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A new multireference configuration interaction method using localised orbitals is proposed, in which
a molecular system is divided into regions of unequal importance. The advantage of dealing with
local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the
zone of the molecule where the important phenomena occur, the interaction cut off may be as small
as necessary to get relevant results, in the most part of the system it can be taken rather large, so that
results of good quality may be obtained at a lower cost. The method is tested on several systems. In
one of them, the definition of the various regions is not based on topological considerations, but on
the nature, o or 7, of the localised orbitals, which puts in evidence the generality of the approach.

© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747535]

. INTRODUCTION

Many theoretical studies nowadays deal with the descrip-
tion of systems involving multireference wavefunctions, with
relevant examples on different fields such as the molecular
transition-metal based magnets, biomimetic mixed-valence
systems, organic biradicals, or spin crossover complexes, and
many others. Among the available approaches, multiference
configuration interaction (MRCI) and the complete active
space second order perturbation (CASPT2)! methods are both
well-adapted to describe these multireference systems.

In the MRCI method, the molecular orbitals of the sys-
tem are divided into three different sets. One distinguishes
the occupied orbitals which bear two electrons in each refer-
ence determinant, the virtual ones which are always vacant
and, finally, the active orbitals that can have any occupation.
In the MRCI of the single and double (MRSDCI) approach,
all determinants obtained through single and double excita-
tions from the reference determinantal space are included in
the CI space.

This kind of approach is well-adapted to chemical sys-
tems where the physics is not described by a single refer-
ence wavefunction. Contrarily to other approaches that are
also based on the calculation of the wavefunction, an ad-
vantage of MRCI is that the zero order wavefunction is
not described by a single reference configuration such as in
coupled cluster. Another method that starts from a mul-
tireference zero order wavefunction is the complete active
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space second order perturbation approach. Both MRCI and
CASPT?2 are well-adapted to spectroscopy calculations. Com-
pared to CASPT?2, the MRCI approach presents some advan-
tages. It has no problem of intruder states, and smaller ac-
tive spaces are required to obtain relevant results as it can
be seen in the example of the relative stability of 1:1 Cu-O2
adducts, treated at CASPT2 level? (16 electrons in 15 orbitals
in the CAS), restricted active space (RAS)PT2 (18 electrons
in 21 orbitals in the RAS),? and difference dedicated configu-
ration interaction* (DDCI) method™ ¢ (6 electrons in 4 orbitals
in the CAS). Another example concerning the determination
of magnetic constant coupling compares CASPT2 and DDCI
methods’ with minimal active spaces for the latest. The main
drawback is the computational cost of the calculation, and this
paper aims to reduce it as much as possible. Compared to cou-
pled custer or CASPT2, a major problem of the truncated con-
figuration interaction method is the lack of size-extensivity,
but several corrections have been proposed in the past.®!2

The DDCI method corresponds to a MRSDCI with a
more reduced space of determinants: all double excitations
from the occupied to the virtual orbitals are excluded. This
method has several advantages. The most time consuming
part of an SDCI calculation (processing of the doubly excited
determinants) is eliminated. Based on perturbative consider-
ations, one can demonstrate that it yields different total en-
ergies, compared to SDCI, but the energy differences are cor-
rect, provided that the same set of orbitals is used for all states.
Finally, the method largely reduces the size-consistency error.
DDCI is considered as the reference method in the study of
magnetic problems. It is used in this paper for the study of a
Cu(I) system.

© 2012 American Institute of Physics
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However, even with a dependence on the N number of
basis functions of N° instead of N® for SDCI, the DDCI ap-
proach remains demanding. During the last decade, the great
step towards the reduction of the computational cost in the
calculation of correlation energy is due to the use of localised
orbitals. Since electron correlation is a local phenomenon, us-
ing local orbitals allows one to neglect long range interac-
tions, so that all orbitals involved in an elementary operation
must be in the same region of space to product a nonvanishing
effect. In this way, an N-scaling behaviour may be obtained.
Without being exhaustive, a lot of developments may be men-
tioned, concerning self-consistent field (SCF), second-order
Moller-Plesset (MP2), coupled-cluster single double (triple)
(CCSD(T)), or MP2 gradient,'*"'® and others.

Concerning CI, N-scaling codes were proposed by
Schwee et al.'"®~>? and by some of us in Refs. 23 and 24. Our
previous papers?®2* were based on the use of a topological
matrix between local orbitals. According to the value of the
exchange integral Kj;, orbitals i and j are considered as in-
teracting or not interacting orbitals, and this information is
stored in the topological matrix. According to this informa-
tion, both the size of the CI matrix and the list of electron re-
pulsion integrals (ablcd) are reduced. The present paper pro-
poses a new improvement of the method. It is based on the
idea that, in a molecule, some regions or some orbitals are
more important than others for the study of its properties. This
idea has been largely used in the past, in particular, in the
quantum mechanics/molecular mechanics developments. In
the work presented here, the difference of treatment between
two distinct regions is not so important. Only the threshold to
which is compared the exchange integral will differ depend-
ing on the spatial region of the involved orbitals. As a con-
sequence no acute problem of frontier between regions will
appear.

The first part of the present paper gives a brief recall
of the excitation selected CI (EXSCI) method introduced in
Ref. 23 and of the way to obtain localized orbitals, and
presents the multi-scale CI approach developed in this work.
The second part is devoted to applications of the method.
First, the method is calibrated on the study of dissociation
of a [Ca**—atrazine model pesticide] molecule for which two
zones are defined, one of them including Ca?* and the weak
bonds between Ca?* and the atrazine model, while the other
one consists of the remaining part of the atrazine model. In a
second application, an alternative zoning choice is proposed
in the study of the interaction between H, molecule and a
carbon nanotube fragment, where the different regions are no
more chosen according to their spatial position in the system
but to the o or m nature of local molecular orbitals. These
two tests concern the calculation of a potential energy surface
(PES), which corresponds to a difficult case for a truncated
method. Finally, the third application concerns the multirefer-
ential study of the magnetic properties in a cubane system.

Il. METHOD

The method presented in this paper is based on the use
of localised molecular orbitals. The electron correlation is a
local phenomenon and, therefore, using localised orbitals al-

J. Chem. Phys. 137, 104102 (2012)

lows one to neglect long range interactions and to reduce the
computational cost.

The general road map of the method can be divided into
three steps:

—To obtain well-localised molecular orbitals, both occu-
pied and virtual.

