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Resumen. Este art́ıculo describe algunas aplicaciones del Álgebra Compu-

tacional al Análisis Algebraico, también conocido como teoŕıa de D-módulos,
es decir, el estudio algebraico de sistemas lineales de ecuaciones en derivadas

parciales. Mostramos cómo calcular diferentes objetos e invariantes en teoŕıa

de D-módulos, utilizando bases de Groebner para anillos de operadores dife-
renciales lineales.

Abstract. This paper describes some applications of Computer Algebra to
Algebraic Analysis also known as D-module theory, i.e. the algebraic study of

the systems of linear partial differential equations. One shows how to compute

different objects and invariants in D–module theory, by using Groebner bases
for rings of linear differential operators.

1. Introduction

The article is intended to provide a short introduction to the use of some Com-
puter Algebra methods in the algebraic study of linear partial differential systems,
also known as Algebraic Analysis [24]. Our main tool will be Groebner bases for
linear partial differential operators. Some of the algebraic methods developed in
this article have been treated by different authors elsewhere. A list of earlier works
should include Ch. Riquier [34] and M. Janet [22] both inspired by the works of
E. Cartan. Among recent treatments of the topic we can cite the paper [31] and
the book [37]. Most of the algorithms presented here have been implemented in
the Computer Algebra systems Macaulay 2[20], Risa/Asir[30] and Singular[21].

2. Rings of linear differential operators

For simplicity we are going to mainly consider either the complex numbers C or
the real numbers R as the base field. Nevertheless, in what follows many results
also hold for any base field K of characteristic zero.
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Let us denote by K[x] = K[x1, . . . , xn] the polynomial ring in the variables
x1, . . . , xn with coefficients in the field K.

A linear differential operator (LDO), in the variables x1, . . . , xn, with polyno-
mial coefficients is a finite sum of the form

P (x, ∂) =
∑
β∈Nn

pβ(x)∂β

where each pβ(x) is a polynomial in K[x], ∂ = (∂1, . . . , ∂n) with ∂i = ∂
∂xi

and
∂β = ∂β1

1 · · · ∂βn
n .

The set of such LDOs is denoted by An(K) (or simply An if no confusion is
possible). The set An has a natural structure of associative ring (and even of a K–
algebra) with unit. The elements in An can be added and multiplied in a natural
way. Leibniz’s rule holds for the multiplication of LDOs : ∂ia(x) = a(x)∂i + ∂a(x)

∂xi

for any a(x) ∈ K[x]. The unit of An is nothing but the ’constant’ operator 1 =
x0

1 · · ·x0
n∂

0
1 · · · ∂0

n).
The K–algebra An is called the Weyl algebra of order n with coefficients in the

field K. The expressions P (x, ∂), Q(x, ∂), R(x, ∂), . . . and P,Q,R, . . . (sometimes
with subindexes) will denote LDOs.

The polynomial ring K[x] has a natural structure of (left) An–module, since
each operator in An acts on each polynomial f ∈ K[x] in a natural way (we denote
this action by P (f)):

P (f) =
∑
β∈Nn

pβ(x)
∂β1+···+βnf

∂xβ1
1 · · · ∂x

βn
n

.

Definition 2.1. The order of a nonzero operator P =
∑
β∈Nn pβ(x)∂β, denoted

by ord(P ), is the maximum of the integer numbers |β| = β1+· · ·+βn for pβ(x) 6= 0
and the principal symbol of P is the polynomial

σ(P ) =
∑

|β|=ord(P )

pβ(x)ξβ1
1 · · · ξβn

n ∈ K[x, ξ]

where ξ = (ξ1, . . . , ξn) are new variables and K[x, ξ] stands for the polynomial ring
in the variables x1, . . . , xn, ξ1, . . . , ξn.

One has ord(0) = −∞. Sometimes we will write σ(P )(x, ξ) to emphasize the
fact that σ(P ) is a polynomial in K[x, ξ]. Notice that σ(P ) is homogeneous in ξ
of degree ord(P ). One has the equality σ(PQ) = σ(P )σ(Q) for P,Q ∈ An and by
definition σ(0) = 0.

Remark 2.2. One can also consider LDOs with coefficients in other rings as
the ring OCn(U) (resp. ORn(U)) of holomorphic (resp. analytic) functions
in some open set U ⊂ Cn (resp. U ⊂ Rn).
the ring of convergent power series C{x} = C{x1, . . . , xn} (or R{x} =
R{x1, . . . , xn}).
the ring of formal power series K[[x]] = K[[x1, . . . , xn]].
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If R is any of these rings we will denote by Diff(R) the corresponding ring of
LDOs.

One of the goals of the theory of Differential Equations is to study the existence,
uniqueness and the properties of the solutions of linear partial differential systems
(LPDS)

(1)


P11(u1) + · · ·+ P1m(um) = v1

...
...

...
...

P`1(u1) + · · ·+ P`m(um) = v`

where Pij are LDOs, uj are unknown and vi are given data. Both uj and vj
could be functions, distributions, hyperfunctions or more generally elements in
any vector space F endowed with a structure of (left) Diff(R)–module.

Assume System (1) is homogeneous (i.e. v1 = · · · = v` = 0). If u = (u1, . . . , um)
is a solution1 of the system then u is also a solution of any equation

P1(u1) + · · ·+ Pm(um) = 0

with

(2) (P1, . . . , Pm) =
∑̀
i=1

Qi(Pi1, . . . , Pim)

for any Qi in An (or more generally Qi ∈ Diff(R) if we are considering any of the
rings of Remark 2.2).

For simplicity in what follows, we will assume Diff(R) = An = An(C) unless
otherwise stated. The set of all linear combinations

(P1, . . . , Pm) =
∑̀
i=1

Qi(Pi1, . . . , Pim)

with coefficients Qi in An is the (left) sub-module∑̀
i=1

AnP i

of the free module Amn where P i is the vector (Pi1, . . . , Pim). We also denote by
this submodule by An(P 1, . . . , P `).

B. Malgrange [29], D. Quillen [33] and the Japanese school of M. Sato (e.g. [38]
and [24]) have been probably the first to associate to each system of type (1) the
(left) quotient An–module2

(3)
Amn

An(P 1, . . . , P `)

1We do not need to precise here the space of the wanted solutions. The result is true for any

such space.
2All the modules and ideals considered here will be left modules and left ideals unless otherwise

stated.
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This last quotient, that encodes important information about the system, is
also called the differential system associated with the system3 (1).

As An is left-Noetherian (see Subsection 5) any finitely generated left An-
module is isomorphic to a quotient of type (3).

