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Abstract

Let D,x be a plane curve germ. We prove that the complex
Ω•(logD)x computes the cohomology of the complement of D,x only if
D is quasihomogeneous. This is a partial converse to a theorem of [5],
which asserts that this complex does compute the cohomology of the
complement, whenever D is a locally weighted homogeneous free divi-
sor (and so in particular when D is a quasihomogeneous plane curve
germ). We also give an example of a free divisor in D ⊂ C3 which is
not locally weighted homogeneous, but for which this (second) asser-
tion continues to hold.

1 Introduction

In [5] the last three authors showed that if D is a locally quasi-homogeneous
free divisor in the complex manifold X then locally the complex Ω•(logD)
of holomorphic differential forms with logarithmic poles along D calculates
the cohomology of the complement of D in X. More precisely, the following
two equivalent statements hold:

Theorem 1.1.– With D as above,

1. If V ⊂ X is a Stein open set then the de Rham map (integration of
forms over cycles) gives rise to an isomorphism

hk(Γ(V,Ω•(logD))) ∼→ Hk(V \D;C).
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2. Denoting by U the complement of D in X and by j : U ↪→ X the
inclusion,, the de Rham morphism gives rise to an isomorphism

Ω•(logD) ∼→ Rj∗(CU ).

2

By analogy with Grothendieck’s Comparison Theorem [7], in which the
complex Ω•(logD) is replaced in these two statements by Ω•(∗D), but which
holds for an arbitrary divisor, we summarise this with a slogan: if D ↪→ X
is a locally quasi-homogeneous free divisor then the logarithmic comparison
theorem holds.

The definition of local quasi-homogeneity, (called strong quasi-homogeneity
in [5]), is as follows:

Definition 1.2.–

1. The polynomial h(z1, · · · , zn) =
∑
ai1,··· ,inz

i1
1 · · · zinn ∈ OCn is weighted

homogeneous if there exist positive integer weights w1, · · · , wn such
that h(zw1

1 , · · · , zwn
n ) is homogeneous.

2. The divisor D ⊂ X is locally quasi-homogeneous if for all x ∈ D there
are local coordinates on X, centered at x, with respect to which D has
a weighted homogeneous defining equation.

Every plane curve is a free divisor, since the module of logarithmic vec-
tor fields Der(logD) is reflexive and thus has depth at least 2. In [4, Cor.
4.2.2] the first author showed that if D is a plane curve then the logarith-
mic de Rham complex Ω•(logD) is perverse, a necessary condition for the
logarithmic comparison theorem.

In [6] the logarithmic comparison theorem has been tested for the fol-
lowing non locally quasi-homogeneous plane curve (cf. [8]): D = {f =
x4

1 + x5
2 + x4

2x1 = 0} ⊂ X = C
2. A basis for Der(logD) is given by:

δ1 = (16x2
1 + 20x1x2) ∂

∂x1
+ (12x1x2 + 16x2

2) ∂
∂x2

δ2 = (16x1x
2
2 + 4x3

2 − 12x1x2) ∂
∂x1

+ (12x3
2 − 4x2

1 + 5x1x2 − 100x2
2) ∂
∂x2

.

Let DX be the sheaf of linear differential operators with holomorphic
coefficients on X and I the left DX -ideal generated by δ1, δ2. By [4, Th.
4.2.1], we have a (canonical) isomorphism (in the derived category)

Ω•(logD) ' R HomDX
(DX/I,OX),
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and so we can compute the characteristic cycle CC(Ω•(logD)) as the cycle
Z in T ∗X determined by the ideal J = σ(I) generated by the principal
symbols of elements in I. The symbols σ1 = σ(δ1), σ2 = σ(δ2) form a regular
sequence in OT ∗X and so, by [4, Prop. 4.1.2], the ideal J is generated by
σ1, σ2. An easy computation shows that the multiplicity of the conormal
at 0 in Z is 4. On the other hand, the multiplicity of the conormal at 0 in
CC(Rj∗(CU )) is equal to mult0(D)− 1 = 3 (cf. [3]), and so the logarithmic
comparison theorem does not hold for D.

For the family of non locally quasi-homogeneous plane curves (cf. [8])

xq1 + xp2 + xp−1
2 x1 = 0, p ≥ q + 1 ≥ 5,

the multiplicities of the conormal at 0 inCC(Ω•(logD)) and in CC(Rj∗(CU ))
are 2(q − 2) and q − 1 respectively, and so these curves also do not satisfy
the logarithmic comparison theorem.