—To set up rules concerning the truncation of the CI ma-
trix and integral list, thanks to the use of these local
orbitals and then to establish the corresponding MRCI
program.

—Finally, to use more or less demanding truncation cri-
teria in the various regions, considering that a molecule
can be in general divided into regions of unequal impor-
tance according to the property of interest.

A. A priorilocalisation method

The localisation method is described in detail in Ref. 25.
It differs from the various methods that can be found in the lit-
erature, for example, those by Boys,?® or Pipek and Mezey.?’
In these approaches, canonical SCF or CASSCF orbitals are
localised according to a given criterion, i.e., the orbitals are
optimised in a first step and then localised, so that one can
refer to them as a posteriori methods.

In the a priori approach, guess local orbitals are built in a
first step, and optimised to reach the SCF or CASSCF condi-
tion in a second step. The guess local orbitals are not uniquely
defined and can be chosen according to the physical problem
under consideration. They can be bond orbitals, lone pairs,
atomic or fragment orbitals.

There are two possibilities to optimize the guess localized
orbitals.

1. Use a super-CI like method. In this approach, a con-
tracted CI matrix of the single excitations on the CAS
eigenvector W, is constructed and then block diago-
nalised. The block diagonalisation preserves the local
character of the guess orbitals in the pseudo-natural or-
bitals resulting from this operation, which can be used
in turn as guess orbitals for a new iteration. At conver-
gence, the iterative process gives a set of local CASSCF
orbitals (i.e., one obtains the CASSCF energy). The
method is presented in Ref. 28.

2. Project each occupied (respectively, active, virtual)
guess local orbital onto the space of occupied (respec-
tively, active, virtual) canonical delocalised ones ob-
tained by CASSCF calculation using a standard pro-
gram. After orthonormalization, the method yields a set
of well-localised occupied, active, and virtual orbitals,
orthogonal and of CASSCF quality. This second ap-
proach has been used in all applications of this paper.

The a priori approach presents some drawbacks and
some advantages as compared to the a posteriori one. The
main defect is that the construction of the guess orbitals may
be sometimes complicated. The main advantage is that one
can easily get well-localised virtual orbitals, which it is not
the case in many other approaches. In many situations, the
drawbacks quoted above may be advantageous, since one can
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build the local orbitals according to the physical problem un-
der consideration. In both methods, the set of localized or-
bitals is not unique, but not for the same reasons. In the a pos-
teriori approach, this is because SCF or CASSCF orbitals are
not unique. In the a priori one, the final local orbitals depend
on the construction of the guess, for which different choices
may be done. One may notice however that, when the opti-
mized local orbitals are obtained through a projection onto
an SCF or CASSCEF solution, even if the set of CASSCF or-
bitals is not unique, there is only one CASSCF solution (cor-
responding to the lowest energy), i.e., only one set of occu-
pied, active, and virtual spaces. As a consequence, the final
local orbitals, after projection onto CASSCF spaces, do not
depend on the reference CASSCEF orbitals.

B. Reducing the Cl size and the list of bielectronic
repulsion integrals: EXSCI program

After obtaining a set of localised occupied, active, and
virtual orbitals, one retains only the excitations among “in-
teracting local orbitals,” using a threshold value for the cor-
responding exchange integral. Two orbitals a and b are in-
teracting orbitals when the corresponding exchange integral:
Ku» = (ablba) is larger than a certain threshold 7h. A detailed
description of the procedure and its applications can be found
in Refs. 23 and 24, but a short overview is given below.

In the Davidson?® process of diagonalisation of the CI
matrix, the most time consuming step is by far the product
HW of the CI matrix H by the current vector . If one consid-
ers, in a CI of the single and double excitations (SDCI), the
interaction of two doubly excited determinants ij — ab and ij
— cd (they must have at least two common indices, here i and
J» otherwise they do not interact), one performs the product,

AMHY);j—ca = (aclbd) - Vi ap,

which means that the coefficient of HW¥ corresponding to
the determinant {j — cd is modified by a quantity equal to
the value of the product of the two-electron repulsion in-
tegral (aclbd) times the coefficient of W corresponding to
ij — ab. Since six different orbitals i, j, a, b, ¢, d are present
in this product and each of them can take N values, the com-
putational cost grows as N®(N is the total number orbitals; all
orbitals may be chosen independently).

With local orbitals, the value of the integral (aclbd) van-
ishes if the indices are not in the same region of space. In
the same way, the weight of the ij — ab and ij — cd dou-
bly excited determinants is expected to be almost zero if i or j
does not belong to this region. Finally, as all orbitals must be
close together, the N-dependence is no longer N°, but N,°.N,
where N, is the average number of orbital neighbours for a
given orbital. N, is independent on the size of the molecule
and, therefore, a N-scaling behaviour is obtained.

1. Brief recall of the EXSCI program

The EXSCI method has been initially proposed by Bories
et al.** and recently improved by Ben Amor et al.** The rules
that decide whether a determinant or a two-electron integral
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can be eliminated (from the CI space, or from the integral list)
are detailed in Ref. 24. A brief summary is given here.

A file containing the one and two electron integrals in
a basis of localised orbitals is given as input. After defin-
ing the active space, some information concerning the con-
struction of the interacting orbital topological matrix must
be yielded. As said above, orbitals i and j are considered
as interacting orbitals if the exchange integral Kj; is larger
than a certain threshold, and this information is stored in a
Boolean matrix. Two Boolean matrices are used, one con-
cerns the determinants and the other one the integrals. If dif-
ferent thresholds are given for the determinant and for the in-
tegrals, the two Boolean matrices are not identical. These two
matrices fully determine the truncated lists of integrals and
determinants.

Concerning integrals, the condition that determines if
one of them is kept or eliminated is that all orbitals involved
must be connected trough the interacting condition, such as
depicted in the scheme below.

or H or or

The rules to include or not a determinant in the CI space
are a bit more complicated.

—All active orbitals are considered as interacting orbitals.
Therefore, all reference determinants are present in the
CI space

—An excited determinant is kept if all nonactive involved
orbitals interact either with an active orbital or with an-
other involved nonactive one. In this later case, the two
orbitals form a hole-particle pair. For example, the rules
to include a doubly excited determinant are illustrated
by the following scheme.

o o o
; 1 =111

—However, further refinements must be added. In the last
diagram corresponding to a double nonactive excita-
tion, the dashed line means that the two pairs are not too
distant. If they are distant, such as in the following

case,
CAS I I

the diagram should correspond to a dispersive interac-
tion. Depending on the nature of the physical problem
under study, one can decide to include these dispersion
effects or not. Therefore, a second threshold was added
to build the determinant basis set.