When m = 1 (i.e. when the system has only one unknown u = u1) then System
(1) reduces to (writing P11 = P1, . . . , P`1 = P`)

(4)


P1(u) = v1

...
...

P`(u) = v`

and the set of linear combinations
∑
iQiPi with coefficients Qi ∈ An is a (left)

ideal in An, denoted by
∑`
i=1AnPi (and also by An(P1, . . . , P`)).

Different systems could have the same associated module, i.e. the corresponding
quotient modules could be isomorphic.

Example 2.3. Let P (x, ddx ) be the operator
(
d
dx

)2
+ 2x d

dx + 1 ∈ A1 (we write here
x = x1) and let us consider the systems

(5) P (u1) = 0

and

(6)
{

du1
dx − u2 = 0
u1 + ( d

dx + 2x)u2 = 0

The associated quotient modules are isomorphic since

A1

A1P
' A2

1

N

where N ⊂ A2
1 is the sub-module generated by ( d

dx ,−1) and (1, ddx + 2x). The
morphism of A1–modules sending the class of 1 in the first module to the class of
(1, 0) in the second one is in fact an isomorphism. This isomorphism encodes the
fact that the systems (5) and (6) are equivalent in the sense that the computation
of their respective solutions (wherever they lie) are equivalent problems since they
can be reduced to each other. A function u1 = u1(x) is a solution of Equation (5)
if and only if the vector (u1, u2 := du1

dx ) is a solution of System (6).

Example 2.4. We also have the isomorphism

A2

A2(∂2
1 + ∂2

2)
' A3

2

N

where N ⊂ A3
2 is the sub-module generated by the family (∂1,−1, 0), (∂2, 0,−1),

(0, ∂1, ∂2). The following systems

(7) (∂2
1 + ∂2

2)(u1) = 0

3This association is also typical in Algebraic Geometry: to a given system of polynomial

equations f1(x) = 0, . . . , f`(x) = 0 one associates the quotient ring
K[x]

〈f1,...,f`〉
where 〈f1, . . . , f`〉

is the ideal in K[x] generated by the polynomials fi(x).
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and

(8)

 ∂1(u1)− u2 = 0
∂2(u1)− u3 = 0
∂1(u2) + ∂2(u3) = 0

are equivalent. A suitable function u1 = u1(x1, x2) is a solution of Equation (7) if
and only if the vector (u1, u2 := ∂1(u1), u3 := ∂2(u1)) is a solution of System (8).

The study of such An–modules is the object of the so-called Algebraic Analysis4

or D–module theory.5

In the next three Sections we are going to recall the classical definition of char-
acteristic vector of a linear partial differential equation (Section 3), then we will
recall the definition and basic properties of Groebner bases for LDOs and we will
show how they can be used to compute the characteristic variety of a LPDS (Sec-
tions 5 and 4).

3. Classical characteristic vectors

Assume we have just one linear partial differential equation (LPDE)

P (x, ∂)(u) =

∑
β

pβ(x)∂β

 (u) = v

with real-analytic coefficients pβ(x) in some open subset U ⊂ Rn. A vector ξ0 ∈ Rn
is called characteristic for P at x0 ∈ U if σ(P )(x0, ξ0) = 0 and the set of all such ξ0
is called the characteristic variety of the operator P (or of the equation P (u) = v)
at x0 ∈ U and is denoted by Charx0(P ). Recall that σ(P ) denotes the principal
symbol of the operator P (see Definition 2.1). Notice that here, in contrast to
some textbooks, the zero vector could be characteristic.

More generally, the characteristic variety of the operator P is by definition the
set

Char(P ) = {(x0, ξ0) ∈ U × Rn |σ(P )(x0, ξ0) = 0}.
For example, if Q(x, ddx ) = x2 d

dx + 1, then its characteristic variety is the union of
the two lines x = 0 and ξ = 0 in the plane R× R with coordinates (x, ξ).

Assume ord(P ) ≥ 1, then P is said to be elliptic at x0 if P has no nonzero
characteristic vectors at x0 (i.e. Charx0(P ) ⊂ {0}) and it is said to be elliptic on
U if Char(P ) ⊂ U × {0}.

The Laplace operator
∑n
i=1 ∂

2
i is elliptic on Rn.

The characteristic variety of the wave operator P = ∂2
1 −

∑n
i=2 ∂

2
i is nothing

but the hyperquadric defined in Rn × Rn by the equation ξ2
1 −

∑n
i=2 ξ

2
i = 0.

Characteristic vectors are important in the study of singularities of solutions as
can be seen in any classical book on Differential Equations. For example, in the
case of the equation Q(u) = 0 with Q as before, the corresponding singular locus

4The term was introduced by M. Sato; see the introduction of the volume I of [25]. See also
[7].

5Mathematics Subject Classification 2010 (MSC2010): 32C38 Sheaves of differen-

tial operators and their modules, D-modules [See also 14F10, 16S32, 35A27, 58J15].
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(see Definition 4.3) is just {0}. In the neighborhood of any point x0 ∈ R \ {0} one
can apply Cauchy’s Theorem: in the neighborhood of such a point the space of
solutions of the equation Q(u) = 0 is generated by the analytic function exp( 1

x ).
To define the principal symbol and the characteristic vectors for a system (1)

of linear differential equations in many variables (even in the case of only one
unknown function) is more involved and in general the naive approach of simply
considering the principal symbols of the equations turns out to be unsatisfactory
(see Example 4.5). We will use graded ideals and Groebner bases for LDOs (see
Sections 5 and 4) to define and to compute the characteristic variety of a general
LPDS.

4. Graded ideal, characteristic variety and dimension.

In this Section An = An(C). Assume I ⊂ An is an ideal (e.g. the ideal generated
by operators P1, . . . , Pm in the system (4)).

Definition 4.1. The graded ideal gr(I) associated with I is the ideal in C[x, ξ]
generated by the set of principal symbols {σ(P ) |P ∈ I}.

Notice that gr(I) is a homogeneous polynomial ideal with respect to the (ξ)-
degree (the degree with respect to the ξ–variables).

If I = AnP is the principal ideal generated by P then gr(I) is also principal in
C[x, ξ] and it is in fact generated by σ(P ).

Definition 4.2. The characteristic variety of the quotient An–module An/I (or
of the system defined by I) –denoted by Char(An/I), is by definition the affine
algebraic subvariety of C2n defined by the ideal gr(I) ⊂ C[x, ξ].

If I = AnP is a principal ideal then the characteristic variety of An/I coincides
with the classical characteristic variety of P (see Section 3).

The definition of the characteristic variety Char(M) of any finitely generated
An–module M is more involved and uses filtrations on the module M (see e.g. [28,
Chapter 11]). The characteristic variety Char(M) is an affine algebraic subvariety
of C2n.