A natural question is therefore whether or not the logarithmic compari-
son theorem holds for a given free divisor.

The purpose of this paper is to prove a partial converse to theorem 1.1.
We prove:

Theorem 1.3.– Let D be a plane curve. If the logarithmic comparison
theorem holds for D, then D is locally quasi-homogeneous.

Our proof shows that if h is a local equation of D, and the logarithmic
comparison theorem holds, then there is a vector field germ χ such that
χ · h = h. As a reduced curve has isolated singularities, we can then apply
the theorem of K. Saito [9]: if h ∈ OCn,0 has isolated singularity and h
belongs to its Jacobian ideal Jh then in suitable coordinates h is weighted
homogeneous.

We conjecture that in higher dimensions the following version of our
theorem 1.3 holds:

Conjecture 1.4.– If D ↪→ X is a free divisor and if the logarithmic com-
parison theorem holds, then for all x ∈ D there is a local equation h for D
around x, and a germ of vector field χ vanishing at x such that χ · h = h.

A singular free divisor of dimension greater than 1 has non-isolated sin-
gularities, so even if this conjecture is true, Saito’s theorem cannot be used
to deduce local quasi-homogeneity. Indeed, it is not true in higher dimen-
sions that if the logarithmic comparison theorem holds for a free divisor D
then D is necessarily locally quasi-homogeneous. This is shown by an ex-
ample in Section 4 below: the logarithmic comparison theorem holds for the
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free divisor
D = {(x, y, z) : xy(x+ y)(zx+ y) = 0},

(the total space of a family of four lines in the plane with varying cross-ratio,
cf. [4]), in the neighbourhood of (0, 0, λ), with λ ∈ C \ {0, 1}; however it is
well known that this divisor is not locally quasi-homogeneous. On the other
hand, it does satisfy Conjecture 1.4.

2 Preliminary results

In this section we recall the spectral sequence argument used in [5] to com-
pare the cohomology of the logarithmic complex Ω•(logD) with the co-
homology of X \ D. Except for referring to “local” rather than “strong”
quasi-homogeneity, we will use the same notation as [5].

Without loss of generality we assume X = C
n and x0 = 0. Let V be

a Stein neighbourhood (sufficiently small) of 0, let U be the open cover of
V \ {0} consisting of the sets Ui = V ∩ {zi 6= 0}, and let U ′ be the open
cover of V \D consisting of the open sets U ′i = (V \D)∩ {zi 6= 0} = Ui \D.

We consider the two double complexes

Kp,q = Čq(U ,Ωp(logD))

and
K̃p,q = Čq(U ′,Ωp),

equipped with the exterior derivative d (the horizontal differential) and the
Čech differential δ (the vertical differential). There is an obvious restriction
morphism ρp,q : Kp,q → K̃p,q which commutes with both differentials, and
thus gives rise to morphisms of the two spectral sequences arising from each
double complex. These spectral sequences have E1 terms

′′Ep,q1 = Ȟq(U ,Ωp(logD))

′′Ẽp,q1 = Ȟq(U ′,Ωp)

′Ep,q1 = ⊕1≤i1<···<iq+1≤nh
p(Γ(

⋂
j

Uij ,Ω
•(logD)))

′Ẽp,q1 = ⊕1≤i1<···<iq+1≤nh
p(Γ(

⋂
j

U ′ij ,Ω
•)).

As both U and U ′ are Stein covers,

Ȟq(U ,Ωp(logD)) = Ȟq(V \ {0},Ωp(logD))
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and
Ȟq(U ′,Ωp)) = Ȟq(V \D,Ωp))

As V \D is Stein, Ȟq(V \D,Ωp) = 0 if q > 0. It follows that

′′Ẽp,q2 =
{
Hp(V \D;C) if q = 0
0 if q 6= 0

,

and in particular the spectral sequence ′′Ẽ converges to the cohomology of
V \D. Now assume that outside 0, D is locally quasi-homogeneous, so that
by 1.1 Rj∗(CU ) ' Ω•(logD), again outside 0. As U and U ′ are Stein covers,
by 1.1 the quotient of the restriction ρp,q defines an isomorphism
′ρp,q : ′Ep,q1 →′ Ẽp,q1 for all p, q. This isomorphism persists to give an
isomorphism of the cohomology of the total complexes Ktot and K̃tot as
calculated by the spectral sequences. It follows that the spectral sequence
′′E, like ′′Ẽ, also converges to the cohomology of V \D:

Hk(V \D;C) ' ⊕p+q=k ′′Ep,q∞ .

