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The use of multireference perturbation theory (MRPT) for the calculation of the magnetic coupling
in binuclear complexes has shown to give poor results if applied on a minimal active space complete
active space self-consistent field (CASSCF) wavefunction. In this work, we identify the origin of
this problem in the starting CASSCF orbitals, which are exceedingly localized on the metal atoms.
Focusing on the case of antiferromagnetic systems, it is shown that the form of the active orbitals
has a dramatic effect on the relative description of the neutral and ionic structures. Finally, a simple
and computational inexpensive strategy is proposed for the calculation of a set of magnetic orbitals
describing in a more balanced way the neutral and ionic structures. The use of these orbitals, in-
stead the CASSCF ones, in minimal active space MRPT2 calculations leads to a marked improve-
ment of the J values, which become in reasonable agreement with those obtained with the expensive
high level difference dedicated configuration interaction approach and with the experimental values.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4735018]

I. INTRODUCTION

Many efforts have been dedicated to improve the ac-
curacy of the theoretical evaluation of the magnetic cou-
pling constant (J) for magnetic systems, as a way of con-
trolling and understanding the main mechanisms governing
the interaction between the spin moments. Different appli-
cations have shown that the difference dedicated configu-
ration interaction1–3 (DDCI) method, applied on the mini-
mal complete active space configuration interaction (CASCI)
wavefunctions (all magnetic orbitals and electrons are active),
gives, in general, J values in good agreement with the ex-
perimental finding for binuclear complexes.4 In these stud-
ies, it has been found that different starting molecular orbitals
(MO), that is, state specific, triplet or singlet complete active
space self consistent field (CASSCF) MOs or iterated natu-
ral MOs, give in many cases almost identical DDCI J values
for antiferromagnetically coupled centers. However, for some
antiferromagnetic systems, a more strong dependence on the
orbitals of the DDCI J values has been observed, and the sit-
uation for ferromagnetic systems is even more complex, with
a marked influence of the starting MOs on J. A strong point
of the DDCI approach is that, being a wavefunction based
method, it allows for a deep analysis of the physical contri-
bution to J of the different excitation classes,5–7 that is, of the
different excitation processes (ligand to metal charge trans-
fer, LMCT, metal to ligand charge transfer, MLCT, etc.). For
these reasons, the DDCI studies are considered as references
in this field.

Nevertheless, DDCI is computationally rather expensive,
in particular, for systems with large ligands, many magnetic
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anc@unife.it.

centers, and/or many unpaired electrons per magnetic cen-
ter. Several promising strategies have been recently devel-
oped with the goal to make dealing with these large sys-
tems possible, such as the excitation selected configuration
interaction8 (EXSCI) method, but they still present quite
large computational costs. In this context, a less expensive
and yet reliable computational strategy is highly desirable.
To this aim, multireference perturbation theory (MRPT) ap-
plied to second order for the energy appears as a natural
candidate.

Many studies concerning the calculation of J with
MRPT2 have been published in the past, using different com-
putational strategies. Obviously, each approach shows strong
points and weaknesses, but some common considerations can
be reported:

� Particular care must be used in choosing the MRPT2,
with a particular attention to the definition of Ĥ(0) and
to the possible appearance of the intruder state prob-
lem.

� In the CASPT2 (Ref. 9) (one of the most used ver-
sion of MRPT2) studies, state-specific CASSCF or-
bitals are often used. The use of a common set of or-
bitals for all states (differing by the spin coupling of
the magnetic electrons) gives similar results (with a
slight improvement of the quality).

� In general, the MRPT2 approach only takes into ac-
count a fraction (40%–70%, or even less) of the ef-
fect of single and double excitations on the minimal
CAS (two electrons in two MOs for binuclear Cu com-
plexes).

� The use of larger active spaces (including ligand or-
bitals and a second set of magnetic orbitals) largely
improves the MRPT2 results.
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From these considerations, one can conclude that the use
of active spaces larger than the minimal space is the correct
computational strategy for the calculation of J at the MRPT2
level. This is actually the standard approach considered in
most of the CASPT2 studies (see Ref. 10) and has received its
theoretical justification in the request to improve, with respect
to the minimal active space case, the amount of electron cor-
relation treated at the zero order. Nevertheless, this approach
is visibly in contrast with the final aim, that is, the identifica-
tion of an effective method applicable to systems with many
magnetic centers or many magnetic electrons. Indeed, in such
systems an enlargement of the minimal active space makes
the CASSCF step impracticable, thus preventing the applica-
tion of the subsequent MRPT2 approach. For these reasons,
in the past years, we have tried to understand why MRPT2 on
the minimal CAS considers only a fraction of the full effect
of single and double excitations. Our focus has been in par-
ticular on the n-electron valence state perturbation theory11–14

(NEVPT2) approach. In the following, we first report some
attempts to investigate this problem for the case of antifer-
romagnetic systems, then we propose an explanation of its
origin, and, finally, a possible computational strategy to over-
come it is described and applied to a set of test binuclear Cu
complexes.