Definition 4.3. The singular locus of a finitely generated An–module M is the
Zariski closure of the image of Char(M) \Cn × {0} under the projection π : Cn ×
Cn → Cn, π(a, b) = a.

The notion of singular locus generalizes the one of singular point of an ordinary
linear differential equation. One can compute the singular locus of a given system
using Macaulay 2. See Examples 4.5 and 4.6.

Remark 4.4. In general, if the ideal I ⊂ An is generated by a family P1, . . . , Pm,
then the ideal gr(I) could be strictly bigger than the ideal generated by the prin-
cipal symbols σ(P1), . . . , σ(Pm). Such a situation occurs in the following example:
Let us consider P = ∂2

1 + ∂1 and Q = ∂2
1 + ∂2 in the Weyl algebra A2 = A2(C).

Let us denote by I the left ideal in A2 generated by P,Q. It is clear that
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σ(P − Q) = ξ1 − ξ2 ∈ gr(I) but σ(P − Q) does not belong to the ideal gener-
ated by σ(P ) = σ(Q) = ξ2

1 in C[x1, x2, ξ1, ξ2]. See also Example 4.5 for a more
complete example.

Groebner basis theory inAn can be used to calculate gr(I). Namely, if P1, . . . , P`
is a Groebner basis of I6 then σ(P1), . . . , σ(P`) generate gr(I) and so these princi-
pal symbols define the characteristic variety of An/I. See Lemma 5.6 for a more
precise statement.

Example 4.5. If I = A2(P1, P2) with P1 = x1∂1+x2∂2 and P2 = x1∂2+x2
2∂1 then

gr(I) = 〈ξ1, ξ2〉 that is strictly bigger than 〈σ(P1), σ(P2)〉 = 〈x1ξ1 + x2ξ2, x1ξ2 +
x2

2ξ1〉.
The following Macaulay 2 script can be used to compute generators of the graded

ideal gr(I). The corresponding Macaulay 2 command is called charIdeal. We
need D-modules.m2 package to this end (see [20]). Input lines in Macaulay are
denoted by i1, i2, . . . while the corresponding output lines are o1, o2, . . .

The command R=QQ[x,y] defines the ring R to be the polynomial ring in the
variables x, y and with rational coefficients. The command W=makeWA R defines
the ring W to be the Weyl algebra of order 2 with coefficients in R.
Macaulay 2, version 1.2

with packages: Elimination, IntegralClosure,LLLBases, PrimaryDecomposition,

ReesAlgebra, SchurRings, TangentCone

i1 : R=QQ[x,y]

i2 : load "D-modules.m2"

i3 : W=makeWA R

i4 : P1=x*dx+y*dy,P2=x*dy+y^2*dx

o4 = (x*dx + y*dy, y^2*dx + x*dy)

i5 : I=ideal(P1,P2)

o5 = ideal (x*dx + y*dy, y^2*dx + x*dy)

i6 : charIdeal I

o6 = ideal (dy, dx)

o6 : Ideal of QQ [x, y, dx, dy]

i7 : J=ideal(dx,dy)

o7 = ideal (dx, dy)

o7 : Ideal of W

6With respect to a monomial ordering compatible with the order of the differential operators

(see Lemma 5.6).
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i8 : J==I

o8 = true

Input line i4 defines the operators P1, P2 generating the ideal I (the corre-
sponding definition in Macaulay is the input line i5.

The computation of the input line i6: charIdeal I gives the ideal o6: ideal
(dy, dx). Notice that as remarked by Macaulay output o6 : Ideal of QQ [x,
y, dx, dy] the ideal given by o6: ideal (dy, dx) is in fact an ideal of the
ring QQ [x, y, dx, dy] which is considered to be a commutative polynomial ring
while W is the Weyl algebra of order 2.

In fact, the last part of the script (from i7 to o8) proves that the ideal I equals
the ideal A2(∂1, ∂2). We are using here x = x1, y = x2.

In the Weyl algebra W the expressions dx, dy stand for ∂1 and ∂2 while in QQ
[x, y, dx, dy] they stand for ξ1 and ξ2 respectively.

The previous computation can be also made by hand although they are not com-
pletely obvious.

If I = A2(P1, P2) as in Example 4.5 we have proven that gr(I) = 〈ξ1, ξ2〉 and
then the equality Char(A2/I) = C2 × {(0, 0)}.

In particular, the singular locus of the differential system A2/I is the empty set.

Let’s see another example using Macaulay 2.

Example 4.6. The following Macaulay 2 script computes gr(J) for J = A2(Q1, Q2)
and Q1 = ∂2

1 − ∂2, Q2 = x1∂1 + 2x2∂2.
i2 : R=QQ[x,y]

i3 : W2=makeWA R

i4 : Q1=dx^2-dy,Q2=x*dx+2*y*dy

o4 = (dx^2 - dy, x*dx + 2y*dy)

o4 : Sequence

i5 : J = ideal (Q1,Q2)

o5 = ideal (dx^2 - dy, x*dx + 2y*dy)

o5 : Ideal of W2

i6 : charIdeal J

o6 = ideal (dx^2 , x*dx + 2y*dy)

o6 : Ideal of QQ [x, y, dx, dy]

i7 : singLocus ideal(Q1,Q2)

o7 = ideal(y)
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The input J = ideal(Q1, Q2) defines the ideal J of the Weyl algebra W gener-
ated by the linear differential operators Q1, Q2. Then the input i6 : charIdeal
J computes the graded ideal gr(J). Then gr(J) is generated by the polynomials
ξ2
1 , x1ξ1 + 2x2ξ2 and the characteristic variety Char(A2/I) is the union of the two

planes ξ1 = x2 = 0 and ξ1 = ξ2 = 0 in C4.
The command i7: singLocus ideal(Q1,Q2) computes the singular locus of

the differential system A2/J . This singular locus is the line x2 = 0 in the plane
C2.

By definition the dimension of a finitely generated nonzero An–module M ,
denoted by dim(M), is the dimension7 of its characteristic variety dim(Char(M))
viewed as an algebraic variety in C2n. The modules A2/I and A2/J of Examples
4.5 and 4.6 have both dimension 2 since their characteristic varieties are, in the
first case, the plane C2 × 0 in C4 and the union of the planes ξ1 = x2 = 0 and
ξ1 = ξ2 = 0 (again in C4) in the second case.

A fundamental result due to I.N. Bernstein ([3], [4]) says that if M 6= 0 then
dim(M) ≥ n.