As D is a free divisor, Ȟq(V \ {0},Ωp(logD)) = 0 for q 6= 0, n − 1, so ′′E1

has only two non-null rows; writing for the moment Ωp(D) and V ∗ in place
of Ωp(logD) and V \ {0}, ′′E1 thus looks like

Ȟn−1(V ∗,Ω0(D)) d1→ · · · d1→ Ȟn−1(V ∗,Ωp(D)) d1→ · · · d1→ Ȟn−1(V ∗,Ωn(D))
0 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 · · · 0

Γ(V,Ω0(D)) d1→ · · · d1→ Γ(V,Ωp(logD)) d1→ · · · d1→ Γ(V,Ωn(logD)).

(Note that as n ≥ 2 and as the Ωp(logD) are free modules, we have
Γ(V ∗,Ωp(D)) = Γ(V,Ωp(D)).)

As this spectral sequence converges to the cohomology of V \D, we have

Hn−1(V \D;C) ' E0,n−1
∞ ⊕ · · · ⊕ En−1,0

∞ = E0,n−1
n+2 ⊕ hn−1(Γ(V,Ω•(logD)))

Hn(V \D;C) = E0,n
∞ ⊕ · · · ⊕ E0,n

∞ = E1,n−1
n+2 ⊕ hn(Γ(V,Ω•(logD)))

dn+1(E0,n−1
n+2 )

,

where

E0,n−1
n+2 = Ker d1 : Ȟn−1(V ∗,Ω0(D))→ Ȟn−1(V ∗,Ω1(D)).

In [5], the main theorem was proved by showing that if D is locally quasi-
homogeneous then the complex

(Ȟn−1(V \ {0},Ω•(logD)), d1)

is exact.
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3 Proof of the theorem

We continue with the discussion of the last paragraph. If the natural mor-
phism Ω•(logD)→ Rj∗(CU ) is a quasi-isomorphism (i.e. if the logarithmic
comparison theorem holds for D) then by the formulae of the last section,
d1 : Ȟn−1(V \ {0},Ω0(logD))→ Ȟn−1(V \ {0},Ω1(logD)) is injective.

Let {ω1, · · · , ωn} be a free basis of Ω1(logD) as OV -module, and let
δ1, · · · , δn be the dual basis of Der(logD). Then Ȟn−1(V \{0},Ω0(logD)) =
Ȟn−1(V \{0},OCn) and Ȟn−1(V \{0},Ω1(logD)) ' ⊕n1 Ȟn−1(V \{0},OCn).
The morphism d1 : Ȟn−1(V \ {0},Ω0(logD)) → Ȟn−1(V \ {0},Ω1(logD))
now becomes

Ȟn−1(V \ {0},OCn) d1→ Ȟn−1(V \ {0},OCn)n

[g] 7→ ([δ1 · g], · · · , [δn · g]).

where g ∈ Γ(V \ ∪i{zi = 0},OCn) = Γ(Cn \ ∪i{zi = 0},OCn) represents the
class [g] in Ȟn−1(Cn \ {0},OCn).

For δ ∈ DerC(OCn), we denote by dδ the homomorphism

dδ : Ȟn−1(V \ {0},OCn)→ Ȟn−1(V \ {0},OCn), dδ([g]) = [δ · g].

Proposition 3.5.– Let δ ∈mCn,0DerC(OCn),

δ = (x1, · · · , xn)

 a1,1 · · · a1,n
...

...
...

an,1 · · · an,n


 ∂/∂x1

...
∂/∂xn

+ δ≥1

with the ai,j ∈ C and δ≥1 ∈ m2
Cn,0DerC(OCn). If dδ is injective, then the

eigenvalues of A do not satisfy any relation with positive integer coefficients
(in this case, we will say that δ satisfies condition (I)).

Proof: By a coordinate change we can make A lower triangular. Its
eigenvalues a1, · · · , an are then the elements of the diagonal. The group
Ȟn−1(V \ {0},OCn) is isomorphic to the space of Laurent series, convergent
for all x = (x1, · · · , xn) with x 6= 0, whose non-zero coefficients are those
with strictly negative indices in all variables, i.e.∑

i1,··· ,in<0

ai1,··· ,inx
i1
1 · · ·x

in
n .