II. THE MAGNETIC COUPLING IN BINUCLEAR
SYSTEMS: BASIC CONCEPTS

In the valence bond, VB, language (in its formulation
based on orthogonal atomic orbitals, OAOs, see (Refs. 15 and
16)), the building blocks of the singlet and triplet wavefunc-
tions for a simple symmetric binuclear complex are (disre-
garding the core part) as follows:

�S
N = ‖ab̄‖ + ‖bā‖√

2
, �T

N = ‖ab̄‖ − ‖bā‖√
2

,

�S
I = ‖aā‖ + ‖bb̄‖√

2
, (1)

where a and b are the two magnetic OAOs, centered on site
A and B, respectively. The first two functions are the singlet
(S) and triplet (T) combinations of the two possible electronic
structures where a and b are both singly occupied with one α

and one β electrons (each atom bears one magnetic electron,
neutral distributions, N) and the last function is the plus com-
bination of the two structures where a and b are either doubly
occupied, or empty (ionic distributions, I). The localized a
and b OAOs can be obtained by the in-phase and out-of-phase
combination of the delocalized g and u CASSCF MOs.

The analysis of the factors governing the amplitude of
the magnetic coupling constant is often performed by intro-
ducing interpretative models based on effective parameters
(for a short review see for instance (Refs. 5–7)). The sim-
plest model, based on the Anderson mechanism,17, 18 intro-
duces three parameters: the direct exchange between the two
a and b (local) magnetic orbitals, Kab, the hopping integral
between the two magnetic centers, tab, and the relative energy
of the ionic forms with respect to the neutral ones, U. These
parameters define J through the equation (based on a pertur-

bation approach):

J = 2Kab − 4t2
ab

U
= JF + JAF, (2)

where JF is the ferromagnetic part of J (direct exchange, 2Kab)
and JAF is the antiferromagnetic part (delocalization effects or
kinetic exchange, −4tab

2/U). The Kab, tab, and U parameters
are easily accessible for a CASCI wavefunction.6

The �S
N , �T

N , and �S
I functions are used to build the

simplest approximations to the singlet (�S) and triplet (�T)
wavefunctions of the binuclear complex:

�S = CS
N�S

N + CS
I �S

I ,
∣
∣CS

N

∣
∣ � ∣

∣CS
I

∣
∣ , (3)

�T = �T
N. (4)

For the singlet wavefunction, (Eq. (3)), the weight of the neu-
tral structure (|CS

N |2) is much larger than the weight of the
ionic one (|CS

I |2). Here, it is worth noticing that the diago-
nalization of the Hamiltonian in the simple basis of the three
VB structures gives a second singlet state (an excited state)
sharing with the magnetic singlet the spatial symmetry,

�S
exc = λ�S

N + μ�S
I , (5)

where λ and μ are related to the coefficients of Eq. (3)
(λ = CS

I and μ = −CS
N ). Therefore, in this state, the weight

of the ionic structure is largely predominant. This state is re-
ferred to in the following as the “second singlet” or the “ionic
singlet.”

In a MRPT scheme, the coefficients CS
N and CS

I are de-
fined at the CASCI level and they are not modified by the per-
turbation approach (up to the fourth order). A method with
this characteristic is called “contracted.”19 However, in the
DDCI wavefunction, the CS

I /CS
N ratio is largely revised due

to the interaction of the ionic forms with the single and double
excitations included in the CI matrix. This interaction stabi-
lizes the ionic form, and reduces the U value. Typical values
for U at the CASCI level are 20–30 eV, while effective DDCI
values are in the range of 5–8 eV. Since the triplet does not
contain ionic forms, the stabilization of the ionic forms has
a differential effect on the singlet state, in such a way that
it gives an important contribution to JAF. This mechanism,
however, does not hold in ferromagnetic systems. In these
systems, the ionic forms have a negligible weight in the sin-
glet state wavefunction even at the DDCI level (Refs. 7 and
10d), although the excitations contained on the DDCI wave-
functions have a significant impact on the J value. Therefore,
the physical factors governing the coupling in the ferromag-
netic systems are not intimately connected to the relative en-
ergy of the ionic forms, but rather to different mechanisms,
such as, for instance, the spin polarization through the bridg-
ing ligands. For these reasons, this work deals only with AF
compounds, the study of ferromagnetic ones being currently
under exploration. Focusing on the AF systems, it is clear that
the contracted nature of the MRPT2 approach prevents the re-
vision of the CS

