= ξ(x),

µE(X)(ξ ◦ ψ)ϕ(1⊗ x) = µE(X)(ξ ◦ ψ)(x⊗ 1⊗ · · · ⊗ 1)

= µE(X)(ξ(x)⊗ 1X ⊗ · · · ⊗ 1X)

= ξ(x).

For the second equation to hold, the results of the two following series of
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equations should coincide

µE(X)(ψ ◦ ξ)(∆⊗ x) = µE(X)(dh ⊗ ξ(x))

= dhξ(x),

µE(X)(ξ ◦ ψ)ϕ(∆⊗ x) = (−1)‖x‖
arity of x∑
i=1

µE(X)(ξ ◦ ψ)(x⊗ · · · ⊗ ∆︸︷︷︸
i-th place

⊗ · · · )

= (−1)‖x‖
arity of x∑
i=1

µE(X)(ξ(x)⊗ · · · ⊗ dh︸︷︷︸
i-th place

⊗ · · · ),

= (−1)‖x‖
arity of x∑
i=1

ξ(x)(. . . , dh︸︷︷︸
i-th place

, · · · ).

Since O has no horizontal differential, this is equivalent to say that the struc-
ture morphisms of the O-algebra X are maps of bicomplexes.

The symmetric case is completely analogous.

3.3 A presentation for quadratic derived op-

erads

Let O = (E|R) and P = (F |S) be two quadratic ns-operads and let ϕ : P ◦
O → O ◦ P be a distributive law. We are interested in obtaining a pre-
sentation of O ◦ϕ P , which particularizes to a presentation of the derived
operad of a quadratic operad. We will obtain it under certain hypotheses on
ϕ, specified in Theorem 3.3.2 below.

Definition 3.3.1. An ns-rewriting rule is a morphism of sequences λ : F ◦(1)

E → E ◦(1) F . The graph of the ns-rewriting rule λ is the image of(
1F◦(1)E

−λ

)
: F ◦(1) E → F ◦(1) E ⊕ E ◦(1) F.

Now define O ∨λ P as the quadratic ns-operad

O ∨λ P = (E ⊕ F |R⊕Dλ ⊕ S).

The definition of O ∨λ P makes sense since

R⊕Dλ ⊕ S ⊂ E ◦(1) E ⊕ (F ◦(1) E ⊕ E ◦(1) F )⊕ F ◦(1) F

= (E ⊕ F ) ◦(1) (E ⊕ F )

= F(E ⊕ F )(2).
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The universal property satisfied by the quadratic ns-operad O provides
a unique morphism of ns-operads α : O → O ∨λ P making the following
diagram commutative:

R F(E) F(E)
(R)

=: (E|R)

F(E ⊕ F )

F(E⊕F )
(R⊕Dλ⊕S)

=: O ∨λ P

0

0

α

Similarly, the universal property satisfied by P provides a morphism of
ns-operads β : P → O ∨λ P .

Theorem 3.3.2. Suppose ϕ : P ◦ O → O ◦ P is a distributive law which
(co)restricts to an ns-rewriting rule λ : F ◦(1)E → E ◦(1) F , in the sense that
the following diagram commutes

P ◦ O ϕ
// O ◦ P

F(F ) ◦ F(E)

(F(F )�P)◦(F(E)�O)

OOOO

F(E) ◦ F(F )

(F(E)�O)◦(F(F )�P)

OOOO

F ◦ (I ⊕ E)
?�

(F ↪→F(F ))◦(ηF(E),E↪→F(E))

OO

E ◦ (I ⊕ F )
?�

(E↪→F(E))◦(ηF(F ),F ↪→F(F ))

OO

F ◦(1) E
?�

Remark 1.4.16

OO

λ // E ◦(1) F
?�

Remark 1.4.16

OO

Then the map p = µO∨λP(α ◦ β) : O ◦ϕ P → O ∨λ P is an isomorphism of
ns-operads. Moreover, ϕ := p−1µO∨λP(β ◦ α).

Proof. We are going to define an operad map

p−1 : O ∨λ P → O ◦ϕ P
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by using the universal property of the quadratic operad O ∨λ P . We will
later show that this map is the inverse of p, but for the moment p−1 will
only be an independent symbol. To this end, define p−1

|E : E → O◦ϕ P as the
composition

E ↪→ F(E)� O ∼= O ◦ I 1O◦ηP−−−−→ O ◦ϕ P

and p−1|F : F → O ◦ϕ P as

F ↪→ F(F )� P ∼= I ◦ P ηO◦1P−−−−→ O ◦ϕ P .

By the universal property of F(E ⊕ F ), the maps p−1|E and p−1|F induce a
morphism of ns-operads p̄ : F(E ⊕ F )→ O ◦ϕ P . In order to check that the
map p−1 is well-defined, we need to prove that p̄ vanishes on R ⊕ Dλ ⊕ S.
That p̄ vanishes on R is a consequence of the following commutative diagram,

R

0

**
� r

$$

� a

&&

O

1O◦ηP

��

F(E)� _
F(E↪→E⊕F )

��

77 77

F(E ⊕ F )
p̄
// O ◦ϕ P .

Similarly, p̄ vanishes on S since the following diagram commutes,

S

0

**� r

$$

� a

&&

P

ηO◦1P

��

F(F )� _
F(F ↪→E⊕F )

��

77 77

F(E ⊕ F )
p̄
// O ◦ϕ P .

For the vanishing on Dλ, we consider the following diagram,
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F ◦(1) E F(F ) ◦ F(E) F(E ⊕ F ) ◦ F(E ⊕ F )

E ◦(1) F (O ◦ P) ◦ (O ◦ P)

F(E) ◦ F(F ) P ◦ O (O ◦ O) ◦ (P ◦ P)

F(E ⊕ F ) ◦ F(E ⊕ F )

(O ◦ P) ◦ (O ◦ P) (O ◦ O) ◦ (P ◦ P) O ◦ P

in the diagram of
the statement

induced by
the inclusions
of the factors
of E ⊕ F

λ

in the diagram
of the state-
ment

induced by the
inclusions of
the factors of
E ⊕ F

p̄◦p̄

p̄◦p̄

1O◦ϕ◦1P

1O◦ϕ◦1P

µO◦µP

µO◦µP

prP ◦ prO

ηO◦1P◦1O◦ηP

ϕ

prO ◦ prP

1O◦ηO◦ηP◦1P

1O◦ηO◦ηP◦1P

ηO◦1O◦1P◦ηP

ϕ (co)restricts to λ

definition of p̄

definition of p̄

functoriality
of ◦

Definition 1.2.4

unitality
u

n
it

a
li
ty

Here we denote by prO : F(E) � O and prP : F(F ) � P the natural pro-
jections onto the quotient ns-operads. Each subdiagram commutes by the
indicated reason. The two loops called ‘unitality’ around the bottom right
corner compose to the identity in O ◦ P . Moreover, the two composites
E ◦(1) F → O ◦ P and F ◦(1) E → O ◦ P in the outer square going through
the bottom left corner and the top right corner, respectively, coincide with
the restriction of p̄ to E ◦(1) F and F ◦(1) E. Therefore, p̄ vanishes on Dλ,
since p̄(Dλ) is the image of the difference of the two maps E ◦(1) F → O ◦P
in the outer square, see Definition 3.3.1.

Now, the universal property of the quadratic operad O ∨λ P shows that
p̄ factors through a map that we call p−1 : O ∨λ P → O ◦ϕ P . The fact
that p−1p = 1O◦ϕP is a consequence of the commutativity of the following
diagram,
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O
◦
P

(O
∨ λ
P

)
◦

(O
∨ λ
P

)
O
∨ λ
P

F
(E
⊕
F

)
◦
F

(E
⊕
F

)
F

(E
⊕
F

)

(O
◦
P

)
◦

(O
◦
P

)
(O
◦
O

)
◦

(P
◦
P

)

F
(E

)
◦
F

(F
)

O
◦
P

O
◦
P

α
◦β

µ
O
∨
λ
P

p
r O
◦

p
r P

p
r O
◦

p
r P

p
−

1

p̄

p̄
◦p̄

µO
◦µ
P

µ
F

(E
⊕
F

)

1
O
◦ϕ
◦1
P

F(E
⊂E
⊕F

)◦F
(F
⊂E
⊕F

)

pr
O
◦η
P◦
η
O
◦p

rP

1 O
◦η
P
◦η
O
◦1
P

1
O
◦η
O
◦η
P
◦1
P

pr
O
∨
λP
◦p

rO
∨
λP

pr
O
∨
λP

d
efi

n
it

io
n

o
f
α

a
n

d
β

p
r O
∨

λ
P

is
a
n

o
p

er
a
d

m
o
rp

h
is

m

p̄
is

a
n

o
p

er
a
d

m
o
rp

h
is

m

fu
n

ct
o
ri

a
li
ty

o
f
◦

u
n

it
a
li
ty

D
efi

n
it

io
n

1
.2

.4

b
y

d
efi

n
it

io
n

def.
of
p̄

It follows that p is injective. Furthermore, p is surjective. Indeed, the
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generators of O∨λP are represented by ns-labeled planted planar trees with
leaves, where each label is in E or in F . Moreover, generators of O ◦ϕ P are
represented by an ns-labeled planted planar tree with leaves where the labels
are in E where we have grafted on top ns-labeled planted planar trees with
leaves with labels in F . Note that the latter are part of the former. The map
p in induced by this inclusion. Actually, since the latter class is a small part
of the former, it looks like if the would not be enough to generate O ∨λ P .
Nevertheless, they are. Indeed, the relations imposed by Dλ allow to use the
ns-rewriting rule λ so that, each time we have an inner edge with bottom
label in F and top label in E, we replace it with another one where the
bottom label is in E and the top label in F instead. In this way, proceding
from bottom to top, we end up with an ns-labeled planted planar tree with
leaves in the image of p, see the following picture as a way of illustration

· · ·

F

· · ·

E
· · ·

· · ·

· · ·

F

E

F

· · ·

F

· · ·

E
· · ·

· · ·

· · ·

F

F

E

λ

This is actually why λ is called a rewriting rule.
Since p is bijective, it is an isomorphism. Moreover, since p−1 is left

inverse to the isomorphism p, then p−1 is actually the inverse isomorphism.
The formula for ϕ at the end of the statement is a consequence of the

following commutative diagram,
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P
◦
O

(O
∨ λ
P

)
◦

(O
∨ λ
P

)
O
∨ λ
P

F
(E
⊕
F

)
◦
F

(E
⊕
F

)
F

(E
⊕
F

)

(O
◦
P

)
◦

(O
◦
P

)
(O
◦
O

)
◦

(P
◦
P

)

F
(F

)
◦
F

(E
)

P
◦
O

O
◦
P

β
◦α

µ
O
∨
λ
P

p
r P
◦

p
r O

p
r P
◦

p
r O

p
−

1

p̄

p̄
◦p̄

µO
◦µ
P

µ
F

(E
⊕
F

)

1
O
◦ϕ
◦1
P

F(F
⊂E
⊕F

)◦F
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⊂E
⊕F

)

η
O
◦p
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◦p

rO
◦η
P

η O
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O
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P

ϕ
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The previous theorem applies to the distributive law in Definition 3.1.4
in case O is quadratic. Hence we obtain the following corollary.

Corollary 3.3.3. Let O = (E|R) be a quadratic ns-operad. Consider the
ns-rewriting rule

λ : k ·∆ ◦(1) E → E ◦(1) k ·∆

∆⊗ x 7→ (−1)‖x‖
arity of x∑
i=1

x⊗ 1⊗ · · · ⊗ 1⊗ ∆︸︷︷︸
i-th position

⊗1⊗ · · · ⊗ 1.

Then the ns-operad dO admits the following quadratic presentation

dO = (k ·∆⊕ E|k · (∆⊗∆)⊕Dλ ⊕R).

We now state the corresponding definition and results in the symmetric
setting, where everything works mutatis mutandis. Let O = (E|R) and
P = (F |S) be now two quadratic operads.

Definition 3.3.4. A rewriting rule is a morphism of collections λ : F ◦Σ,(1)

E → E ◦Σ,(1) F . From such a rewriting rule, we can define Dλ and O ∨Σ,λ P
as in Definition 3.3.1.

We can also define the maps α : O → O ∨Σ,λ P and β : P → O ∨Σ,λ P as
above.

Theorem 3.3.5. For any distributive law ϕ : P ◦Σ O → O ◦Σ P which
(co)restricts to a rewriting rule λ : F ◦Σ,(1) E → E ◦Σ,(1) F in the sense
of Theorem 3.3.2, the map p = µO∨λP(α ◦Σ β) : O ◦ϕ P → O ∨λ P is an
isomorphism of operads. Moreover, ϕ = p−1µO∨λP(β ◦Σ α).

In the statement of this theorem, the symmetric analogue of the commu-
tative diagram in Theorem 3.3.2 should use Remark 1.4.20 instead of Remark
1.4.16.

Corollary 3.3.6. Let O = (E|R) be a quadratic operad. Consider the rewrit-
ing rule

λ : k ·∆ ◦Σ,(1) E → E ◦Σ,(1) k ·∆

∆⊗ x 7→ (−1)‖x‖
arity of x∑
i=1

x⊗ 1⊗ · · · ⊗ 1⊗ ∆︸︷︷︸
i-th position

⊗1⊗ · · · ⊗ 1⊗ id .

Here id denotes the identity permutation. Then the ns-operad dO admits the
following quadratic presentation

dO = (k ·∆⊕ E|k · (∆⊗∆)⊕Dλ ⊕R).
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Chapter 4

Koszul duality of derived
operads

- He deals the cards to find the answer
The sacred geometry of chance
The hidden laws of a probable outcome
The numbers lead a dance -
Sting and Dominic Miller, “The Shape Of My Heart”

This is the main chapter of this thesis, insofar as the results here will
allow in the next chapter the definition of a nice notion of derived homo-
topy algebra over an operad where minimal models of operadic algebras live.
In fact, the applications and explicit computations in the next chapter are
more or less formal consequences of strong results on the Koszul duality
theory of derived operads proven here. We show that, under the standard
projectivity assumptions, the derived operad of a quadratic Koszul operad
is again Koszul, and we explicitly compute its Koszul dual cooperad. We
start working in the nonsymmetric context and later deduce the symmetric
versions under the extra assumption that the ground ring contains the ratio-
nals. This assumption, which seems to us unavoidable, is also standard in
the homotopy theory of symmetric operads [12, 13].

The results of this chapter can be regarded as far reaching generalizations
of what Livernet, Roitzheim, and Whitehouse did in [15] for the associative
operad. Our techniques are however rather different, since we work over
rather generic quadratic Koszul operads.
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4.1 The trivial distributive law

Dealing directly with derived operads would be utterly complicated. This is
why we first need to deal with similar operads constructed from an easier
distributive law, that we now define. In this whole section we place ourselves
in the nonsymmetric setting.

Definition 4.1.1. Let O and P be augmented ns-operads. Recall that they
decompose as sequences, O = I ⊕ Ō, P = I ⊕ P̄ , see (1.4.2). Actually, Ō
and P̄ are operadic ideals. We define the trivial distributive law

ϕ0 : P ◦ O → O ◦ P

as

ϕ0(y ⊗ idO⊗ · · · ⊗ idO) = idO⊗y, (4.1.2)

ϕ0(idP ⊗x) = x⊗ idP ⊗ · · · ⊗ idP , (4.1.3)

ϕ0(y ⊗ x1 ⊗ · · · ⊗ xn) = 0 if y ∈ P̄ and xi ∈ Ō for some 1 ≤ i ≤ n.

Here, ϕ0 is a well-defined map of sequences since

(P ◦ O)(n) =
⊕
k≥0,

l1+···+lk=n

(I ⊕ P̄)(k)⊗ (I ⊕ Ō)(l1)⊗ · · · ⊗ (I ⊕ Ō)(lk).

This sequence contains

P(n)⊗ (k · idO)⊗ · · · ⊗ (k · idO) ∼= P(n)

and
(k · idP)⊗O(n) ∼= O(n)

as direct summands. The formula for ϕ0 maps these two summands isomor-
phically to the direct summands

(k · idO)⊗ P(n) ∼= P(n)

and
O(n)⊗ (k · idP)⊗ · · · ⊗ (k · idP) ∼= O(n)

of (O ◦ P)(n), respectively, and the rest of direct summands of (P ◦ O)(n)
to zero, n ≥ 0.

The trivial distributive law has been considered in [16, 8.6.4] for the spe-
cial case of quadratic operads. However, it was wrongly stated that ϕ0 is
identically trivial, which would violate some of the conditions that a dis-
tributive law must satisfy (Definition 1.2.4). Actually, checking in general
that the trivial distributive law is indeed a distributive law requires some
work. We now tackle this task.
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Lemma 4.1.4. The map of sequences ϕ0 in Definition 4.1.1 is indeed a
distributive law.

Proof. We check the commutativity of the four diagrams in Definition 1.2.4.
Diagrams 3 and 4 are equivalent to (4.1.2) and (4.1.3), respectively. This is
why a distributive law cannot be identically zero.

The commutativity of 2 is equivalent to saying that, given t = y0 ⊗ z1 ⊗
· · · ⊗ zn ∈ P ◦ (P ◦ O), with zi = yi ⊗ xi,1 ⊗ · · · ⊗ xi,li , yi ∈ P , xi,j ∈ O,

(1O ◦ µP)(ϕ0 ◦ 1P)(1P ◦ ϕ0)(t) = ϕ0(µP ◦ 1O)(t). (4.1.5)

We will distinguish several cases.
Assume that, for some 1 ≤ i ≤ n and some 1 ≤ j ≤ li, yi ∈ P̄ and

xi,j ∈ Ō. Then ϕ0(zi) = 0, hence (1P ◦ϕ0)(t) = 0, in particular the left hand
side of (4.1.5) vanishes. Concerning the right hand side,

ϕ0(µP ◦ 1O)(t) = ±ϕ0(µP(y0 ⊗ y1 ⊗ · · · ⊗ yn)⊗ x1,1 ⊗ · · · ⊗ xn,ln) = 0.

Here we use that P̄ is an operadic ideal, so µP(y0 ⊗ y1 ⊗ · · · ⊗ yn) ∈ P̄ since
yi ∈ P̄ .

Otherwise, for each 1 ≤ i ≤ n, we can suppose that either yi = idP or
xi,1 = · · · = xi,li = idO. We now distinguish some subcases of this one.