To summarize, three thresholds can be set, two for the
determinants, (namely, a principal Th;, and the additional Th,
for the dispersive effects), and the third one, Th;, for the inte-
grals. When using the three thresholds, a quasi-linear scaling
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is obtained. Reference 24 present a detailed study of this be-
haviour, based on several test examples.

C. Multi-scale EXSCI

In the method presented above, all parts of the molecule
are treated on an equal foot. However, in most systems, some
parts play a more important role than others. For example, in
an organometallic system, one can expect that the region near
the metal atom(s) should require to be treated in a more accu-
rate way than more distant ligand or ligand parts. In the same
way, in any conjugated hydrocarbon molecule, the & system
plays a larger role than the o skeleton in the description of the
spectrum. The new code allows one to treat at different level
of accuracy orbitals of unequal importance in the system.

In the new version of the program, the molecule can be
divided in zones according to their relevance to the problem of
interest. A zone is defined by a set of atoms or orbitals. Each
orbital belongs to a given zone, depending on its importance
in the molecule, and this choice is made by the user of the pro-
gram, according to physical considerations. In each zone, the
values of the three thresholds Th;, Th,, and Th; are different.
The smaller their value, the larger the number of determinants
and integrals. Hence the 7h values should be set smaller in the
most relevant parts of the system.

Once fixed these thresholds, a new topological matrix is
obtained, and the rest of the procedure remains unchanged.
If two orbitals belong to the same zone, they are considered
as interacting or not interacting according to the thresholds
of the zone. If two orbitals belong to different zones, several
solutions have been envisaged. A first possibility is to use the
lowest of the two threshold values. One can decide, on the
contrary, to use the largest one. Finally, a third possibility is to
use the average value between the two considered zones. The
average solution appears to be a good compromise, the most
relevant and easy to use and has been chosen as the default.

lll. APPLICATIONS

A. Complexation reaction of an atrazine
metabolite with Ca?*

The 2-chloro-1,3,5-triazine-4,6-diamine molecule (see
Figure 1) is a metabolite of the atrazine pesticide. This pes-
ticide reacts with soil cations to give complexes. Then, the
study of these complexations matters to understand the ad-
sorption and desorption processes of pesticides in soil. The
complex of the atrazine model with Ca?*, which has large

?

(a) (b)

FIG. 1. (a) Ca?T—Atrazine model at the equilibrium geometry. (b) Two zones
are defined: zone 1 in bold (7h = 0.0001 a.u.) and zone 2 in watermark (var-
ious thresholds are used).
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complexation energy,*” has been studied in a previous paper®*

to evaluate the ability of selected SDCI calculations to cor-
rectly describe a reaction path. In this kind of study, the prop-
erty that mainly changes from a distance to another is the
intermolecular interaction, in particular, dispersion and dou-
ble excitation charge transfer involving the Ca** ion and the
atrazine model. The use of thresholds in such a case is chal-
lenging since these small interactions should not be neglected.
Small thresholds were then necessary to describe correctly the
potential energy curve: Th = 0.0003 a.u. (Th means that Th;
= Thy = Th;) to get an error of 1.3 kcal mol~! or Th = 0.0001
a.u. to reduce this error to 0.5 kcal mol~!. The CI space was
reduced at least to 30% from the standard SDCI calculation.
Even though the reduction can be considered as quite impor-
tant, it is not satisfactory for a quasi-linear method. A solution
could come from treating in a zone the atoms involved in these
intermolecular interactions. In the present work, the Ca?t and
the two nearest nitrogen atoms (Figure 1) are then assigned to
the same zone (zone 1), with small thresholds (77 = 0.0001
a.u.), while the remaining atrazine model atoms (zone 2) are
treated at lower precision, with larger thresholds (7/ = 0.003
a.u. or 7h = 0.001 a.u.). With this partition, the interaction
energy should be obtained precisely enough at a lower cost
than using small thresholds on the whole complex.

With respect to the previous paper, the same geometry>’
and double-zeta plus polarization basis sets (standard Pople
6-31G* basis set for C, N, H, and the corresponding Francl
for CI*! and Blaudeau for Ca3?) are used. The distance
has been varied from the equilibrium situation (2.372 A
to the closest cycle nitrogen) up to 12.372 A, keeping the
N-Ca?*-N angle constant. The largest distance corresponds
to a total elongation of 10 A. As the total complexation en-
ergy is large (121.07 kcal mol~! at the standard SDCI level)
compared with the error, it is convenient to look at the relative
error to SDCI calculations, taking the longest 10.0 Angstroms
distance as reference point. In Figure 2 are drawn the
previous results obtained with several Th values without using

Relative error to the SDCI values

T T T T T T T T T T T
v—v Th=0.003 a.u
e—o Th=0.001 a.u.

Th=0.0003 a.u.
=—=a Th=0.0001 a.u.
* — Zones: Th=0.0001 /0.003 a.u.
9~ -0 Zones: Th=0.0001/0.001 a.u.

X
L ¥~ 4
S So Error = 0.5 Kcal.mol-1

Relative deviation to SDCI values (kcal.mol-1)

Atrazine--Ca?* elongation (Angstroms)

FIG. 2. Atrazine—Ca2* elongation (Angstroms). Comparison of selected CI
with vs without zones. Relative error to the SDCI values.
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TABLE 1. Ca’*—Atrazine model. Dimensions of the calculations with and without partition into zones as a function of integral exchange thresholds (a.u.).

Average thresholds are used between the two zones.

Thresholds Th (a.u.)

Zone 1
(Ca® - N) Cl size at 10.0 Angstroms Error on the dissociation
AN Zone 2 (remaining CPU/it CI size at 0.0 (% compared with energy compared to SDCI
N atrazine atoms) (s) Angstroms 0.0 Angstroms) (kcal mol™!)