I /CS
N ratio, and this is a serious problem in the

evaluation of J.
In order to try to get over this problem, a convenient de-

contraction procedure for this kind of problems has been pro-
posed in 2006.19 It is worth noticing that other decontraction

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  150.214.230.47 On: Thu, 27 Oct 2016

09:17:40



034104-3 C. Angeli and C. J. Calzado J. Chem. Phys. 137, 034104 (2012)

approaches, such as, for instance, quasi degenerate perturba-
tion theory, cannot be applied to magnetic systems, given that
the ionic singlet state (that involved in the decontraction) is
very high in energy and embedded in a set of other states of
the system (MLCT, LMCT, etc.).19 This fact gives rise to the
appearance of quasi degeneracy and therefore of possible di-
vergences in MRPT approaches. The application of the new
decontraction procedure has shown a marked increase of the
|CS

I /CS
N | ratio with respect to the CASCI value (and therefore

an increase of the AF character). The agreement with the ex-
perimental (or DDCI) J value was improved, but it remained
unsatisfactory.

In 2009, a sharp analysis of the effect of the different
excitation classes on the variational and perturbation evalu-
ation of J in binuclear Cu(II) systems has been published.7 In
this study it has been shown that the contributions of different
types of excitations are not additive and they cannot therefore
be taken into account in a MRPT2 scheme. LMCT excitations
in particular play a key role: “. . . they contribute at higher or-
der as a correlation induced increase of LMCT components of
the wavefunction, i.e., of the mixing between the ligand and
the magnetic orbitals.” In the conclusion section of Ref. 7, one
reads “. . . the correlation-induced delocalization of the mag-
netic orbitals . . . results in an increase of the absolute value
of J . . . and it becomes evident looking at the natural mag-
netic orbitals obtained at the DDCI level. This phenomenon is
not limited to 1/2 spin systems, but it concerns as well higher
spin metallic ions.” These considerations have prompted us
to thoroughly consider the role of the magnetic orbitals in the
calculation of J in MRPT2 approaches.

III. DESCRIPTION OF THE SYSTEMS
AND COMPUTATIONAL DETAILS

Several binuclear Cu(II) systems have been considered.
The analysis reported in Secs. IV–VI is based on a first set
of systems (1–4, Fig. 1), while a second set (systems 5–10,
Fig. 1) is considered to further test the strategy proposed
in Sec. VII. In all cases, geometries from x-ray crystal
data have been used in the calculations. Systems 1 and 2
are binuclear fragments of two cuprates, La2CuO4 (1) and
Sr2CuO2Cl2 (2), both of them presenting a remarkable anti-
ferromagnetic coupling (−1030, −1096 cm−1 for La2CuO4

(Refs. 20–23) and −1008 cm−1 for Sr2CuO2Cl2 (Ref. 24)).
In both cases, the calculations have been performed on
a Cu2O7 fragment, which coordinates are extracted from
the corresponding x-ray crystal structure (Refs. 25 and
26 for La2CuO4 and Sr2CuO2Cl2, respectively). These
Cu2O7 clusters are embedded in a set of point charges
and total ion potentials simulating the Pauli repulsion and
Madelung potential of the infinite crystal, respectively.
The embedding is described in details in previous works
(Ref. 27 for La2CuO4, and Ref. 28 for Sr2CuO2Cl2).
In system 3 (named [Cu2(OH)2]), the Cu(II) centers are
bridged by two hydroxo groups, [(tmen)Cu(OH)2Cu(tmen)],
with tmen=N,N,N′,N′-tetramethylethylenediamine.29, 30

The Cu(II) centers present an antiferromagnetic coupling,
with J = −509 cm−1. System 4 corresponds to an oxalate
bridged binuclear Cu(II) compound [LCu-(C2O4)-CuL]

21

43

65

87

19 0

FIG. 1. Structures of the systems under consideration. Color coding for the
atoms: copper, green; carbon, light blue; oxygen, red; nitrogen, yellow; chlo-
rine, dark blue; hydrogen, white.