Suppose that xi,1 = · · · = xi,li = idO for all 1 ≤ i ≤ n, so ϕ0(zi) = idO⊗yi.
Then, on the one hand, the left hand side of (4.1.5) is

(1O ◦ µP)(ϕ0 ◦ 1P)(1P ◦ ϕ0)(t)

= (1O ◦ µP)(ϕ0 ◦ 1P)(y0 ⊗ (idO⊗y1)⊗ · · · ⊗ (idO⊗yn))

= (1O ◦ µP)(ϕ0 ◦ 1P)((y0 ⊗ idO⊗ · · · ⊗ idO)⊗ y1 ⊗ · · · ⊗ yn)

= (1O ◦ µP)((idO⊗y0)⊗ y1 ⊗ · · · ⊗ yn)

= (1O ◦ µP)(idO⊗(y0 ⊗ y1 ⊗ · · · ⊗ yn))

= idO⊗µP(y ⊗ y1 ⊗ · · · ⊗ yn).

Here and below we use the associativity isomorphism for the circle product.
On the other hand, the right hand side of (4.1.5) is

ϕ0(µP ◦ 1O)(t)

= ϕ0(µP ◦ 1O)((y0 ⊗ y1 ⊗ · · · ⊗ yn)⊗ idO⊗ · · · ⊗ idO)

= ϕ0(µP(y0 ⊗ y1 ⊗ · · · ⊗ yn)⊗ idO⊗ · · · ⊗ idO)

= idO⊗µP(y0 ⊗ y1 ⊗ · · · ⊗ yn).
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Otherwise, for some 1 ≤ i ≤ n and some 1 ≤ j ≤ li, yi = idP , so
li = 1 = j, and xi,j ∈ Ō, hence ϕ0(zi) = xi,j ⊗ idP ⊗ · · · ⊗ idP . If in addition
y0 ∈ P̄ , the left hand side of (4.1.5) vanishes since

(ϕ0 ◦ 1P)(1P ◦ ϕ0)(t) = ϕ0(y0 ⊗ · · · ⊗ xi,j ⊗ · · · )⊗ · · · = 0.

The right hand side is

ϕ0(µP ◦ 1O)(t) = ±ϕ0(µP(y0 ⊗ · · · )⊗ · · · ⊗ xi,j ⊗ · · · ) = 0.

Here we use that µP(y0 ⊗ · · · ) ∈ P̄ since P̄ is an operadic ideal.
Alternatively, y0 = idP and t = idP ⊗(idP ⊗xi,j). In this case, calling

x = xi,j, the left hand side of (4.1.5) is

(1O ◦ µP)(ϕ0 ◦ 1P)(1P ◦ ϕ0)(idP ⊗(idP ⊗x))

= (1O ◦ µP)(ϕ0 ◦ 1P)(idP ⊗(x⊗ idP ⊗ · · · ⊗ idP))

= (1O ◦ µP)(ϕ0 ◦ 1P)((idP ⊗x)⊗ idP ⊗ · · · ⊗ idP)

= (1O ◦ µP)((x⊗ idP ⊗ · · · ⊗ idP)⊗ idP ⊗ · · · ⊗ idP)

= (1O ◦ µP)(x⊗ (idP ⊗ idP)⊗ · · · ⊗ (idP ⊗ idP))

= x⊗ idP ⊗ · · · ⊗ idP .

The right hand side of (4.1.5) is

ϕ0(µP ◦ 1O)(idP ⊗(idP ⊗x)) = ϕ0(µP ◦ 1O)((idP ⊗ idP)⊗ x)

= ϕ0(idP ⊗x)

= x⊗ idP ⊗ · · · ⊗ idP .

The commutativity of 1 is equivalent to saying that, given t = y ⊗ z1 ⊗
· · ·⊗zn ∈ P ◦ (O◦O), with zi = xi⊗xi,1⊗· · ·⊗xi,li , y ∈ O, xi ∈ O, xi,j ∈ O,

(µO ◦ 1P)(1O ◦ ϕ0)(ϕ0 ◦ 1O)(t) = ϕ0(1P ◦ µO)(t). (4.1.6)

We will distinguish several cases again.
Suppose that y ∈ P̄ . As a first subcase of this one, assume further that,

for some 1 ≤ i ≤ n, xi ∈ Ō. Then

(ϕ0 ◦ 1O)(t) = ±(ϕ0 ◦ 1O)((y ⊗ x1 ⊗ · · · ⊗ xn)⊗ x1,1 ⊗ · · · ⊗ xn,ln)

= 0,

hence the left hand side of (4.1.6) vanishes. Concerning the right hand side,

ϕ0(1P ◦ µO)(t)

= ϕ0(1P ◦ µO)(y ⊗ (x1 ⊗ x1,1 ⊗ · · · ⊗ x1,l1)⊗ · · · ⊗ (xn ⊗ xn,1 ⊗ · · · ⊗ xn,ln))

= ±ϕ0(y ⊗ µO(x1 ⊗ x1,1 ⊗ · · · ⊗ x1,l1)⊗ · · · ⊗ µO(xn ⊗ xn,1 ⊗ · · · ⊗ xn,ln))

= 0.
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Here we use the associativity isomorphism for the circle product and that Ō
is an operadic ideal, so µO(xi ⊗ xi,1 ⊗ · · · ⊗ xi,li) ∈ Ō since xi ∈ Ō.

As a second subcase, assume that x1 = · · · = xn = idO, in particular
li = 1 for all 1 ≤ i ≤ n. We further split this subcase up in the case that for
some 1 ≤ i ≤ n, xi,1 ∈ Ō and the case that x1,1 = · · · = xn,1 = idO.

In the former situation, the right hand side of (4.1.6) is

ϕ0(1P ◦ µO)(t)

= ϕ0(1P ◦ µO)(y ⊗ (idO⊗x1,1)⊗ · · · ⊗ (idO⊗xn,1))

= ±ϕ0(y ⊗ x1,1 ⊗ · · · ⊗ xn,1)

= 0.

On the other hand, the left hand side of (4.1.6) vanishes, since

(1O ◦ ϕ0)(ϕ0 ◦ 1O)(t) = idO⊗ϕ0(y ⊗ · · · ⊗ xi,1 ⊗ · · · ) = 0.

In the latter situation, the right hand side of (4.1.6) is

ϕ0(1P ⊗ µO)(y ⊗ (idO⊗ idO)⊗ · · · ⊗ (idO⊗ idO))

= ϕ0(y ⊗ idO⊗ · · · ⊗ idO)

= idO⊗y.

And the left hand side of (4.1.6) is

(µO ◦ 1P)(1O ◦ ϕ0)(ϕ0 ◦ 1O)(y ⊗ (idO⊗ idO)⊗ · · · ⊗ (idO⊗ idO))

= (µO ◦ 1P)(1O ◦ ϕ0)(ϕ0 ◦ 1O)((y ⊗ idO⊗ · · · ⊗ idO)⊗ idO⊗ · · · ⊗ idO)

= (µO ◦ 1P)(1O ◦ ϕ0)((idO⊗y)⊗ idO⊗ · · · ⊗ idO)

= (µO ◦ 1P)(1O ◦ ϕ0)(idO⊗(y ⊗ idO⊗ · · · ⊗ idO))

= (µO ◦ 1P)(idO⊗(idO⊗y))

= (µO ◦ 1P)((idO⊗ idO)⊗ y)

= idO⊗y.

Alternatively, y = idP and t = (idP ⊗x1)⊗ x1,1 ⊗ · · · ⊗ x1,l1 . In this case,
calling x = x1, xj = x1,j, and l1 = n, the right hand side of (4.1.6) is

ϕ0(1P ◦ µO)(idP ⊗(x⊗ x1 ⊗ · · · ⊗ xn))

= ϕ0(idP ⊗µO(x⊗ x1 ⊗ · · · ⊗ xn))

= µO(x⊗ x1 ⊗ · · · ⊗ xn)⊗ idP ⊗ · · · ⊗ idP .
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The left hand side of (4.1.6) is

(µO ◦ 1P)(1O ◦ ϕ0)(ϕ0 ◦ 1O)(idP ⊗(x⊗ x1 ⊗ · · · ⊗ xn))

= (µO ◦ 1P)(1O ◦ ϕ0)(ϕ0 ◦ 1O)((idP ⊗x)⊗ x1 ⊗ · · · ⊗ xn)

= (µO ◦ 1P)(1O ◦ ϕ0)((x⊗ idP ⊗ · · · ⊗ idP)⊗ x1 ⊗ · · · ⊗ xn)

= (µO ◦ 1P)(1O ◦ ϕ0)(x⊗ (idP ⊗x1)⊗ · · · ⊗ (idP ⊗xn))

= (µO ◦ 1P)(x⊗ (x1 ⊗ idP ⊗ · · · ⊗ idP)⊗ · · · ⊗ (xn ⊗ idP ⊗ · · · ⊗ idP))

= (µO ◦ 1P)((x⊗ x1 ⊗ · · · ⊗ xn)⊗ idP ⊗ · · · ⊗ idP)

= µO(x⊗ x1 ⊗ · · · ⊗ xn)⊗ idP ⊗ · · · ⊗ idP .

This concludes the proof.

For quadratic operads, the circle product with respect to the trivial dis-
tributive law is again quadratic.

Proposition 4.1.7. Given quadratic ns-operads O = (E|R) and P = (F |S).
The ns-operad O ◦ϕ0 P is quadratic associated to the following ns-quadratic
data,

(E ⊕ F,R⊕ F ◦(1) E ⊕ S).

Proof. This follows form Theorem 3.3.2. The hypothesis holds since ϕ0

(co)restricts to the trivial rewriting rule 0 : F ◦(1) E → E ◦(1) F .

The symmetric case works equally well.

Definition 4.1.8. Two augmented operads O and P decompose as collec-
tions, O = I ⊕ Ō, P = I ⊕ P̄ , with Ō and P̄ operadic ideals. We define the
trivial distributive law

ϕΣ,0 : P ◦Σ O → O ◦Σ P

as

ϕΣ,0(y ⊗ idO⊗ · · · ⊗ idO⊗σ) = idO⊗y ⊗ σ,
ϕΣ,0(idP ⊗x⊗ σ) = x⊗ idP ⊗ · · · ⊗ idP ⊗σ,

ϕΣ,0(y ⊗ x1 ⊗ · · · ⊗ xn ⊗ σ) = 0 if y ∈ P̄ and xi ∈ Ō for some 1 ≤ i ≤ n.

This is a well-defined map of collections since, using the definition of the
symmetric circle product ◦Σ as a big direct sum, we see that P ◦Σ O and
O ◦Σ P contain

P(n)⊗Σn

(
(k · idO)⊗n ⊗ k[Σn]

) ∼= P(n),

(k · idP)⊗O(n)⊗Σn k[Σn] ∼= O(n),
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and

(k · idO)⊗ P(n)⊗Σn k[Σn] ∼= P(n)

O(n)⊗Σn

(
(k · idO)⊗n ⊗ k[Σn]

) ∼= O(n),

as direct summands, respectively. As a morphism of collections, ϕΣ,0 maps
isomorphically these factors and vanishes on the rest of direct factors of the
source.

The previous proofs work with minor modifications in order to show the
two following results.

Lemma 4.1.9. The map of sequences ϕΣ,0 in Definition 4.1.8 is indeed a
distributive law.

Proposition 4.1.10. Given quadratic operads O = (E|R) and P = (F |S).
The operad O ◦ϕΣ,0

P is quadratic associated to the following quadratic data,

(E ⊕ F,R⊕ F ◦Σ,(1) E ⊕ S).

4.2 Mock derived ns-operads and their bar

construction

In this section, again in the nonsymmetric setting, we consider the operads
defined in the same way as derived operads but using the trivial distributive
law instead. We compute a smaller model for their bar construction.

Definition 4.2.1. The mock derived ns-operad of an augmented ns-operad
O is defined as

d′O = O ◦ϕ0 D.

Here we use the trivial distributive law in Definition 4.1.1 instead of the
distributive law defining dO in Definition 3.1.4.

The mock derived ns-operad of a quadratic ns-operad is quadratic by
Proposition 4.1.7.

Corollary 4.2.2. Given a quadratic ns-operad O = (E|R), its mock derived
ns-operad d′O is quadratic associated to the following ns-quadratic data

(E ⊕ k ·∆, R⊕ (k ·∆)⊗ E ⊕ k · (∆⊗∆)).
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Here, for a fixed quadratic ns-operadO = (E|R), we construct a relatively
small model of the bar construction of d′O. It will be used in the next section
for the computation of the Koszul dual ns-cooperad of dO. This small model
will be part of a strong deformation retraction, in the sense of the following
definition.

Definition 4.2.3. A strong deformation retraction, or simply SDR, consists
of two graded complexes X and Y and a diagram

X
i //

Y
p

oo hff

where i and p are maps of graded complexes, h is a homotopy from ip to 1Y ,
i.e a bidegree (0, 1) map of bigraded modules satisfying the chain homotopy
equation

ip− 1Y = dh+ hd, (4.2.4)

and the following equations are satisfied,

pi = 1X , ph = 0, hi = 0, h2 = 0.

Strong deformation retractions are usually defined for chain complexes,
but they make equal sense for graded chain complexes, sequences, collec-
tions, etc. They are are a very convenient kind of homotopy equivalence, in
particular they preserve homology. They are often use to reduce homology
computations for the big object Y to computations on the small one X.

We can now state the main result of this section.

Theorem 4.2.5. There is an SDR of sequences

B(D) ◦ B(O)
i // B(d′O)
p

oo h
ii

preserving the syzygy degree whose maps are defined below.

We prove this theorem at the end of this section. As a warm-up, we start
by calculating the bar construction of D an its Koszul dual cooperad D¡, see
also [16, 10.3.7].

Remark 4.2.6. Clearly,
D̄ = k ·∆

concentrated in arity 1 and bidegree (−1, 0). Consequently,

sD̄ = k · (s∆),
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concentrated in arity 1 and bidegree (−1, 1). It follows that the underlying
sequence of B(D) is

F c(sD̄) =
⊕
n≥0

k · (s∆)⊗n. (4.2.7)

We sometimes simplify (s∆)⊗n as (s∆)n. The coproduct ∆B(D), being de-
grafting, takes the form

∆B(D) : B(D)→ B(D) ◦ B(D),

(s∆)⊗n 7→
∑
i+j=n

(s∆)⊗i ⊗ (s∆)⊗j. (4.2.8)

The counit εB(D) : B(D) → I is defined by the equations εB(D)((s∆)⊗0) = 1
and εB(D)((s∆)⊗n) = 0, n > 0, and the coaugmentation ηB(D) : I → B(D) by
εB(D)(1) = (s∆)⊗0. Finally, the differential dB(D) is trivial since

d̂2,1 : sD̄(1)⊗ sD̄(1)→ sD̄(1)

d̂2,1(s∆⊗ s∆) = −s(∆ ◦1 ∆)

= −sµD(∆⊗∆)

= 0.

All this means that the cooperad B(D) is the polynomial coalgebra on one
variable of bidegree (−1, 1) regarded as an ns-cooperad concentrated in arity
1.

The syzygy degree of (s∆)⊗n is 0 for all n ≥ 0, i.e. B(D) is concentrated
in syzygy degree 0. Hence D is trivially Koszul and

D¡ = H0(B•D) = B(D).

We can now obtain an interesting corollary of the previous theorem.

Corollary 4.2.9. If the quadratic ns-operad O is Koszul, then so is the mock
derived operad d′O.

Proof. It is enough to check that the cohomology of B(D) ◦ B(O) is concen-
trated in syzygy degree 0. Since B(D) is concentrated in arity 1, B(D) ◦
B(O) = B(D)⊗ B(O). Moreover, B(D) is k-free and has trivial differential,
therefore

H∗(B(D)⊗ B(O)) = B(D)⊗H∗(B(O)).

The ns-operad O being Koszul means that H∗(B(O)) is concentrated in
syzygy degree 0, hence we are done.
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In order to define the components of the strong deformation retraction in
Theorem 4.2.5 we must analyze the sequence underlying the bar construction
of the mock derived operad.

As a sequence, d′O and its augmentation ideal d′O are given by

(d′O)(1) = O(1)⊗D(1)

= (k · idO⊕Ō(1))⊗ (k · idD⊕k ·∆)

= (k · idO⊗k · idD)⊕ (k · idO⊗k ·∆)

⊕ (Ō(1)⊗ k · idD)⊕ (Ō(1)⊗ k ·∆)

= k · idd ′O⊕(k · idO⊗k ·∆)⊕ (Ō(1)⊗ k · idD)⊕ (Ō(1)⊗ k ·∆),

(d′O)(1) =
(
(k · idO⊗k ·∆)⊕ (Ō(1)⊗ k · idD)

)
⊕ (Ō(1)⊗ k ·∆),

for n = 1; and for n 6= 1,

(d′O)(n) = (d′O)(n)

= O(n)⊗D(1)⊗n

= Ō(n)⊗ (k · idD⊕k ·∆)⊗n

∼=
⊕

0≤p≤n

⊕
(np)

Ō(n)⊗ (k · idD)⊗(n−p) ⊗ (k ·∆)⊗p

= Ō(n)⊗ (k · idD)⊗n

⊕
⊕

1≤p≤n

⊕
(np)

Ō(n)⊗ (k · idD)⊗(n−p) ⊗ (k ·∆)⊗p.

Here the isomorphism is a plain symmetry constraint. In the rest of this
chapter, we use the isomorphisms

k · idO⊗k ·∆ ∼= k ·∆,
Ō(n)⊗ (k · idD)⊗n ∼= Ō(n), n ≥ 0,

as identifications. With this notation, for n 6= 1,

(d′O)(1) =
(
k ·∆⊕ Ō(1)

)
⊕ (Ō(1)⊗ k ·∆), (4.2.10)

(d′O)(n) = Ō(n)⊕

 ⊕
1≤p≤n

⊕
(np)

Ō(n)⊗ (k · idD)⊗(n−p) ⊗ (k ·∆)⊗p

 .

In B(d′O), which is F c(s(d′O)) as a coaugmented cooperad, and hence
F(s(d′O)) as a sequence, we will slightly change the notation of ns-labeled
planted planar trees with leaves.
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Definition 4.2.11. An admissible labeled tree in F(s(d′O)) is a ns-labeled
planted planar tree with leaves whose labels are either s∆ or sx with x in
Ō(n) or in one of the direct factors isomorphic to Ō(n)⊗ (k · idD)⊗(n−p)⊗ (k ·
∆)⊗p for some 1 ≤ p ≤ n. This third kind of labels are called mixed labels,
e.g.

s(x⊗idD ⊗∆⊗idD)

An admissible labeled tree is good if it contains neither a mixed label nor
an inner edge with top label s∆ and bottom label in sŌ,

· · · · · ·

· · ·

s∆
· · ·

sx∈sŌ

Those which are not good will be called bad.