If M = An/I (and more generally if M is a quotient of a free An–module) the
dimension of M can be computed using Groebner basis in An. To this end we
first notice that dim(An/I) = dim Char(An/I) is nothing but the Krull dimension
of the quotient ring C[x, ξ]/gr(I) (see e.g. [27, Chap. 8]). We first compute, us-
ing Groebner basis algorithm, a system of generators of gr(I) –assuming that a
system of generators of I is given– and then, applying again Groebner basis com-
putation, this time in the polynomial ring C[x, ξ], we compute the Krull dimension
of C[x, ξ]/gr(I)8.

Computer Algebra systems Macaulay 2 [20] and Risa/Asir [30] support com-
mand computing the dimension of a differential system with coefficients in An.
Singular [21] supports a command deciding is a An–module is holonomic (see
Definition 4.7).

Definition 4.7. A finitely generated An–module M is said to be holonomic (or a
holonomic system) if either M = (0) or M is nonzero and dim(M) = n.

Holonomic systems generalize the classical notion of maximally overdetermined
systems (see [23]). The previous examples A2/I and A2/J are holonomic.

Remark 4.8. If K = AnP is the principal ideal generated by P ∈ An and the
quotient M = An/K is non zero then M is holonomic if and only if n = 1. In fact
gr(K) is just generated by the principal symbol σ(P ) ∈ C[x, ξ] and the character-
istic variety Char(M) is the hypersurface defined by the polynomial σ(P )(x, ξ) in
C2n. So dim(M) = 2n− 1 and dim(M) = n if and only if n = 1.

7We are considering here the Krull dimension (see e.g. [27, Chap. 8]).
8Actually only a single Groebner basis of I is needed if the monomial ordering is suitably

chosen.
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Let I ⊂ An be an ideal. We define, following [37], the holonomic rank of the
ideal I as

rank(I) = dimC(x)
C(x)[ξ]

C(x)[ξ]gr(I)
where C(x) is the field of rational functions and gr(I) ⊂ C[x, ξ] is the graded ideal
associated with I.

It is easy to see that if An/I is holonomic then rank(I) < +∞ and that the
converse is not true (see e.g. [37, Prop. 1.4.9]). See Remark 7.3 for a result relating
the holonomic rank with the number of independent holomorphic solutions of the
system.

5. Groebner bases for rings of differential operators

The definition and construction of Groebner bases for polynomial rings [8, 9]
can be adapted to the case of rings of linear differential operators [6, 12], see also
[37] for the Weyl algebra.

Definition 5.1. Let r > 0 be an integer number. A well ordering ≺ on Nr is said
to be a monomial order if it is compatible with the sum. That is: α ≺ β implies
α+ γ ≺ β + γ for all γ ∈ Nr.

Remark 5.2. For any monomial order ≺ on Nr one has 0 = (0, . . . , 0) ≺ α for all
α ∈ Nr. Moreover, for α, β ∈ Nr such that αi ≤ βi for all i one has α ≺ β. In
other words, any monomial order refines the componentwise order on Nr.

We usually translate any order ≺ on Nr to an order –also denoted by ≺– on
the set of monomial {xα |α ∈ Nr} just by writing xα ≺ xβ if and only if α ≺ β.

Let P = P (x, ∂) =
∑
β∈Nn pβ(x)∂β be a differential operator in An. The

operator P can be rewritten as

P =
∑
αβ

pαβx
α∂β

just by writing the polynomial pβ(x) as pβ(x) =
∑
α pαβx

α, with pαβ ∈ C.
We will denote by N (P ) the Newton diagram of P . One has by definition

N (P ) = {(α, β) ∈ N2n|pαβ 6= 0}.

Definition 5.3. Let us fix a monomial order ≺ on N2n. We call privileged ex-
ponent with respect to ≺ of a nonzero operator P –and we denote it by exp≺(P )–
the maximum (α, β) ∈ N2n such that pαβ 6= 0. We will write simply exp(P ) if no
confusion is possible.

The equality exp(PQ) = exp(P )+exp(Q) is satisfied for all nonzero P,Q ∈ An.
The notion of privileged exponent of a differential operator generalizes the one of
privileged exponent of a power series, due to H. Hironaka. It was introduced in
Lejeune and Teissier [26] (see also Aroca et al.[2]).

If I is a nonzero ideal in An, we denote (as in the polynomial case) by E≺(I) (or
simply E(I)) the set of privileged exponents of the nonzero elements in I. Since
E(I) + N2n = E(I) there exists a finite subset G ⊂ I such that E(I) is generated
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by {exp(P ) |P ∈ G} (this is a consequence of Dickson’s Lemma; see e.g. [19, p.
12]).

Definition 5.4. Let I ⊂ An be a nonzero ideal. A finite subset {P1, . . . , Pr} ⊂ I
such that E≺(I) is generated by {exp≺(Pi) | i = 1, . . . ,m}, is called a Groebner
basis of I with respect to the fixed monomial order ≺.

Remark 5.5. If the nonzero ideal I ⊂ An is principal and generated by an operator
P ∈ An then E(I) is the hyper-quadrant generated by exp(P ) in N2n: one has
E(I) = exp(P ) + N2n. Moreover, {P} is a Groebner basis of I (with respect to
any monomial order ≺ in N2n).

Lemma 5.6. Assume the monomial ordering ≺ is compatible with the order of
the differential operators.9 Let I be an ideal in An and G = {P1, . . . , Pm} be a
subset in I. Then if G is a Groebner basis of I (with respect to ≺) then the set
{σ(P1), . . . , σ(Pm)} is a Groebner basis of the graded ideal gr(I) (with respect to
≺.)

Proof. Notice that gr(I) is an ideal in the polynomial ring C[x, ξ] (see Definition
4.1). The statement is a consequence of the equality exp≺(P ) = exp≺(σ(P )) for
all P ∈ An which implies the equality Exp≺(I) = Exp≺(gr(I)). �

Theorem 5.7 (Division in An). Let us fix ≺ a monomial order in N2n. Let
(P1, . . . , Pm) be an m–tuple of nonzero elements of An Then, for any P in An,
there exists a (m+ 1)–tuple (Q1, . . . , Qm, R) of elements in An, such that:

1. P = Q1P1 + · · ·+QmPm +R.
2. exp≺(P ) = max{exp≺(Q1P1), . . . , exp≺(QmPm), exp≺(R)}.
3. N (R) ∩

(⋃m
i=1(exp≺(Pi) + N2n)

)
= ∅.

Remark 5.8. Theorem 5.7 is analogous to the division theorem for polynomials
in the polynomial ring C[x] (see e.g. [19, p. 9] or [1, Th. 1.5.9]). We call here
Division (or Division Theorem) in An what is sometimes called weak Division in
An. The proof of Theorem 5.7 can be read in [12, 13] and also in [37].