with L=1,1,4,7,7-pentaethyldiethylene-triamine, also
antiferromagnetic,31 with J = −75 cm−1. In this structure,
the external ligands have been modeled with NH3 groups,
with the coordinated N at the experimental position. The
resulting model is named [Cu2(C2O4)], hereafter. In system
5, with formula [LCu-(NNN)2-CuL], where L=N,N′,N′′-
trimethyl-1,4,7-triazacyclononane, the bridging ligands
correspond to two end-to-end azido groups and it is indicated
with [Cu-(N3)2-Cu] in the following. This coordination
produces a large stabilization of the singlet state (J < −800
cm−1).32 Systems 6–8 are also oxalate bridged complexes,
with formula [tmen(H2O)Cu(C2O4)Cu(H2O)tmen](ClO4)2,
[tmen(2-MeIm)Cu(C2O4)Cu(2-MeIm)tmen](PF6)2, and
[(bipy)(NO3)(H2O)Cu(C2O4)Cu(H2O)(NO3)(bipy)], respec-
tively, with 2-MeIm=2-methylimidazole and bipy=2,2′-
bipyridine (these three systems are indicated hereafter with
[Cu-(ox)-Cu]). They present AF couplings with J values
of −385.4 cm−1 (Ref. 33), −13.8 cm−1 (Ref. 33), and
−382 cm−1 (Ref. 34). In system 8, neither the NO3 groups,
nor the H2O are included in the calculations. In system 9
([Cu-(oxpn)-Cu] hereafter), the two Cu ions are bridged by an
oxamido bridge, with formula [Cu(oxpn)Cu(bipy)](ClO4)2,
oxpn=N,N′-bis(3-aminopropyl)oxamido, where J was found
to be equal to −439.7 cm−1 (Ref. 35). Finally, system 10
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contains only one hydroxo group bridging two LCu moieties,
with L=diethylenetriamine ([Cu-(OH)-Cu]). This system
presents a large singlet-triplet gap with J = −374 cm−1

(Ref. 36).
In structures 1–3 and 5, the core electrons of Cu atoms

(up to 3s) have been replaced with effective core potentials,
and the (9s6p6d)/[3s3p4d] basis set has been used for the va-
lence electrons of Cu. For system 4, Cu atoms have been rep-
resented by means of atomic natural orbital (ANO)-type basis
functions with contractions [5s4p3d1f], on the basis of our
previous experience with this system.37 In the rest of systems,
contractions [5s4p3d] have been employed for Cu atoms.

Regarding the ligands, for systems 1 and 2, O atoms basis
set is of DZP quality with contractions (10s5p1d)/[3s2p1d] as
in previous works.27 For the remaining systems, ANO-type
basis functions of different quality are used for the ligands,
depending on the specific position. Contractions [3s2p1d] are
employed for C, N, and O in bridging positions, and [4s3p1d]
for bridging Cl. For the external ligands, contractions [3s2p]
are used for atoms directly bonded to the metal centers and
[2s1p] for the remaining positions. H atoms are represented
by means of ANO-type functions with a contraction [2s1p]
when they are placed on the bridging ligands, and 2s or 1s for
the rest.38–40 All calculations on the same system have been
done with the same basis set to make the comparison of dif-
ferent methods meaningful.

DDCI calculations have been performed by means of
CASDI code,41, 42 while the NEVPT2 method11–14 on the min-
imal (2,2) CAS has been employed to evaluate the perturba-
tion corrections to the energy, in both the partially contracted
(PC) and strongly contracted (SC) versions. For the sake of
comparison, also CASPT2 calculations have been carried out
by using the IPEA=0 option implemented in the MOLCAS
7.6 package.43 This is not the standard Ĥ0 for the last versions
of CASPT2, but some studies have shown that it is preferable
for the calculation of J (see Ref. 4b).

Regarding the molecular orbitals (MOs), different sets
have been employed. The first set is obtained from a
CASSCF(2,2) calculation on the magnetic singlet state. To
check the impact of the dynamic correlation, the natural
orbitals of the average DDCI density matrix of the sin-
glet and triplet states (both computed on top of the singlet
CASSCF(2,2) MOs) have been also considered.27, 44, 45 The
so-resulting MOs are called DDCI natural orbitals. Finally,
a state-average CASSCF procedure (SA-CASSCF) is em-
ployed to obtain the orbital to be used in MRPT2 calcula-
tions. The procedure mixes the two lowest singlet states, with
large projections on the neutral (first state) and ionic (second
state) VB structures, at CASSCF(2,2) level. The weight of
each state in the state-average procedure is a key question for
the perturbation evaluation of J. This point is addressed in de-
tail in Sec. V.