Good admissible labeled trees look like

· · ·

sxi

· · ·

· · ·

sxj

sx1

s∆

s∆

(4.2.12)

with the x’s in Ō.
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We apologize for this choice of terminology. Admissible, good, and bad
are overworked words, but they will only appear in technical parts so it is
not worth to look for more elaborate names.

Remark 4.2.13. Admissible labeled trees are still k-linear generators of B(d′O)
by the decompositions in (4.2.10).

Moreover, the tree modules (Definition 2.1.5) appearing in the direct
sum decomposition of the underlying sequence of F(s(d′O)) (2.1.6), also
decompose as direct sums according to (4.2.10) and to the additivity of the
tensor product. Each of these new direct summands is k-linearly spanned
by either good or bad labeled trees, hence F(s(d′O)) is the direct sum of
the subsequences generated by either of the two kinds of admissible labeled
trees.

Furthermore, good admissible labeled trees can also be regarded as ele-
ments of F(k · s∆) ◦ F(sŌ), the underlying sequence of B(D) ◦ B(O), since
they are obtained by grafting arbitrary an ns-labeled planted planar tree with
leaves in F(sŌ) on the unique leaf of an element in F(k · s∆). Theorefore,
the direct summand of F(s(d′O)) which is k-linearly spanned by the good
admissible labeled trees is clearly isomorphic to F(k · s∆) ◦ F(sŌ).

This defines the inclusion

i : B(D) ◦ B(O)→ B(d′O) (4.2.14)

in the statement of Theorem 4.2.5. Moreover, the map

p : B(d′O)→ B(D) ◦ B(O) (4.2.15)

is the obvious projection, killing the bad admissible labeled trees and pre-
serving the good ones. In particular ,

pi = 1B(D)◦B(O).

Note that both i and p preserve the syzygy grading.

In principle, i and p are just maps of sequences of bigraded modules.
They clearly preserve the syzygy grading. We now prove compatibility with
the bar constructions differentials.

Lemma 4.2.16. The map i in (4.2.14) is a morphism of sequences of graded
complexes.

Proof. The differential on B(D) ◦ B(O) = B(D) ⊗ B(O) is 1B(D) ⊗ dB(O),
which is given by contracting in (4.2.12) inner edges with both labels in sŌ.
The differential on B(d′O) would be given by contracting all kinds of inner
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edges in (4.2.12). The contraction of an inner edge with both labels s∆
yields zero since ∆2 = 0 in the dual numbers. Moreover, the contraction of
the only possible inner edge sith s∆ at the bottom and top label in sŌ also
vanishes since the definition of d′O uses the trivial distributive law. Hence
the differential of B(d′O) restricted to B(D)◦B(O) is also 1B(D)⊗dB(O) (signs
obviously match).

Remark 4.2.17. We will use the following convenient new notation for mixed
labels. Any mixed label of arity n is of the form s(x0 ⊗ x1 ⊗ · · · ⊗ xn) where
x0 ∈ Ō(n) and xi = idD or xi = ∆ (there must be at least one ∆). With
our new notation, we will keep sx0 labeling the inner vertex and move the
xi, 1 ≤ i ≤ n, to the incoming edges. We may even drop the identity edge
labels, e.g.

s(x⊗idD ⊗∆⊗idD)

idD
∆

idD

sx

∆

sx= =

Accordingly, inner vertices with labels in sŌ can also be enhanced by
labeling the incoming edges with idD (these are not mixed), e.g.

sx

idD
idD

idD

sx=

With this new notation, an admissible labeled tree mT is a planted planar
tree with leaves where inner vertices are labeled with s∆ or an element in
sŌ, and some inner edges whose bottom label is in sŌ are labeled with ∆,
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e.g.

s∆

sx1

sx2

s∆

sx3

∆ ∆

sx4

∆

s∆

sx5

∆

(4.2.18)

Moreover, in the computation of d(mT ) by contraction of inner edges, where
d = d2 is the differential of the bar construction B(d′O), contracting an inner
edge labeled ∆ or with bottom vertex labeled s∆ is always zero. Indeed, if
the top vertex is labeled with s∆ it follows from the fact that ∆2 = 0 in the
dual numbers, and if the top vertex’s label is in sŌ then it is a consequence of
the use of the trivial distributive law in the definition of d′O. Furthermore,
contracting an unlabeled (or labeled with idD) inner edge with top vertex
labeled s∆ and bottom vertex’s label in sŌ amounts to removing the top
inner vertex, turning its label s∆ into a ∆ labeling the new inner edge created
by the deletion.

Lemma 4.2.19. The map p in (4.2.15) is a morphism of sequences of graded
complexes.

Proof. We must check that the diferential of B(d′O) restricts to the direct
summand linearly spanned by bad admissible labeled trees (which is the
kernel of p). Let mT be a bad admissible labeled tree in B(d′O).

Suppose that mT has an inner edge where the top label is s∆ and the
bottom label is in sŌ. If we contract this inner edge, we obtain a mixed
label, and hence a bad summand, e.g.

· · · · · ·
s∆
· · ·

sx  ±

· · · · · ·
∆

· · ·

sx
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If we contract other inner edges, the problematic inner edge will stay there,
therefore we will also obtain bad summands.

If mT contains a mixed label in a given inner vertex, then contracting
non-adjacent inner edges we still get the mixed label. All these summands
are bad. If we contract an inner edge containing the mixed label, the result
is either zero or another mixed label, hence a bad summand. Indeed, let us
review the possible configurations.

If mixed label is at the bottom and the inner edge is labeled with ∆, e.g.

· · · · · ·
s∆

∆

· · ·

sx

· · · · · ·

· · ·

sx′

∆

· · ·

sx

with x, x′ ∈ Ō, then the contraction yields zero, either because ∆2 = 0 in the
dual numbers or because the definition of d′O uses the trivial distributive
law, respectively. Note that in the second case the top label could be mixed.

If the mixed label is on top and the bottom label is s∆, we also obtain
zero by contraction because we are using the trivial distributive law,

∆

· · ·
idD

sx

s∆

Suppose that the mixed label is at the bottom and that inner edge is
labeled with the identity operaion. The top label may be s∆, something in
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sŌ or mixed, e.g.

∆

· · · · · ·
s∆

idD

· · ·
idD

sx

∆

· · · · · ·

· · ·

sx′

idD

· · ·
idD

sx

The picture on the right covers the two last possible cases. In all cases, we
obtain a mixed label by contraction,

∆

· · · · · ·
∆

· · ·
idD

sx

∆

· · · · · · · · · · · ·
idD

s(x◦ix′)

Similarly, if the mixed label is on top and the bottom label is in sŌ, e.g.

· · · · · ·
∆

· · ·
idD

sx′
· · ·

sx

we obtain a mixed vertex by contraction,

· · · · · ·
∆

· · · · · ·

s(x◦ix′)

We finally define h, the remaining ingredient in the statement of Theorem
4.2.5.
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Definition 4.2.20. Given an admissible labeled tree mT , as in Remark
4.2.17, we cut after any symbol ∆, either in an aedge or s∆ on an inner
vertex. The bottommost piece will possibly be an element in F(k ·∆), i.e. a
linear tree with all labels s∆. If this is the case, we define the essential block
of mT to be the next piece, otherwise the essential is the bottommost piece,
e.g. if mT is (4.2.18)

s∆

sx1

sx2

s∆

sx3

∆

|

∆

|
|

sx4

∆
|

s∆

sx5

∆

|
|

|

and the essential block is

sx1

sx2

s∆

∆

s∆

We define h(mT ) as follows, according to the leftmost label of the essential
block containing ∆. Indeed, by the previous way of cutting, labels containing
∆ in the essential block are linearly ordered from left to right with respect
to the path order. Moreover, if the essential block does not contain any ∆
then mT is good, and conversely.

1. If it is an s∆ attached to an inner vertex w (e.g. in the previous picture,
where w is the vertex adjancent to sx2 in the middle incoming edge)
or if there is no ∆ in the essential block, then h(mT ) = 0.

2. If it is a plain ∆ attached to an edge with bottom vertex v, we subdivide
that edge drawing a new inner vertex in the middle labeled s∆ (this
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replaces the old ∆ labeling the egde) and multiply by (−1)‖sx‖+‖mT ‖<v ,
where sx ∈ sŌ is the label of v in the new labeling style. This (sign
included) gives rise to a new admissible labeled tree h(mT ). Recall
from Section 2.3 that ‖mT‖<v is the sum of the total degrees of the
labels of the vertices preceding v (strictly, in the path order).

Let us give an example of (2),

s∆

sx1

sx2

sx3

∆

|

∆

|

∆

| sx4

∆
|

s∆

sx5

∆

|
|

|

s∆

sx1

sx2

sx3

∆

|
∆

|

s∆

| sx4

∆
|

s∆

sx5

∆

|
|

|

h

(−1)||sx1||+||sx2||

(4.2.21)
Here v is the vertex labeled sx2.

Note that h preserves the arity and the horizontal (N-)grading, and in-
creases the syzygy degree and the vertical (Z-)grading by +1.

Remark 4.2.22. The cuttings carried out in this definition do not have any-
thing to do with the mainstream cuttings used in the definition of the diag-
onal of a cofree conilpotent coorperad (Definition 2.2.2). They are just used
for the purpose of defining h. Note that the definition of h depends strongly
on the planar structure (as we have to look for the leftmost ∆). This is why
we later have to take a different approach in the symmetric case.

The leftmost label of the essential block containing ∆ can be located
without any reference to the essential block. It is the first label containing
∆ which comes after a label in sŌ in the path order. While the essential
block could be easily bypassed in the nonsymmetric setting, it helps in some
arguments, notably in the closed formula defining the symmetric version of
h.

For the computation of ‖mT‖<v in (2), we should use the old labeling
style, i.e. the labels ∆ on edges should go back to their bottom mixed vertex,
see Remark 4.2.17. Nevertheless this is irrelevant in this case since, by the
previous paragraph, there is no mixed vertex before v. Note however that
‖sx‖+ ‖mT‖<v in (2) is not the same as ‖mT‖≤v since the latter would also
take into account the number of edges with bottom vertex v labeled ∆.
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We are now ready to prove the main theorem of this section.

Proof of Theorem 4.2.5. It is only left to check the equations in Definition
4.2.3. Let mT be an admissible labeled tree.

Equation h2 = 0 follows from the fact that, by definition, either h(mT ) =
0 or the leftmost ∆ in h(mT ) is an s∆, labeling the new inner vertex created
by subdivision.

Equation hi = 0 follows from the fact that good admissible labeled trees
do not have mixed vertices, in particular they contain no edge labeled ∆,
hence Definition 4.2.20(1) applies.

Equation ph = 0 is a consequence of the fact that, for any admissible
labeled tree mT , if h(mT ) is non-trivial then it is bad, since it must then
contain an inner edge with top label s∆ and bottom label in sŌ (at least the
one whose top inner vertex has just been created by subdivision).

Equation pi = 1B(D)◦B(O) follows from the very definition of i and p in
Remark 4.2.13.

We now turn to (4.2.4), which is the most difficult part. We must check
it for mT good or bad.

If mT is good then it is in the image of i, and (4.2.4) follows from the
other equations.

Now let mT be bad. Then p(mT ) = 0, so we must check that

−mT = dh(mT ) + hd(mT ), (4.2.23)

where d = d2 is the bar construction differential. We distinguish two cases.
If Definition 4.2.20(1) applies to mT , then h(mT ) = 0. Moreover, since

mT is bad, its essential block must contain at least one ∆. Furthermore,
d(mT ) is a sum of admissible labeled trees obtained by contracting inner
edges. The essential blocks of these summands (the non-trivial ones) either
coincide with the essential block nT of mT or they are one of the summands
appearing in d(nT ). Therefore, all these summands also fit in Definition
4.2.20(1), except for the one obtained by contracting the inner edge with top
vertex w. In the example of the previous definition, which is (4.2.18), this
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summand (modulo signs) is

s∆

sx1

sx2

sx3

∆

|

∆

|

∆

|

sx4

∆
|

s∆

sx5

∆

|
|

|

We have incorporated the cuttings in Definition 4.2.20 in order to make the
observation that, now, applying h to this admissible labeled tree, we recover
the original one (4.2.18) up to sign. We must now check that the product
of the two signs we have ignored yield a minus sign. The first sign, coming
from the bar construction differential d, is (−1)‖x‖(−1)‖mT ‖<v , where sx is
the label of w. The second factor in the product (2.3.2) is +1 since ‖s∆‖ = 0.
The second sign, from h, is (−1)‖sx‖+‖mT ‖<v = −(−1)‖x‖(−1)‖mT ‖<v . Hence
we are done with this case.

Assume now that Definition 4.2.20(2) applies to mT . Then −mT appears
as a summand in dh(mT ). More precisely, it is the summand obtained by
contracting the inner edge in h(mT ) whose top vertex is the new inner vertex
created by subdivision. It is clear that this summand is mT modulo signs.
Let us check that the sign is −1. The sign coming from h is (−1)‖sx‖+‖mT ‖<v ,
where sx is the label of v. The sign coming from d is (−1)‖x‖(−1)‖mT ‖<v .
Again, the second factor of the product (2.3.2) is +1 since ‖s∆‖ = 0. The
product of both signs is −1, as in the previous paragraph.

Suppose that the leftmost ∆ in the essential part of mT was labeling
an inner edge, e.g. in (4.2.21). Then the summand of d(mT ) obtained by
contracting this inner edge vanishes. Indeed, since d′O uses the trivial dis-
tributive law and ∆2 = 0 in the dual numbers, contracting an inner edge
labeled with ∆ always yields zero. For the same reason, contracting an inner
edge with bottom label s∆ is always zero. Hence, in dh(mT ), contracting
the incoming edge of the newly created inner vertex also vanishes.

We now check that the remaining summands in dh(mT ) cancel pairwise
with the remaining summands of hd(mT ). Both collections of remaining
summands are indexed by the inner edges of the tree underlying mT different
from the one containing the leftmost ∆ in the essential part. We have pointed
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out before that the essential part of any summand in d(mT ) coincides with the
essential part nT of mT or with a summand in d(nT ). For this reason, these
remaining summands in both dh(mT ) and hd(mT ) pairwise coincide modulo
signs. We just have to check that the signs are opposite. We distinguish
three cases, according to the relative position of the inner edge and the inner
vertex created by subdivision, illustrated in the following picture,

v1

v2 v3

s∆
I

v2

v3

v1

s∆

II

v1

v2

s∆
v3 III

Here we depict the indexing inner edge and the inner vertex created by
subdivision, which is labeled s∆. The labels vi only indicate the positions of
the vertices in the path order. Let sxi be the label of vi.

Case I. The only difference in the summands indexed by the depicted
inner edge is that, on the one hand, in hd(mT ), when computing h, we find
the total degree of s(x1 ◦ix2), which is ‖x1‖+‖x2‖+1. This label is obtained
by contracting the inner edge, which becomes an inner vertex preceding v3.
On the other hand, in dh(mT ) we separately find the total degrees of sx1 and
sx2, which add up to ‖x1‖+ ‖x2‖+ 2.

Case II. In this case, the different in signs is explained by the fact that
in dh(mT ), when contracting the inner edge in the formula for d, we find s∆
before v2, which has total degree 0, with in hd(mT ) we simply find a ∆, of
total degree −1.

Case III. Finally, in this case, the sign of the factor corresponding to the
depicted inner edge is, in hd(mT ),

(−1)‖mT ‖<v1 (−1)‖sx3‖‖mT ‖
>v1
<v3 (−1)‖x1‖(−1)‖sx‖+‖mT ‖<v+‖x3‖ =

(−1)‖mT ‖<v1 (−1)‖sx3‖‖mT ‖
>v1
<v3 (−1)‖x1‖

(−1)‖mT ‖<v1 (−1)‖x1‖+‖x3‖+1(−1)‖sx‖+‖mT ‖
>v1
<v .

Here v, without subscripts, is the vertex in Definition 4.2.20(2), and sx is
its label. This vertex is bigger or equal than v1 in the path order, but v is
always strictly before v2. The sign in dh(mT ) is

(−1)‖sx‖+‖mT ‖<v(−1)‖mT ‖<v1 (−1)‖sx3‖(‖mT ‖
>v1
<v2

+1)(−1)‖x1‖ =

(−1)‖mT ‖<v1 (−1)‖sx1‖(−1)‖mT ‖
>v1
<v (−1)‖sx‖

(−1)‖mT ‖<v1 (−1)‖sx3‖(‖mT ‖
>v1
<v3

+1)(−1)‖x1‖.
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The two computed signs are clearly opposite. This concludes the proof of
equation (4.2.4) and hence of the theorem.

4.3 The Koszul dual ns-cooperad of a derived

ns-operad

Still in the nonsymmetric setting, we perturb the previous section’s small
model for the bar construction of mock derived operads in order to obtain
a similar small model for the bar construction of an honest derived operad.
In this way we obtain a Koszulity result under minimal assumptions and
compute its Koszul dual cooperad.

Let O = (E|R) be a quadratic ns-operad which is aritywise projective.

Definition 4.3.1. Define the map of sequences ϕ¡ : D¡ ◦ O¡ → O¡ ◦ D¡ by

(s∆)i ⊗ x 7→
∑

j1+···+jn=i

x⊗ (s∆)j1 ⊗ · · · ⊗ (s∆)jn

where n is the arity of x.

The main result of this section, which is the following theorem, is on the
Koszul duality of the derived operad dO.

Theorem 4.3.2. The map ϕ¡ in Definition 4.3.1 is a coaugmented codistribu-
tive law, i.e. an augmented distributive law in the opposite monoidal category
of the category of sequences endowed with the circle product, and there is a
coaugmented ns-cooperad isomorphism

(dO)¡ ∼= D¡ ◦ϕ¡ O¡.

Moreover, if O is Koszul then so is dO.

Computations here depend heavily on the previous section’s calculations.