For p ≥ n, we set

Gp = {
∑

i1, · · · , in < 0
i1 + · · ·+ in = −p

cix
i1
1 · · ·x

in
n }, F p = {

∑
i1, · · · , in < 0
i1 + · · ·+ in ≥ −p

cix
i1
1 · · ·x

in
n }.
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Then F p = Gp ⊕Gp−1 ⊕ · · · ⊕Gn. Each Gp is a finite-dimensional C-vector
space, whose dimension we denote by rp, and dδ restricts to morphisms of
vector spaces

dδ |F p : F p → F p

and
dδ |Gp : Gp → F p.

Let us denote by dpδ,p the component of this second restriction lying in Gp.
Then dpδ,p depends only on the weight 0 part δ0 of δ. We claim that with
respect to a suitable ordered basis of Gp, its matrix [dpδ,p] is lower triangular.

As basis for Gp we take the monomials

1
xi11 · · ·x

in
n

with i1 + · · ·+ in = p.
We have

dδ(x
−i1
1 · · ·x−inn ) = −

∑
j,k

ik aj,k x
−i1
1 · · ·x−(ik−1)

k · · ·x−(ij+1)
j · · ·x−inn . (1)

Thus, if we give our basis of Gp the lexicographic order corresponding to the
order of the coordinates x1, · · · , xn, then since aj,k = 0 if j < k (recall that
we have chosen our coordinates so that A is lower triangular), the matrix
[dpδ,p] is lower triangular.

Let q ≤ p. Then dδ(Gq) ⊂ Gq +Gq−1 + · · ·Gn. Thus, it follows from the
above that if we give F p the ordered basis consisting of the ordered bases
for each Gq, n ≤ q ≤ p that we have chosen, and order these by descending
value of q, then the matrix of dδ |F p is also lower triangular.

What are its diagonal elements? In the right hand side of equation (1),
the coefficient of x−i11 · · ·x−inn is equal to

i1a1,1 + · · ·+ inan,n;

this is the diagonal element in the matrix of dδ |F p in the row and column
corresponding to the basis element x−i11 · · ·x−inn . Note that the diagonal
elements of A are its eigenvalues; thus, the diagonal elements in the matrix
of dδ |F p with respect to the chosen basis are all linear combinations i1λ1 +
· · · + inλn of the eigenvalues λ1, · · · , λn of A, with the ij positive integers
and i1 + · · · + in ≤ p. As this matrix is lower triangular, dδ |F p is injective
only if the product of these diagonal elements is non-zero. 2
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Remark 3.6.– We have used in the proof of this lemma the fact that
if dδ is injective then so is its restriction to each F p. We do not know if
the opposite implication holds. It seems likely that an argument involving
faithful flatness would prove it. However, we do not need it in what follows.

Let D be a plane curve. We suppose as above that 0 is the singular point
of D. In this case the upper non-zero row in the E2 page of the spectral
sequence ′Ẽ begins

d1 : Ȟ1(C2 \ {0},OC2)→ ⊕2
1Ȟ

1(C2 \ {0},OC2)

Theorem 3.7.– Let D be a plane curve, singular at 0. If d1 is injective,
then there is a local equation h for D around 0, and a germ of vector field
χ at 0 such that χ · h = h.

Proof: Any reduced plane curve whose equation has non-zero quadratic
part is quasihomogeneous, by the classification of singularities of functions
of two variables: such a curve is equivalent to Ak, x2 + yk+1 = 0, for some
k. For a quasihomogeneous curve, the conclusion of the theorem of course
holds. Thus, we may assume that the equation h of D lies in m3

C2,0. As
the determinant of the coefficients of a free basis of Der(logD) is a local
defining equation for D ([10]), we may therefore choose a free basis δ, γ for
Der(logD) such that γ has zero linear part. In fact the supposition that d1

is injective implies that at least one member of the basis has non-zero linear
part, as otherwise d1([1/xy]) = [δ · 1/xy], [γ · 1/xy]) = 0.

We may thus take

δ = δ0 + δ1 + δ2 + · · · =
∑
k≥0

∑
i+j=k+1

(αijxiyj
∂

∂x
+ βijx

iyj
∂

∂y
)

where δ0 = xA∂x
t, with A 6= 0 and in Jordan normal form, i.e.