IV. A CLOSE INSPECTION OF THE DDCI
NATURAL MOS

In the calculation of J within a MRPT2 approach, the or-
bitals are in general obtained with a CASSCF calculation on
either the triplet, or the singlet. As an example, in Table I,

TABLE I. Magnetic coupling constant J (cm−1) computed from the DDCI
and MRPT2 methods using the CASSCF (2,2) singlet MOs and the DDCI
natural MOs

La2CuO4 Sr2CuO2Cl2 [Cu2(OH)2] [Cu2(C2O4)]
(1) (2) (3) (4)

Singlet MOs
CASCI −387 −237 −72 −10
SC-NEVPT2 −587 −363 −129 −18
PC-NEVPT2 −605 −380 −138 −20
CASPT2 −711 −480 −200 −35
DDCI −1149 −1002 −523 −80

DDCI natural MOs
CASCI −468 −292 17 −6
SC-NEVPT2 −1006 −896 −471 −90
PC-NEVPT2 −1029 −924 −493 −97
CASPT2 −1162 −1311 −1011 −247
DDCI −1145 −1010 −473 −119

Exp. −1030, −1096 −1008 −509 −75

the results obtained with NEVPT2 (SC and PC) and CASPT2
starting from the singlet CASSCF orbitals are reported for a
representative subset of the systems considered in this work.
These results confirm the quality of the DDCI approach and
that too low absolute values of J (with respect to the experi-
mental and DDCI values) are computed at MRPT2 level when
a minimal CAS is employed. Similar results are obtained us-
ing the triplet CASSCF orbitals or state-specific orbitals.7

To investigate the importance of the starting orbitals, the
same calculations have been performed also using the DDCI
natural orbitals (see Table I). Passing from the singlet MOs
to the DDCI natural MOs, one notes that at the DDCI level
there is an almost negligible effect on J for 1 and 2, the vari-
ation is small for 3, and slightly more remarkable for 4. On
the contrary, a large variation of the J values is found at PT2
level for all four systems. In the last case, the agreement with
DDCI and experiment is improved when using the DDCI nat-
ural MOs, in particular for the NEVPT2 values. It is worth
stressing again that the use of the singlet MOs or of state-
specific MOs has only a minor effect on the J values computed
at NEVPT2 level.

The use of the DDCI natural MOs in a MRPT2 calcula-
tion is manifestly not a computational strategy, given that an
expensive DDCI step is required to compute the orbitals for a
much faster MRPT2 step and that the DDCI step already pro-
vides good values of J. Nevertheless, this result points out the
importance of the starting MOs and allows us to suppose that
with an appropriate choice of the MOs, the MRPT2 approach
on the minimal CAS can give reasonable J values. This con-
sideration is one of the key points of the present work, given
that the orbitals have not been considered in the past as one of
the pivotal aspects in this field.

In order to understand the origin of this behavior and pos-
sibly devise an effective computational strategy, one has to
address two key questions:

1. What physical effect is correctly taken into account in
the DDCI natural MOs and largely underestimated in the
CASSCF MOs?
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2. Is it possible to compute a set of MOs considering this
effect at a lower (computationally less expensive) level
than DDCI?

The answer to the second question is possible only after
answering the first question and it is the subject of Sec. V. The
first question is primarily conceptual and to answer it one has
to reconsider the nature of the minimal active space CASSCF
wavefunctions (both the triplet and the singlet ones). They
are purely neutral (triplet state) or essentially neutral (singlet
state) and the CASSCF procedure leads to MOs optimized
for these wavefunctions. The final orbitals are a good solu-
tion for the neutral VB structures but they very badly describe
the ionic VB forms. This bias against the ionic forms at the
CASSCF level can be obviously remedied in post CASSCF
methods, such as DDCI or MRPT, but the analysis of the
wavefunctions obtained with these methods is undoubtedly
complex. However, one can show that a more balanced treat-
ment of ionic and neutral VB forms can be obtained by a re-
laxation of the CASSCF MOs. Orbital modifications are intro-
duced by single excitations on the top of the CASSCF wave-
function, but these excitations do not directly interact with the
CASSCF wavefunction as stated by the generalized Brillouin
theorem46 (the orbitals are optimized for this wavefunction
and orbital modification is not required if the wavefunction is
not changed). For this reason, orbital relaxation is not consid-
ered in MRPT2 or in MRPT3, since the numerators of the per-
turbation series contain the direct interaction of the singly ex-
cited perturbation functions with the CASSCF wavefunction.
It is possible to show that the orbital relaxation is taken into
account only at higher order, where single excitations appear
in terms where they interact with double excitations, which
in turn interact with the CASSCF wavefunction. This effect
can be identified as an orbital relaxation induced by the elec-
tron correlation. The inability of MRPT applied to second and
third order for the energy (first order for the wavefunction) to
consider such an effect has been recently identified in a dif-
ferent context, the calculation of the π → π* excited states
of ethylene.47 It is worth noticing that, unlike MRPT, varia-
tional methods (as DDCI) can describe the orbital relaxation
induced by the electron correlation.