0.0001 0.003 134 1297713 830 365 (64%) —-0.4

0.0001 0.001 423 2773 530 2097 227 (76%) L5

0.0003 797 4093 170 3391 558 (83%) 1.3

0.0001 2662 7573 990 5855 697 (17%) 0.5

the zones approach. Two new curves have been added, with a
two zones approach. In both cases, 7Th = 0.0001 a.u. for the
zone 1 but different thresholds have been used for the zone 2:
Th = 0.001 a.u. and Th = 0.003 a.u. In this test, average
thresholds are employed for terms that involve the two zones.
The error on the dissociation energy relative to SDCI, ob-
tained with zones, is about 1.5 kcal mol™! for the lowest
threshold (Th = 0.001 a.u.) on zone 2, while it is around
—0.4 kcal mol~! but more noisy for the largest one, for which
the maximal error is larger (1.1 kcal mol™") than the error on
the dissociation energy. Despite a global better behaviour for
the largest thresholds, the experience shows that it is prefer-
able to diminish the thresholds until the disappearance of the
noise. The involved errors are all quite small in the present
case.

Compared to the result without partition into zones
(Th = 0.0003 a.u.), for a result of similar quality (1.3
kcal mol™"), the CI matrix size and the central processing
unit (CPU) time per iteration are significantly lowered (see
Table I). One can observe that the percentage of determi-
nants at 10.0 Angstroms compared to the equilibrium distance
varies from 64% (calculation with a threshold 7/ = 0.003 a.u.
on zone 2) up to 83%. This point will be discussed later.

1. Interzone threshold

In a next step, a test of the different ways to treat the
determinants or the integrals that involve orbitals in dif-

ferent zones is investigated. The corresponding threshold
will be called hereafter “interzone threshold.” As mentioned
above, three choices are considered: maximal, average, or
minimal threshold. For example, if the following thresholds
Th = 0.0001 a.u. for zone 1 and Th = 0.003 a.u. for zone
2 are chosen, then, between these two zones, if maximal
interzone threshold is selected, the exchange integral that
connects two orbitals belonging to different zones must be
lower than the maximal threshold of the two zones, i.e.,
Th = 0.003 a.u. of zone 2. On the contrary, if minimal
is chosen, the threshold of zone 1 is relevant. Finally, for
average interzone threshold choice, the exchange integral
must be lower than the average value of the two thresh-
olds, i.e., 0.00155 a.u. Dimensions of the corresponding cal-
culations are shown in Table II and results are depicted in
Figure 3. The time per iteration is drastically reduced when
a threshold of 0.003 a.u. is used for zone 2 and interzone.
As one can see in Figure 3, all results are quite reasonable.
The deviation to the SDCI calculation ranges from —1.1 to
1.6 kcal mol~!.

2. Discontinuities and topological matrix

One can notice that discontinuities appear, particularly
important for the 0.003 a.u. threshold. This is due to the fact
that orbitals which are interacting at a certain distance can be
noninteracting when distance varies even for small distance

TABLE II. Ca*t-Atrazine model. Dimensions of the calculations as a function of the interzone threshold

options (a.u.).

Zone 1
(Ca** - N)
AN Zone 2 ClI size at 0.0
N (remaining atrazine atoms) Inter zone CPUY/it (s) Angstroms
0.0001 0.003 Max (0.003) 84 971 221
0.0001 0.003 Aver (0.00155) 134 1297713
0.0001 0.003 Min (0.0001) 843 3763 160
0.0001 0.001 Max (0.001) 283 2245776
0.0001 0.001 Aver (0.00055) 423 2773530
0.0001 0.001 Min (0.0001) 1222 4782 697
0.0003 797 4093 170
0.0001 2662 7573990




104102-6 Chang et al.

Relative error to the SDCI values

T T T T T T T T T T T T T

15— For all calculations with zones: Zone 1: Th=0.0001 a.u. —
v’—l\ e—e Zone 2: Th=0.001 a.u. (max)
=) [ *—% Zone 2: Th=0.001 a.u. (min)
.E 1= +—+ Zone 2: Th=0.001 a.u. (aver) _|
é o —e Zone 2: Th=0.003 a.u. (max)
w L # =% Zone 2: Th=0.003 a.u. (min)
ls) + =+ Zone 2: Th=0.003 a.u. (aver)
S o5 Th=0.0003 a.u. |
&} =—a Th=0.0001 a.u.
a L
7]
L
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= L
)
<
20sf
&
o) L
~

-1

0 1 2 3 4 5 6
Atrazine--Ca  elongation (Angstroms)

FIG. 3. Atrazine—Ca?* elongation (Angstroms). Interzone thresholds. Rela-
tive error to the SDCI values.

changes. That is, the number of interacting orbitals decided by
the exchange integral cut-off varies along the reaction path.

A solution can come from fixing these interactions at
a given distance and to transfer the corresponding topolog-
ical matrix to other geometries. The most judicious choice
is to transfer the topological matrix of the shortest distance,
which corresponds to the maximal number of interactions, to
the other geometries. The size of the CI matrix is then the
same all along the reaction path. This way of doing is also
employed in the following test applications presented in this
paper. As soon as reduction of the computational cost is ob-
tained through truncations based on cut off criteria, disconti-
nuity phenomena appear. The general solution is to transfer
the truncation of a particular point, in general, the point with
minimal truncation like it is done here, or, if no point plays
a particular role, to use the union of all determinant spaces
for all distances. The limitation of this kind of solution is
that the orbitals should be of the same nature for all points of
the PES.

The corresponding potential energy curves are presented
on Figure 4. The improvement is impressive. Only the case

J. Chem. Phys. 137, 104102 (2012)

Relative error to the SDCI values
Topological matrix

T T T T T T T T T T T T T

For all calculations with zones: Zone 1: Th=0.0001 a.u. —

o—e Zone 2: Th=0.001 a.u. (max)

*—% Zone 2: Th=0.001 a.u. (min)

+—+ Zone 2: Th=0.001 a.u. (aver)

o —e Zone 2: Th=0.003 a.u. (max)

# =% Zone 2: Th=0.003 a.u. (min)

+ =+ Zone 2: Th=0.003 a.u. (aver)
Th=0.0003 a.u.

=—= Th=0.0001 a.u.
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Relative deviation to SDCI values (kcal.mol-1)
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Atrazine--Ca  elongation (Angstroms)

FIG. 4. Atrazine—Ca®* elongation (Angstroms) with transfer of the topolog-
ical matrix. Relative error to the SDCI values.

with Th = 0.003 a.u. and maximal interzone threshold moves
away from the others, but even in this case, the error on the
interaction energy is only —0.4 kcal mol~!. The use of topo-
logical matrix not only makes smooth the potential energy
curve but also gives better complexation energy by reducing
the error at dissociation. In Table III, we compare the maxi-
mal error on the interaction energy with and without using the
topological matrix.