Remark 5.9. The linear differential operator Qi in the theorem is called a i–th
quotient and R is called a remainder of the division of P by (P1, . . . , Pm).

Let us write F = {P1, . . . , Pm}. If P = Q1P1 + · · ·+QmPm +R as in Theorem
5.7 we say that P reduces to R modulo F .

Proof. (Theorem 5.7) By linearity it is enough to prove the result for the mono-
mials xα∂β ∈ An. We will use induction on (α, β). If xα∂β = 1 (i.e. if
α = β = (0, . . . , 0)), then either exp(Pi) 6= 0 ∈ N2n for all i and in this case
it is enough to write 1 =

∑m
i=1 0Pi + 1 (and 1 satisfies the third condition in the

statement of the theorem) or there exists an integer j such that exp(Pj) = 0 ∈ N2n.
In this case Pj is a nonzero constant because 0 is the first element in N2n with

9A monomial order ≺ on N2n is said to be compatible with the order of the differential

operators if for any (α, β), (γ, δ) with |β| < |δ| one has (α, β) ≺ (γ, δ).
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respect to the well ordering ≺. We write

1 =
∑
i6=j

0 · Pi + (1/Pj)Pj + 0.

This proves the existence at the first step of the induction.
Assume that the result is proved for any (α′, β′) strictly smaller than (with

respect to ≺) some (α, β) 6= 0 ∈ N2n.
If

(α, β) 6∈
m⋃
i=1

(exp≺(Pi) + N2n)

then we write

xα∂β =
m∑
i=1

0 · Pi + xα∂β

and this expression satisfies the theorem.
If

(α, β) ∈
m⋃
i=1

(exp≺(Pi) + N2n)

then there exist j = 1, . . . ,m and (γ, δ) ∈ N2n such that (α, β) = (γ, δ) + exp(Pj).
We can write

xα∂β =
1
cj
xγ∂δPj +Gj

where cj is the coefficient of the privileged monomial of Pj and all the monomials in
Gj are strictly smaller (with respect to ≺) than (α, β). By the induction hypothesis
there exists (Q′1, . . . , Q

′
m, R

′) satisfying the conditions of the theorem for P = Gj .
In particular we have:

xα∂β =
∑
i 6=j

Q′iPi +
(

1
cj
xγ∂δ +Q′j

)
Pj +R′.

This proves the result for (α, β). Thus, the result is proved for any P ∈ An. �

Corollary 5.10. Let I be a nonzero ideal of An and let G := {P1, . . . , Pm} ⊂ I.
The following conditions are equivalent:

1. G is a Groebner basis of I (with respect to a fixed monomial order in N2n).
2. For any P in An, we have: P ∈ I if and only if P reduces to 0 modulo G.

Corollary 5.11. Let I be a nonzero (left) ideal of An and let P1, . . . , Pm be a
Groebner basis of I. Then P1, . . . , Pm is a system of generators of I. In particular
the ring An is (left) noetherian.

Division Theorem 5.7 and Groebner bases can be also considered, in a straight-
forward way, for right ideals (or more generally for right sub-modules of a free
module Amn ). In particular, An is a right-Noetherian ring and so actually a Noe-
therian ring.

The Division Theorem and the theory of Groebner basis can be also extended
for sub-modules of free modules Amn for any integer number m ≥ 1 [12, 13].
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Buchberger’s algorithm for polynomials (see [9]) can be adapted to the Weyl
algebra An [12], see also [37]. We do not reproduce here the generalization of Buch-
berger’s algorithm to the Weyl algebra (the reader can consult previous references).
Considering as input a monomial order ≺ in N2n and a finite set F = {P1, . . . , Pm}
of differential operators, one can algorithmically compute a Groebner basis, with
respect to ≺, of the ideal I ⊂ An generated by F . So, one can also compute a
finite set of generators of the subset E(I) ⊂ N2n.

Remark 5.12. Similarly to the commutative polynomial case, Groebner bases in
An are used to compute, in an explicit way, some invariants in An-module theory.
Most of the algorithms in this subject appears in Oaku and Takayama[31]. In
particular, Groebner bases in An are used:

a) to compute a generating system of SyzAn
(P1, . . . , Pm), the An–module of

syzygies of a given family P1, . . . , Pm in a free module Arn (r ≥ 1).
b) to solve the membership problem (i.e. to decide if a given vector P ∈ Arn

belongs to the sub-module generated by the vectors P1, . . . , Pm) and to
decide if two sub-modules of Arn are equal.

c) to compute the graded ideal associated with a (left) ideal I in An (see
Definition 4.1 and Lemma 5.6) and to compute the dimension of a quotient
module An/I.

d) to decide if a finitely presented An–module is holonomic (i.e. to decide if
its characteristic variety has dimension n. See Definition 4.7).

e) to construct a finite free resolution of a given finitely presented An–module.
f) to decide if a finite complex of free An–modules is exact.

Many computer algebra systems can handle this kind of computations. Among
the most used should be mentioned Macaulay [20], Risa/Asir [30] and Singular
[21].

Remark 5.13 (Division theorem and Groebner bases in D and D̂). A Division
Theorem (analogous to Theorem 5.7) can be proved for elements in D or in D̂ (see
Briançon and Maisonobe [6] and Castro[12]). Recall that D (resp. D̂) stands for
the ring of linear differential operators with coefficients in the ring C{x} (resp.
C[[x]]) of convergent (resp. formal) power series.

This is not straightforward from the Weyl algebra case because Definition 5.3
of privileged exponent for an element in An doesn’t work for general operators in
D or in D̂.

Nevertheless, Groebner bases also exist for left (or right) ideals in D (and in D̂)
and the analogous of Corollaries 5.10 and 5.11 also hold in D and D̂. This proves
in particular that D and D̂ are Noetherian rings. We will not give here the details
and we refer the interested reader to the references above.

6. The solution spaces of P (u) = v

Let us consider a single LPDE

P (u) = P (x, ∂)(u) = 0
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and suppose we want to compute its solutions in some function space F where An
acts naturally. The space F should be then a (left) An–module.

Typical examples of such spaces are function spaces (continuous functions, real
analytic or holomorphic functions, polynomial functions ...), spaces of multivalued
functions and spaces of distributions among others.

A central question in the theory of Differential Equations is to compute the
solution set

Sol(P ;F) = {u ∈ F such that P (u) = 0}.
Actually, Sol(P ;F) is a vector space as it is nothing but the kernel ker(P ( )) of
the morphism

P ( ) : F → F
defined by the action of P on F . Notice that as An is a non commutative ring the
map P ( ) is only C–linear.

