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Abstract: Nowadays, an increasing penetration of utility-scale photovoltaic plants (USPVPs) leads
to a change in dynamic and operational characteristics of the power distribution system. USPVPs
must help to maintain the system stability and reliability while implementing minimum technical
requirements (MTRs) imposed by the utility grid. One of the most significant requirements is about
frequency regulation (FR). Overall production of USPVPs is reduced significantly by applying FR
curves, especially in weak grids with high rate of frequency faults. The introduction of a battery
energy storage system (BESS) reduces losses and improves the grid system reliability. Experimental
frequency and irradiance data of several weak grids have been used to analyse USPVPs losses
related to FR requirements and benefits from the introduction of a BESS. Moreover, its economic
viability is showen without the need for any economic incentives.

Keywords: distributed generators; battery energy storage system (BESS); frequency regulation (FR);
utility-scale photovoltaic plants (USPVPs); weak grids

1. Introduction

An increasing penetration of utility-scale photovoltaic plants (USPVPs) in the overall electric
system requires the maintenance of their system stability and reliability. The required actions are
divided into three categories depending on the time scale of grid operation [1]. First, the faster
technique (sub-seconds to minutes time scale) is related to the photovoltaic (PV) plant response to
grid disturbances on the point of common coupling (PCC). The second is related to load balancing
which is of the order of sub-hours to days, and is controlled by the utility-grid. The third action is
about future electric systems designing (order of years). USPVPs on each of these categories have a
different role and should be studied accordingly.

Countries around the world are demanding minimum technical requirements (MTRs) for
USPVPs besides active contribution to grid stability and power quality [2–7], in order to comply with
the first category of system stability actions. Requirements are not only under normal conditions but
also under faulty conditions, such as low voltage, phase jump, under/over frequency, etc.

Unlike the inherent electromechanical dynamics of synchronous generators, PV generators’
response based on power electronics is quite different. It needs a special attention on the grid
frequency stability control actions [8,9]. Frequency regulation (FR) techniques have been studied
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widely in the literature [1,9–20]. All FR methods require a reduction over the active power generation
on USPVPs. Consequently, if MTRs about FR are fulfilled, the USPVPs will have to consider
additional losses, and a reduction of the overall plant profit.

Figure 1 shows a recent literature classification of FR methods used on PV applications.
Depending on the grid system size (microgrids or utility-scale grids), the problem will be resolved
with different techniques [1].

Power System ResidentConverter resident
Hysteresis droop curve

Microgrids Utility-Scale

PV Frequency 
Regulation Methods

Droop controller

Local curtailment Utility-grid curtailment

AGC individual curtailment

AGC common curtailment

Figure 1. Frequency regulation (FR) classification methods for photovoltaic (PV) applications. AGC:
automatic gain controller.

PV microgrids methods are mainly allocated inside power converters. There are two options:
an open loop active power versus frequency control, with a hysteresis droop curve, or a defined
look-up table; or a control droop method over the active power reference, in order to emulate the
characteristic of synchronous generators against frequency excursions. All of them have been applied
widely for PV microgrids [9,13–20]. However, these techniques are not able to be applied on USPVPs,
because the capacity of one inverter could not be enough to move the grid frequency [21,22].

Notice that USPVPs solutions have two main groups. On the one hand, local regulation is done
with a local active power curtailment, in a function of measured frequency and defined by the right
grid code [2–7]. On the other hand, power system resident techniques are based on setting an external
curtailment on the converters [1]. The curtailment value could come from the utility grid or from an
automatic gain controller (AGC). The AGC could be a centralized or a distributed one, with the same
control signal for every unit or with an individual control for each unit, respectively. Additionally,
AGC methods could combine curtailment actions controlling deloaded reserves or energy storage
systems (ESS) for further functionalities.

MTRs for USPVPs describe power droop curtailment curves to help the system stability.
Nevertheless, USPVPs cannot store by itself the remaining energy during a frequency disturbance.
Consequently, FR techniques lead to production losses that must be considered. In strong grids,
with a grid frequency value very stable, the problem is irrelevant because the occurrence of a fault
during a year is very small [22,23]. However, in weak grids like Puerto Rico, Low California or
the Sistema Interconectado Norte Grande (SING) in Chile, grid oscillations could vary significantly
power production, and a comprehensive study of USPVP losses related to FR requirements is needed.