One can conclude that: (1) the use of average thresholds
for the interzone threshold part is relevant and already save
a lot of CPU time compared to a calculation without zones;
(2) for reaction pathways, the use of the same topological
matrix along the pathway is suitable and gives excellent re-
sults. Compared to the CISD interaction energy (121.07 kcal
mol~!) the error is lower than 1%.

B. Axial approach of a hydrogen molecule
to a nanotube fragment

The nanosystems have been a subject of great interest
during the last decade. In particular, the approach of small

TABLE III. Ca?t—Atrazine model. Topological matrix transferred. Maximal error on the potential energy curve
compared to standard SDCI as a function of exchange integral thresholds (a.u.) with and without zones.

Zone 1 Maximal error compared to
(Cazi--- N) Zone 2 (remaining Maximal error SDCI (topological matrix
o N atrazine atoms) Interzone compared to SDCI  of the equilibrium distance)
Th (a.u.) Th (a.u.) Th (a.u.) (kcal mol ™) (kcal mol ™)
0.0001 0.003 Max (0.003) —0.8 —0.4
0.0001 0.003 Aver (0.00155) —1.1 0.7
0.0001 0.003 Min (0.0001) —-0.9 0.5
0.0001 0.001 Max (0.001) 1.3 0.7
0.0001 0.001 Aver (0.00055) 1.6 0.8
0.0001 0.001 Min (0.0001) 0.7 0.4
0.0003 1.3
0.0001 0.5
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FIG. 5. Schematic view of the axial approach of a hydrogen molecule to a
(0,9) nanotube fragment.

molecules or atoms to a nanosurface or nanotube has been
largely studied.’>-3® These systems have extended sizes, and
it is therefore relevant to address them with the methods de-
veloped in this paper. No extensive study is done here since
the goal is to illustrate the application of the present methods
based in the CI techniques in this particular example of an
extended system.

The nanotube fragment selected for the test calculation is
shown in Figure 5. It contains 54 carbon atoms and the study
corresponds to the determination of the potential energy curve
as a function of the distance of a hydrogen molecule moving
along the cylindric symmetry axis. The carbon nanotube frag-
ment belongs to a zigzag (0,9) nanotube and has been thor-
oughly selected so that both the diameter and length allow
for a significant and representative enough interaction with
the axially approaching H, molecule. The edge C valences
had been saturated with dangling single C—H bonds. In all
calculations, the core 1s orbitals are frozen at the CI level.
The basis sets used are atomic natural orbitals (ANOS),?
double zeta for all orbitals of the nanotube and double zeta
plus polarisation for H,. In the following, for sake of sim-
plicity, the ANO corresponding to the 2s and 2p orbital of
the carbon atoms will be called “valence” orbitals, and the
second ANOs of the double zeta basis set, 3s and 3p, “dif-
fuse” orbitals. The symmetry group used in the calculation is
C;, with the H, molecule contained in the symmetry plane.
The origin of distances is placed at the centre of the nanotube
fragment. Geometries are not relaxed during the approach
process.

1. Localisation scheme

This system is rather large, and the goal of this test is
to establish some rules that would make possible the study
of even larger systems. H, mainly interacts with the 7 cloud
of the nanotube. Then, one can decide to separate the o and
7 parts and to treat them in different zones. Since these two
sets of orbitals do not belong to different symmetries and
are not defined by an axis direction as in planar systems,
it is not straightforward to distinguish between them. This
condition will be obtained by first localising the o part and
then building local & orbitals that are forced to be locally or-
thogonal to the tangential plane. The “diffuse” functions (3s
and 3p) are atomic orbitals; therefore they are already well-
localised. As only the 7 system must be treated accurately,
the number of orbitals predominantly involved in the dynami-
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FIG. 6. H, approach to a nanotube fragment: o and ¢~ localized orbitals.

cal correlation calculation remains small, even for larger nan-
otube fragments. As a consequence, the computational cost
should not grow fast with the size of the nanotube. Further-
more, if localised 7 orbitals are used, the scaling should be
linear.

The localisation of the orbitals is straightforward for H,
for the ls core of carbon atoms and for the C-C ¢ and o*
orbitals. By way of example, a oc_¢ and a oc_c* orbitals
are represented on Figure 6. Both orbitals appear as well-
localised.

The localisation of the & part is less straightforward. One
could be tempted to use a Kékulé description (Fig. 7(a)).
There are several possibilities, but none respects the sym-
metry of the problem. A solution is to centre each m lo-
cal orbital on a carbon atom. Each Cg ring can bear 3 oc-
cupied orbitals centred on 3 nonadjacent carbon atoms (see
Fig. 7(b)). This is a quite unusual and surprising proposi-
tion, since the carbon atoms seem to be nonequivalent, and
the charges over them to be alternatively 0 and 2. One must
notice, however, that this is only the guess definition. After

FIG. 7. Surface of the nanotube. Kékulé 7 orbitals, and atom centered 7 and
7" orbitals as they are used in the localisation procedure.
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(@ (b)

FIG. 8. H, approach to a nanotube fragment: 7 and 7" localized orbitals.

projecting these orbitals on the correct SCF solution and after
orthonormalising them, orthogonalisation tails will appear on
neighbour atoms, as shown in Fig. 7(c), in such a way that the
electronic charge will be equivalent on all carbon atoms, as
expected.

In the same way, the corresponding 7" empty orbitals
(we can call them antibonding, because they play this role and
show nodal planes along skeletal sigma bonds) are positioned
on the unoccupied carbons of the ring, showing also tails on
the neighbours, but with opposite phase (see Fig. 7(d)). The
shape of these 7 and 7" orbitals as they appear in the cal-
culation are plotted on Figs. 8(a) and 8(b). These calculated
orbitals are not very different from those of the correspond-
ing model on Figure 7. They satisfy the two conditions of
separating the ¢ and 7 systems and having a limited spatial
extension.

2. Zones

The problem is now to find a procedure to treat the o
and m parts at different levels of precision. A first possibility
is to freeze the whole o core. In a more sophisticated treat-
ment, the o and 7 systems should be allowed to interact. This
means that, if one considers a local 7 — 7" excitation, which
corresponds to a charge fluctuation, the underlying o skeleton
must have the capacity to respond to it through repolarisation
effects. In this test study, three different zones have been con-
sidered:

e Zone 1: m, m* orbitals of the nanotube and all H,
orbitals.

e Zone 2: “diffuse” 3s and 3p atomic orbitals on carbon
atoms of the nanotube.

e 7one 3: occ, 0cH, 0 *cc, and o *cy orbitals.