A =
(
λ1 0
0 λ2

)
or A =

(
λ1 0
1 λ1

)
.

Let h be the reduced equation of D:

h = hn + hn+1 + hn+2 + · · · =
∑
k≥n

hk =
∑
k≥n

∑
i+j=k

aijx
iyj ,

where the polynomials hi are homogeneous of degree i.
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Let us now suppose that δ is not an Euler vector field for h, we will see
that (up to multiplication by a non-zero constant) the only possibility for h
and δ is

h1 = · · · = hn−1 = 0, hn = xayb and δ0 = qx
∂

∂x
− py ∂

∂y
.

First case: hn =
∑

i+j=n aijx
iyj and δ0 = λ1x

∂
∂x + λ2y

∂
∂y . Then

0 = δ0(hn) =
∑
i+j=n

(iλ1 + jλ2)aijxiyj .

So, aij = 0 if iλ1 + jλ2 6= 0; thus, since by assumption hn 6= 0, we have
qλ1 = −pλ2 and p+ q = n (p, q ∈ N). In this case,

hn = xpyq, δ0 = qx
∂

∂x
− py ∂

∂y
.

Second case: hn =
∑

i+j=n aijx
iyj and δ0 = (λ1x+ y) ∂

∂x + λ1y
∂
∂y . Then

0 = δ0(hn) = nλ1an0x
n +

∑
i+j=n,j≥1

(nλ1aij + iai+1,j−1)xiyj .

So, if λ1 6= 0, then we must have an0 = 0, then an−1,1 = 0, · · · , a1,n−1 =
0, a0n = 0, so that hn = 0. This is absurd, by hypothesis.

If λ1 = 0, then d1 is not inyective, because

d1([1/xy]) = (dδ([1/xy]), dγ([1/xy])) = (0, 0).

Then, we have

h = xpyq + hn+1 + hn+2 + · · · , δ0 = qx
∂

∂x
− py ∂

∂y
.

We will prove that, in this case, after a coordinate change h can be reduced
to h = xpyq with p + q = n ≥ 3. This contradicts our supposition that h
is reduced. Then our initial supposition about δ is false, and δ is an Euler
vector field for h.

Inductively, for all k ≥ 0, we construct coordinates (x(k), y(k)) and func-
tions h(k) such that

h(x, y) = h(k)(x(k), y(k)) = xp(k)y
q
k +

∑
s≥n+k

h(k)
s (x(k), y(k)) ≡ x

p
(k)y

q
(k)(m

n+k
C2,0

),

9



where h(k)
i is homogeneous of degree i. Then, by Artin approximation [1,

theorem 1.2], there exist coordinates z1, z2 solving the equation

h(x, y)− zp1z
q
2 = 0.

Let us construct the x(k), y(k), h(k). We suppose that we have x(k), y(k) and
h(k) ∈ C{x(k), y(k)}, such that

h(x, y) = h(k)(x(k), y(k)) = xp(k)y
q
(k) +

∑
s≥n+k

h(k)
s ,

δ
(k)
0 = qx(k)

∂

∂x(k)
− py(k)

∂

∂y(k)
.

We define x(k+1), y(k+1) and h(k+1) ∈ C{x(k+1), y(k+1)}, such that

h(x, y) = h(k+1)(x(k+1), y(k+1)) = xp(k+1)y
q
(k+1) +

∑
s≥n+k+1

h(k+1)
s ,

δ
(k+1)
0 = qx(k+1)

∂

∂x(k+1)
− py(k+1)

∂

∂y(k+1)
.

Let h(k)
n+k =

∑
i+j=n+k a

(k)
i,j x

i
(k)y

j
(k), then

δ
(k)
0 (hn+k) =

∑
i+j=n+k

(iq − jp)a(k)
i,j x

i
(k)y

j
(k).