USPVPs are built with a lot of PV electronic power converters. Nowadays, PV power converters
generation response is very fast [24,25]. Therefore, they could reduce USPVPs impact over electric
weak grids. Worldwide utility grids have modified MTRs with harder time response requirements,
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in order to use the advantage of the new power converter abilities. Reducing time response not only
reduces the USPVP impact over grid frequency, but also helps the grid frequency stability. This clearly
is always achieved at the expense of a loss of energy injected. Consequently, PV investors have to take
this effect into account to calculate the plant profitability.

The overall USPVP power output must remain according to MTRs, but additional systems could
be installed to optimize the plant production. An ESS could be used to save the energy during
fault events. Moreover, an ESS could be used to regulate other requirements such as ramp rates,
curtailments, etc. [1]. The most popular technology for PV applications is a battery energy storage
system (BESS) [13–23,26–29].

However, BESS prices are too high. Therefore, legislation of California, New York, Hawaii and
Germany amongst others, provide BESS economic incentives [30–33]. The objective is to help the
installation of new BESS, that otherwise would not be profitable. This paper shows some real cases
where the installation of a BESS is justified without any need for economic incentives, and reduces
the installation price kWh.

This manuscript is organized as follows: Section 2 gives a review of international MTRs
about FR. Section 3 describes the electric grid frequency behaviour, PV modelling, and expected
power generation. Section 4 provides experimental test results about expected generation losses.
Section 5 provides possible performance scenarios by introducing an ESS. Finally, discussions are
given in Section 6.

2. Frequency Regulation

2.1. Grid Code Requirements

Despite grid code harmonization being desirable, local grid conditions lead to local grid
requirements defined for every country. Table 1 shows recently published frequency ride through
(FRT) and FR requirements [2–7]. On the one hand, FRTs set some thresholds to limit the converters
frequency operation range. If the frequency reaches the limit after a defined time, the unit will be
disconnected to prevent damage to the equipment. On the other hand, FR curves are pointed out. So,
the power will be reduced applying a defined droop imposed by each country legislation.

German and Italian legislations describe the classical droop curve. FR techniques apply when
a starting frequency is passed (50.2 Hz for German code). Then a droop factor reduces the active
output power of the plant with respect to the active output power previous to the beginning of the
fault condition (PM). However, if the frequency is partially restored, the droop factor continues on his
lowest value. The droop factor is cancelled only when the frequency recovers to nearly the nominal
grid frequency value (50.05 Hz for German code).

Other grid codes such as Mexico and Puerto Rico are not related to PM. Instead of that, they
define an increment related to the nominal power plant capacity ∆P/Pn.

Puerto Rico, Mexico and South Africa requirements look alike for over-frequencies, but establish
special requirements for under-frequencies. Hysteresis curves, and the nominal output power of the
plant (Pn) instead of PM are the main differences for over-frequencies faults behaviour. However,
for under-frequencies, a deload reserve or an ESS is required, in order to increase the maximum
available power of the plant (Pava). South African frequencies are pointed out with labels from f1 to f6.
f2 and f3 point out the thresholds to begin the FR action for under-frequencies and over-frequencies,
respectively. f1 and f4 point out the frequency magnitude to saturate the frequency droop curve
to Pava or the minimum required (Pmin), for under-frequencies and over-frequencies, respectively.
Finally, f6 points out the recovery frequency threshold.

Finally, Chilean code is similar to German legislation, but FR recovery is not abrupt. However,
the restoration is performed with the same frequency ramp than downwards, only it is timed to a
maximum of 0.2 p.u./min.
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Table 1. FR utility-scale photovoltaic plants (USPVPs) minimum technical requirements (MTRs)
review. FRT: frequency ride through; BDEW: German association of energy and water industries;
CEI: Electrotechnical Italian Committee; NERSA: National energy regulator of South Africa; CFE:
Comisión Federal de Electricidad; PREPA: Puerto Rico Electric Power Authority; CNE: National
Commission of Energy.

Country FRT FR

Germany

(BDEW)

T (s)

f (Hz)

0.0

50.0

47.5

60.0

51.5

1.0

PM

f (Hz)

1.0

0.6

50.0

50.05

50.2 51.2

Italy

(CEI)

T (s)

f (Hz)

0.0

50.0

47.5

60.0

51.5

1.0

PM

f (Hz)

1.0

0.0

50.0 50.3 51.5

South Africa

(NERSA)

T (s)

f (Hz)

0.0

50.0

47.5
47.0

51.0

52.0

60.0

48.0

49.0

51.5

0.2 10.04.0 6.0
46.0

PM

f (Hz)

Pava

f1

50.0 52.0

f2

f3

f5

Pmin

f6

Mexico

(CFE)

T (s)

f (Hz)