For the (;r, Hy) zone 1, thresholds are set to low values
(Th; =0.002 a.u.; Thy = 0.001 a.u.) and never changed. Con-
cerning the two other zones, various thresholds are used in
order to analyse the relative role of the o skeleton and of the
diffuse functions on the interaction energy of the H, molecule
with the nanotube during its approach and also to find the
higher thresholds allowed without precision loss.

To avoid an additional parameter, the thresholds on
the bielectronic integrals are unchanged for all calculations:
Th; = 0.0001 a.u. for zone 1, Th; = 0.0003 a.u. for zone 2,

J. Chem. Phys. 137, 104102 (2012)

Approach of hydrogen molecule to a nanotube
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FIG. 9. H; approach to a nanotube fragment. Taking account of the o skele-
ton through variation of thresholds. Since the total energies obtained are dif-
ferent in the various cases, all energies are set to zero at 15 Angstroms, in
order to see the deviation from the reference curve.

Th; = 0.001 a.u. for zone 3. For the reference calculation, the
lowest integrals threshold is used (7h; = 0.0001 a.u.).

The average threshold choice, as defined above, has been
used to rule the interactions when orbitals of two zones are in-
volved. To avoid discontinuities, the topological matrices that
give the lists of determinants and of integrals at the distance
corresponding to the central position have been kept along the
pathway reaction.

3. Results

In the reference calculation, all orbitals are considered
as belonging to the same zone, with a low thresholds set
(Th; = 0.002 a.u.; Thy, = 0.001 a.u.), which gives a reference
potential curve (black-bold on Figures 9 and 10). The dimen-
sion of the SDCI spaces and their relative CPU times in the
calculations using different threshold sets are given in Table
IV. The reduction of the calculation cost is important, even
for the lowest thresholds for which the potential curve almost
overlaps with the reference one.

a. Role of o skeleton. In the following calculations, the
role of the bonding and antibonding oy and the oc ¢ or-
bitals is analysed by assigning them to zone 3 and performing
various tests: (1) these orbitals are frozen (equivalent to Th;
= Th, = oo in zone 3, with maximal interzone thresholds).
This corresponds to the less time consuming calculation; (2)
keeping the thresholds on the two other zones unchanged,
the thresholds are lowered for the o zone (i.e., zone 3) from
Th; = 0.1 au/Th; = 0.03 a.u. until 7h; = 0.01 a.u./Th;
= 0.003 a.u. (Figure 9). The first case, with the o skeleton
frozen, gives the worst result. The deviation is rather small
(0.9 kcal mol™") but represents 30% of the total interaction en-
ergy taken as the difference between placing the H, molecule
far from the nanotube and placing it at the center of the
fragment.



104102-9 Chang et al. J. Chem. Phys. 137, 104102 (2012)
Approach of hydrogen molecule to a nanotube TABLE V. H2 approach to a nanotube. Position of the extrema (A) as a
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FIG. 10. H; approach to a nanotube fragment. Taking account of the “dif-
fuse” functions through variation of thresholds.

All potential energy curves present two minima (0.99 A
and 3.80 A) and two maxima (at 0.0 A and 2.75 A). When
the H, molecule is approaching the edge of the nanotube, the
potential energy curve presents a minimum (3.80 A). It cor-
responds to the position where the first hydrogen atom of the
H, molecule reaches the dangling hydrogens ring of the nan-
otube. This minimum is not mainly due to dispersive effects
since it exists also for the frozen o zone. However, only the
lowest thresholds (0.01/0.003 a.u.) give a correct interaction
energy and a correct position of the minimum compared to the
reference. The second extremum encountered is then a max-
imum, at 2.75 10\, when H, reaches the ring of C—H bonds.
The position of this maximum is found, as previously, with
an error of 0.15 A for all the higher thresholds and only the
lowest ones give correct result (Table V). The same observa-
tion can be done for the interaction energy (Table VI). When

TABLE IV. H; approach to a nanotube. Dimensions of the calculations as
a function of Th; / Thy / Th; (a.u.) thresholds. For zone 1 (r, Hy), the same
thresholds were used for all calculations: Th; = 0.002 a.u., Th, = 0.001 a.u.,
and Th; = 0.0001 a.u.

Thresholds on zone 2~ Thresholds on zone 3 CPU/it
(a.u.) (diffuse) (a.u.) (o squeleton) (s) CI size
o squeleton (Figure 9)
0.002/0.001/0.0003 Frozen 210 1 065 969
0.002/0.001/0.0003 0.1/0.03/0.001 211 1 066 368
0.002/0.001/0.0003 0.03/0.01/0.001 389 1715232
0.002/0.001/0.0003 0.02/0.006/0.001 419 1937 824
0.002/0.001/0.0003 0.01/0.003/0.001 733 3138 426
Diffuse (Figure 10)
0.006/0.003/0.0003 0.01/0.003/0.001 453 2214 659
0.003/0.002/0.0003 0.01/0.003/0.001 598 2756 337
0.002/0.001/0.0003 0.01/0.003/0.001 733 3138 426
Reference

0.002/0.001/0.0001 22438 5767 286

Non selected SDCI
X 2 696 779 081

Minl  0.99 0.99 0.99 0.99 0.99 0.99
Min2 4.19 3.99 3.99 3.99 3.80 3.80
Max 2.60 2.60 2.60 2.60 2.79 2.75

the H, molecule is near the centre of the nanotube (0.0 A and
0.99 A), all thresholds give the correct distance for the ex-
trema (Table V). The interaction energy is not so satisfactory
(Table VI): the error is larger than 10% except for the lowest
threshold (Th; = 0.01 a.u., Th, = 0.003 a.u.) for which it is
only 1%.