Lemma 6.1. Let us denote M = An/AnP . The solution vector space Sol(P,F)
is isomorphic to HomAn(M,F) the vector space of An-morphisms from M to F .

Proof. Each solution u ∈ Sol(P ;F) determines the morphism (of An–modules)

φu : M → F

defined by φu(Q) = Q(u) for Q ∈ An, where Q stands for the class of Q modulo
the ideal AnP . On the other hand, each An–module morphism

φ : M → F

(i.e. each φ ∈ HomAn(M,F)) determines the solution

uφ = φ(1)

since P (φ(1)) = φ(P · 1) = φ(0) = 0.
The map sending u ∈ Sol(P ;F) to φu ∈ HomAn(M,F) is an isomorphism

of vector spaces whose inverse is just the map sending φ ∈ HomAn(M,F) to
uφ ∈ Sol(P ;F). �

Let us return to the case of the complete equation P (u) = v where v is in F .
The obstruction to solve this equation is given by the vector space F/P (F) =
coker(P ( )) that is the cokernel of the map P ( ) : F → F . That is, for a fixed
v ∈ F , the equation P (u) = v has a solution u in F if and only if v ∈ P (F) or
equivalently if and only if the class of v in the quotient space F/P (F) is zero.

More concretely, the complete equation has a solution u for each v if and only
if F = P (F) (or equivalently if and only if F/P (F) = coker(P ( )) = (0)).

We will see that coker(P ( )) is naturally isomorphic, as vector space, to the
first extension group Ext1

An
(M,F) of M by F (in this case it is actually a vector

space).
First of all, let us consider the natural exact sequence of modules and morphisms

(9) 0→ An
φP−→ An

π−→M =
An
AnP

→ 0.
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where the morphism φP is defined by φP (Q) = QP for Q ∈ An and π is the
natural projection. Then by truncating the previous one we consider the complex
(of An-modules)

(10) 0→ An
φP−→ An → 0.

We then apply to this complex the functor HomAn(−,F) and we get the complex
of vector spaces

(11) 0→ HomAn(An,F)
(φP )∗−→ HomAn(An,F)→ 0

where (φP )∗(η) = η ◦ φP for η ∈ HomAn
(An,F).

The vector space HomAn(An,F) has a natural structure of An–module which
is in fact isomorphic to F . This is a general fact in ring theory: to each morphism
η ∈ HomAn

(An,F) we associate η(1) ∈ F and this correspondence is in fact an
isomorphism whose inverse is the map sending an element u ∈ F to the morphism

ηu : An −→ F
defined by ηu(Q) = Q(u). Under this isomorphism the last complex can be read
as

0→ F P ( )−→ F → 0
Then we have natural isomorphisms of vector spaces ker(P ( )) ' HomAn(M,F) =

Ext0
An

(M,F) (which we have described before, see Lemma 6.1) and F/P (F) =
coker(P ( )) ' Ext1

An
(M,F).

Definition 6.2. The vector spaces ExtiAn
(M,F) for i = 0, 1 are called the so-

lutions spaces of the equation P (u) = v (or more precisely of the An–module
M = An/AnP ) in F .

7. The solution spaces of a differential system

In order to generalize the notion of solutions spaces for a general System (1) we
have to consider first theAn-module (or differential system)M = Amn /An(P1, . . . , P`)
associated with the system.

First of all, similarly to the construction done in Section 6 one can describe an
isomorphism between the solution space Sol(Sh;F) and HomAn

(M,F) where Sh
is the homogeneous system associated with System (1).

This isomorphism associates to each solution u = (u1, . . . , um) ∈ Sol(Sh;F) the
morphism φu ∈ HomAn

(M,F) defined by φu(Q) = Q(u). In particular, if I is an
ideal in An, the solution space Sol(I;F) is isomorphic to HomAn(An/I,F).

A somehow analogous situation can be found in Algebraic Geometry. Assume
the system S = {f1(x) = 0, . . . , f`(x) = 0} of complex polynomial equations
(in n variables) has only finitely many solutions (that is the set V(S) = {a ∈
Cn|f1(a) = · · · = f`(a) = 0} is finite). There exists a natural bijection from
V(S) to HomC(C[x]/〈S〉,C) defined by attaching to each solution a ∈ V(S) the
corresponding evaluation homomorphism (g(x) 7→ g(a)).

Let M be an An–module. Inspired by the situation described in Section 6 we
can give the following
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Definition 7.1. The solutions spaces of the An–module M with values in F are
the vector spaces ExtiAn

(M,F) for i = 0, . . . , n.

Recall that HomAn
(M,F) = Ext0

An
(M,F) and that the space ExtiAn

(M,F)
for i ≥ 1 can be described by using the right derived functors of the functor
HomAn(−,F). Moreover, by definition ExtiAn

(M,F) can be calculated as the i-th
cohomology group of the complex HomAn

(L•,F) where L• is a free resolution of
M .

As a consequence of Kashiwara’s constructibility theorem [23] we have the fol-
lowing

Theorem 7.2. Assume the An–module is holonomic then the solution C–vector
spaces ExtiAn

(M,C{x}) and ExtiAn
(M,C[x]) have finite dimension for i = 0, . . . , n.

The holonomicity condition on M is of course necessary: in dimension 2, we
have Ext0

A2
( A2
A2∂1

,C{x1, x2}) = C{x2} and this is an infinite dimensional vector
space.

For general systems as (1) and general function spaces F there is no algorithm
to compute the solution spaces ExtiAn

(M,F).
Nevertheless, if M = An/I is holonomic (see Definition 4.7) there are algorithms

computing a basis of ExtiAn
(M,C[x]) for all i, ([32], [42]). Moreover, in [40] an

algorithm computing a basis of ExtiAn
(M,C[[x]]) (i = 0, . . . , n) is described.

Remark 7.3. As a consequence of Cauchy Theorem (see e.g. [37, Th. 1.4.19]) we
have

dimC Sol(I;OCn(U)) = dimC Ext
0
An

(An/I,OCn(U)) = rank(I)

where the system An/I is holonomic and OCn(U) stands for the space of holomor-
phic functions on an open set U ⊂ Cn \ Z where Z is the singular locus of An/I
(see Definition 4.3).

All the algorithms mentioned above use Groebner basis computations in the
Weyl algebra An. A key ingredient of the algorithms is the effective computation
of a free resolution of the given An–module M (see Remark 5.12).

8. Operators annihilating a rational function

Let us consider a nonzero polynomial f = f(x) in C[x]. We are going to
explain how to use some tools in Computer Algebra in order to explicitly compute
the annihilating ideal, in the Weyl algebra An, of the rational function 1

f , that is

Ann(
1
f

) = {P ∈ An|P (
1
f

) = 0}.