0.0

60.0

57.5

62.0

600.0

58.0

58.8

62.5

5.0

61.2

0.1

ΔP/ Pn

f (Hz)
0.1

49.75
50.0

52.5

-1.0

Puerto Rico

(PREPA)

T (s)

f (Hz)

0.0

60.0

57.5

56.5

61.5

62.5

10.0 30.0

ΔP/ Pn

f (Hz)

0.1

59.7

60.0

59.988 60.3

60.012

-0.1

Chile

(CNE)

T (s)

f (Hz)

0.0

50.0

47.5
47.0

52.0

150.0

48.0

49.0

51.5

15.0

PM

f (Hz)

1.0

0.0

50.0 50.2 f1
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2.2. Frequency Regulation Methods

Figure 2 shows a typical PV converter control block diagram. The control scheme is divided
into four layers: high, middle, low and hardware layer. FR capability for USPVPs is managed inside
the middle layer, providing a suitable input data for the active power reference saturation threshold
calculation. Typically, it could be performed locally or remotely. Remote active power saturation is
set by Psatcurt signal, a power reference curtailment sent by the AGC. Local active power saturation is
calculated inside the FR method block.

Psatcurt

Prefsp

Qrefsp

Pref Limits
FR

Method

Pmax
Pmin

Pref´ Pref

Idref Middle Level

High Level

Hardware

Level

Low Level

Irst

Vrst

Vdc

rst/dq0
Current

Controller

Duty

Control

Idq IGBT Drive

System

Middle Level

Qmax
Qmin

Qref´ Pref

Qref Limits

Iqref

Figure 2. PV converter controller scheme divided into 4 layers: high, middle, low and hardware level.
FR method is allocated into the middle layer adjusting the output power reference output.

The converter resident method acts in function of the local data of the converter, providing a
droop factor over the maximum power saturation value. The droop factor (K) could be referenced
to the nominal converter power [6,7] (Pn), or related to the active reference power previous to the
frequency excursion [2–5] (PM). Figure 3 points out a typical block diagram control of the FR control
scheme. Maximum power point tracker (MPPT) output reference (Pref’) is modified by FR algorithm
to provide a suitable current output power reference (Pref).

AC

DC

MPPT

x
FR

Method

KPref f fn

fz−1

PM

Pref´

Figure 3. Converter resident FR scheme, maximum power point tracker (MPPT) output (Pref’) is
modified by FR algorithm to provide a suitable current output power reference (Pref).

The power system resident technique works in a similar way. However, every converter receives
a curtailment saturation reference from an AGC (Psatcurt ), who calculates the right power saturation
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value. The curtailment signal is due to many factors, one of them, the FR control of the PPC (Figure 4).
Each inverter has a different output power level but all of them have the same curtailment signal. As
a result, each inverter could be saturated in a different way. For example, at Figure 4, unit 1 has
decreased its power (P(1))more than unit 2 power (P(2)), and unit 3 does not need to saturate its
output (P(3)). But the power plant result will be the same that applying a converter resident solution.

MPPT

Pref’ (1)

P(n)

P(1)

P(3)

P(2)

P, f

AGC

Psatcurt

Pref (1)

MPPT

Pref’ (2)
Pref (2)

MPPT

Pref’ (3)
Pref (3)

MPPT

Pref’ (n)
Pref (n)

Psatcurt

Pref’ (1)

Psatcurt

Pref’ (2)

Psatcurt

Pref’ (3)

DC

AC

DC

AC

DC

AC

DC

AC

Figure 4. Power system resident FR by an AGC. A common control curtailment signal (Psatcurt ) is sent
to all inverters.

2.3. Battery Energy Storage System Rule-Based Control

The BESS should operate according to a rule-based control in order to achieve its objective.
Figure 5 shows the control law implemented in the BESS to get the results provided in this paper.
The main objective of the BESS is to fulfil the mandatory FR MTRs.

PFR
PmaxBESS

-PmaxBESS

True

False

+
+

-

SOCmax

SOCmin

SOC

+
+

-

PBESS

RBESS

Rp

X +

+
-

SOCINISOC-1

1

-1

≠ 0

ηBESS /Ts

ηBE
SS

∫

Figure 5. Battery energy storage system (BESS) control law. BESS power output (PBESS) tries to provide
the necessary FR active power contribution (PFR). If there was not a required FR action, the BESS
would recover its initial state of charge (SOCini).