One can conclude that the o skeleton cannot be ne-
glected, and the more convenient thresholds of zone 3 are
around Th; = 0.01 a.u., Th, = 0.003 a.u. Note that (i) these
values are larger than expected; (ii) these are much higher val-
ues that those selected for zones 1 and 2. Using these values,
one takes into account rather long range interactions between
7 and diffuse orbitals, and only very short range interactions
in the o system. For the interaction between the two sets (7
and diffuse with o), average thresholds are used, so that this
interaction is treated at a higher level than the o—o interac-
tions.

b. Zone 2, role of “diffuse” orbitals. In a further step
the thresholds of zone 2, containing the “diffuse” 3s and
3p atomic orbitals of the carbon atoms, are modified, while
the thresholds of the two other zones remain unchanged
(Th; = 0.002 a.u. and Th, = 0.001 a.u. for zone 1 and Th;
= 0.01 a.u. and Th, = 0.003 a.u. for zone 3). The results
are depicted in Figure 10. Only the highest thresholds (7h;
= 0.006 a.u. and Th, = 0.003 a.u.) give a non-negligible er-
ror on the interaction energy. In all cases, the positions of the
extrema are correct according to the reference calculation.

In conclusion, we can separate m, diffuse and finally o
orbitals into three zones treating them at decreasing levels of
precision and to reach a precision that can be compared to
the reference calculation. This allows one to find the correct

TABLE VI. H; approach to a nanotube. Interaction energy at the extrema
(kcal mol™)) as a function of the thresholds of the zone 3 (o skeleton).

Thy/Th; (a.u.)

Frozen 0.1/0.03 0.03/0.01 0.02/0.006 0.01/0.003 Reference

Minlat =230 —2.60 —2.76 —2.86 —3.14 —3.17
0.99 A
Min2at  —198 —215 —2.23 —2.30 —2.44 —248
3.80 A
0.0A —2.11 —241 =260 —2.71 —296  —2.995
Max at —146 —-183 —1.93 —2.03 —2.26 —231

275A
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position and depth of the wells, as well as the barriers. For
zone 1, the thresholds used are Th; = 0.002 a.u., Th, = 0.001
a.u. The adequate highest thresholds finally found for each the
other zones are: (i) zone 2: Th; = 0.003 a.u., Th, = 0.002 and
(>ii) zone 3: Th; = 0.01 a.u., Th, = 0.003. With these values,
the dimension of the CI matrix is reduced by half while the
CPU time is only 26% of the reference calculation. One can
notice that the dimension of the reference calculation is only
0.2% of the nonselected SDCI one (more than 2 x 10° of
determinants).

C. Cu;04 cubane magnetic system

The third test concerns a tetranuclear Cu(Il) complex
with an open cubane-like CusO4 core structure, with four
short and two long Cu—Cu distances, synthesized by Shi Tan
et al.** The system of formula [Cuy(hpda),;][C10,4] H,O with
hpda = N-(2-hydroxyethyl)-1,3-propane-diamine (Figure 11)
has been characterized as having a magnetic ground state. The
magnetic coupling constants of this compound has been re-
cently evaluated by some of us by means of the EXSCI ap-
proach and its susceptibility vs temperature curve simulated
with the parameters resulting from these calculations.*! While
all previous EXSCI calculations have been done by imposing
the same thresholds to the entire molecule; here we are going
to explore the impact of the zones approach on the amplitude
of the extracted magnetic terms. All the details regarding the
procedure employed to extract these parameters as well as the

FIG. 11. [Cus(hpda)4][Cl04] H20O with hpda = N-(2-hydroxyethyl)-1,3-
propane-diamine molecule. Pink, red, blue, gray, and white balls represent
Cu, O, N, C, and H atoms, respectively.

J. Chem. Phys. 137, 104102 (2012)
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discussion and analysis of the so-obtained results are provided
in Ref. 41. Only a brief recall of the main features of the sys-
tem and the procedure is given below.

Each Cu(ll) atom in the complex presents a slightly
distorted square-planar coordination with the two nearest
O and N atoms and it bears one unpaired electron on the
3dx*-y* orbital, in agreement with the square-planar ligand
field. Due to the co-ordination imposed by the hpda ligand,
the 3dx?-y*> orbitals on two close Cu atoms (short Cu—Cu
distances) are practically orthogonal, while for two distant
Cu atoms (long Cu—Cu distances) the 3dx?>-y? orbitals are
placed on parallel planes, but shifted along the x (or y) axis
(Scheme 1).

The magnetic susceptibility x vs T curve has been
fitted by Shi Tan et al.*’ to a Heisenberg model of the form
H=-%J; §; S, with only two coupling constants J = 89.8
cm™! J=Jip =Jy3 =J3g = Jig) and J; = -32.6 cm™!
(Jg = Joa = J13) (see Scheme 1). While the leading ferromag-
netic J interaction is consistent with the relative orientation of
the Cu 3dx?-y? orbitals in two bridged Cu atoms (Scheme 1),
the proposed large antiferromagnetic nature of the coupling
between unbridged Cu atoms J,; is inconsistent with the ge-
ometry of the system, as in fact, it has been shown by our
calculations.

The extraction of the set of parameters, both at experi-
mental and theoretical level, starts by defining a spin model,
i.e., by deciding the interactions playing a role in the mag-
netic behaviour of the system. In complete generality, three
different types of magnetic interactions can be distinguished
in the cubane: the nearest and next-nearest neighbours J and
Jg interactions, which are two-body terms, and the four-body
terms, J,, which produce the simultaneous permutation of the
four spin on the cubane. Taking into account the C, symme-
try of the system, some simplifications can be done. In fact,
there are only two different first-neighbour interactions J; (J;
= Jip = J3) and J, (J, = Jo3 = J14) and two next-nearest
neighbour interactions J;; (J;1 = Ji3) and Jg (Jpo = Jn).
There are three different four-body terms, J.;, J,2, and J,3
(see Ref. 41), all of them are expected to be small, but they
can be evaluated without any additional cost. The extraction
of this set of parameters, without any a priori approxima-
tion, is a laborious task, which requires the evaluation of the
six low-lying magnetic states of the system (the quintet state
(Q), three triplet states (T, T, T3) and two singlet states (S,
S»)), and their mapping onto the eigenvalues of the model spin
Hamiltonian:
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|abed]| labed| labed| |abed| labed| |abed]|
J1+ 2 —J /2 -2+ A =2+ A -J12+B -J1/2+ B
J1+ )2 -2+ A -2 + A -J12+B -J12+B
J2 + (a1 + Ja2)2 —Jr2l2 —Ja2l2 4+ C -Ja112 4+ C
Jo + (g1 +Ja)2 —Jq1/2 +C —Jnl2 +C

J1+ a1 +Ja2)2 —J,3/2

Ji+ (a1 + Ja2)l2

where {a,b,c,d} are the four magnetic Cu 3dx2—y2 or-
bitals and the Sz = O determinants {|abcd|, |abécd|,
labéd|, |abcd|, |abeéd|, |abed|} constitute the model space.
This mapping fixes the amplitudes of the integrals appear-
ing in the model spin Hamiltonian and allows one to verify
whether non-negligible additional interactions are present.