We first treat the elementary case when f = x1. It is clear that the operators
P1 = x1∂1 + 1, P2 = ∂2, . . . , Pn = ∂n annihilate 1

f .
We will prove that Ann( 1

x1
) = An(P1, . . . , Pn). Assume P ∈ An is such that

P (1/x1) = 0. We write
P = Q(x, ∂1) + S(x, ∂)
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where Q = Q(x, ∂1) =
∑d
j=0 aj(x)∂j1 (for some integer d ≥ 0 and aj(x) ∈ C[x])

and S = S(x, ∂) belongs to the ideal An(P2, . . . , Pn). We will prove that Q belongs
to the ideal AnP1; which proves that P ∈ An(P1, . . . , Pn).

We divide the operator Q by P1 = x1∂1 + 1 (this is very particular case of the
division theorem 5.7). We write

Q = Q1P1 +R

where Q1 depends only on x and ∂1 and the remainder R = R0 + R1 has the
following form (see the statement of Division Theorem 5.7):

R0 = R0(x) =
e0∑
j=0

bj(x′)x
j
1, R1 =

e1∑
`=1

c`(x′)∂`1

for some integers e0 ≥ 0, e1 ≥ 1 and polynomials bj(x′), c`(x′) in the polynomial
ring C[x′] := C[x2, . . . , xn].

Assume R1 is nonzero and ce1(x′) 6= 0. Since Q(1(x1) = 0 we also have

R(1/x1) =
R0(x)
x1

+R1(1/x1) = 0.

The pole of the rational function R1(1/x1) at x1 = 0 has order e1 + 1 and thus it
can not be cancelled with R0(x)/x1. This yields a contradiction and so R1 must
be zero. In this case R0(x)/x1 = 0 implies R0 = 0. Then R = R0 + R1 = 0 and
Q = Q1P1.

It is obvious that the previous procedure can not be applied for general rational
function of the form 1/f with f ∈ C[x].

T. Oaku and N. Takayama [31] described an algorithm for computing a fi-
nite system of generators of the annihilating ideal Ann(1/f). The algorithm uses
Groebner basis and elimination theory in An.

Due to the high complexity of Groebner basis algorithm10 it is difficult in prac-
tice to compute Ann(1/f). This annihilating ideal can be approximated by the
intermediate Ann(k)(1/f) which is by definition the (left) ideal in An generated
by the operators in Ann(1/f) of order less than or equal to k, for each integer
k ≥ 1. One has the following chain of ideals in An

Ann(1)

(
1
f

)
⊆ Ann(2)

(
1
f

)
⊆ · · · ⊆ Ann(k)

(
1
f

)
⊆ · · · ⊆ Ann

(
1
f

)
.

Since the ringAn is (left) Noetherian there exists an integer k such thatAnn(k)(1/f) =
Ann(1/f).

The case of the ideal Ann(1)(1/f) deserves the following explanation. An op-
erator P of order 1 has the following form:

P =
n∑
i=1

ai(x)∂i + a0(x)

for some aj(x) ∈ C[x] for j = 0, 1, . . . , n.

10This complexity equals the one in commutative polynomial rings.
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Assume that P (1/f) = 0. Then we have the equality∑
i

ai(x)
∂

∂xi

(
1
f

)
+
a0(x)
f

=
∑
i

−ai(x)
f2

∂f

∂xi
+
a0(x)
f

= 0.

Previous equality determines (up to sign) the syzygy (a1(x), . . . , an(x),−a0(x)) of
the polynomials (∂1(f), . . . , ∂n(f), f) where ∂i(f) stands for ∂f

∂xi
for i = 1, . . . , n.

The set of all the polynomial syzygies of (∂1(f), . . . , ∂n(f), f) is denoted by

Syz(∂1(f), . . . , ∂n(f), f).

This set is in fact a C[x]–module and, by using commutative Groebner basis tech-
niques, one can compute one of its finite generating systems (see e.g. [1]).

Moreover, if P =
∑n
i=1 ai(x)∂i + a0(x) is an operator of order 1 annihilating

1/f then the vector field
∑n
i=1 ai(x)∂i is logarithmic (see [36]) with respect to f

as we have the equality
n∑
i=1

ai(x)∂i(f) = −a0(x)f.

Reciprocally, for any logarithmic vector field (also called logarithmic derivation)
δ =

∑n
i=1 ai(x)∂i with respect to f the operator δ+ δ(f)

f annihilates 1/f and it is of
order 1. So, the ideal Ann(1)(1/f) is closely related to the logarithmic derivations
associated with (or with respect to) f .

For a given nonzero f ∈ C[x] we denote by ω(f) the smallest k such that
Ann(k)(1/f) = Ann(1/f) and in this case we say that Ann(1/f) is generated by
operators of order less that or equal to k. Very few is known about the behavior of
the function ω(f) when f varies in C[x]. For any quasi-homogeneous polynomial
f ∈ C[x, y] it is proven in [43] (using results of [10]) that ω(f) = 1.

In the following Macaulay 2 scripts we will compute Ann(1/f) for some exam-
ples.

First of all we will treat the case f = x2 + y2 + z2 (we use here x, y, z instead
of x1, x2, x3). As f is homogeneous of order 2 the have the equality χ(f) = 2f
where χ = x∂x+y∂y +z∂z is the Euler operator. Then χ+2 annihilates 1/f . It is
also obvious that the operators P = x∂y − y∂x, Q = x∂z − z∂x, R = y∂z − z∂y also
annihilate 1/f . But it is not completely easy to prove that, in this case, Ann(1/f)
is generated by χ+2, P,Q,R. We will do that by using the package D-modules.m2
in Macaulay 2.
Macaulay 2, version 1.2

with packages: Elimination, IntegralClosure, LLLBases, PrimaryDecomposition,

ReesAlgebra, SchurRings, TangentCone

i1 : load "D-modules.m2";

i2 : R=QQ[x,y,z];

i3 : W=makeWA R;

i4 : X=x*dx+y*dy+z*dz, P=x*dy-y*dx, Q=x*dz-z*dx, R=y*dz-z*dy;
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i5 : f=x^2+y^2+z^2, g=x+1-x

2 2 2

o5 = (x + y + z , 1)

o5 : Sequence

i6 : I=RatAnn(g,f)

o6 = ideal (z*dy - y*dz, z*dx - x*dz, y*dx - x*dy, x*dx + y*dy +

z*dz + 2)

o6 : Ideal of W

i7 : J=ideal(X+2,P,Q,R);

o7 : Ideal of W

i8 : J==I

o8 = true

Remark 8.1. Comments on the previous script.
Command i6 : I=RatAnn(g,f) calculates the annihilating ideal of 1/f in the
Weyl algebra of order three and associates its value to the name I. Notice that by
definition g=x+1-x=1. This is a trick just to force Macaulay 2 to consider 1 as an
element in the Weyl algebra (or more precisely of class W) (the expression g=1
considers 1 to be of class ZZ).