The BESS power output (PBESS) tries to provide the necessary FR active power contribution (PFR),
in order to minimize the USPVP losses. Therefore, there will be losses due to FR actions only when
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PFR is greater than the maximum active power capacity of the BESS (PmaxBESS), or when the state
of charge (SOC) of the BESS system exceeds the range of operation defined ([SOCmin, SOCmax]). The
efficiency of the BESS (ηBESS) has been considered to estimate the SOC correctly too.

If no FR action was required (PFR is zero), then a recovery process could be made. The objective
is to charge or discharge the BESS to its initial state (SOCini). Therefore, the BESS could regain its
full capacity to compensate any sub-frequency or over-frequency occurrence. Moreover, a slope is
introduced in the PBESS reference calculation (RBESS) to smooth the power output behaviour to the
nominal power charging value (Rp). Finally, Ts points out the sample time of the algorithm.

3. Frequency Regulation Behaviour Methods in Weak Grids

3.1. Weak Grids Frequency Excursions

A classical approach divides power grids into two parts: transmission lines and distribution
lines [34]. On the one hand, transmission lines connect huge power production plants with
consumption centres via high voltage links. On the other hand, distribution lines go to households
and industry with medium and low voltage lines.

Weak grids have a relative small number of power sources and loads compare to a conventional
national electric grid, so any unexpected change could produce voltage and frequency excursions.
Consequently, these frequency excursions will lead the PV system to reduce its output production to
comply with current MTRs.

In order to quantize the problem, frequency excursions have been analysed for three different
weak power grids: Puerto Rico (Puerto Rico Electric Power Authority (PREPA)), Chile (SING), and
Low California or Mexico (Comisión Federal de Electricidad (CFE)). At least 20 days have been
analysed for every grid to get reliable results. A grid power analyser set in a PV power plant was
used to record the frequency measurements in Puerto Rico and Low California. However, SING
frequency data measurements were provided by the utility grid. For all cases, the time sample of the
measurements was 4s.

Figure 6 shows the time percentage in with a certain frequency value is over passed for these
systems. In each graph, some key values are pointed out: the nominal frequency ( fn); frequency
threshold where the FR begins, fl for sub-frequencies and fh for over-frequencies; and frequency
threshold where the FR ends, fsl for sub-frequencies and fsh for over-frequencies.
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Figure 6. Occurrence probability of a frequency excursion in three different power grids: (a) Puerto
Rico (PREPA); (b) Chile (SING); and (c) Mexico (CFE).
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Note that every grid has different behaviours. The Puerto Rico probability disturbance spectra is
almost symmetrical, SING has more over-frequency faults because there is over generation, and Low
California has more sub-frequency faults because there is over consumption. In all cases, fl and fh
thresholds are over-passed with an occurrence greater than 10%, so production losses are significant
and an analysis is justified.

Moreover, Figure 7 shows how long the frequency excursions are. Tmax points out the longest
clearing time registered for a certain frequency disturbance. For every grid, results are of the same
magnitude, registering faults near 50 min duration at fh.
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Figure 7. Maximum clearing time of frequency excursions in three different power grids: (a) Puerto
Rico (PREPA); (b) Chile (SING); and (c) Mexico (CFE).

Figure 8 points out the mean clearing time Tmn for such a disturbance. Note that the mean
time of excursions after passing saturation thresholds ( fhs and fls) goes up lightly. This is because
the saturation of the FR droop control minimizes the restoration counter-effect of the method,
incrementing the mean time of the perturbation.
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Figure 8. Mean clearing time of frequency excursions in three different power grids: (a) Puerto Rico
(PREPA); (b) Chile (SING); and (c) Mexico (CFE).
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Finally, Figures 9 and 10 show the occurrence probability difference between day and night in
the case of SING grid (Chile). Figure 9 shows a greater faulty condition at day-time than at night-time,
so FR techniques over PV plants are plenty justified. Figure 10 shows more detail for the frequency
value fh with the hourly frequency disturbance occurrence probability. Shadowed parts are related
to night time. Three relevant peaks are presented, and all three are in day-time.

−0.5 fn fh 0.5
0.0

0.1

0.2

0.3

0.4

f (Hz)
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) 
(p

.u
.)

 

 

Night
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Figure 9. Occurrence probability during the day and night of a frequency disturbance in SING
power grid.
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0.20

0.25

P
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(p

.u
.)

Hour (h)

Figure 10. Hourly frequency disturbance occurrence probability of fh in SING power grid. Shadowed
parts point out night time.