As the nature of the orbital relaxation is concerned, one
can reasonably expect that a balanced description of ionic and
neutral forms requires more “diffuse” (delocalized) orbitals
than the CASSCF ones, and this is actually a property of the
natural DDCI MOs, as commented in details in Ref. 7 and at
the end of Sec. II. In Sec. V, we address the development of an
effective and computational not expensive definition of a set
of MOs to be used in MRPT2 which fulfills this requirement.

V. AN EFFECTIVE STRATEGY TO COMPUTE
THE ORBITALS

Our proposal to obtain the orbitals to be used in the
MRPT2 calculation of J is to compute them by a state-average
CASSCF (SA-CASSCF) procedure involving the magnetic
singlet and the second singlet of the same symmetry. This sin-
glet is essentially ionic (with a small neutral component, see
Sec. II and Eq. (5)) and therefore, the state-average energy

minimization produces MOs well suited for both the neutral
and ionic VB structures. The key point to tackle is the cor-
rect value for the weights in the state-average procedure. To
guarantee that the two forms are treated at the same level,
one can suppose that the weights must be 0.5/0.5. Actually,
the CASSCF wavefunction misses different physical effects.
Among them, one can identify effects whose absence makes
the MOs of a pure ionic wavefunction too diffuse (dynamic
polarization of the ionic forms,47 dynamic correlation of the
two magnetic electrons) and for these reasons, the magnetic
orbitals of a SA-CASSCF calculation with equal weights are
too diffuse. This defect can be remedied if the weight of
the second singlet is lower than that of the magnetic singlet,
but the correct weight cannot be defined a priori. To ver-
ify the reasonableness of these considerations, we have com-
puted the overlap of the SA-CASSCF magnetic MOs with the
DDCI natural magnetic MOs (the “best” MOs in hand, which
give the improved values of J in MRPT2, see Sec. IV and
Table I) for different weights of the magnetic singlet in the
SA-CASSCF procedure (hereafter indicated with W ). The re-
sults are reported in Fig. 2 for the four systems considered in
this section (1–4).

In all cases, the considerations reported above are
confirmed:

� the CASSCF magnetic MOs of the magnetic singlet
(W = 100% in Fig. 2) are rather different from the best
MOs;

� the agreement between the two sets of MOs is regu-
larly improved if the second (ionic) singlet is included
in the optimization procedure with increasing weight;

� the overlap reach a maximum for W � 0.7 (it is close
to the maximum for 0.66 < W < 0.74) and then the
agreement decreases, showing that the SA-CASSCF
procedure with equal weight overestimates the delo-
calization of the active MOs.

Besides this confirmation, a surprising result can be noted
from Fig. 2: the maximum overlaps are very close to 1. This
allows to conclude that, for these systems, with a simple SA-
CASSCF (2/2) calculation one can closely reproduce the nat-
ural magnetic orbitals of two expensive DDCI calculations.
This further confirms that the main modification, moving
from the magnetic singlet CASSCF MOs to the DDCI nat-
ural MOs, is an increase of the spatial extent of the magnetic
MOs, required to enable a balanced description of the neutral
and ionic VB forms. The SA-CASSCF orbitals computed for
W = 0.7 (a value for which the overlap with the DDCI natu-
ral MOs is close to one) are indicated hereafter with SA-7/10
MOs. The three key sets of orbitals (DDCI natural, singlet
CASSCF, and SA-7/10) are depicted in Fig. 3 for system 1
(La2CuO4).

VI. THE EFFECT OF THE STATE AVERAGE
PROCEDURE ON THE J VALUE AT MRPT2 LEVEL

The dependence of the MRPT2 J value on the weight, W ,
of the magnetic singlet used to define the orbitals is reported
in Fig. 4 for the complexes 1–4. From this figure, it is appar-
ent that the MRPT2 J value strongly depends on W : when
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FIG. 2. Overlap of the two SA-CASSCF magnetic MOs (full and dashed lines) with the DDCI natural magnetic MOs as a function of the weight of the magnetic
singlet in the SA-CASSCF procedure (W ) for system 1 (La2CuO4 (top left)), 2 (Sr2CuO2Cl2 (top right)), 3 ([Cu2(OH)2] (bottom left)), and 4 ([Cu2(C2O4)]
(bottom right)).

the weight of the ionic singlet is increased (W decreases), the
absolute value of J increases, raising the antiferromagnetic
character of the magnetic coupling. This behavior is found
for both the NEVPT2 (SC-NEVPT2 and PC-NEVPT2 giving

FIG. 3. Symmetry-adapted g and u magnetic orbitals for system 1
(La2CuO4): The DDCI natural MOs (a, top), the singlet CASSCF MOs (b,
middle), and the SA-7/10 MOs (c, bottom).

almost the same value) and the CASPT2 approaches (with the
only exception of the CASPT2 values for system 3 at low val-
ues of W ).