Command i7 : J=ideal(X+2,P,Q,R); associates to the name J the ideal
generated by the four operators X+2,P,Q,R (i.e. {χ+ 2, P,Q,R}).

Finally the command i8 : J==I checks if both ideals J and I are equal. Since
the answer is true that proves that the annihilating ideal of 1/f is generated by
the four operators defined above.

Previous script shows in particular the equality (as ideals in the Weyl algebra
of order 3) Ann(1/f) = Ann(1)(1/f) for f = x2 + y2 + z2.

Let us continue our previous Macaulay 2 session as described in the following
script.
i9 : f=x^3+y^3+z^3;

i10 : P=x^2*dy-y^2*dx, Q=x^2*dz-z^2*dx, R=y^2*dz-z^2*dy

2 2 2 2 2 2

o10 = (- y dx + x dy, - z dx + x dz, - z dy + y dz)

o10 : Sequence

i11 : I=RatAnn(g,f)

2 2 2 2 2 2

o11 = ideal (x*dx + y*dy + z*dz + 3, z dy - y dz, z dx - x dz, y dx - x dy,
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--------------------------------------------------------------------------

2 2 2

y*z*dx + x*z*dy + x*y*dz )

o11 : Ideal of W

i12 : J=ideal (X+3,P,Q,R);

o12 : Ideal of W

i13 : J==I

o13 = false

i14 : P1=y*z*dx^2+x*z*dy^2+x*y*dz^2

2 2 2

o14 = y*z*dx + x*z*dy + x*y*dz

o14 : W

i15 : P1\%J

2 2 2

o15 = y*z*dx + x*z*dy + x*y*dz

o15 : W

Remark 8.2. Comments on the previous script.
Command i9 : defines f to be the polynomial x3+y3+z3 which is a homogeneous
polynomial of order 3. So the operator χ+ 3 annihilates 1/f . Also the operators
P,Q,R defined by command i10 : annihilate 1/f . Command i12 : defines J
as the ideal generated by χ+ 3, P,Q,R.

Command i11 : defines I as the annihilating ideal of 1/f . Command i13 :
checks the equality of ideals I and J . The answer false means that both ideals
are not equal. Moreover, output o12 : tells us that the ideal I equals the ideal
generated by J and the operator P1 = yz∂2

x+xz∂2
y+xy∂2

z (defined using command
i14 :). Finally, command i14 : P1%J shows us that the reduction of P1 modulo
the ideal J is not zero giving a different proof of the inequality J 6= I (here P1%J
stands for the reduction of the division of P1 by the ideal J).

Moreover, the following script proves that J is in fact the ideal Ann(1)(1/f).
Previous discussion tells us that Ann(1/f) is not generated by operators of order
1 for f = x3 + y3 + z3.

The following script computes a system of generators of the syzygy module
Syz(∂x(f), ∂y(f), ∂z(f),−f) for f = x3 + y3 + z3. Each column of the matrix given in
output o16 : represents a syzygy vector. The four syzygy vectors yields (up to
sign) the coefficients of the corresponding generators χ+ 3, P,R,Q of the ideal J .
i16 : kernel matrix({{diff(x,f),diff(y,f),diff(z,f),-f}})
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o16 = image {2} | x y2 0 z2 |

{2} | y -x2 z2 0 |

{2} | z 0 -y2 -x2 |

{3} | 3 0 0 0 |

4

o16 : W-module, submodule of W

Ideals Ann(1/f) and Ann(k)(1/f) are related to the comparison between the
meromorphic de Rham cohomology and the logarithmic de Rham cohomology with
respect to the hypersurface define by f = 0 in Cn (see e.g. [10], [11], [16], [43],
[15], [41]).

Conclusions

We have described some applications of Computer Algebra methods to the
algebraic study of systems of linear partial differential equations. Using Groebner
basis theory for linear differential operators we have described how to calculate
the characteristic variety of such a system as well as its dimension (which gives
an algorithmic procedure to decide whether the system is holonomic). Algorithms
by Oaku and Takayama [32] and by Tsai and Walther [42] compute the solutions
spaces ExtAn(An/I,C[x]) for i = 0, . . . , n if An/I is holonomic.

One has also an algorithm for computing the annihilating ideal Ann(1/f) of a
rational function 1/f where f is a polynomial in C[x]. By computation of some
syzygy module in C[x] one can also compute the first approximation Ann(1)(1/f)
of the previous annihilating ideal.

The use of Groebner basis theory in D–module theory is motivated by somehow
analogous situations in Commutative Algebra and Algebraic Geometry.
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[27] N. Bourbaki. Algèbre commutative, Chaps. 8 et 9. Masson, Paris, 1983.

[28] S. C. Couthino. A primer of Algebraic D-modules. London Math. Soc. Student Texts 33,

Cambridge (UK), 1995.
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Séminaire Leray (1961-62)).

[30] M. Noro, T. Shimoyama, T. Takeshima. A Computer Algebra System Risa/Asir. Avail-
able at http://www.math.kobe-u.ac.jp/Asir/index.html.

[31] T. Oaku, N. Takayama. Algorithms forD-modules–restriction, tensor product, localization,

and local cohomology groups. J. Pure Appl. Algebra 156(2-3), 267–308, 2001.
[32] T. Oaku, N. Takayama, H. Tsai. Polynomial and rational solutions of holonomic systems.

J. Pure Appl. Algebra 164(1-2), 199–220, 2001.

[33] D. Quillen. Formal Properties of Over-Determined Systems of Linear Partial Differential
Equations. PhD Thesis, Harvard University, 1964.
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the memory of André Martineau), pp. 265–529. Lecture Notes in Math. 287, Springer,

Berlin, 1973.

[39] D. C. Spencer. Overdetermined systems of partial differential equations. Bull. Amer. Math.
Soc. 75, 1–114, 1965.

[40] N. Takayama. An Algorithm for Constructing Cohomological Series Solutions of Holonomic
Systems. Arxiv preprint arXiv:math/0309378v2 [math.AG], 2004.

[41] T. Torrelli. On meromorphic functions defined by a differential system of order 1. Bull.

Soc. Math. France 132(4), 591–612, 2004.
[42] H. Tsai, U. Walther. Computing homomorphisms between holonomic D-modules. J.

Symbolic Comput. 32(6), 597–617, 2001.
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