Therefore, Figure 6 shows frequency behaviour for three remarked different types of weak
grids. All cases show a high occurrence probability of frequency excursions compared to FR MTR
thresholds, so an important decrease on PV power output is expected. Moreover, Figures 7 and 8
point out significant frequency faults duration, so energy losses required to comply with MTRs will
be very high and must be considered in the USPVP viability study.

3.2. Utility-Scale PhotoVoltaic Plants Sizing

The availability of solar power sources must be considered. Production of a PV plant could be
calculated from several environment measures. For example, a good approximation could be made
with irradiance and temperature probes. The left side of Figure 11 shows typical irradiance curves
of a solar plant in different weather seasons in the region of SING (Chile), and right side shows
temperature measurements accordingly. The expected irradiance varies during the day. Moreover,
the irradiance curve varies from summer to winter.
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Figure 11. Overall irradiance during a year, showing two seasons: Left side shows an example of the
irradiance of one day, and the right side the temperature in the same day.

A correct sizing of a USPVP needs irradiance data from all seasons to have a complete spectra
of solar profiles. Two different scenarios have been studied with real data from Copiapo (Chile) and
Virgin Islands (next to Puerto Rico) [35] for a whole year of irradiance.

Copiapo irradiance and temperature measurements have been collected with sensors allocated
inside a PV plant in Copiapo with a sample time of 2 s, and Virgin Islands data have been provided
by NREL with a weather station with a sample time of 60 s.

Figure 12a shows Chilean irradiance measurements per month, marking the maximum, average
and minimum measurements of the daily irradiation registered. Manufacturers usually establish a
rule of thumb to sizing the maximum power capability of the power converters between 0.9 and
0.75 of the maximum averaged power expected for the irradiance measurements [36–38]. A division
factor of 1.2 over the maximum average irradiation registered has been considered. Figure 12c shows
the averaged expected time per day to have the USPVP at full power in the Chilean case. Similarly,
Figure 12b,d shows the same data for the Puerto Rican case.
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Figure 12. Irradiance measurements statistics over a whole year. Maximum, mean and minimum
of maximum daily irradiation in red, black, and blue respectively, for (a) Chile; and (b) Puerto Rico.
Expected minutes per day of the plant at full power for (c) Chile; and (d) Puerto Rico.
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Recently, several models have been developed to estimate the available power for USPVPs [39].
Wavelet variability model (WVM) is used strongly by engineers for sizing new USPVPs [40,41].
The algorithm provides an overall effective irradiance measure for all the plant.

Parameters used to get the WVM effective measurements have been set in accordance with
USPVP characteristics, real location, and suggestions over the method [40,41]. Table 2 points out
a list of parameters used for the estimation.

Table 2. Wavelet variability model (WVM) settings.

Parameter Chile Puerto Rico

Power plant capacity 300 MW 300 MW

PV panels density 41 W/m2 41 W/m2

PV plant area square square

PV panels tilt 27◦ 18◦

Cloud speed 10 m/s 10 m/s

Latitude −27.165661 18.059815

Longitude −70.795136 −65.851908

4. Frequency Regulation Results

USPVPs studied in Section 3 have been selected to perform an analysis about FR production
losses. Experimental measurements of irradiance and grid frequency of SING (Chile) and Puerto
Rico have been used to obtain results, using each grid code respectively [5,6]. Table 3 sets parameters
of FR method for both experiments.

Table 3. FR settings.

Parameter Chile Puerto Rico

Start droop over frequency ( fo0) 50.2 Hz 60.012 Hz

Stop droop over frequency ( fo1) 50.5–52 Hz 60.3 Hz

Maximum droop over frequency (Do) 1 p.u. 1 p.u.

Start droop under frequency ( fu0) N/A 59.988 Hz

Stop droop under frequency ( fu1) N/A 59.7 Hz

Maximum droop under frequency (Du1) N/A 0.1 p.u.

Recovery ramp rate (ramprec) 0.2 p.u./s. N/A

Figure 13 shows transient behaviour of one day at Copiapo (Chile). Both frequency and output
power are plotted. Several curves are pointed out: the expected power generation without FR (Pin);
and the real plant output applying three different scenarios for upper frequency f1 = {C1, C2, C3} =
{52, 51, 50.5} Hz. All cases show significant reduction in power production, especially the hardest
requirement in the case of the Chilean grid code, with power reductions of up to 75% of active power.

The Puerto Rico grid code response has been analysed too. Real frequency and irradiation
measurements have been taken into account. Figure 14 shows transient behaviour of one day at
Puerto Rico. 10% USPVP have been reserved for upper frequency excursions in order to comply with
the Puerto Rican grid code. Again, Figure 14 points out transient frequency and power plant output.