As the part of h(k) of degree less than n + k is xp(k)y
q
(k), it follows that the

part of degree n+ k of δ(k)(h(k)) ∈mC2,0h
(k) belongs to (xp(k)y

q
(k)):

[δ(k)(h(k))]n+k = δ
(k)
0 (h(k)

n+k) + δ
(k)
k (xp(k)y

q
(k)) ∈ (xp(k)y

q
(k)),

but
δ
(k)
k (xp(k)y

q
(k)) ∈ (xp−1

(k) y
q
(k), x

p
(k)y

q−1
(k) ),

then
δ
(k)
0 (h(k)

n+k) ∈ (xp−1
(k) y

q
(k), x

p
(k)y

q−1
(k) ),

so
(iq − jp)a(k)

i,j = 0 (i+ j = n+ k) if i < p− 1 or j < q − 1,

but if iq − jp = 0, then (i, j) = n+k
n (p, q), and i > p, j > q. So h

(k)
n+k ∈

(xp−1
(k) y

q
(k), x

p
(k)y

q−1
(k) ) :

h
(k)
n+k = xp−1

(k) y
q
(k)fk+1(x(k), y(k)) + xp(k)y

q−1
(k) gk+1(x(k), y(k)).
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Let

x(k+1) = x(k) +
1
p
fk+1(x(k), y(k)) y(k+1) = y(k) +

1
q
gk+1(x(k), y(k)),

We have

h(x, y) = xp(k+1)y
q
(k+1) +

∑
r≥k+1

∑
i+j=n+r

a
(k+1)
i,j xi(k+1)y

j
(k+1).

We define h(k+1) by the equation h(x, y) = h(k+1)(x(k+1), y(k+1)), where

h(k+1) = xp(k+1)y
q
(k+1) +

∑
s≥n+k+1

h(k+1)
s ,

with h(k+1)
s =

∑
i+j=s a

(k+1)
i,j xi(k+1)y

j
(k+1) homegeneous polynomials of degree

s ≥ n+ k + 1. Moreover, as

x(k+1) = x(k); y(k+1) = y(k) (mod m2
C2,0),

we have δ =
∑

q≥0 δ
(k+1)
q , where each δ(k+1)

q is homogeneous of degree q, and

δ
(k+1)
0 = qx(k+1)

∂

∂x(k+1)
− py(k+1)

∂

∂y(k+1)
.

2

Proposition 3.8.– Let D a plane curve, singular at 0. If there exists
δ ∈ Der(logD) satisfying condition I, then there exists a unit α such that
αδ · h = h, and so D is Euler homogeneous.

Proof: The proof is similar to the proof of Theorem 3.7. There, we
consider the case where hn = xpyq and δ0 = qx∂/∂x−py∂/∂y, with p, q ∈ N.
Condition I forces one of p and q to be 0. The proof now proceeds as before,
with this additional hypothesis. 2

Theorem 3.9.– Let (D, 0) ∈ (C2, 0) be a plane curve. The following
conditions are equivalent:

a) There exits δ ∈ Der(logD)0 such that dδ is injective.

b) There exists δ ∈ Der(logD)0 satisfying condition (I).

11



c) d1 is injective.

d) (D, 0) is Euler homogeneous.

e) (D, 0) is quasi-homogeneous.

f) The logarithmic comparison theorem holds for (D, 0) on a neighbour-
hood of 0.

Proof: By theorem 3.7, if d1 is injective, then (D, 0) is Euler homo-
geneous. By Saito’s theorem [9] (for a function h with isolated singularity,
h ∈ Jh is equivalent to the quasihomogeneity of h) to be Euler homoge-
neous or quasi-homogeneous is the same. Theorem 1.1 proves that if (D, 0)
is quasi-homogeneous, the logarithmic comparison theorem holds for (D, 0)
on a neighborough of 0. From the results of section 2 we can easily deduce
that logarithmic comparison theorem implies the injectivity oj d1. Then,
the last four conditions are equivalent. If χ = w1

∂
∂x + w2

∂
∂y is the Euler

vector field then dχ is injective. Proposition 3.5 shows that if dδ is injective,
then δ satisfies (I) and, finally, by proposition 3.8, δ ∈ Der(logD) implies
that D is Euler homogeneous. 2

4 Example

In this section we give an example of a free divisor D ⊂ C3 which is Euler
homogeneous but not locally quasi-homogeneous, and for which the logarith-
mic comparison theorem does hold. This example is studied in [4], where
the perversity of Ω•(logD) is proved.

D is defined by the equation

h(x, y, z) = xy(x+ y)((z − λ)x+ y) = h1h2h3h4, λ ∈ C \ {0, 1}

Der(logD) has free basis {δ1, δ2, δ3}

δ1 = x ∂
∂x + y ∂

∂y

δ2 = + ((z − λ)x+ y) ∂∂z
δ3 = x2 ∂

∂x − y2 ∂
∂y − (z − λ)(x+ y) ∂∂z

Note that δ1 · h = 4h, so that h is Euler homogeneous. Note also that it
is easy to check that each of these vector fields is logarithmic, and that the
determinant of their coefficients is a reduced equation for D. From this it
follows by a theorem of K. Saito ([10]) that they really do form a basis for
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Der(logD); as no linear combination of them has non-singular linear part,
it follows that D cannot be quasihomogeneous.