Remark 4.3.3. We have seen in Definition 3.3.1, Theorem 3.3.2, and Corollary
3.3.3 that the ns-operad dO is of the form O ∨λ D for a certain rewriting
rule λ. Therefore, experts might wonder why we do not invoke [16, Theorem
8.6.4] (or an extension to our wider context) in order to prove the Koszulity
of dO. The proof of that theorem, unfortunately, contains a flaw. Namely,
the increasing filtration Fp by number of inversions in the bar construction
is not compatible with the differential. We now illustrate this with a simple
example.
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Consider two algebras of dual numbers, k[x]/(x2) and k[y]/(y2), that we
can regard as operads of chain complexes concentrated in arity 1 and degree
0 (bidegree (0, 0) if we insisted to work with graded complexes). We consider
the rewriting rule defined by λ(y ⊗ x) = x⊗ y. Hence

k[x]/(x2) ∨λ k[y]/(y2) = k[x, y]/(x2, y2),

a commutative finite-dimensional k-algebra linearly spanned by the unit and
the monomials x, y, and xy. The bar construction B(k[x, y]/(x2, y2)) is
the tensor algebra on the free module of rank 3 generated by the previous
monomials. Generating tensors can be regarded as liner trees with inner
vertices labeled with these three monomials. For the sake of simplicity, we
here use the tensor notation. An inversion in such a tree is an inner edge
linking a y to an x. In terms of tensors, they look like one of the following
examples

· · · ⊗ y ⊗ x⊗ · · · ,
· · · ⊗ xy ⊗ x⊗ · · · ,
· · · ⊗ y ⊗ xy ⊗ · · · ,
· · · ⊗ xy ⊗ xy ⊗ · · · .

There are no more kinds of inversions, and a given tensor may contain several.
For counting inversions, we must fix the notation xy for the monomial other-
wise equal to yx. The filtration Fp is defined by letting Fp B(k[x, y]/(x2, y2))
be spanned by tensors with ≤ p inversions, and it is claimed in [16, Theo-
rem 8.6.4] that the bar construction differential preserves this filtration. The
tensor

y ⊗ y ⊗ x⊗ x

contains exactly one inversion (in the middle). Nevertheless, the differential
of this tensor is

y ⊗ xy ⊗ x,

which contains two. This disproves the claim.
The reader could complain that the previous example is not of the form

dO. Nevertheless, the same argument works to show that the same happens
with dO = O ∨λ D for O = D. Hence not only [16, Theorem 8.6.4] fails in
general, but also in our case of interest.

The spectral sequence of this faulty filtration is also used in [16, Propo-
sition 8.6.6], which would have provided some partial information on (dO)¡,
at least as a sequence, and over a ground field. These are the reasons why
we have had to develop a completely new approach for the computation of
the Koszul dual cooperad (dO)¡.
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We would also like to stress that, since our counterexamples are concen-
trated in arity 1, they work in both the symmetric and the nonsymmetric
contexts.

Theorem 4.3.2 will be derived from the following one.

Definition 4.3.4. Define the map of sequences ϕ̄ : B(D) ◦ B(O) → B(O) ◦
B(D) by the same formula as in Definition 4.3.1.

Theorem 4.3.5. The previous map ϕ̄ is a coaugmented codistributive law
and there is an SDR of sequences

B(D) ◦ϕ̄ B(O)
i′ // B(dO)
p

oo h′
ii

preserving the syzygy degree, where p is defined as in Theorem 4.2.5, and i′

is a coaugmented ns-cooperad morphism.

Proof of Theorem 4.3.2. Since B(D) is k-free and has trivial differential, the
syzygy-graded cohomology is

H∗(B(dO)) ∼= B(D) ◦H∗(B(O)).

In particular, we get the desired coaugmented ns-cooperad isomorphism in
syzygy degree zero, since ϕ̄ restricts to ϕ¡ in H0 via i′, and we derive the
Koszulity statement.

Theorem 4.3.5 will be obtained from Theorem 4.2.5 by applying tech-
niques from homological perturbatin theory. We start by recalling the fol-
lowing Lemma and Remark, whose versions underneath can be found in [19,
Lemma 1.17 and Remark 1.18].

Lemma 4.3.6 (Basic Perturbation Lemma [6]). Given an SDR of graded
complexes

(X, dX)
i // (Y, dY )
p

oo h
ii

and a bidegree (0,−1) map of modules ∂ : Y → Y , called perturbation, such
that ∂2 + dY ∂ + ∂dY = 0 and the infinite sum Σ∞ =

∑
n≥0(∂h)n∂ is well

defined, i.e. almost all summands vanish when evaluated at a given y ∈ Y ,
then there is a new SDR

(X, dX + pΣ∞i)
i+hΣ∞i // (Y, dY + ∂)
p+pΣ∞h
oo h+hΣ∞hii

.
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Remark 4.3.7. The vanishing condition is fulfilled if Y is equipped with an
exhaustive increasing filtration

0 = F−1Y ⊂ F0Y ⊂ · · · ⊂ FnY ⊂ Fn+1Y ⊂ · · · ⊂ Y, Y =
⋃
n≥0

FnY,

such that, for n ≥ 0,

∂(FnY ) ⊂ Fn−1Y, h(FnY ) ⊂ FnY.

This implies that, if y ∈ FnY , then Σ∞(y) =
∑n−1

j=0 (∂h)j∂(y). The maps i
and p often preserve the filtration, like h.

Note that the bar constructions of the derived operad and the mock de-
rived operad of O, B(dO) and B(d′O), have the same underlying sequence
of bigraded modules.

Lemma 4.3.8. The map ∂ = dB(dO) − dB(d′O) : B(d′O) → B(d′O) is a per-
turbation for the SDR in Theorem 4.2.5 in the sense of Lemma 4.3.6.

Remark 4.3.9. Consider an admissible labeled tree mT , with the notation
in Remark 4.2.17. Let us look at ∂(mT ) = (dB(dO) − dB(d′O))(mT ). Both
dB(dO)(mT ) and dB(d′O)(mT ) produce sums, indexed by the inner edges {v, w},
v < w. The summand indexed by {v, w} is an admissible labeled tree with
underlying tree T/{v, w}, the tree obtained from T by contracting {v, w},
or maybe a sum of such admissible labeled trees. The label of the new inner
vertex u created by contraction and its incoming edges is defined by the
operadic composition in dO and d′O, and that is the only difference. These
operads are very similar, they share the underlying sequence O◦D, but they
are defined by different distributive laws (Definitions 3.1.4 and 4.1.1). This
is why the new label may sometimes be the same in both cases. Indeed, the
behavior of these two distributive laws is only different on ∆⊗ x, x ∈ Ō.

Suppose mT has an inner edge labeled ∆ (hence the bottom vertex’ label
is in sŌ) and with the top vertex’s label in sŌ (and call it type I for later use)
or an unlabeled inner edge with bottom vertex labeled s∆ and top vertex’s
label in sŌ (type II), e.g.

y′1

· · · · · ·
y1

· · ·
yj

· · · · · ·
yq

sxy′i=∆
· · ·

y′p

sx′

y1

· · ·
yj

· · · · · ·
yn

sx

s∆
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Here, each yj and y′j is either ∆ or the empty label (except for the indicated
y′i, labeling {v, w}, which is ∆). Then the summand in dB(d′O)(mT ) indexed
by such an inner edge is trivial, whereas the summand in dB(dO)(mT ) is not.
The latter is itself a sum where each summand is obtained by labeling u with
s(x′ ◦i x) in case I and sx in case II, and multiplying by ∆ one of the old
incoming edges of w at a time, with signs coming from the Koszul convention
and from the definition of the differential d2 of the bar construction, e.g.

q∑
j=1

±

· · · · · ·
y1

· · ·
∆yj

· · · · · ·
yn

· · ·

s(x◦ix′)
,

n∑
j=1

±
y1

· · ·
∆yj

· · · · · ·
yn

sx .

Note that the jth summand is zero if yj = ∆. Summands in dB(d′O)(mT ) and
dB(dO)(mT ) indexed by inner edges which are not of type I or II are equal, so
they cancel in ∂(mT ). Hence, ∂(mT ) is a sum indexed by the inner edges of
T of type I and II, and each summand is itself a summation as above.

Proof. We need to check the two conditions satisfied by a perturbation ac-
cording to 4.3.6. The first one is

0 = d2
B(dO)

= (dB(d′O) + ∂)2

= d2
B(d′O) + ∂2 + dB(d′O)∂ + ∂dB(d′O)

= ∂2 + dB(d′O)∂ + ∂dB(d′O).

In order to see that Σ∞ is well defined, we will use Remark 4.3.7. To this
end, we should equip the graded complex B(d′O)(n) with an appropriate
filtration.

Consider an admissible labeled tree mT . For each inner vertex v of T
not labeled by s∆, count the number NmT ,v of labels containing a ∆ in
the shortest path from the root r(T ) to v. Let NmT be the sum of all the
NmT ,v. Let Fs(B(d′O)) be the subsequence of bigraded modules spanned
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by the admissible labeled trees mT with NmT ≤ s. This obviously defines
an exhaustive increasing filtration. Even more, dB(d′O) = d2 preserves this
filtration in the sense that

dB(d′O)(Fs(B(d′O)(n))) ⊂ Fs(B(d′O)(n)). (4.3.10)

Let us argue for (4.3.10). Recall that d2(mT ) is a sum, indexed by inner
edges {v, w}, v < w, of T , of admissible labeled trees mT/{v,w} in which the
inner edge {v, w} of T is contracted. We have to check that for each mT/{v,w}
we have NmT/{v,w} ≤ NmT . We distinguish between different cases. They are
associated with different types of edges {v, w} of mT .

Case 1: Let {v, w} be labeled by ∆ or having bottom vertex labeled by
s∆. In Remark 4.2.17 it is explained that mT/{v,w} = 0 in this case, hence
obviously NmT/{v,w} ≤ NmT .

Case 2: Otherwise, {v, w} carries no label and the bottom vertex’ label
is in sŌ. The tree T/{v, w} underlying mT/{v,w} has one inner vertex less
then T underlying mT , caused by the contraction of {v, w}. We denote the
new vertex in T/{v, w} created by the contraction of {v, w} by u.

In case the top vertex w is labeled by s∆, it will not be summed over in
the calculation of NmT . As noted in Remark 4.2.17, T/{v, w} is up to sign
obtained by removing the inner vertex w and replacing its label s∆ with a
∆ labeling the edge. Therefore, NmT/{v,w},v = NmT ,u, and for the other inner
vertices t 6= v, w not labeled by s∆, we have NmT ,t = NmT/{v,w},t. Here we
use that the inner vertices of T/{v, w} different from u are the inner vertices
of T different from v and w. It follows that NmT/{v,w} = NmT .

In case the top vertex’ label is in sŌ, it will only contribute extra to the
number NmT . For the rest of inner vertices, the situation is very similar to
the previous paragraph. Hence NmT/{v,w} ≤ NmT .

It remains to check, for s ≥ 0, that

∂(Fs(B(d′O)(n))) ⊂ Fs−1(B(d′O)(n)), (4.3.11)

and that
h(Fs(B(d′O)(n))) ⊂ Fs(B(d′O)(n)). (4.3.12)

Equation (4.3.11) is satisfied. Indeed, looking at the formula for ∂(mT )
in Remark 4.3.9 we see that, in each summand mT/{v,w} of ∂(mT ), there is a
∆ or s∆ in T which has jumped upwards over a label in sŌ, hence we get a
strict inequality NmT/{v,w} < NmT .

In order to check (4.3.12) we distinguish two cases.
Case 1: When h is defined via Definition 4.2.20(1), then h(mT ) = 0, so

there is nothing to check.
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Case 2: Now let h be defined via Definition 4.2.20(2), as exemplified by
(4.2.21). The newly created inner vertex v labeled s∆ is not summed over
in the calculation of Nh(mT ). Furthermore, for inner vertices t 6= v in the
planted planar tree with leaves underlying h(mT ), we have Nh(mT ),t = NmT ,t,
where the inner vertices t of T are the ones corresponding in the obvious way
to the inner vertices t 6= v of the planted planar tree with leaves underlying
h(mT ). It follows that Nh(mT ) = NmT . The proof is now complete.

Lemma 4.3.13. The compositions pΣ∞i and pΣ∞h equal zero.

Proof. When applying ∂ to an admissible labeled tree mT , ∂(mT ) is a sum
of admissible labeled trees with at least one mixed vertex, see Remark 4.3.9.
Hence p∂ = 0.

Therefore,

pΣ∞i = p(∂ + (∂h)∂ + (∂h)(∂h)∂ + · · · )i
= (p∂)(1Fc(sO◦D) + h∂ + h(∂h)∂ + · · · )i
= (p∂)(1Fc(sO◦D) + hΣ∞)i

= 0,

and, similarly,

pΣ∞h = (p∂)(1Fc(sO◦D) + hΣ∞)h

= 0.

Proof of Theorem 4.3.5. That there is an SDR of sequences

B(D) ◦ϕ̄ B(O)
i′ // B(dO)
p

oo h′
ii

preserving the syzygy degree is a direct consequence of Theorem 4.2.5 and
Lemmas 4.3.6, 4.3.8, and 4.3.13. Here i′ = i+ hΣ∞i and h′ = h+ hΣ∞h.

In order to check that ϕ̄ is a coaugmented codistributive law, we must
check that the dual versions of the five diagrams in Definition 1.2.4 commute.
In order to check commutativity of the dual of 3, we must consider two types
of elements in B(D) ◦ B(O):

1. (s∆)i ⊗ idB(O).

2. (s∆)i ⊗ x.
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Here x ∈ B(O). In the second case, εB(O)(x) = 0 assures that both paths
from source to sink in the dual of 3 give 0. In the first case commutativity of
the dual of 3 is equivalent to the following formula, which holds by definition,

ϕ̄((s∆)i ⊗ idB(O)) = idB(O)⊗(s∆)i.

To check commutativity of the dual of 4, we must again consider two
types of elements in B(D) ◦ B(O):

1. (s∆)0 ⊗ x.

2. (s∆)i ⊗ x, i > 0.

Here x ∈ B(O). In the second case εB(D)((s∆)i) = 0 for i > 0 assures that
both paths from source to sink in the dual of 4 give 0. In the first case
commutativity of the dual of 4 is equivalent to the following formula, which
also holds by definition,

ϕ̄((s∆)0 ⊗ x) = x⊗ (s∆)0 ⊗ · · · ⊗ (s∆)0.

Checking the commutativity of the dual of diagram 2 is equivalent to
checking the following equation.

(ϕ̄ ◦ 1B(D))(1B(D) ◦ ϕ̄)(∆B(D) ◦ 1B(O))((s∆)i ⊗ x) (4.3.14)

= (1B(O) ◦∆B(D))ϕ̄((s∆)i ⊗ x),

for x ∈ B(O)(n).
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On the one hand, the left hand side of equation (4.3.14) equals

(ϕ̄ ◦ 1B(D))(1B(D) ◦ ϕ̄)(∆B(D) ◦ 1B(O))((s∆)i ⊗ x)

=
∑
j+q=i

(ϕ̄ ◦ 1B(D))(1B(D) ◦ ϕ̄)(((s∆)j ⊗ (s∆)q)⊗ x)

=
∑
j+q=i

(ϕ̄ ◦ 1B(D))(1B(D) ◦ ϕ̄)((s∆)j ⊗ ((s∆)q ⊗ x))

=
∑

q1+···+qn=q
j+q=i

(ϕ̄ ◦ 1B(D))((s∆)j ⊗ (x⊗ (s∆)q1 ⊗ · · · ⊗ (s∆)qn))

=
∑

q1+···+qn=q
j+q=i

(ϕ̄ ◦ 1B(D))(((s∆)j ⊗ x)⊗ (s∆)q1 ⊗ · · · ⊗ (s∆)qn)

=
∑

q1+···+qn=q
j1+···+jn=j

j+q=i

(x⊗ (s∆)j1 ⊗ · · · ⊗ (s∆)jn)⊗ (s∆)q1 ⊗ · · · ⊗ (s∆)qn

=
∑

q1+···+qn=q
j1+···+jn=j

j+q=i

x⊗ ((s∆)j1 ⊗ (s∆)q1)⊗ · · · ⊗ ((s∆)jn ⊗ (s∆)qn)

=
∑

i1+···+in=i
j1+q1=i1

...
jn+qn=in

x⊗ ((s∆)j1 ⊗ (s∆)q1)⊗ · · · ⊗ ((s∆)jn ⊗ (s∆)qn),

using the associator of ◦.
On the other hand, the right hand side of equation (4.3.14) equals

(1B(O) ◦∆B(D))ϕ̄((s∆)i ⊗ x)

=
∑

i1+···+in=i

(1B(O) ◦∆B(D))(x⊗ (s∆)i1 ⊗ · · · ⊗ (s∆)in)

=
∑

i1+···+in=i
j1+q1=i1

...
jn+qn=in

x⊗ ((s∆)j1 ⊗ (s∆)q1)⊗ · · · ⊗ ((s∆)jn ⊗ (s∆)qn).

Checking the commutativity of the dual of diagram 1 is equivalent to
checking the following equation.

(1B(O) ◦ ϕ̄)(ϕ̄ ◦ 1B(O))(1B(D) ◦∆B(O))((s∆)i ⊗ x) (4.3.15)

= (∆B(O) ◦ 1B(D))ϕ̄((s∆)i ⊗ x),
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for x ∈ B(O)(n).
On the one hand, the left hand side of equation (4.3.15) is the following

element, where we use the notation introduced in (1.4.7) for ∆B(O)(x),

(1B(O) ◦ ϕ̄)(ϕ̄ ◦ 1B(O))(1B(D) ◦∆B(O))((s∆)i ⊗ x)

= (1B(O) ◦ ϕ̄)(ϕ̄ ◦ 1B(O))((s∆)i ⊗∆B(O)(x))

=
∑
k≥0

i1+···+ik=n

(1B(O) ◦ ϕ̄)(ϕ̄ ◦ 1B(O))((s∆)i ⊗ (xk ⊗ xi1 ⊗ · · · ⊗ xik))

=
∑
k≥0

i1+···+ik=n

(1B(O) ◦ ϕ̄)(ϕ̄ ◦ 1B(O))(((s∆)i ⊗ xk)⊗ xi1 ⊗ · · · ⊗ xik)

=
∑
k≥0

i1+···+ik=n
j1+···+jk=i

(1B(O) ◦ ϕ̄)((xk ⊗ (s∆)j1 ⊗ · · · ⊗ (s∆)jk)⊗ xi1 ⊗ · · · ⊗ xik)

=
∑
k≥0

i1+···+ik=n
j1+···+jk=i

(1B(O) ◦ ϕ̄)(xk ⊗ ((s∆)j1 ⊗ xi1)⊗ · · · ⊗ ((s∆)jk ⊗ xik))

=
∑
k≥0

i1+···+ik=n
ql,1+···+ql,il=jl

1≤l≤k

xk ⊗ · · · ⊗ (xil ⊗ (s∆)ql,1 ⊗ · · · ⊗ (s∆)ql,il )⊗ · · ·

=
∑
k≥0

i1+···+ik=n
q1,1+···+qk,ik=i

(xk ⊗ xi1 ⊗ · · · ⊗ xik)⊗ (s∆)q1,1 ⊗ · · · ⊗ (s∆)qk,ik

=
∑

q1,1+···+qk,ik=i

∆B(O)(x)⊗ (s∆)q1,1 ⊗ · · · ⊗ (s∆)qk,ik .