Figure 14 shows several frequency peaks up to 60.3 Hz ( fo1), but the active power reduction is
not as severe as in Chile because the FR is limited to 0.1 p.u. However, 0.1 p.u. of the solar plant must
be reserved, increasing the total production losses.
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Figure 13. USPVP active power output (Pout) and frequency in 15th October in Chile: (a) Registered
frequency; (b) Ideal USPVP active power output (Pin); and (c,d and e) power output applying FR with
f1 = {C1, C2, C3} = {52, 51, 50.5}Hz respectively.
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Figure 14. USPVP active power output (Pout) and frequency in 19th July in Puerto Rico: (a) Registered
frequency; (b) Ideal USPVP active power output (Pin); and (c) power output applying FR (C1).

4.1. Power Losses Applying Frequency Regulation

One day transient analysis of Figures 13 and 14 were repeated for a whole month. Moreover,
transient results have been obtained for different solar irradiance profiles. The same grid disturbances
have been tested against several months of irradiance data, considering 31 and 20 days of frequency
for Chile and Puerto Rico respectively.

Figures 15 and 16 quantize the total energy losses due to FR techniques for Chilean and Puerto
Rican grid code respectively. Case (a) shows daily energy losses (eloss) and Case (c) shows daily
remnant energy (erem). Both of them use real data acquisition from one month. Cases (b) and (d) show
the evolution for several months of energy losses and mean remnant energy respectively. Chilean
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case shows a season dependency, but Puerto Rico holds the losses approximately constant. Both cases
have significant losses registered up to 0.25 p.u.h/day and 0.5 p.u.h/day of the plant at full power.
The introduction of an ESS could save part of this energy, increasing the production of the plant.
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Figure 15. USPVP energy losses due to FR during a year in Chile, with f1 at 52, 51 and 50.5 Hz, (C1,
C2 and C3 respectively): (a) Daily energy losses (eloss) in October; (b) monthly energy losses; (c) daily
remnant energy (erem) in October; and (d) monthly remnant energy.
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Figure 16. USPVP energy losses due to FR during a year in Puerto Rico: (a) Daily energy losses
(eloss) in July; (b) monthly energy losses; (c) daily remnant energy (erem) in July; and (d) monthly
remnant energy.
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5. Battery Energy Storage System Results

The Puerto Rican grid code recommends at least the 10% of USPVP nominal power output for
the BESS peak power output [6]. Therefore, the BESS capacity allows the fulfilment of the required
10% of reserve load. Consequently, BESS peak power has been set to 10% of USPVP nominal power
output for both scenarios.

Several BESS capacity scenarios have been studied. Table 4 shows the main parameters
considered for the BESS. The values have been selected according to Chilean and Puerto Rican
MTRs [5,6], and to manufacturer’s datasheets [42–44]. Cp and Dp are the maximum instantaneous
active power to charge and discharge the battery respectively. If there was not any frequency
disturbance, the battery would be charged or discharged to the BESS SOCini at a defined active
power rate (Rp). SOCmin is the minimum SOC allowed of the BESS, lower SOCs than SOCmin,
which are not allowed because a big depth of discharge (DOD) reduces greatly the expected life
of the battery. Finally, ηBESS points out the overall efficiency of the BESS, including the charging and
discharging process.

Table 4. BESS settings: maximum charging active power (Cp); maximum discharging active
power (Dp); recovery active power (Rp); minimum allowed SOC (SOCmin); and overall efficiency
of the BESS (ηBESS).

BESS Settings

Parameter Cp Dp Rp SOCmin ηBESS

Value 0.1 p.u. 0.1 p.u. 0.02 p.u. 0.2 p.u. 0.9 p.u.

Data from some manufacturers have been considered [42] to determine the BESS life expectancy
under the working conditions. In fact, Figure 17 shows the expected battery number of cycles (NOC)
versus the load cycle DOD.
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Figure 17. Number of cycles (NOC) vs. depth of discharge (DOD) of the selected BESS.

Finally, the levelized cost of electricity (LCOE) [45] is calculated for both scenarios (with and
without BESS), in order to quantize the improvement by including a BESS.

5.1. Reducing Losses with Battery Energy Storage System

Figure 18 shows the response of Chilean USPVP with f1 at 50.5 Hz for an BESS capacity (C)
of 0.00277 p.u.h (C1), 0.00833 p.u.h (C2), and 0.015 p.u.h (C3). Capacity magnitudes are related to the
nominal output power of the USPVP. The introduction of the BESS reduces expected losses to less
than the half previous case losses, even for small BESS capacity.