The comparison of this trend with that observed at the
CASCI level, (not reported here, the J values are almost
unchanged for W in the range 60%–100%), reveals that
the effects introduced by the dynamical electron correlation
strongly depend on W . In fact, the stabilization of the ionic
forms is a crucial requirement for a quantitative evaluation of
J, since these forms participate in the dominant mechanisms
giving the largest contributions to J (Refs. (5–7)). When we
enter to the perturbation treatment with the singlet or triplet
CASSCF orbitals, the ionic forms are too high in energy (U
around 24 eV for the systems considered), and the contri-
butions to J coming from the interaction of the ionic forms
with the 2h1p excitations (the leading ones) are energetically
penalized (denominators in the perturbation expression too
large). Then, the resulting MRPT2 J value is too small com-
pared with the DDCI or experimental ones. The larger the sta-
bilization of these forms introduced by smaller W , the lower
the penalty, the larger the impact on the J value, as shown in
Fig. 4.

VII. EVALUATION OF J FROM MRPT2 CALCULATION
USING THE SA-7/10 MOS

On the basis of these considerations, we propose a com-
putational strategy for the calculation of the magnetic cou-
pling constant in the frame of MRPT2 methods:
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FIG. 4. Dependence of the MRPT2 J value on the weight W of the magnetic singlet in the SA procedure for systems 1 (La2CuO4 (top left)), 2 (Sr2CuO2Cl2
(top right)), 3 ([Cu2(OH)2] (bottom left)), and 4 ([Cu2(C2O4)] (bottom right)). Full lines, SC- and PC-NEVPT2 values; dashed line, CASPT2 values.

� the MOs are computed at SA-CASSCF level for the
two singlets with weights 0.7 and 0.3 on the magnetic
and ionic singlets, respectively;

� the J value is obtained from the difference of the
MRPT2 energies of the magnetic singlet and triplet
states, where the zero order wavefunctions are of
CASCI type computed from the SA-7/10 MOs.

The results of such a strategy for the systems considered
in Secs. IV–VI are reported in Table II. To give an estima-
tion of the dependence of these values on small variations of
W, we also report the results obtained with W = 0.66 and
W = 0.74 (values within parenthesis), given that in this in-
terval the overlap of the SA-CASSCF orbitals with the DDCI

natural ones is very close to the maximum value, as discussed
in Sec. V and shown in Fig. 2.

The J values are now in a reasonable agreement with
the experimental estimations for both NEVPT2 and CASPT2.
The largest deviations are found for system 3 at NEVPT2
level and for system 4 at CASPT2 level. The improvement
with respect to the results obtained starting from the CASSCF
MOs of the magnetic singlet is large (compare the values of
Table II with those of Table I). Moreover, they closely resem-
ble those obtained starting from the high level DDCI natural
orbitals.

To further confirm the quality of the computational strat-
egy here proposed, it has been applied on six more binu-
clear Cu complexes (systems 5–10). Systems 9 and 10 are not

TABLE II. Magnetic coupling constant J (cm−1) computed at the DDCI and MRPT2 level starting from the CAS (2,2) space and using the SA-7/10 MOs.
Values computed with W = 0.66 and W = 0.74 within parenthesis.

La2CuO4 Sr2CuO2Cl2 [Cu2(OH)2] [Cu2(C2O4)]
(1) (2) (3) (4)

SA-7/10 MOs
DDCI −1133 −1022 −495 −118

SC-NEVPT2 −1067 −971 −392 −83
(−967,−1187) (−816,−1167) (−322,−466) (−62,−113)

PC-NEVPT2 −1084 −984 −398 −86
(−982,−1204) (−831,−1177) (−330,−471) (−65,−117)

CASPT2 −1041 −1065 −549 −158
(−985,−1104) (−938,−1201) (−502,−583) (−133,−226)

Exp. −1030, −1096 −1008 −509 −75
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TABLE III. Magnetic coupling constant J (cm−1) computed at the DDCI and MRPT2 level starting from the CAS (2,2) space and using the SA-7/10 MOs.
Values computed with W = 0.66 and W = 0.74 within parenthesis.