Here we use again the associator of ◦.
On the other hand, the right hand side of equation (4.3.15) equals

(∆B(O) ◦ 1B(D))ϕ̄((s∆)i ⊗ x)

=
∑

i1+···+in=i

(∆B(O) ◦ 1B(D))(x⊗ (s∆)i1 ⊗ · · · ⊗ (s∆)in)

=
∑

i1+···+in=i

∆B(O)(x)⊗ (s∆)i1 ⊗ · · · ⊗ (s∆)in .

The commutativity of the dual of diagam 5 amounts to ϕ̄((s∆)0⊗ idO) =
idO⊗(s∆)0, which holds by definition.
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It is left to check that i′ is an ns-cooperad morphism. To this end, we
first spell out the map i′. Define φn : B(D) ◦B(O)→ B(dO) as φn := (h∂)ni
for n ≥ 0, so φn+1 = (h∂)φn. Then

i′ = i+ hΣ∞i =
∑
n≥0

φn.

The image of i is linearly spanned by good admissible labeled trees, which
do not contain mixed labels. We are going describe (h∂)(mT ) for mT an
admissible labeled tree without mixed labels. We will prove that (h∂)(mT )
is a sum of admissible labeled tree without mixed labels and deduce a formula
for i′.

First, by Remark 4.3.9, ∂(mT ) is a sum indexed by the type II inner
edges. Each summand is again a sum of admissible labeled trees obtained
by removing the bottom vertex, labeled with s∆, and labeling with ∆ one
incoming edge of the top vertex at a time, with certain sings,

s∆

sx

sx

∆

i∑
i

±

. . .. . .
. . .

∂

(4.3.16)

Only those summands where ∆ is leftmost in the essential block survive in
h∂(mT ), and they get subdivided as in Definition 4.2.20(2), e.g.

sx

s∆

. . .. . .

(4.3.17)

In particular, there are no mixed labels. The signs coming from ∂ and from
h cancel each other, so we get a formula without signs.
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If we start with a good admissible labeled tree like (4.2.12), which is of
the form mT = (s∆)i ⊗ mT ′ , where mT ′ has all labels in sŌ, the previous
computation shows that, if T ′ has n edges, i′(mT ) is a sum indexed by the
set of non-negative integers j1, . . . , jn ≥ 0 with j1 + · · ·+ jn = i. Each factor,
denoted (mT ′)j1,...,jn , is obtained by subdividing the lth edge of T ′, adding jl
new inner vertices labeled with s∆, 1 ≤ l ≤ n, e.g.

sx

s∆s∆

sx

s∆s∆

sx

s∆

s∆

sx

s∆

s∆

sx

s∆s∆

sx

s∆ s∆

+

sx

s∆s∆

+ + 0,

i h∂

h∂

h∂

from second summandfrom first
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sx1

sx2 sx3

s∆

sx1

sx2 sx3

s∆

sx1

sx2

s∆

sx3

sx1

sx2 sx3

s∆

sx1

sx2

s∆

sx3

sx1

sx2

s∆

sx3

sx1

sx2 sx3

s∆

sx1

sx2 sx3

s∆

+

+ + + 0.

i

h∂

h∂

h∂

from first summand from second summand

Each summand in i′ of some good admissible labeled tree can be uniquely
traced back through the iterations of h∂. In the folloing picture, we start
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with a certain one, and arrows represent that the target shows up in h∂:

s∆

s∆

sy sz

s∆

sx

s∆

sy

s∆

sz

s∆

sx

s∆

sy sz

s∆

sx

s∆

sy

s∆

sz

s∆

sx

s∆

sy sz

s∆

sx

s∆

s∆

sy sz

sx

s∆
s∆
s∆

The procedure at each step is taking the essential block and ‘de-jump’ the
leftmost s∆ therein. This is another way of checking our formula for i′.

With the previous description of i′, we now check that it is a morphism
of coaugmented ns-cooperads. Compatibility with the coaugmentation is
obvious. Proving that i′ is a map of ns-cooperads amounts to checking that
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the following diagram commutes

B(D) ◦ B(O)
∆B(D)◦∆B(O)

//

i′

��

(B(D) ◦ B(D)) ◦ (B(O) ◦ B(O))

1B(D)◦ϕ̄◦1B(O)

��

(B(D) ◦ B(O)) ◦ (B(D) ◦ B(O))

B(dO)
∆B(dO)

// B(dO) ◦ B(dO).

p◦p
OO

is commutative.
If we apply (p ◦ p)∆B(dO)i

′ to a good admissible labeled tree mT =
(s∆)i ⊗ mT ′ , we first obtain a summation i′(mT ) as above whose sum-
mands (mT ′)j1,...,jn are then cut, in the sense of Definition 2.2.2, to obtain
∆B(dO)i

′(mT ). In (p ◦ p)∆B(dO)i
′(mT ), only those cuttings whose pieces are

good admissible labeled trees survive. The result is the same as cutting
separately (s∆)i and mT ′ , giving ∆B(D)((s∆)i) and ∆B(O)(mT ′), and then
applying 1B(D) ◦ ϕ̄ ◦ 1B(O) to ∆B(D)((s∆)i)⊗∆B(O)(mT ′). Signs match since
they are just given by the Koszul sign rule. The proof is now finished.

4.4 An alternative chain homotopy

Assume throughout this section that our ground commutative ring contains
the rationals, Q ⊂ k.

In this section we construct a new chain homotopy

h̄ : B(d′O)→ B(d′O)

fitting in Theorem 4.2.5, for the same i and p, whose perturbation

h̄′ : B(dO)→ B(dO)

in the sense of Lemma 4.3.6 fits in Theorem 4.3.5, for the same i′ and p. This
will be necessary to obtain symmetric versions of the previous results in this
chapter.

We use the same notation and terminology as in the construction of h in
Definition 4.2.20.

Definition 4.4.1. Let mT be an admissible labeled tree. In the essential
block, we consider the set {ei∆}

n∆
i=1 of edges labeled ∆, ei∆ = {vi, wi}, vi < wi,
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and the set {ujs∆}
ns∆
j=1 of inner vertices labeled s∆. We denote by sxi ∈ sŌ

the label of vi in the new labeling style introduced in Remark 4.2.17. Let ni
be the number of edges labeled ∆ with bottom vertex vi which come before
ei∆. Moreover, let mT,ei∆

be the admissible labeled tree obtained from mT by

subdividing the edge ei∆, drawing a new inner vertex in the middle labeled
s∆, replacing the previous label ∆ of ei∆. We define

h̄(mT ) =
1

n∆ + ns∆

n∆∑
i=1

(−1)‖sxi‖+‖mT ‖<vi+nimT,ei∆
.

Here ‖mT‖<vi , defined in Section 2.3, is the sum of the total degrees of the
labels (old labeling style, see Remark 4.2.22) of the vertices preceding vi
(strictly, in the path order). With respect to the new labeling style, ‖mT‖<vi
is the sum of the total degrees of the labels of the vertices and edges preceding
vi, and moreover ‖sxi‖ + ‖mT‖<vi + ni is the sum of the total degrees of
all labels (vertices and edges) preceding ei∆. We will write n∆ = n∆,mT ,
ns∆ = ns∆,mT , and ni = ni,mT when confusions are possible.

The formula for h̄(mT ) explains why we require Q ⊂ k. Had we started
with this homotopy, the range of applicability of our nonsymmetric results
would have been tighter. In the symmetric case, the condition Q ⊂ k is very
common since many aspects of the theory of operads need all representations
of symmetric groups over the ground ring to be projective, e.g. in order to
have a model structure which allows from a well-behaved homotopy theory.

The following two pictures illustrate the formula for h̄ and show in two
special cases that h̄2 = 0.

∆ ∆

sx 1
2
(−1)||sx||

h̄

h̄

s∆ ∆

sx +1
2
(−1)||sx||+1

∆ s∆

sx

1
4

s∆ s∆

sx −1
4

s∆ s∆

sx = 0.
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∆ ∆

sy sz

∆

sx 1
3
(−1)||sx||

h̄

h̄

∆ ∆

sy sz

s∆

sx+1
3
(−1)||sx||+||sy||+1+1

∆ s∆

sy sz

∆

sx+1
3
(−1)||sx||+||sy||+1

s∆ ∆

sy sz

∆

sx

1
6
(−1)||sy||

s∆ ∆

sy sz

s∆

sx −1
6
(−1)||sy||

∆ s∆

sy sz

s∆

sx −1
6

s∆ s∆

sy sz

∆

sx

+1
6
(−1)||sy||

∆ s∆

sy sz

s∆

sx +1
6

s∆ s∆

sy sz

∆

sx −1
6
(−1)||sy||

s∆ ∆

sy sz

s∆

sx= 0.

The equation h̄2 = 0 is checked as part of the following theorem.

Theorem 4.4.2. There is an SDR of sequences

B(D) ◦ B(O)
i // B(d′O)
p

oo h̄ii

preserving the syzygy degree where i and p are the same maps as in Theorem
4.2.5 and h̄ is the map in Definition 4.4.1.

Proof. We have to check the equations in Definition 4.2.3. The equation
pi = 1B(D)◦B(O) was checked in the proof of Theorem 4.2.5, and h̄i = 0 and
ph̄ = 0 also follow from the same reasons as in that proof.

Let us now prove that h̄2 = 0. It is obviously true on good admissible
labeled trees, since h̄ vanishes on them. Let mT be a bad admissible labeled
tree. Note that, if nT denotes the essential block of mT , then the essential
block of each summand of h̄(mT ) is a summand of h̄(nT ), up to signs. In
particular, if mT ′ is a summand of h̄(mT ), then, if n∆,mT > 0, n∆,mT ′

=
n∆,mT − 1 and ns∆,mT ′ = ns∆,mT + 1, so n∆,mT + ns∆,mT = n∆,mT ′

+ ns∆,mT ′ .
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Hence, by definition, h̄2(mT ) is a summation indexed by the ordered pairs
(ei∆, e

j
∆) with distinct coordinates i 6= j. The summands indexed by (ei∆, e

j
∆)

and (ej∆, e
i
∆) are scalar multiples of the same admissible labeled tree mT,ei∆,e

j
∆

,

obtained from mT by subdividing the edges ei∆ and ej∆ in the usual way. The
absolute values of the scalar coefficients of these summands are clearly the
same, namely 1/(n∆ +ns∆)2. Therefore, in order to check that h̄2(mT ) = 0 it
suffices to prove that these two summands have opposite sign. This is indeed
easy. Suppose without loss of generality that ei∆ comes before ej∆ in the path
order. Then, in the summand indexed by (ei∆, e

j
∆), we first subdivide ej∆ and

then ei∆, and the total degree of the label ∆ of ei∆ contributes to the sign,
which is −1. In the summand indexed by (ej∆, e

i
∆) we first subdivide ei∆ and

then ej∆, and we find the total degree of the label s∆ of the new inner vertex
subdividing ei∆, which is 0. The rest of total degrees contributing to signs
are the same, hence the final signs are opposite.

Let us finally check the homotopy equation (4.2.4). For admissible labeled
trees mT with a fixed number l = n∆ + ns∆ of labels containing ∆ in its
essential block, we could have defined hi(mT ), 1 ≤ i ≤ l, as in Definition
4.2.20, replacing the role of the leftmost label in the essential block containing
∆ by the ith label starting from the left in the essential block containing ∆.
Note that this number l defines a filtration of B(d′O) compatible with the
bar complex differential. The same arguments as in the proof of Theorem
4.2.5 for h1 = h show that, for all 1 ≤ i ≤ l,

ip(mT )−mT = dhi(mT ) + hid(mT ).

Observe that

h̄(mT ) =
1

l

l∑
i=1

hi(mT ).

Indeed, the ns∆ summands corresponding to labels s∆ vanish, and the re-
maining ones are those in the formula for h̄(mT ) in Definition 4.4.1. Then

dh̄(mT ) + h̄d(mT ) =
1

l

l∑
i=1

(dhi(mT ) + hid(mT ))

=
1

l

l∑
i=1

(ip(mT )−mT )

= ip(mT )−mT .

This completes the proof.

Lemma 4.4.3. The map ∂ = dB(dO) − dB(d′O) : B(d′O) → B(d′O) is a per-
turbation for the SDR in Theorem 4.4.2 in the sense of Lemma 4.3.6.
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Proof. It suffices to prove that h̄ is compatible with the filtration of B(d′O)
in the proof of Lemma 4.3.8. The argument given in the final paragraph of
the proof of that lemma (Case 2) works to show that all summands in h̄(mT )
have filtration degree ≤ than the filtration degree of mT itself.

Lemma 4.4.4. The composition pΣ∞h̄ equals zero.

Proof. The proof of the analogous fact for the chain homotopy h in Lemma
4.3.13 only uses that p∂ = 0. Hence it also works for h̄.

Theorem 4.4.5. Using the coaugmented codistributive law ϕ̄ in Definition
4.3.1, there is an SDR of sequences

B(D) ◦ϕ̄ B(O)
i′ // B(dO)
p

oo h̄′ii

preserving the syzygy degree obtained by applying Lemma 4.3.6 to the SDR
in Theorem 4.4.2 and to the perturbation ∂ in Lemma 4.4.3. The maps p
and i′ are the same as in Theorem 4.3.5.

Proof. It is enough to check that i′ in Theorem 4.3.5 satisfies

i′ =
∑
n≥0

(h̄∂)ni. (4.4.6)

The right hand side of this equation can be computed as in the proof of The-
orem 4.3.5, setting φ̄n = (h̄∂)ni and noting that these maps are inductively
defined from φ̄0 = i by φ̄n+1 = (h̄∂)φ̄n. The map ∂ is the same as in the
previous section, so the description of ∂(mT ) for mT an admissible labeled
tree without mixed labels in the proof of Theorem 4.3.5 remains valid, see
(4.3.16). Each summand of ∂(mT ) contains a single edge e∆ labeled ∆. The
only difference here is that all summands such that e∆ is in the essential
block survive h̄∂(mT ).

More precisely, if mT ′ is an admissible labeled tree with a single edge e∆

labeled ∆ in the essential block, then

h̄(mT ′) = ± 1

1 + nns∆,mT ′
mT ′,e∆ .

Hence, h̄∂(mT ) is a sum where each summand contains an admissible labeled
tree without mixed labels mT ′′ obtained from mT by taking an inner vertex
labeled s∆ with top adjacent label in sŌ and making it jump over the top
adjacent vertex, see (4.3.17), in such a way that the new vertex lays in the
essential block. These summands have certain positive coefficients (the signs
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coming from ∂ and h̄ cancel each other, as in the proof of Theorem 4.3.5).
We claim that all coefficients of a given mT ′′ add up to 1. Indeed, if we look
at the inner vertices labeled s∆ in the essential block of mT ′′ , {ujs∆}

ns∆,mT ′′
j=1 ,

then mT ′′ has arisen in the inductive process by applying h̄ to the admissible
labeled trees mT ′′,ujs∆

obtained by desubdividing each of these ujs∆, up to

signs. There are ns∆,mT ′′ of these, and the coefficient of h̄(mT ′′,ujs∆
) is

1

1 + ns∆,m
T ′′,uj

s∆

=
1

ns∆,mT ′′
,

as indicated above. Hence the claim follows.
The following picture illustrates why i′ is the same as in Theorem 4.3.5,

but for different reasons. The starting point is identical as in the first example
of the proof of that theorem:

sx

s∆s∆

sx

s∆s∆

sx

s∆

s∆

sx

s∆

s∆

sx

s∆s∆

sx

s∆ s∆

+

sx

s∆s∆

+ + 0,

i h∂

h∂

h∂

from second
from first

Here, in step 4, the middle term arises from the two summands in step 3.
Each of them contribute to it by a factor of 1

2
, adding up to 1.

Also as in the proof of Theorem 4.3.5, we wish to illustrate how each
summand in i′ of some good admissible labeled tree can be traced back. In
the folloing picture, arrows represent that the target shows up in h̄∂ of the
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source with coefficient indicated in the label:

s∆

s∆

sy sz

s∆
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s∆
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s∆

s∆
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s∆

1
2

1
2

s∆
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s∆

sz

sx

s∆

s∆

sy sz

s∆

sx

s∆

1
2
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2

s∆
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sx

s∆

s∆
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s∆

sx

s∆

1
2

1
2

1
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s∆
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sx

s∆

s∆
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s∆

sx

s∆

s∆

1
2
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2
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s∆
s∆

1

1
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The procedure at each step is taking the essential block and ‘de-jump’ each
of the s∆’s found therein. Note that here we have the same starting point as
in the proof of Theorem 4.3.5, but the trace-back procedure is different.

4.5 The Koszul dual cooperad of a derived

operad

In this final section, relying on the previous one, we extend our previous
results for nonsymmetric operads to the symmetric settings. Hence, we finally
achieve the main technical results of this thesis.

Let O = (E|R) be a quadratic operad which is aritywise projective and
assume Q ⊂ k.

Definition 4.5.1. Define the morphism of collections ϕ¡
Σ : D¡◦ΣO¡ → O¡◦ΣD¡

by

ϕ¡
Σ((s∆)i ⊗ x) =

∑
i1+···+in=i

x⊗ (s∆)i1 ⊗ · · · ⊗ (s∆)in ⊗ idn,

where n is the arity of x and idn ∈ Σn is the identity permutation.

It is clear that ϕ¡
Σ is a map of sequences. Let us prove that it is equivari-

ant, and hence a map of collections. Let τ ∈ Σn. On the one hand,

ϕ¡
Σ(((s∆)i ⊗ x) · τ) = ϕ¡

Σ((s∆)i ⊗ (x · τ))

=
∑

i1+···+in=i

(x · τ)⊗ (s∆)i1 ⊗ · · · ⊗ (s∆)in ⊗ idn

=
∑

i1+···+in=i

x⊗ τ · ((s∆)iτ−1(1) ⊗ · · · ⊗ (s∆)iτ−1(n) ⊗ idn)

=
∑

i1+···+in=i

x⊗ (s∆)i1 ⊗ · · · ⊗ (s∆)in ⊗ τ.

Here, in the last step we simply do a change of variables. On the other hand,

ϕ¡
Σ((s∆)i ⊗ x) · τ =

∑
i1+···+in=i

(x⊗ (s∆)i1 ⊗ · · · ⊗ (s∆)in ⊗ idn) · τ

=
∑

i1+···+in=i

x⊗ (s∆)i1 ⊗ · · · ⊗ (s∆)in ⊗ τ.

Furthermore, that ϕ¡
Σ is a codistributive law follows from the same proof as

ϕ¡ being a codistributive law in the nonsymmetric case with only some minor
modificiations.
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In this section we use the results of the previous section to compute the
coaugmented cooperad dO¡ under our standing assumptions.