Moreover, Figure 19 shows results from similar experiments over Puerto Rican USPVP design
scenario. The introduction of a BESS releases the reserved PV load, increasing the overall efficiency
of the system up to 10% of the total power plant production.
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Figure 18. USPVP energy losses due to FR during a year in Chile, with f1 at 52 Hz, for several ESS
scenarios: C at 0.00277 p.u.h (C1), 0.00833 p.u.h (C2), 0.015 p.u.h (C3) and without BESS (C0): (a) Daily
energy losses (eloss) in October; (b) monthly energy losses; (c) daily remnant energy (erem) in October;
and (d) monthly remnant energy.

0

0.25

0.50

0.75

1.00

1.25

(a)

e lo
ss

 (
p.

u.
h/

da
y)

 

 

C
0

C
1

C
2

C
3

1−Jul 10−Jul 20−Jul
0.85

0.90

0.95

1.00

(c)

e re
m

 (
p.

u.
)

 

 

C
3

C
2

C
1

C
0

0

0.25

0.50

0.75

1.00

1.25

(b)

e lo
ss

 (
p.

u.
h/

da
y)

 

 

C
0

C
1

C
2

C
3

J F M A M J J A S O N D
0.85

0.90

0.95

1.00

(d)

e re
m

 (
p.

u.
)

 

 

C
3

C
2

C
1

C
0

Figure 19. USPVP energy losses due to FR during a year in Puerto Rico, for several ESS scenarios: C at
0.00277 p.u.h (C1), 0.00833 p.u.h (C2), 0.015 p.u.h (C3) and without BESS (C0): (a) Daily energy losses
(eloss) in July; (b) monthly energy losses; (c) daily remnant energy (erem) in July; and (d) monthly
remnant energy.

5.2. Battery Energy Storage System Life Cycle

The BESS life cycle is another important factor that must be taken into account when correctly
sizing the BESS. Great charging/discharging cycles seriously reduce batteries life expectancy.
However, BESS output must fulfil the required FR response with provided irradiance and frequency
measurements. BESS capacity (C) has been tested for a wide range of values, getting expected losses
and BESS life expectancy for all cases.
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Figures 20 and 21 show both expected losses and end of life (EOL) of BESS for Chilean and Puerto
Rican cases. Above a certain value, increasing BESS capacity does not significantly reduce the energy
losses of the whole system. However, the life expectancy could grow for several years, adding a little
more capacity than the minimum required.
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Figure 20. BESS sizing results for SING case considering a whole year of transient results data, values
of f1 at 52, 51 and 50.5 Hz, C1, C2 and C3 respectively: (a) Daily energy losses (eloss) per BESS capacity;
and (b) end of life (EOL) per BESS capacity.
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Figure 21. BESS sizing results for Puerto Rican case considering a whole year of transient results data:
(a) Daily energy losses per BESS capacity; and (b) EOL per BESS capacity.

A typical value of EOL of a USPVP could be around 20 years. For example, in the Puerto Rican
case, a capacity value of 0.025 p.u.h allows us to reach an EOL of 20 years. Figure 21 shows that the
losses curve around C = 0.025 p.u.h is almost flat, so the selected C value could be a suitable one.

5.3. Levelized Cost of Electricity Estimation

LCOE is estimated for both cases: Puerto Rican and Chilean ( f1 = 50.5 Hz) plants. Two scenarios
have been considered, with and without BESS, in order to quantize the difference between the
two solutions.
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Parameters have been selected according to previous sections results and for a typical BESS and
PV plant [46]. The weighted average cost of capital (WACC) have been set to 9.4% according to
Table 5. BESS and USPVP settings are detailed in Table 6.

Table 5. Weighted average cost of capital (WACC) settings.

Parameter Value Parameter Value

Debt 30.00% Debt interest 8.00%

Tax equity 40.00% Tax equity interest 8.50%

Equity 30.00% Equity interest 12.00%

- - WACC 9.40%

Table 6. USPVP and BESS settings.

Description Case Chile Puerto Rico

BESS

Technology Li-ion Li-ion

Nominal power 30 MW 30 MW

Capacity 0.15 hp.u. 0.25 hp.u.