The energy of the magnetic states has been evaluated by
means of DDCI calculations, using the EXSCI methodologys;
otherwise the diagonalization of the full DDCI space is com-
pletely unfeasible, since it contains more than 870 x 10° of
determinants. The active space is composed of 4 electrons
in the 4 magnetic orbitals. It is used to obtain the localized
CASSCEF orbitals and also for the MR-DDCI calculations.
Several tests have been performed to analyze the impact of
the EXSCI selection criteria on the values of the magnetic
terms, the results being collected in Table VII. Tests A and B
apply the same thresholds on the whole molecule, while the
rest distinguish different regions as explained in Sec. II B.

Table VII shows the different selection thresholds (T#;,
Thy, and Th;), the CPU time (in minutes) per root and iteration
of the Davidson diagonalization, the number of determinants
included in the CI matrix and the resulting two-body magnetic
coupling terms. Regarding the four-body terms, they are null
as expected for all the tests considered.

For test A we have dealt with around 100 x 10° of de-
terminants once that the excitations that do not match the

selection criteria (Th; = 1073 a.u., Th, = 10~* a.u., and Th;
= 107* a.u.) have been eliminated of the DDCI space. The
first-neighbour interactions J; and J, are both ferromagnetic
with close values of 24 cm~! and 29 cm™!, respectively,
which agree with the relative Cu—Cu distance (larger for J,
than J,). The second-neighbour J;; and J4;, interactions are
also ferromagnetic although with a negligible absolute value.

Increasing the number of determinants in the CI space by
diminishing the Th; and Th; thresholds as in test B practi-
cally does not affect the amplitude of any of these terms. As
discussed in Ref. 36, the absolute values of these terms are
slightly enhanced when size-consistency errors are corrected,
but this is a point that we are not going to address here.

Now it is possible to use the zone-based selection to (i)
reduce the computational cost (tests C, D, and E) or (ii) im-
prove the description of the active zone diminishing the Th;
threshold (tests F, G, and H).

For tests C, D, and E a reduction of the CPU time is ob-
tained by using the threshold values of test A only for the
active zone, and increasing the threshold values for the rest
of the molecule. This produces a significant reduction of the
number of determinants involved in the CI space, and con-
sequently of the computational cost. The amplitudes of the
magnetic terms are not sensitive to this topological selection
and then values similar to those resulting from test A are ob-
tained for all the parameters.

TABLE VII. Magnetic coupling terms (in cm ™) for the Cu;O4 cubane obtained from EXSCI calculations with different thresholds, CPU time in minutes per
iteration and root, and number of determinants in the CI space. In parenthesis, the corresponding percentage of the DDCI space included in the calculations is

shown. The full DDCI space contains 8743 x 10° determinants.

Test Zones Thl Th2 Thi N° det CPU I Iy Jai Jan

A 1 All 1073 10~* 1074 99.9 x 10° (11%) 417 23.7 29.1 0.6 0.6

B 1 All 5x 1074 0 1073 204.1 x 10° (23%) 536 25.1 31.6 0.2 0.6

C 1 Cu, O 1073 10~* 1074 54.7 x 10° (6%) 142 26.0 314 0.8 0.7
2 Rest 1072 103 1073

D 1 Cu,O,N 1073 10~ 10~4 95.6 x 10° (10%) 423 25.0 29.9 0.7 0.6
2 Rest 1072 1073 1073

E 1 Cu,0 103 10~* 1074 53.6 x 10° (6.1%) 117 25.9 31.5 0.8 0.7
2 N 1072 1074 1073
3 Rest 107! 1073 1072

F 1 Cu,0 10~ 10~* 10~4 262.9 x 10° (30%) 1705 24.9 30.9 0.6 0.9
2 Rest 1073 1073 1073

G 1 Cu,0 1074 1074 1074 230.1 x 10° (26.3%) 1249 25.3 31.6 0.6 1.0
2 C1-C4,N2,N4 103 103 1073
3 Rest 1072 1072 1072

H 1 Cu,0 10~ 104 1074 173.7 x 10° (19.9%) 747 26.5 33.6 0.8 1.1
2 Rest 1072 1072 1072
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Comparing C and D we see that including the nitrogen
atoms on zone 1 does not change the amplitude of the terms,
but increases substantially the computational times.

Tests F, G, and H represent an improvement of the de-
scription of the active zone with respect to test A, as far as
a smaller threshold Th; value has been employed. This pro-
duces a dramatic increase of the size of the CI space and the
CPU time (test F is particularly expensive), but practically any
noticeable change on the parameters.

Since it is not possible to perform the calculation of the
complete DDCI space, we can consider as effective magnetic
parameters for this system those resulting for the largest avail-
able CI space (test F):

Jy =249 cm™!,

sz =09 cm_l ,

B =309cm™, J,;=06cm',
Jr1=Jr2=Jr3 =0.0 cm_',

which are in pretty good agreement with the less expensive
set of parameters (test E).

IV. CONCLUSION

The new version of the quasi-N-scaling CI code based on
the use of localised orbitals has been extended to the possibil-
ity of treating various regions of a molecule at different levels
of precision. This improvement permits to address larger sys-
tems at the MRCI level. The method has been explored in a
set of three different test studies.

The separation of the set of local orbitals into different
zones can be made according to different criteria. A first crite-
rion, the most intuitive one, is to divide the system in different
geographical regions, considering, for example, that the active
part of the molecule on one hand, and the ligands on the other
hand play unequal roles. But it is also possible to distinguish
orbitals in the same region of space with dissimilar impor-
tance, such as o or 7 in one of the examples presented in the
paper.

The test calculations presented above show that this ap-
proach reduces the computational cost for a comparable pre-
cision of the results, and then it is aimed to problems that
could not be treated without the introduction of these approx-
imations, at this level of calculation. Beyond this conclusion,
another aspect — less tackled in this work — is to take ben-
efit from the possibility to deal with various partitions as an
analysis tool. For example, freezing the sigma core in the nan-
otube fragment and treating it at different levels of accuracy
in a second step gives an idea of the importance of its par-
ticular role in the interaction studied in Sec. III. The possi-
bility to divide a system into zones not only allows one to
treat larger systems, it may be used as a theoretical analysis
tool.
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