Theorem 4.5.2. The previous map ϕ¡ is a coaugmented codistributive law,
i.e. an augmented distributive law in the opposite monoidal category of the
category of collections endowed with the symmetric circle product, and there
is a coaugmented cooperad isomorphism

(dO)¡ ∼= D¡ ◦Σ,ϕ¡ O¡.

Moreover, if O is Koszul then so is dO.

This theorem can be derived from Theorem 4.5.4 below in exactly the
same way as Theorem 4.3.2.

Definition 4.5.3. Define the map of collections ϕ̄ : B(D)◦ΣBΣO → BΣO◦Σ

B(D) by the same formula as in Definition 4.5.1.

Note that B(D) = BΣ(D) since D is concentrated in arity 1.

Theorem 4.5.4. The previous map ϕ̄ is a coaugmented codistributive law
and there is an SDR of collections

B(D) ◦Σ,ϕ̄ BΣO
i′Σ // BΣ(dO)
pΣ

oo h′Σii

preserving the syzygy degree, and i′Σ is a cooperad morphism.

As in the nonsymmetric case, Theorem 4.5.4 follows by perturbing a more
elementary SDR in Theorem 4.5.11 below, via the basic perturbation lemma
(Lemma 4.3.6), compare the proof of Theorem 4.4.5. The fact that ϕ̄ in
Definition 4.5.3 is a coaugmented codistributive law follows since this ϕ̄ is
plainly a symmetric version of that in Definition 4.3.4, which was checked to
be a coaugmented codistributive law within the proof of Theorem 4.3.5.

Definition 4.5.5. The mock derived operad of an augmented operad O is
defined as

d′O = O ◦Σ,ϕ0 D.

Here we use the trivial distributive law in Definition 4.1.8 instead of the
distributive law defining dO in Definition 3.1.7.

The mock derived operad of a quadratic operad is quadratic by Proposi-
tion 4.1.10.
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Corollary 4.5.6. Given a quadratic operad O = (E|R), its mock derived
operad d′O is quadratic associated to the following quadratic data

(E ⊕ k ·∆, R⊕ (k ·∆)⊗ E ⊕ k · (∆⊗∆)).

Definition 4.5.7. Consider the symmetrization of the nonsymmetric i in
Theorem 4.2.5. This symmetrization is the top arrow in the diagram below.
It is straightforward to check that it induces a map iΣ below. This is how
we define i in Theorem 4.5.11.

(BD ◦ BO)⊗ k[Σ]
i⊗k[Σ]

// B(d′O)⊗ k[Σ]

����

BD ◦Σ ((BO)⊗ k[Σ])

����

BD ◦Σ BΣO
iΣ // BΣ(d′O)

Here, the vertical projections are give by (2.3.5), hence they are induced by
the relations defining the free symmetric operad as a quotient of the free
ns-operad, see also (2.2.3).

The map pΣ in Theorem 4.5.11 is similarly defined from the symmetriza-
tion of p in Theorem 4.2.5 by using the following diagram.

B(d′O)⊗ k[Σ]
p⊗k[Σ]

//

����

(BD ◦ BO)⊗ k[Σ]

BD ◦Σ ((BO)⊗ k[Σ])

����

BΣ(d′O)
pΣ // BD ◦Σ BΣO

(4.5.8)

Also the map h̄Σ in Theorem 4.5.11 is defined from the symmetrization of h̄
in Theorem 4.4.2 by using the following diagram.

B(d′O)⊗ k[Σ]
h̄⊗k[Σ]

//

����

B(d′O)⊗ k[Σ]

����

BΣ(d′O)
h̄Σ // BΣ(d′O)

(4.5.9)
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We cannot do the same with the chain homotopy h in Theorem 4.2.5,
because the following diagram cannot be filled

B(d′O)⊗ k[Σ]
h⊗k[Σ]

//

����

B(d′O)⊗ k[Σ]

����

BΣ(d′O) // BΣ(d′O)

The filler does not exist since, in Definition 4.2.20, we have to search for a
certain leftmost label containing ∆, which is not compatible with the rela-
tions defining symmetric free operads. Tree isomorphisms may change the
relative position of this label.

The existence of iΣ and pΣ filling the diagrams above is clear, since the
definitions of i and p are very easy. The existence of the filler h̄Σ is also
convincing since the definition of h̄, unlike that of h, does not depend on
orderings. However, there may be suspicions about signs. We argue in the
following lemma that the signs in the definition of h̄ are correctly chosen,
in the sense that they are compatible with the tree groupoid action on the
symmetrization.

Lemma 4.5.10. The filler hΣ in diagram (4.5.9) indeed exists.

Proof. Let mT ∈ X(T ), X = s(d′O), be an admissible labeled tree and
f : T → T ′ a non-planar isomorphism. Assume that T has n leaves and let
σ ∈ Σn. We must check that

h̄(mT )⊗ σ = (h̄⊗ k[Σ])X[T ](f)(mT ⊗ σ)

in BΣ(d′O).
Let l = n∆ + ns∆ be the number of labels containing ∆ in the essential

block of mT . We use the linear operators hi in the proof of Theorem 4.4.2,
which satisfy

h̄(mT ) =
1

l

l∑
i=1

hi(mT ).

Let i, 1 ≤ i ≤ l, be such that the ith label in the essential block of mT

contaning ∆ is attached to an edge e = {v, w}, v < w, so hi(mT ) is possibly
non-trivial. Similarly, let j be the position of the label ∆ of the edge f(e)
among the labels containing ∆ in the essential block of X[T ](f)(mT ⊗ σ) (in
order to define the essential block of this, remove the labels from leaves so
as to get an honest admissible labeled tree). Let Te be the tree obtained
from T by subdividing the edge e, similarly T ′f(e), and let fe : Te → T ′f(e) be
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the obvious isomorphism with the same underlying homeomorphism as f . It
suffices to prove that

hi(mT )⊗ σ = (hj ⊗ k[Σ])X[T ](f)(mT ⊗ σ)

in BΣ(d′O). Here,

hi(mT )⊗ σ = X[Te](fe)(hi(mT )⊗ σ)

by the relations defining BΣ(d′O) as a quotient of B(d′O)⊗ k[Σ]. Moreover,
by the construction of fe, the equality

X[Te](fe)(hi(mT )⊗ σ) = (hj ⊗ k[Σ])X[T ](f)(mT ⊗ σ)

holds already in B(d′O) ⊗ k[Σ] up to sign. It is therefore enough to notice
that the signs match.

There are signs coming from the tree groupoid actions and from the defini-
tion of hi and hj. The (total) degrees of the labels of mT an hi(mT ) coincide,
except for the labels of v, whose degrees differ by −1 (we have removed a ∆
by application of hi), and for the extra inner vertex of hi(mT ), whose label is
s∆, of total degree 0, so it does not contribute to signs. Hence the difference
between signs coming from the tree groupoid actions on both sides is −1 up
to the sum of the degrees of the labels of the vertices exchanging their order
with v by f plus the sum of the edges labeled ∆ adjacent to v which jump
over e. This is exactly de difference between the signs coming from hi and
hj, hence we are done.

As a consequence of Definition 4.5.7 and Theorem 4.4.2, we have the
following SDR in the symmetric setting.

Theorem 4.5.11. There is an SDR of collections

B(D) ◦Σ BΣO
iΣ // BΣ(d′O)
pΣ

oo h̄Σii

preserving the syzygy degree.

This SDR can be perturbed.

Lemma 4.5.12. The map ∂ = dBΣ(dO) − dBΣ(d′O) : BΣ(d′O)→ BΣ(d′O) is a
perturbation for the SDR in Theorem 4.5.11 in the sense of Lemma 4.3.6.

This theorem can be derived from Lemma 4.4.3. The filtration of B(d′O)
constructed in the proof of that lemma extends to B(d′O) ⊗ k[Σ], the sym-
metrization, and passes to its quotient BΣ(d′O).
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Lemma 4.5.13. The compositions pΣ∞iΣ and pΣ∞h̄Σ equal zero.

This follows immediately from Definition 4.5.7 and Lemmas 4.3.13 and
4.4.4. We have finally established the conditions to apply the basic pertur-
bation lemma which proves Theorem 4.5.4, and hence Theorem 4.5.2. The
explicit description of i′ in the proof of Theorem 4.4.5 also works for i′Σ,
incorporating labels to the leaves reflecting the symmetric situation.
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Chapter 5

Derived homotopy algebras,
applications and examples

We finally come to the definition of derived homotopy algebras, the main
topic of this thesis. Their definition and properties, as well as the explicit
computations, depend heavily on the strongest results of the previous chap-
ter. We could even say that they are almost formal consequences of them.
This includes the construction of minimal models for operadic algebras, ex-
tending Sagave’s theory [21] beyond the associative case. We explicitly com-
pute the generating operations and their relations in the associative, com-
mutative, and Lie cases, as a way of illustrating our powerful tools.

5.1 Derived homotopy algebras

We are now in the position to define the notion on which we based the title
of this thesis.

Definition 5.1.1. Let O = (E|R) be a Koszul operad (symmetric or not)
which is aritywise projective over the ground ring. We also assume that O¡

is aritywise projective over the ground ring. Denote by dO∞ = ΩΣ(dO)¡

the minimal model, in the sense of Definition 2.5.5 or 2.5.10, of the derived
operad dO from Definition 3.1.6 or 3.1.9. A derived homotopy O-algebra is
an algebra over dO∞.

Recall that the base symmetric monoidal category we work over is that
of graded complexes, as spelled out in Example 1.1.11, where the symmetry
isomorphism uses the Koszul sign convention with respect to the total degree.
Derived (ns-)operads dO were defined in section 3.1 and the algebras over
them, called derived O-algebras, were characterized in section 3.2.
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We recall here further that we performed the calculation of (dO)¡ for ns-
operads in Theorem 4.3.2, and for operads in Theorem 4.3.2. Notice that
in the symmetric setting we had to further impose that the ground ring
contained the rationals, Q ⊂ k, whereas in the nonsymmetric setting this
restriction was not needed. We henceforth assume Q ⊂ k when dealing with
(symmetric) operads.

Proposition 5.1.2. Derived O-algebras are particular instances of derived
homotopy O-algebras.

Proof. Theorem 2.5.9 tells us that for any Koszul operad P that is arity-
wise projective, and such that P ¡ is aritywise projective, the surjective map
p : ΩΣP ¡ � P defined earlier in section 2.5 is a quasi-isomorphism of operads.
Since an algebra over P is a graded complex X equipped with a morphism
of operads P → E(X), see Definition 1.5.2, it then follows by precomposition
that an algebra over P is also an algebra over ΩΣP ¡,

ΩΣP ¡ � P → E(X).

Hence it suffices to check that derived operads dO are Koszul, aritywise
projective, and that (dO)¡ is aritywise projective. That dO is Koszul is
already proved in Theorems 4.3.2 and 4.5.2, since O is Koszul. That dO is
aritywise projective follows easily from the decomposition dO(n) = O(n) ⊗
D(1)⊗n, n ≥ 0. Indeed, the factor O(n) is by assumption projective and the
factors D(1) are free, hence projective. As a consequence the tensor product
of these factors is projective as well. That (dO)¡ is aritywise projective is a
direct consequence of O¡ being aritywise projective, since (dO)¡(n) = D¡(1)⊗
O¡(n) and D¡(1) is free.

Derived homotopy O-algebras can be made into a category with a class
of morphisms, called ∞-morphisms, bigger than plain dO∞-morphisms, see
[16, section 10.2.2]. We define them below.

A derived homotopy O-algebra structure on X, θ = θX : dO∞ → E(X),
can be alternatively described as an extra differential drθ of bidegree (0,−1)
on the cofree (dO)¡-coalgebra (dO)¡(X) described in Remark 1.5.5 such that
dθ = d(dO)¡(X) + drθ is a (dO)¡-coalgebra differential on (dO)¡(X), see [16,
Proposition 10.1.11] and compare [15, Definition 4.1].

Definition 5.1.3. An ∞-morphism of derived homotopy algebras X  Y
is a (dO)¡-coalgebra morphism ((dO)¡(X), dθX )→ ((dO)¡(Y ), dθY ).

Remark 5.1.4. Any ∞-morphism X  Y has an underlying graded com-
plexes map X → Y which is obtained as the following composition,

X ⊂ (dO)¡(1)⊗X ⊂ (dO)¡(X)→ (dO)¡(Y )� (dO)¡(1)⊗ Y � Y.
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Here we use the counit and the coaugmentation of (dO)¡ and the direct sum
decomposition of (dO)¡(X), see Remark 1.5.5.

An honest dO∞-morphism f : X → Y gives rise to an ∞-morphism
(dO)¡(f). This defines a faithful but not full inclusion of dO∞-morphisms
into ∞-morphisms of derived homotopy O-algebras, see the diagram at the
end of [16, section 10.2.5].

General ∞-morphisms will only play a role below, in the definition of
minimal for derived homotopy models for O-algebras. This is why we do not
pursue them further.

In the remaining sections of this chapter, instances of derived homotopy
O-algebras are discussed for O the associative operad, the commutative op-
erad, and the Lie operad, respectively. In particular, we provide calculations
of ΩΣ(dO)¡ (or of Ω(dO)¡ for the associative operad). We proceed in each
case as follows. We first describe the derived O-algebras and afterwards the
derived homotopy O-algebras. Then we define the corresponding operads
dO∞ and finally show that they are the result of the calculation of ΩΣ(dO)¡.

We will not include the formulas for ∞-morphisms, so as not to get into
further technicalities. In the associative case, the computation yields the
same result as the ad-hoc definition of Sagave in [21], up to different but
equivalent sign conventions. This was checked in [15, Theorem 4.4]. The
similarity between derived homotopy algebras over the associative and com-
mutative operads is similarly satisfied at the level of ∞-morphisms.

5.2 Twisted complexes

The most easy examples of derived homotopy algebras are twisted complexes,
which are actually dI∞-algebras, where I is the initial operad, the tensor unit
for the circle product, see sectoins 1.2 and 1.3. The operad dI is simply D.
This operad is obviously aritywise projective (actually free). In Remark 4.2.6
we checked following [16, 10.3.7] that D is Koszul and computed D¡, which is
also aritywise projective (free). Recall that by Corollary 3.1.3 a D-algebra is
a bicomplex (X, dh, dv), i.e. an bigraded module X equipped with differentials
dv, dh, of bidegrees (0,−1), (−1, 0), respectively, such that dhdv + dvdh = 0.

Definition 5.2.1. A twisted complex (X, {di}i≥0) is a bigraded module X
together with maps

di : X → X

of bidegree (−i, i− 1), i ≥ 0, satisfying the following equation for any fixed
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i ≥ 0, ∑
p+l=i

dpdl = 0.

Remark 5.2.2. It can be easily checked that a bicomplex is a twisted complex
with di = 0 for i ≥ 2. The surviving maps d0 and d1 then play the role of
the vertical differential dv and the horizontal differential dh, respectively, of
the bicomplex.

Equivalently, one can regard a twisted complex as a graded complex
(X, d0) together with additional maps di, i ≥ 1, satisfying

dEnd(X)(di) = d0di − (−1)1did0 = −
∑
p+l=i
p,l≥1

dpdl.

With the latter formulation of a twisted complex it is immediate that the
operad dI∞, also denoted D∞, determining a twisted complex is given in the
folllowing definition.

Definition 5.2.3. Define the ns-operad

dI∞ = D∞ = F

({
0,
⊕
i≥1

k · di, 0, . . .

})
, (5.2.4)

i.e. freely generated by the homogeneous operations di, i ≥ 1, of arity 1 and
bidegree (−i, i− 1), equipped with differential

ddI∞(di) = −
∑
p+l=i

dp ◦1 dl. (5.2.5)

Note that dI∞ = D∞ is concentrated in arity 1, like dI = D.
The following computation was also carried out in [16, 10.3.7].

Proposition 5.2.6. The minimal model of dI = D equals dI∞ = D∞, as
defined in Definition 5.2.3.

Proof. We have computed the coaugmented cooperad D¡ in Remark 4.2.6.

We have in particular that it is concentrated in arity 1 and D̄¡(1) =
⊕
i≥1

k ·

(s∆)i. It follows that, calling di = s−1(s∆)i, the underlying sequence of the
cobar construction Ω(D¡) = F(s−1D̄¡) on D¡ is given by (5.2.4).

On generators, the differential d2 coincides with d̂2, which is defined from
∆(1), see section 2.3. It the case of D¡, the infinitesimal composition ∆(1),
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see Definition 1.4.15, clearly coincides with ∆D¡ in (4.2.8). Hence it follows
by (2.3.6) and (2.3.7) that

d̂2(s−1((s∆)⊗i)) = −
∑
p+l=i
p,l≥1

(s−1(s∆)⊗p) ◦1 (s−1(s∆)⊗l),

as in (5.2.5).

Remark 5.2.7. Notice that since I is the initial operad there exists a unique
map I → O for any operad O. It is precisely the unit ηO, see section 1.2.
This operad map induces another one dI∞ → dO∞, so an algebra over dO∞,
i.e. a derived homotopy O-algebra, has an underlying algebra structure over
dI∞ obtained by precomposition,

dI∞ → dO∞ → E(X),

i.e. an underlying twisted complex.

5.3 Minimal derived homotopy models

Let O be a quadratic Koszul operad such that both O and O¡ are aritywise
projective. We assume in addition that O (and hence O¡) is concentrated in
horizontal degree 0, i.e. it is an operad in plain graded (rather than bigraded)
modules (which can always be regarded as bigraded modules concentrated in
the vertical axis).

Recall that the underlying (vertically) graded complex of a twisted com-
plex (X, {di}i≥0) is (X, d0). We denote by Hv

ij(X) the homology bigraded
complex of (X, d0), where v stands for vertical.

Definition 5.3.1. A morphism of twisted complexes f : X → Y is an E1-
equivalence if it is a quasi-isomorphism at the level of underlying (vertically)
graded complexes, i.e. if it induces isomorphisms Hv

ij(f) : Hv
ij(X) → Hv

ij(Y )
in all bidegrees i, j ∈ Z. A morphism of derived homotopy O-algebras is an
E1-equivalence if the underlying morphism of twisted complexes is. More
generally, an ∞-morphism X  Y of derived homotopy O-algebras is an
E1-equivalence if the morphism of graded complexes f : X → Y of X  Y ,
in the sense of Remark 5.1.4, is an E1-equivalence.