This example of free divisor is interesting also as it provides a counterex-
ample to the “logarithmic Sard’s theorem”: every point of C = z–axis is a
logarithmic critical value with respect to the projection (x, y, z) 7→ z.

The basis of Ω1(logD) dual to {δ1, δ2, δ3} is

ω1 = y2 dx+x2 dy
xy(x+y)

ω2 = y(z−λ) dx−x(z−λ) dy+xy dz
xy(x(z−λ)+y)

ω3 = y dx−x dy
xy(x+y)

We have to calculate homology groups of the stalk at 0 of the logarithmic
de Rham complex

0→ Ω0(logD) d0→ Ω1(logD) d1→ Ω2(logD) d2→ Ω3(logD) d3→ 0.

Although D is not weighted homogeneous in the strict sense, it is homoge-
neous if we assign weights 1, 1, 0 to the variables x, y, z. The Lie derivative
with respect to the vector field δ1,

Lδ1(ω) = ιδ1(dω) + d(ιδ1(ω)),

then defines a contracting homotopy from Ω•(logD) to its weight-zero part
Ω•0(logD). For if ω ∈ Ωk(logD) is a sum of homogenenous parts ωi, and if
dω = 0, then dωi = 0 for all i. Since Lδ1(ωi) = iωi, each ωi, for i 6= 0, is
then exact, and ω is cohomologous to ω − ιδ1(

∑
i6=0(1/i)ωi).

Thus we consider only the weight 0 subcomplex

0→ Ω0
0(logD)

d00→ Ω1
0(logD)

d01→ Ω2
0(logD)

d02→ Ω3
0(logD)

d03→ 0.

• We have Ω0
0(logD) = C{z}, and d0(zk) = kzk−1[((z − λ)x + y)ω2 −

(z − λ)(x+ y)ω3] (k ≥ 0), so

Im(d0
0) = C{z}dz = C{z}〈((z − λ)x+ y)ω2 − (z − λ)(x+ y)ω3〉.

• Ω1
0(logD) = C{z}〈ω1, xω2, yω2, xω3, yω3〉, and we find

d1(ω1) = d1(xω2) = d1(xω3) = d1(yω3) = 0

d1(zkω1) = kzk−1((x(λ− z)− y)ω1 ∧ ω2 + (z − λ)(x+ y)ω1 ∧ ω3)
d1(yω2) = (xy + y2)ω2 ∧ ω3

d1(zkxω2) = kzk−1((z − λ)(x+ y)xω2 ∧ ω3)
d1(zkyω2) = ((k + 1)zk − kλzk−1)(x+ y)yω2 ∧ ω3

d1(zkxω3) = kzk−1x(x(z − λ) + y)ω2 ∧ ω3

d1(zkyω3) = kzk−1y(x(z − λ) + y)ω2 ∧ ω3
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It follows that Ker(d0
1) = C〈ω1, xω2, xω3, yω3〉 ⊕ Im(d0

0), so

H1(Ω•(logD)0) = C〈ω1, xω2, xω3, yω3〉

is 4-dimensional. Also we have

Im(d0
1) = C{z}〈((λ− z)x− y)ω1 ∧ ω2 + (z − λ)(x+ y)ω1 ∧ ω3)〉⊕

C{z}〈x2, xy, y2〉ω2 ∧ ω3.

• Ω2
0(logD) is generated over C{z} by

xω1 ∧ ω2, yω1 ∧ ω2, xω3 ∧ ω1, yω3 ∧ ω1, x
2ω2 ∧ ω3, xyω2 ∧ ω3, y

2ω2 ∧ ω3.