Capital cost 1.5 $/Wh 1.5 $/Wh

Efficency cycle 90% 90%

Facility life 20 years 20 years

O&M costs 165,000 $/year 165,000 $/year

USPVP

Technology Polycristaline Polycristaline

Nominal power 300 MW 300 MW

Capital cost 0.86 $/Wh 0.86 $/Wh

Facility life 20 years 20 years

O&M costs 6,000,000 $/year 6,000,000 $/year

Finally, USPVP CAPital EXpenditures (CAPEX), OPerating EXpenses (OPEX) and LCOE values
are pointed out in Table 7. BESS solution is more expensive, investment and operation costs are
increased. However, active power production is increased significantly in both scenarios, so LCOE is
reduced up to almost 3%.

Table 7. USPVP levelized cost of electricity (LCOE) results. OPEX: OPerating EXpenses, CAPEX:
CAPital EXpenditures.

Country Case Without BESS With BESS

Chile

Production 749 GWh/year 767 GWh/year

OPEX 6, 000, 000$ 6, 099, 000$

CAPEX 258, 000, 000$ 264, 750, 000$

LCOE 46.83 $/MWh 46.82 $/MWh

Puerto Rico

Production 656 GWh/year 702 GWh/year

OPEX 6, 000, 000$ 6, 165, 000$

CAPEX 258, 000, 000$ 269, 250, 000$

LCOE 53.50 $/MWh 51.99 $/MWh
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6. Conclusions

A comprehensive review of current MTRs related to FR and FRT capabilities for main
international grid codes have been presented. FR requirements impose restrictions over active power
production to help the utility grid stabilize the grid frequency. Moreover, reserves are needed to help
the grid under low frequency excursions, reducing the output power capability of the USPVP.

Weak grids have special MTRs and more severe frequency excursions. An analysis of frequency
fault depth and duration behaviour with a wide spectra of real data have been presented for several
weak grids with remarkable differences. Losses due to FR of two weak grids have been analysed,
showing a considerable reduction of power production.

Frequency measurements analysis has improved the frequency fault behaviour understanding
in weak grids. The main conclusions about frequency faults behaviour are:

• Frequency excursions could remian for very long inside the range of FR, up to 50 min for some cases.
• However, the mean time of frequency excursions is much shorter, about 1 or 2 min for all

studied cases.
• When the frequency fault exceeded the FR operating range, the fault duration could be

significantly longer. This effect is due to the FR saturation control.
• Frequency excursions are hourly time dependent. The ocurrence probability of faults is higher in

day time, increasing USPVP losses. Moreover, it is distributed irregularly with some remarked
peaks, probably due to peak demand hours.

PV plants have many advantages: its energy is clean, solar energy is a locally available renewable
resource, etc. However, they are more expensive than other alternatives. Worldwide governments
encourage solar plants with several types of incentives, in order to maximize the PV plants profits
versus other technologies [47–51]. BESS could help to PV plants to become more profitable in some
special cases as pointed out above, and contribute to help the grid system stability.

Finally, the introduction of BESS has been proven to help reduce power losses and maximize
the efficiency of the power plant, removing PV reserves. The improvement has been quantized with
the LCOE estimation, with a reduction up to 1.51 $/MWh. This result is very important, because
most recent reports point out the necessity of BESS economic incentives due to the high prices of
batteries [30–33].

PV plant owners or utilities could evaluate whether new USPVPs can have economically viable
BESS or not. Figure 22 shows a summarised procedure for a correct evaluation. The procedure could
be divided into four phases. The first phase collects the most important environmental variables from
the new plant’s desired location. Solar irradiance, temperature, location and other input settings build
a model to size the USPVP accordingly with the owner’s objectives. The second phase estimates solar
production generation (PPV), and a study about the grid frequency stability helps to estimate losses
due to FR of national grid code (PFR). After that, the third phase sizes the more convenient BESS
system for the studied application, and total power production could be estimated with and without
BESS. Finally, the fourth phase calculates investment costs and revenues, and a final decision could
be made redarding the most cost-effective solution.

Moreover, introduction of BESS has many other advantages:

• BESS could improve other features as constant power ramp rates over production.
• Energy saved could be used at any time when the utility grid needs it, complementing the

uncertainty of renewable sources. Moreover, BESS could perform perform peak shaving actions
and load management.

• BESS could be used also as static voltage compensators (SVCs), adding reactive power capacity
to the plant.

• BESS could smooth PV plant output production over cloudy conditions.
• BESS could be used to perform load shifting actions to help the grid stability.
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Figure 22. Summarised procedure to evaluate BESS whether new USPVPs can have economically
viable BESS or not. Four phases are clearly distinguished: Phase 1: USPVP sizing; Phase 2: solar
production generation and FR losses estimation; Phase 3: BESS sizing and total power production
estimation; and Phase 4: LCOE calculation and decision.
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