This terminology comes from the fact that the horizontal homology is the
E1-term of the spectral sequence of a filtered complex obtained by totaliza-
tion, see [21].
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In a twisted complex the equation d0d1 + d1d0 = 0 also holds, therefore
d1 induces a horizontal differential on Hv

ij(X), i.e. if bidegree (−1, 0), whose
bigraded homology we can denote in either of the following two ways

Hh
ijH

v
∗?(X) = E2

ij(X).

The second notation comes from the fact that this is the E2-term of the
aforementioned spectral sequence.

Definition 5.3.2. A morphism of twisted complexes f : X → Y is an
E2-equivalence if it induces isomorphisms E2

ij(f) : E2
ij(X) → E2

ij(Y ) in all
bidegrees i, j ∈ Z. A morphism of derived homotopy O-algebras is an
E2-equivalence if the underlying morphism of twisted complexes is. More
generally, an ∞-morphism X  Y of derived homotopy O-algebras is an
E2-equivalence if the maps E2

ij(f) : E2
ij(X) → E2

ij(Y ) induced by the un-
derlying morphism X → Y of X  Y , in the sense of Remark 5.1.4, are
isomorphisms.

Remark 5.3.3. Obviously E1-equivalences are E2-equivalences. The fact that
the underlying morphism X → Y of an∞-morphism induces a map, not only
on vertical homology, but also on E2

ij, is straightforward. However it depends
on a slightly deeper analysis of the structure of ∞-morphisms that we have
decided not to pursue in order to avoid further technicalities.

Definition 5.3.4. A twisted complex (X, {di}i≥0) is minimal if d0 = 0. A
derived homotopy O-algebra is minimal if its underlying twisted complex, in
the sense of Remark 5.2.7, is minimal.

Remark 5.3.5. In a minimal twisted complex, the equation d0d2 + d1d1 +
d2d0 = 0 reduces to d2

1 = 0. Hence (X, d1) is a graded complex with horizontal
(rather than the usual vertical) differentials, called the underlying horizontal
graded complex of (X, {di}i≥0).

Proposition 5.3.6. If Y is a derived homotopy O-algebra such that Hv
ij(Y )

is projective for all i, j ∈ Z, then there is a minimal derived homotopy O-
algebra X with underlying bigraded module Hv

ij(Y ) and an E1-equivalence
X  Y .

Proof. Since the vertical homology of Y is projective, the bigraded module
X = Hv

ij(Y ), regarded as a graded complex with trivial differential, is a
strong deformation retract of Y , in the sense of Definition 4.2.3. The stan-
dard homotopy transfer theorem [16, Theorem 10.3.1], which is a formal
consequence of Koszul duality theory, endows X with the an appropriate
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derived homotopy O-algebra structure, which is an E1-equivalence by con-
struction, and enhances the inclusion i : X ↪→ Y , which is part of the SDR,
to an ∞-morphism.

The derived homotopy O-algebra X can be explicitly computed in terms
of well-known formulas involving trees.

Proposition 5.3.7. Given an O-algebra A in the category of chain com-
plexes, there is a derived homotopy O-algebra Y concentrated in non-negative
horizontal degrees such that Hv

ij(Y ) is a projective bigraded module and a
morphism of dO∞-algebras Y → A which is an E2-equivalence.

Proof. This proof uses some strong and well-known results from homotopy
theory, albeit at a user level. Sagave proved in [21, section 3] that the under-
lying chain complex of A has a simplicial resolution Y ′, cofibrant in Bous-
field’s resolution model structure, whose associated bicomplex Y = C(Y ′),
with horizontal differential defined as usual (the alternating sum of simpli-
cial face operators), satisfies the required hypotheses. Now, it suffices extend
the bicomplex structure Y to a derived homotopy O-algebra structure com-
patible with the resolution map Y → A. We can regard O∞ = ΩΣO¡ (just
ΩO¡ in the nonsymmetric case) as a constant simplicial chain operad. It is
cofibrant in the model structure of [4] (resp. [19]). Hence we can transfer
the O∞-algebra structure of A (coming from the O-algebra structure via the
quasi-isomorphism O∞ � O) to Y ′. Since the functor C(−) is lax symetric
monoidal (via the Eilenberg–Zilber map), this induces an O∞-algebra struc-
ture on the bicomplex C(Y ). By Proposition 3.2.2, this is the same as a
d(O∞)-algebra structure on the underlying vertical graded complex of C(Y ).
This induces a (dO)∞-algebra structure by using the obvious surjective map
(dO)∞ � d(O∞) whose kernel is the operadic ideal generated by the image
of the operations di ∈ dI∞, i ≥ 2, under the map dI∞ → (dO)∞ in Remark
5.2.7.

Combining the two previous propositions we obtain the following result,
which ensures the existence of minimal models.

Corollary 5.3.8. Any O-algebra A in the category of chain complexes is
E2-equivalent to a minimal derived homotopy O-algebra X with underlying
projective bigraded module concentrated in non-negative horizontal degrees.

The underlying horizontal graded complex of X, in the sense of Remark
5.3.5, is therefore a projective resolution of H∗(A), the homology of A.
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Remark 5.3.9. Sagave computes in [21] derived homotopy associative minimal
models for two differential graded algebras, see [21, Examples 5.1 and 5.3].
In the first example, the differential graded algebra is actually commutative
and the minimal model is derived homotopy commutative.

5.4 Derived homotopy associative algebras

Let A denote the (non-unital) associative operad, as defined in [16, 9.1.2].
This is a nonsymmetric operad. It is arity-wise projective since A(0) = 0
and A(n) = k, the ground ring concentrated in degree 0, for n ≥ 1. The
ns-operad A is Koszul, see [16, Theorem 9.1.5]. Moreover, A¡ is also aritywise
projective, as recalled in the proof of Theorem 5.4.7.

Definition 5.4.1. A derived associative algebra, derived A-algebra, or dA-
algebra, is a bicomplex (X, dh, dv), i.e. an bigraded module X equipped with
differentials dv, dh, of bidegrees (0,−1), (−1, 0), respectively, such that dhdv+
dvdh = 0, together with a morphism of bicomplexes m : X ⊗ X → X of
bidegree (0, 0) which is associative, called multiplication, i.e. if we denote
m(x, y) = xy then x(yz) = (xy)z,

dv(xy) = dv(x)y + (−1)‖x‖xdv(y),

dh(xy) = dh(x)y + (−1)‖x‖xdh(y),

where ‖x‖ is the total degree of x.

Notice that Definition 5.4.1 is a particular instance of Proposition 3.2.2
for the associative operad.

Definition 5.4.2. A derived homotopy associative algebra, derived homotopy
A-algebra, or dA∞-algebra, is an bigraded module X together with maps

min : X⊗n → X

of bidegree (−i, i+ n− 2), i ≥ 0, n ≥ 1, satisfying the following equation for
any fixed i ≥ 0 and n ≥ 1,∑

p+l=i,
k+q=n+1,
r+1+t=k

(−1)q(k−r−1)−rmpk(1
⊗r ⊗mlq ⊗ 1⊗t) = 0.

Our derived homotopy associative algebras coincide with Sagave’s derived
A-infinity algebras, introduced in [21], up to signs. The different signs are
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a consequence of our sign convention in the symmetry isomorphism for the
tensor product of bigraded modules, see Example 1.1.10. Our convention
uses the Koszul sign rule with respect to the total degree, whereas in [21]
and [15] the Koszul rule is used with respect to horizontal and vertical degrees
separately. Nevertheless, the resulting symmetric monoidal categories with
both choices for the symmetry isomorphism turn out to be isomorphic.

Remark 5.4.3. It can be easily checked that a derived associative algebra a
derived homotopy A-algebra with min = 0 for i+n ≥ 3 (in [21] and [15] also
referred to as a bidga). The surviving maps m01, m11, and m02 will then play
the role of the vertical differential dv, the horizontal differential dh, and the
multiplication m, respectively, of the derived associative algebra.

Homotopy A-algebras, or A∞-algebras, as first introduced in [23], form
another class of examples of derived homotopyA-algebras when concentrated
in the vertical axis, so min = 0 for i > 0. Obviously, the maps m0n then play
the role of the maps mn defining the A∞-algebra structure.

An easy check shows that the underlying twisted complex, see Remark
5.2.7, of a derived homotopy associative algebra is (X, {mi1}i≥0).

One can equivalently regard a derived homotopy A-algebra as a graded
complex (X,m01) together with additional maps min satisfying

dEnd(X)(min) = m01min −
∑

r+t+1=n

(−1)n−2min(1⊗r ⊗m01 ⊗ 1⊗t)

= −
∑
p+l=i,

k+q=n+1,
r+1+t=k

(p,k),(l,q)6=(0,1)

(−1)q(k−r−1)−rmpk(1
⊗r ⊗mlq ⊗ 1⊗t).

With this last formulation, it can be easily checked that the ns-operad
dA∞ determining dA∞-algebras is given in the following definition.

Definition 5.4.4. Define the ns-operad

dA∞ = F

({
0,
⊕
i≥1

k · µi1, . . . ,
⊕
i≥0

k · µin (n ≥ 2), . . .

})
, (5.4.5)

i.e. freely generated by the homogeneous operations µin, i ≥ 0, n ≥ 1,
(i, n) 6= (0, 1), of arity n and bidegree (−i, i+n−2), equipped with differential

ddA∞(µin) = −
∑
p+l=i

q+k=n+1
r+1+t=k

(−1)q(k−r−1)−rµpk ◦r+1 µlq. (5.4.6)
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As discussed in the introduction, Livernet, Roitzheim, and Whitehouse
studied in [15] the minimal model of dA, being dA∞ up to signs. In the
remainder of this section we show that our approach for calculating the min-
imal model of dA yields the same outcome up to sign convention, i.e. Ω(dA)¡

calculated using Theorem 4.3.2 equals dA∞ in Definition 5.4.4.

Theorem 5.4.7. The minimal model of dA equals dA∞, as defined in Defi-
nition 5.4.4.

Proof. The coaugmented ns-cooperad structure on A¡ is provided in [16, sec-
tion 9.1.5]. We spell out this structure here, since we need it in our compu-
tation.

The underlying sequence of A¡ is given by

A¡(0) = 0,

A¡(n) = k · µcn, n ≥ 1, (5.4.8)

see also [16, Proposition 9.1.3], where µcn, n ≥ 1, are homogeneous elements
of bidegree (0, n − 1). For the sake of simplicity, we here use the notation
µc1 = idA¡ for the identity cooperation.

The comultiplication ∆A¡ : A¡ → A¡ ◦ A¡ is given by

∆A¡(µcn) =
∑

i1+···+ik=n

(−1)Σkj=1(ij+1)(k−j)µck ⊗ µci1 ⊗ · · · ⊗ µ
c
ik
,

see also [16, Lemma 9.1.2].
The counit εA¡ : A¡ → I vanishes on all µcn except for µc1, which is sent to

1 ∈ k = I(1), and the coaugmentation ηA¡ : I → A¡ is determined by being a
splitting of the counit, sending therefore 1 ∈ k = I(1) to µc1.

We are now in the position to determine the coaugmented ns-cooperad
structure on (dA)¡. First of all, by Theorem 4.3.2, the underlying sequence
of (dA)¡ = D¡ ◦ϕ¡ A¡ equals

dA¡(0) = 0,

dA¡(n) = D¡(1)⊗A¡(n)

=
⊕
i≥0

k · (s∆)i ⊗ k · µcn

=
⊕
i≥0

k · ((s∆)i ⊗ µcn), n ≥ 1.

For n ≥ 1, in the second equality we use (5.4.8) and (4.2.7) for the underlying
sequence of D¡ = B(D).
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The comultiplication ∆(dA)¡ : (dA)¡ → (dA)¡ ◦ (dA)¡ is ∆(dA)¡ = (1 ◦ ϕ¡ ◦
1)(∆D¡ ◦∆A¡), compare Proposition 1.2.5. Here the codistributive law ϕ¡ is
given in Definition 4.3.1, ∆D¡ is given in (4.2.8), and ∆A¡ is above. Hence,
on generators we get the following formula, where ak = Σk

j=1(ij + 1)(k − j),

∆(dA)¡((s∆)i ⊗ µcn) =

(1 ◦ ϕ¡ ◦ 1)(∆D¡ ◦∆A¡)((s∆)i ⊗ µcn) =∑
p+l=i

i1+···+ik=n

(−1)ak(1 ◦ ϕ¡ ◦ 1)(((s∆)p ⊗ (s∆)l)⊗ (µck ⊗ µci1 ⊗ · · · ⊗ µ
c
ik

)) =

∑
p+l=i

i1+···+ik=n

(−1)ak(1 ◦ ϕ¡ ◦ 1)((s∆)p ⊗ ((s∆)l ⊗ µck)⊗ µci1 ⊗ · · · ⊗ µ
c
ik

) =

∑
p+l=i

i1+···+ik=n
p1+···+pk=l

(−1)ak(s∆)p ⊗ (µck ⊗ (s∆)p1 ⊗ · · · ⊗ (s∆)pk)⊗ µci1 ⊗ · · · ⊗ µ
c
ik

=

∑
p+l=i

i1+···+ik=n
p1+···+pk=l

(−1)ak((s∆)p ⊗ µck)⊗ ((s∆)p1 ⊗ µci1)⊗ · · · ⊗ ((s∆)pk ⊗ µcik).

In the third and last equality we use the associator for ◦, as defined in section
1.3.

As a next step, we have to determine the infinitesimal decomposition ∆(1),
as defined in (1.4.15). This gives, on generators,

∆(1)((s∆)i ⊗ µcn) = Pr ∆(dA)¡((s∆)i ⊗ µcn) =∑
p+l=i

q+k=n+1
r+1+t=k

(−1)(q+1)(k−r−1)((s∆)p ⊗ µck)⊗ id⊗rdA¡ ⊗((s∆)l ⊗ µcq)⊗ id⊗tdA¡ .

We finally come to the calculation of Ω(dA)¡. To this end, denote µin =
s−1((s∆)i ⊗ µcn). These are homogeneous elements of bidegree

i(−1, 1) + (0, n− 1) + (0,−1) = (−i, i+ n− 2).

Actually, they are the free generators of the bigraded modules s−1(dA)¡(n) for
(i, n) 6= (0, 1). So we see that the underlying sequence of bigraded modules
of Ω((dA)¡) = F(s−1(dA)¡) equals the right hand side of (5.4.5).

The differential dΩ(dA¡) reduces to d2, since dA has trivial differential. It is

enough to compute it on the bigraded module generators of s−1(dA)¡. It then
extends to the cobar construction as an operadic derivation. On generators,
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d2 coincides with d̂2, which is defined from ∆(1), see section 2.3. By (2.3.6)
and (2.3.7) it now follows that

d̂2(µin) = −
∑
p+l=i

q+k=n+1
r+1+t=k

(p,k),(l,q)6=(0,1)

(−1)q(k−r−1)−rµpk ⊗ id⊗rdA¡ ⊗µlq ⊗ id⊗tdA¡

= −
∑
p+l=i

q+k=n+1
r+1+t=k

(p,k),(l,q)6=(0,1)

(−1)q(k−r−1)−rµpk ◦r+1 µlq,

which equals (5.4.6).

5.5 Derived homotopy commutative algebras

Let C denote the (non-unital) commutative operad, as defined in [16, 13.1.3].
This is a symmetric operad, hence we assume that the ground ring contains
the rationals, Q ⊂ k. It is arity-wise projective over the ground ring k
since C(0) = 0 and C(n) = k, for n ≥ 1. The operad C is Koszul, see [16,
Proposition 13.1.2]. The cooperad C¡ is also aritywise projective, compare
the proof of Theorem 5.5.5.

Definition 5.5.1. A derived commutative algebra, derived C-algebra, or dC-
algebra, is a bicomplex (X, dh, dv), i.e. a bigraded module X equipped with
differentials dv, dh of bidegrees (0,−1), (−1, 0), respectively, such that dhdv+
dvdh = 0, together with a morphism of bicomplexes m : X⊗X → X of bide-
gree (0, 0) which is both associative and commutative, called multiplication,
i.e. if we denote m(x, y) = xy then x(yz) = (xy)z, xy = (−1)‖x‖‖y‖yx,

dv(xy) = dv(x)y + (−1)‖x‖xdv(y),

dh(xy) = dh(x)y + (−1)‖x‖xdh(y).

Notice that Definition 5.5.1 is a particular instance of Proposition 3.2.2
for the commutative operad.

In order to define derived homotopy algebras for the commutative operad,
we need the shuffle product in the tensor algebra T (X) =

⊕
n≥0X

n of a
bigraded module X. A (p, q)-shuffle is a permutation σ ∈ Σp+q such that
σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(q). The shuffle product is defined
as

(x1⊗· · ·⊗xp)∗(xp+1⊗· · ·⊗xp+q) =
∑

σ∈{(p, q)-shuffles}

sign(σ)σ ·(x1⊗· · ·⊗xp+q).
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Here σ · (x1 ⊗ · · · ⊗ xp+q) is the effect of the left action of Σp+q on X⊗(p+q)

given by the symmetry isomorphism of the symmetric monoidal category
of bigraded modules. This action involves not only permutation of tensor
factors but also signs coming from the Koszul rule, compare Definition 1.5.1.
This is why we do not explicitly write the outcome. We denote T̄ (X) =⊕

n≥1X
n ⊂ T (X).

Definition 5.5.2. A derived homotopy commutative algebra, derived homo-
topy C-algebra, or dC∞-algebra, is a derived homotopy associative algebra in
the sense of Definition 5.4.2 such that the structure maps min : X⊗n → X
vanish on T̄ (X) ∗ T̄ (X).

Remark 5.5.3. Like in the derived associative algebra case, a derived com-
mutative algebra is a derived homotopy commutative algebra with min = 0
for i + n ≥ 3. The surviving maps m01, m11, and m02 will again play the
role of the vertical differential dv, the horizontal differential dh, and the mul-
tiplication m, respectively, of the derived commutative algebra. The extra
commutativity condition will arise as a consequence of the vanishing of m02

on x⊗ y − (−1)‖x‖‖y‖y ⊗ x.
Furthermore, another class of examples of derived homotopy commutative

algebras are the homotopy commutative algebras, as defined in [16, Proposi-
tion 13.1.6]. They are A∞-algebras satisfying the same vanishing condition
as in Definition 5.5.2. They coincide with derived homotopy commutative al-
gebras concentrated in the vertical axis, so min = 0 for i > 0. In this case, the
homotopy commutative algebra structure is given by the maps mn = m0n.

Clearly a derived homotopy commutative algebra has underlying twisted
complex (X, {mi1}i≥0), see Remarks 5.2.7 and 5.4.3.