We find

d2(xω1 ∧ ω2) = d2(xω1 ∧ ω3) = d2(yω1 ∧ ω3) = 0
d2(zkx2ω2 ∧ ω3) = d2(zkxyω2 ∧ ω3) = d2(zky2ω2 ∧ ω3) = 0.

d2(zkxω1 ∧ ω2) = kzk−1(λ− z)(x+ y)xω1 ∧ ω2 ∧ ω3

d2(yω1 ∧ ω2) = (xy + y2)ω1 ∧ ω2 ∧ ω3

d2(zkyω1 ∧ ω2) = zk−1(x+ y)(ky(λ− z)− zy)ω1 ∧ ω2 ∧ ω3)
d2(zkxω1 ∧ ω3) = −kzk−1x((z − λ)x+ y)ω1 ∧ ω2 ∧ ω3

d2(zkyω1 ∧ ω3) = −kzk−1y((z − λ)x+ y)ω1 ∧ ω2 ∧ ω3

We deduce that Ker(d0
2) = C〈xω1 ∧ ω2, xω1 ∧ ω3, yω1 ∧ ω3〉 ⊕ Im(d0

1),
and thus that

H2(Ω•(logD)0) = C〈xω1 ∧ ω2, xω1 ∧ ω3, yω1 ∧ ω3〉

is 3-dimensional.

• Finally,

Im(d0
2) = C{z}〈x2, xy, y2〉ω1 ∧ ω2 ∧ ω3 = Ω3

0(logD),

and, consequently,
H3(Ω•(logD)0) = 0.

Now consider the intersection D0 = D ∩ {z = 0}, which has equation

h0 = h0
1h

0
2h

0
3h

0
4 = xy(x+ y)(−λx+ y).

It is a line arrangement, and the cohomology of its complement is therefore
given by the Brieskorn complex, the exterior algebra generated over C by the
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forms dh0
i /h

0
i , with trivial differential ([2]). This is of course a subcomplex

of Ω•(logD0). Let V ⊂ C3 be a neighbourhood of 0. Restriction from C
3 to

C
2 = {z = 0} gives rise to a commutative diagram

∧p
∑

1≤i≤4 C〈
dhi

hi
〉 a−→ Hp(Ω•(logD)(V )) b−→ Hp(V \D;C)

↓ ↓ ↓∼=
∧p
∑

1≤i≤4 C〈
dh0

i

h0
i
〉

∼=−→ Hp(Ω•(logD0)(V0))
∼=−→ Hp(V0 \D0;C).

in which the left-hand horizontal morphisms are induced by the inclusion of
the Brieskorn complex in the logarithmic complex, and the right-hand hori-
zontal morphisms are de Rham maps. The lower horizontal morphisms are
isomorphisms by the theorem of Brieskorn and by 1.1. The right hand ver-
tical morphism is an isomorphism because D is a topologically trivial defor-
mation of D0, so inclusion induces an isomorphism of the homology groups
of the complements. The left hand vertical morphism is evidently surjective,
and thus the de Rham map Hp(Ω•(logD)(V ))→ Hp(V \D;C) is surjective.
As Hp(Ω•(logD)0) = limU30H

p(Ω•(logD)(V )) and limU30H
p(V \D;C) =

Hp(C3 \ D;C), then the de Rham map Hp(Ω•(logD)) → Hp(C3 \ D;C)
is surjective. To see that it is an isomorphism we compare dimensions. A
calculation (for example, using the Brieskorn complex) gives

dimCH
1(C2 \D0;C) = 4

dimCH
2(C2 \D0;C) = 3

dimCH
3(C2 \D0;C) = 0

As these are the same as the dimension of Hp(Ω•(logD)0), this completes
the proof that the logarithmic comparison theorem holds for D. 2

Remark 4.10.– The calculations whose results we summarise here are not
so simple as might be supposed. We have presented each image d0

i (Ω
i
0(logD))

as a module over C{z} with algebraic generators, obscuring the fact that be-
cause D is not quasihomogeneous, the anti-derivatives of an algebraic exact
logarithmic form are in general transcendental. For example,

zk(x2 + xy)ω1 ∧ ω2 ∧ ω3 = d(
∑∞

s=1(zk+s/λs(k + s))xω1 ∧ ω2)
= d(−(log(1− z

λ) +
∑k

s=1(zs/λss))λkxω1ω2)

and
zkxyω1 ∧ ω2 ∧ ω3 = d(

∑∞
s=1(zk+s/(λ+ 1)s(k + s))x(ω1 ∧ ω2 + ω1 ∧ ω3))

= d(−((λ+ 1)k log(1− (z/(λ+ 1)))+∑k
s=1(zs(λ+ 1)k−ss))x(ω1 ∧ ω2 + ω1 ∧ ω3)).
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