[Cu-(N3)2-Cu] [Cu-(ox)-Cu] [Cu-(ox)-Cu] [Cu-(ox)-Cu] [Cu-(oxpn)-Cu] [Cu-OH-Cu]
Systems 5 6 7 8 9 10

SA-7/10 MOs
DDCI −1136 −290 −15 −347 −376 −231

SC-NEVPT2 −1095 −194 −13 −217 −260 −270
(−785,−1540) (−160,−237) (−9,−19) (−176,−271) (−210,−323) (−226,−326)

PC-NEVPT2 −1114 −201 −13 −226 −274 −279
(−804,−1559) (−167,−244) (−9,−20) (−185,−280) (−223,−338) (−235,−334)

CASPT2 −1954 −244 . . . a −329 −364 −344
(−1382,−2635) (−211,−285) (−270,−402) (−305,−431) (−304,−392)

Singlet MOs
DDCI −1116 −246 −12 −280 −280 −237

SC-NEVPT2 −184 −63 −2 −65 −70 −95

PC-NEVPT2 −198 −68 −2 −71 −77 −104

CASPT2 −336 −99 . . . a −106 −117 −142

Exper. < −800 −385 −14 −382 −440 −374

aProblems have been found to run CASPT2 for this system.

symmetric and therefore, two ionic singlets can be computed
with the minimal active space (corresponding to the g and
u ionic forms in symmetric systems). In this case, the SA-
7/10 MOs are computed in a SA-CASSCF calculations with
a weight 14 on the magnetic singlet and 3:3 on the two
other singlets. The J values computed at MRPT2 level start-
ing from the SA-7/10 MOs are reported in Table III, together
with the values computed starting from the CASSCF(2,2) or-
bitals of the singlet. These results validate what observed for
systems 1–4. Passing from the CASSCF(2,2) singlet MOs
to the SA-7/10 MOs, there is a marked improvement of
the quality of the J values, which in the last case are in a
better agreement with both the experimental and the DDCI
values.

VIII. CONCLUSIONS

In this contribution, we have presented some evidences
of the fact that the failure of MRPT2 evaluations of J based
on minimal active spaces is just a particular manifestation of
a general problem, that is, the “orbital relaxation induced by
the electron correlation.” This problem appears in different
situations, such as, for instance, the ionic excited states of π -
conjugated molecules. In CI methods, the orbital relaxation is
introduced naturally as a result of the interaction of the ref-
erence wavefunction with the excited determinants (provided
that an uncontracted scheme is employed, as DDCI). In the
case of MRPT methods, the orbital relaxation is not consid-
ered at order lower than four, while most of the routine ap-
plications rest on PT2 level. To overcome this difficulty, ex-
tended CAS are often employed containing the d′ shell as well
as bridge ligand orbitals, which allow for the relaxation of the
ionic forms and introduce the MLCT and LMCT forms, re-
spectively.

In the present work, we have shown that this relaxation
effect can be alternatively included by using a well-adapted
MOs set, in particular, a set obtained from the average of the
two lowest singlet states, which are essentially neutral and
ionic in nature. A 7:3 mixture gives magnetic orbitals show-
ing a large overlap (>0.995) with the DDCI natural MOs.
This can be considered as a guarantee that the main relax-
ation effects are taken into account in the so-obtained MOs
set. NEVPT2 calculations using these MOs and a minimal
active space spanned by the SA-7/10 magnetic orbitals give J
amplitudes in acceptable agreement with the DDCI and exper-
imental ones, while the same calculations with state specific
MOs provide very poor estimates of J.

One can therefore conclude that the strategy here pro-
posed, based on a detailed analysis of the factor governing
the nature of the magnetic MOs in different types of wave-
functions, is grounded and allows for the computation of the
magnitude of the magnetic coupling constant with MRPT2
methods with a reasonable accuracy in antiferromagnetic sys-
tems. For medium size molecular systems, for which DDCI
calculations are affordable, DDCI remains the natural choice.
The here suggested approach presents itself as an interesting
candidate for large systems, for which DDCI becomes pro-
hibitively costly and usual MRPT2 evaluations are limited by
the “bottleneck” of the CASSCF calculations with very large
active spaces.

Few remarks are worthy at this point. All systems here
studied are antiferromagnetic, where the relaxation of the
ionic forms is a key process for the coupling between the
magnetic centers. For ferromagnetic systems, the stabiliza-
tion of the ionic forms has a negligible impact on the singlet
wavefunction and therefore, the strategy here proposed does
not improve significantly the quality of the MRPT2 approach
based on a minimal active space. Different strategies, which
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take into account the main features of the ferromagnetic sys-
tems, are currently under exploration, with the aim to estab-
lish a computational strategy similar to that here proposed for
AF systems. Also, it would be useful to extend this procedure
to polynuclear systems with more than two magnetic metal
centers and/or more than one unpaired electron per magnetic
center. This extension is not trivial and works are in progress
to evaluate how to face this problem.
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