In the definition of the operad dC∞, we will need the right sub-Σn-modules
Shn ⊂ k[Σn] such that

Shn ⊗Σn (X⊗n) = (T̄ (X) ∗ T̄ (X)) ∩ (X⊗n).

The action of Σn on X⊗n is the obvious one, given by the symmetry isomor-
phism for the tensor product of bigraded modules. See also [16, 1.3.3].

Definition 5.5.4. Define the operad

dC∞ = FΣ

({
0,
⊕
i≥1

k · µi1, . . . ,

(⊕
i≥0

k · µin

)
⊗ k[Σn]

Shn
(n ≥ 2), . . .

})
,

where the µin are as in Definition 5.4.5. When setting µin = µin ⊗ idn, the
differential ddC∞ is given by (5.4.6).
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Theorem 5.5.5. The minimal model of dC equals dC∞, as defined in Defi-
nition 5.5.4.

Remark 5.5.6. Throughout the proof we make without further mention use
of the fact that taking the Koszul dual cooperad O¡ of a quadratic operad O
and applying the cobar construction ΩΣC to a coaugmented cooperad C are
compatible with symmetrization −⊗ k[Σ]. That is, (O⊗ k[Σ])¡ = O¡ ⊗ k[Σ]
and ΩΣ(C ⊗ k[Σ]) = ΩC ⊗ k[Σ]. This follows from the monoidal properties of
symmetrization reviewed in the initial chapters.

Proof of Theorem 5.5.5. We first describe the coaugmented cooperad struc-
ture on C¡ in terms of a known one. It follows from the proof of [16,
Proposition 13.1.6] that there is a surjective coaugmented cooperad map
f : A¡ ⊗ k[Σ]� C¡ such that in arity n it factors as

A¡(n)⊗ k[Σn]� A¡(n)⊗ k[Σn]

Shn
∼= C¡(n).

Hence the coaugmented cooperad structure on C¡ can be obtained from the
coaugmented cooperad structure on A¡⊗k[Σ], which in turn can be deduced
from the structure of A¡, described in the proof of Theorem 5.4.7, see Remark
1.4.18. Note that C¡ is aritywise projective since k[Σn]

Shn
is a projective k-

module. Indeed, the definition of Shn is purely combinatorial, hence k[Σn]
Shn

=
Q[Σn]
Shn
⊗ k, which is actually free.

The coaugmented cooperad structure on dC¡ can now be argued for as
follows. Let O and P be quadratic operads which are aritywise projective.
Since applying D¡ ◦Σ − and − ◦Σ D¡ to O¡ are functorial operations, and
ϕ¡ : D¡ ◦Σ− → −◦ΣD¡ as defined in Definition 4.3.1 is natural, it follows that
a coaugmented cooperad map g : O¡ → P ¡ induces a coaugmented cooperad
map

(dO)¡ ∼= D¡ ◦Σ,ϕ¡ O¡ D¡◦Σg−−−→ D¡ ◦Σ,ϕ¡ P ¡ ∼= (dP)¡.

Here we have used Theorem 4.5.2 as well. In particular, our surjection f : A¡⊗
k[Σ]� C¡ induces a surjection of coaugmented cooperads

(dA)¡⊗k[Σ] = (D¡◦Σ,ϕ¡A¡)⊗k[Σ] ∼= D¡◦Σ,ϕ¡(A¡⊗k[Σ])
D¡◦Σf−−−→ D¡◦Σ,ϕ¡C¡ = (dC)¡

which factors arity-wise as

(dA)¡(n)⊗ k[Σn]� (dA)¡(n)⊗ k[Σn]

Shn
∼= (dC)¡(n).

Hence we can obtain the coaugmented cooperad structure on (dC)¡ from the
coaugmented cooperad structure on (dA)¡ ⊗ k[Σ], which we know from the
proof of Theorem 5.4.7.
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Now this theorem follows from the computations in the proof of Theorem
5.4.7.

5.6 Derived homotopy Lie algebras

Let L denote the Lie operad, as defined in [16, 13.2.3]. This is a symmetric
operad, so we assume Q ⊂ k. This operad is arity-wise projective since free
Lie algebras split out of free associative algebras, compare [16, Proposition
13.2.1 and Proposition 1.3.3]. Note that [16, Proposition 1.3.3], which goes
back to Quillen and Wigner, assumes that the ground ring is a characteristic
zero field, but it is enough to divide by integers, not by arbitrary non-zero
elements in the ground ring, since the proof just relies on the combinatorics
of Lie algebras, hence our hypothesis Q ⊂ k suffices. The operad L is Koszul,
see [16, section 8.3]. Moreover, L¡ is also aritywise projective, see the proof
of Theorem 5.6.6.

Definition 5.6.1. A derived Lie algebra, derived L-algebra, or dL-algebra, is
a bicomplex (X, dh, dv), i.e. a bigraded module X equipped with differentials
dv, dh of bidegrees (0,−1), (−1, 0), respectively, such that dhdv + dvdh = 0,
together with a morphism of bicomplexes [−,−] : X ⊗ X → X of bidegree
(0, 0), called the Lie bracket, which is anti-commutative and satisfies the
Jacobi identity, i.e.

[x, y] = −(−1)‖x‖‖y‖[y, x],

(−1)‖x‖‖z‖[x, [y, z]] + (−1)‖y‖‖x‖[y, [z, x]] + (−1)‖z‖‖y‖[z, [x, y]] = 0,

dv([x, y]) = [dv(x), y] + (−1)‖x‖[x, dv(y)],

dh([x, y]) = [dh(x), y] + (−1)‖x‖[x, dh(y)].

Notice that Definition 5.6.1 is a particular instance of Proposition 3.2.2
for the Lie operad.

We say that a homogeneous multilinear map f : X⊗n → X of graded
complexes in E(X)(n) is skew-symmetric if for σ ∈ Σn,

f · σ = sign(σ)f.

Recall Definition 1.5.1 for the action of Σn on the operad of endomorphisms
E(X)(n) in arity n.

Definition 5.6.2. A derived homotopy L-algebra, derived L∞-algebra, or
dL∞-algebra, is a bigraded module X together with skew symmetric maps
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λin : X⊗n → X of bidegree (−i, i + n − 2), i ≥ 0, n ≥ 1, satisfying the
following equation for any fixed i ≥ 0 and n ≥ 1,∑

p+l=i
k+q=n+1

σ∈{(q, n− q)-shuffles}

sign(σ)(−1)(k+1)qλpk(λlq ⊗ 1k−1) · σ−1 = 0.

Remark 5.6.3. One can check again that a derived Lie algebra is a derived
homotopy L-algebra with λin = 0 for i + n ≥ 3. The surviving maps −λ01,
−λ11, and λ02 will then play the role of the vertical differential dv, the hori-
zontal differential dh, and the Lie bracket [−,−], respectively, of the derived
Lie algebra.

Also in this last example, homotopy L-algebras, or L∞-algebras, as de-
fined in [16, Proposition 10.1.7], form a group of examples of derived ho-
motopy L-algebras when concentrated in the vertical axis, so λin = 0 for
i > 0.

A derived homotopy Lie algebra has underlying twisted complex given by
(X, {−λi1}i≥0), see Remark 5.2.7.

For the Lie case one can also equivalently regard a derived homotopy
L-algebra as a graded complex (X,−λ01) together with additional maps λin
satisfying

dEnd(X)(λin) = (−λ01)λin −
∑

r+t+1=n

(−1)n−2λin(1⊗r ⊗ (−λ01)⊗ 1⊗t)

=
∑
p+l=i

k+q=n+1
σ∈{(q, n− q)-shuffles}

(p,k),(l,q)6=(0,1)

sign(σ)(−1)(k+1)qλpk(λlq ⊗ 1k−1) · σ−1.

With the latter formulation, it can be easily checked that the operad dL∞
determining dL∞-algebras is given in the following definition.

Definition 5.6.4. Define the operad

dL∞ = FΣ

({
0,
⊕
i≥1

k · λi1, . . . ,
⊕
i≥0

k · λin (n ≥ 2), . . .

})
. (5.6.5)

Here λin has bidegree (−i, i+n− 2) and the action of Σn on the arity n part
of the generating collection is simply given by

λin · σ = sign(σ)λin.
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The differential is defined by

ddL∞(λin) =
∑
p+l=i

k+q=n+1
σ∈{(q, n− q)-shuffles}

sign(σ)(−1)(k+1)q(λpk ◦1 λlq) · σ−1.

Theorem 5.6.6. The minimal model of dL equals dL∞, as defined in Defi-
nition 5.6.4.

Proof. During this proof we will make use of the statements in Remark 5.5.6.
We know from the proof of [16, Proposition 10.1.7] that L¡(0) = 0 and
L¡(n) = k · λcn concentrated in bidegree (0, n− 1) with right Σn-action given
by the sign of permutations,

λcn · σ = sign(σ)λcn.

Moreover, an injective map of coaugmented cooperads is defined therein

f : L¡ ↪→ A¡ ⊗ k[Σ].

This map is explicitly defined by

f(λcn) =
∑
σ∈Σn

sign(σ)µcn ⊗ σ.

By the same functoriality argument as in the proof of Theorem 5.5.5,

D¡ ◦Σ f : dL¡ = D¡ ◦Σ,ϕ¡ L¡ ↪→ D¡ ◦Σ,ϕ¡ ◦A¡ ⊗ k[Σ] = dA¡ ⊗ k[Σ]

is an injective map of coaugmented cooperads, see Theorem 4.5.2. Taking
the cobar construction, this map induces an injective operad morphism

dL∞ = ΩΣ(dL)¡ ↪→ Ω(dA)¡ ⊗ k[Σ] = dA∞ ⊗ k[Σ].

As a collection,

dL¡(0) = 0,

dL¡(n) = D¡(1)⊗ L¡(n)

=
⊕
i≥0

k · (s∆)i ⊗ k · λcn

=
⊕
i≥0

k · ((s∆)i ⊗ λcn), n ≥ 1.
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The action of Σn is given by the product with the sign, as above. Moreover,
the subcollection (dL)¡ is simply given by removing the direct summand i = 0
for n = 1.

Let us denote

λin = s−1((s∆)i ⊗ λcn) ∈ dL∞ = ΩΣ(dL)¡.

With this notation, the above argument shows that the generating collection
of the cobar construction dL∞ = ΩΣ(dL)¡ is as indicated in Definition 5.6.4.

Furthermore, the injective map dL∞ ↪→ dA∞ ⊗ k[Σ] is given by

λin 7→
∑
σ∈Σn

sign(σ)µin ⊗ σ.

Now, a tedious but straightforward computation shows that the only possi-
ble formula for the differential of dL∞ compatible with this inclusion is the
formula in Definition 5.6.4.

Remark 5.6.7. The map dL∞ → dA∞ ⊗ k[Σ], explicitly computed in the
previous proof, induced by the classical operad map L → A⊗k[Σ], gives rise
to an underlying derived homotopy Lie algebra structure (X, {λin}i≥0,n≥1) on
any derived homotopy associative algebra (X, {µin}i≥0,n≥1), explicitly defined
by

λin =
∑
σ∈Σn

sign(σ)(µin · σ).

Remark 5.6.8. The formula for the differential of the operad L∞ in [16, 13.2.9]
has a slight mistake. The permutation σ cannot be a (p, q)-unshuffle since
then σ would belong to Σp+q. But σ is acting on an operation of arity
n = p+ q− 1, so σ should belong to Σp+q−1. Actually, σ, or rather σ−1 with
the notation therein, should run over the set of (q, n − q)-shuffles. This fits
with the usual conventions for L∞-algebras in the literature.
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Future directions

- The road ahead never gives away a promise
The road ahead is a highway or a dead-end street
The road ahead never answers any questions
And nothing is sure along the way
Not even tomorrow
With miles of the unknown ahead of you. -
City To City, “The Road Ahead”

As noted in the last paragraph of [15], current results in the litera-
ture allow to place E1-equivalences of derived homotopy algebras in a mod-
ern homotopical framework. Nevertheless, minimal models require also E2-
equivalences. Therefore, defining model categories of derived homotopy al-
gebras with E2-equivalences as weak equivalences is an important problem
whose achievement should boost the development of this theory. This prob-
lem is widely open, even for the associative operad.

Triangulated categories are nowadays widely used in algebra, geometry,
and mathematical physics. Differential graded categories (a categorified ver-
sion of differential graded algebras [22]) provide algebraic models for them
[26]. Moreover, A∞-categories (which in turn categorify A∞-algebras) pro-
vide minimal models for triangulated categories defined over a field (or with
Hom sets which are projective over the ground ring) [5]. Unfortunately, to
this day we lack of minimal models for triangulated categories defined over
general ground rings. It would be very interesting to see wether categori-
fied derived A∞-algebras can be used for this. This seems like an important
and difficult project. Our contributions open the possibility of categorifying
other derived homotopy algebra structures which could serve as models for
triangulated categories with extra structure (e.g. symmetric monoidal).

Sagave’s seminal paper [21] contains more results than those that we
generalize here to arbitrary quadratic Koszul operads. For instance, he has
a strictification result [21, Theorem 1.2], turning derived homotopy algebras
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into E2-equivalent derived algebras. We think that the operadic analogue
could be derived from the development of a homotopy theory as indicated in
the first paragraph. Sagave’s construction does not generalize, as it relies on
endomorphism algebras, which are always just associative.

Another interesting part of Sagave’s paper is the cohomological theory
of derived A∞-algebras. He extends the first obstruction to the formality
of a differential graded algebra over a field, considered by Benson, Krause,
and Schwede [3], to an arbitrary commutative ring, by using what he calls
derived Hochschild cohomology. This class is defined in terms of a minimal
derived A∞-model. The class of Benson, Krause, and Schwede has been
generalized in a different direction to algebras over operads, over a ground
field. This was done by Dimitrova in [7]. It would be interesting to explore
the cohomological theory of derived homotopy O-algebras, for general O, in
order to simultaneously extend the results of Benson, Krause, and Schwede
and Dimitrova to algebras over a quadratic Koszul operad O defined over an
arbitrary ground ring.

We should also mention that Sagave’s derived Hochschild cohomology,
despite its name, is not known to coincide with the honest derived functor
of Hochschild cohomology, in the sense of homotopical algebra. Honest de-
rived Hochschild cohomology is also known as Shukla cohomology and has
been considered in the literature, see [2] for instance. Hence, establishing a
connection between both notions of derived Hochschild cohomology would
be very interesting. The same question can of course be asked about the co-
homology theories arising from the Koszul duality theory of general derived
operads.
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norm map, 34

operad, 36
augmented, 36
nonsymmetric, 35

augmented, 36
quadratic, 70
quotient, 70

quadratic, 71
presentation, 71

quotient, 71
operadic ideal

nonsymmetric, 70
operadic Leibniz rule, 36
operadic quadratic data, 70

nonsymmetric, 70
operation, 30

generating, 70
identity, 36

opposite, 16
order

path, 47
planar, 46

planar isomorphism, 48
planted tree with leaves, 46

planar, 46
labeled, 51

relators, 70
rewriting rule, 92

nonsymmetric, 85
root

edge, 47
vertex, 46

SDR, 100
sequence, 30
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reduced, 30
shuffle, 152
shuffle product, 152
skew-symmetric, 155
strong deformation retraction, 100
suspension, 61
symmetrization, 33
symmetry isomorphism, 16
syzygy degree, 73

tensor unit, 15
total complex, 23
tree groupoid, 55
tree module, 48

symmetric, 55
symmetrized, 51

twisted complex, 143
minimal, 146

vertical differential, 22

weight, 51
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List of Notations

C = (C,⊗C, 1C) (closed) (symmetric) monoidal category
[−,−] inner Hom

sometimes it also stands for Lie brackets
k ground commutative ring with unit 1 ∈ k
⊗ = ⊗k tensor product of k-modules over ground ring k
1X identity map on an object X
N the set {0, 1, . . . }
|x| (bi)degree of an element x in a (bi)graded module
‖x‖ total degree of an element x in a bigraded module
GrChk closed symm. monoidal category of graded complexes
Seqk monoidal category of sequences in GrChk
◦ tensor product of sequences
I tensor unit in sequences/collections
Σn group of automorphisms of the set {1, 2, . . . , n}
idn identity on {1, 2, . . . , n}
Collk monoidal category of collections in GrChk
k[G] group algebra of G
⊗G tensor product over k[G] of left-right modules over G
XG space of coinvariants of a right G-module X
◦Σ tensor product of collections in coinvariant setting
XG space of invariants of right G-module X
◦̄Σ tensor product of collections in invariant setting
A = 〈A, µA, ηA〉 monoid
C = 〈C,∆C , εC〉 comonoid
εO augmentation of an (ns-)operad O
idO identity operation in an (ns-)operad O
Ō = Ker(εO) kernel of εO in the category of sequences/collections
◦i infinitesimal composition as defined in Remark 1.4.3
ηC identity cooperation in an (ns-)cooperad C
idC image of 1 ∈ k by ηC
C̄ = Coker(ηC) cokernel of ηC in the category of sequences/collections
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∆̄C decomposition factor of ∆C (1.4.8)
∆(1) infinitesimal decomposition (1.4.15)
E(X) (ns-)operad of endomorphisms
V (T ) set of vertices of a planted planar tree T with leaves
E(T ) set of edges of a planted planar tree T with leaves
≤ path order in V (T )
U unit for grafting

sometimes it also designates a forgetful functor
X(T ) tree module as defined in Definition 2.1.5
X[T ] symmetric tree module
F(X) free ns-operad
FΣ(X) free operad
F c(X) cofree coaugmented conilpotent ns-cooperad
F cΣ(X) cofree coaugmented conilpotent cooperad
B nonsymmetric bar construction

d̂2,i infinitesimal d2 on (ns-)bar construction (2.3.1)
BΣ bar construction
Ω nonsymmetric cobar construction

d̂2 infinitesimal d2 on (ns-)cobar construction (2.3.6) (2.3.7)
ΩΣ cobar construction
(E|R) (ns-)operadic quadratic data
O¡ Koszul dual (ns-)cooperad of an (ns)-operad O
ϕ a relevant distributive law
ϕ¡ a relevant codistributive law
ϕ̄ a related relevant codistributive law
D (ns-)operad of dual numbers

sometimes it also designates a generic (ns-)cooperad
dO derived (ns-)operad as defined in section 3.1
d′O mock derived (ns-)operad as defined in sections 4.2 and 4.5
λ (ns-)rewriting rule as defined in Definitions 3.3.1 and 3.3.4
∂ perturbation as defined in Lemma 4.3.6
A (non-unital) associative ns-operad
C (non-unital) commutative operad
L Lie operad
X∗ X in homological (bi)degree ∗
X(w) X in weight degree (w)
X• X in syzygy degree •
X(n) X in arity n
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